Skip to main content

JVCSR: Video Compressive Sensing Reconstruction with Joint In-Loop Reference Enhancement and Out-Loop Super-Resolution

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13141))

Included in the following conference series:

Abstract

Taking advantage of spatial and temporal correlations, deep learning-based video compressive sensing reconstruction (VCSR) technologies have tremendously improved reconstructed video quality. Existing VCSR works mainly focus on improving deep learning-based motion compensation without optimizing local and global information, leaving much space for further improvements. This paper proposes a video compressive sensing reconstruction method with joint in-loop reference enhancement and out-loop super-resolution (JVCSR), focusing on removing reconstruction artifacts and increasing the resolution simultaneously. As an in-loop part, the enhanced frame is utilized as a reference to improve the recovery performance of the current frame. Furthermore, it is the first time to propose out-loop super-resolution for VCSR to obtain high-quality images at low bitrates. As a result, JVCSR obtains an average improvement of 1.37 dB PSNR compared with state-of-the-art compressive sensing methods at the same bitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virat description. http://www.viratdata.org/

  2. Chen, H., He, X., Ren, C., Qing, L., Teng, Q.: CISRDCNN: super-resolution of compressed images using deep convolutional neural networks. Neurocomputing 285, 204–219 (2018)

    Article  Google Scholar 

  3. Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Performance comparison of convolutional autoencoders, generative adversarial networks and super-resolution for image compression. In: CVPR Workshops, pp. 2613–2616 (2018)

    Google Scholar 

  4. Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 576–584 (2015)

    Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Duarte, M.F., et al.: Single-pixel imaging via compressive sampling. IEEE Sign. Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  7. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  8. Ho, M.M., Zhou, J., He, G., Li, M., Li, L.: SR-CL-DMC: P-frame coding with super-resolution, color learning, and deep motion compensation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 124–125 (2020)

    Google Scholar 

  9. Ho, M.-M., He, G., Wang, Z., Zhou, J.: Down-sampling based video coding with degradation-aware restoration-reconstruction deep neural network. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11961, pp. 99–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37731-1_9

    Chapter  Google Scholar 

  10. Huang, B., Zhou, J., Yan, X., Jing, M., Wan, R., Fan, Y.: CS-MCNet: a video compressive sensing reconstruction network with interpretable motion compensation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  11. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3867–3876 (2019)

    Google Scholar 

  12. Mercat, A., Viitanen, M., Vanne, J.: UVG dataset: 50/120fps 4K sequences for video codec analysis and development. In: Proceedings of the 11th ACM Multimedia Systems Conference, pp. 297–302 (2020)

    Google Scholar 

  13. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3147–3155 (2017)

    Google Scholar 

  14. Wang, H., et al.: MCL-JCV: a JND-based h. 264/AVC video quality assessment dataset. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1509–1513. IEEE (2016)

    Google Scholar 

  15. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  16. Xu, K., Ren, F.: CSVideoNet: a real-time end-to-end learning framework for high-frame-rate video compressive sensing. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1680–1688. IEEE (2018)

    Google Scholar 

  17. Yao, S., Guan, Q., Wang, S., Xie, X.: Fast sparsity adaptive matching pursuit algorithm for large-scale image reconstruction. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–8 (2018). https://doi.org/10.1186/s13638-018-1085-6

    Article  Google Scholar 

  18. Zhang, J., Ghanem, B.: ISTA-NET: interpretable optimization-inspired deep network for image compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1828–1837 (2018)

    Google Scholar 

  19. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Z., Liu, Y., Liu, J., Wen, F., Zhu, C.: AMP-NET: denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 30, 1487–1500 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjia Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J., Pham, C.DK., Zhou, J. (2022). JVCSR: Video Compressive Sensing Reconstruction with Joint In-Loop Reference Enhancement and Out-Loop Super-Resolution. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98358-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98357-4

  • Online ISBN: 978-3-030-98358-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics