Skip to main content

Passive Control via Mass Dampers: A Review of State-Of-The-Art Developments

  • Chapter
  • First Online:
Optimization of Tuned Mass Dampers

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 432))

Abstract

Passive control systems are practical systems that use the system's energy to absorb its energy to control the dynamic effects on the structure. In the control of these systems, which store energy with the help of a spring and mass, the effect of mass and spring is great. Based on this logic, different types of passive control systems are derived according to the type of material used. Tuned mass dampers (TMD) and tuned liquid dampers (TLD) in the passive control group are often used to solve various engineering problems. In these two systems, which have the same properties, a solid mass is usually chosen for TMD, while this mass is liquid for TLDs. In this study, passive control systems, which have important effects on building control, are explained in general terms, the historical development of TMDs and TLDs from the early times when the concept of structural control emerged until today, and the studies that have been done are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldemir, Ü.: Optimal control of structures, Ph.D. Thesis, I.T.Ü. Institute of Science and Technology, Istanbul (1999)

    Google Scholar 

  2. Okut.: Investigation of the Performance of Tuned Mass Dampers in Reinforced Concrete Structures Under Seismic Effects, M.Sc., İ.T.Ü. Institute of Science and Technology, Istanbul

    Google Scholar 

  3. Bakioğlu, M.: Active-Passive Control Methods in Buildings Lecture Notes, İ.T.Ü., İstanbul (2005)

    Google Scholar 

  4. Naimi, S.V., Waheb, M.H.: Seismic base isolation of structures under the impact of earthquakes and mixed protection of multiple adjusted mass damping systems. Erzincan Univ. J. Sci. Inst. 12(1), 499–516 (2019)

    Google Scholar 

  5. Öztürk, B.K.: Evaluation of Structural Control Systems and Application of Base Insulators to a Reinforced Concrete Building, Master Thesis, Selcuk University, Institute of Science and Technology, Konya (2007)

    Google Scholar 

  6. Sansarcı, E.: Structural Control Systems and Use of Liquid Dampeners in Buildings, M.Sc., İ.T.Ü. Institute of Science and Technology, Istanbul (2002)

    Google Scholar 

  7. Yetişken, A.: Investigation of the Effect of Liquid Damper Systems on the Damping Capacities of Structures Using Shaking Table, M.Sc., K.T.Ü. Institute of Science and Technology, Trabzon (2016)

    Google Scholar 

  8. Craig, J.I., Goodno, B.J., Towashiraporn, P., Ve Park, J.: Response Modification Applications for Essential Facilities, Mid-America Earthquake Center Project ST-4 Final Report, Atlanta, Georgia (2002)

    Google Scholar 

  9. Şahin, M.: Passive and Active Control Systems Developed Against Earthquake Effects, Master Thesis, İ.T.Ü. Institute of Science and Technology, Istanbul (1996)

    Google Scholar 

  10. Aldemir, Ü., Aydın, E.: New approaches in earthquake resistant building design. TMH-Turk. Eng. News, Issue 435–2005(1), 81 (2005)

    Google Scholar 

  11. Chang, K.C., Soong, T.T., Oh, S.T., Lai, M.T.: Seismic behavior of steel frame with added viscoelastic dampers. ASCE J. Struct. Eng. 121(10), 1418–1426 (1994)

    Article  Google Scholar 

  12. Frahm, H.: Device for Damping Vibration of Bodies. US Patent 989958 (1909)

    Google Scholar 

  13. Waheb, M.H.: seismic base isolation of structures under the impact of earthquakes and mixed protection of multiple adjusted mass damping systems. Istanbul Aydın University, Institute of Science and Technology, Istanbul, M.Sc. (2018)

    Google Scholar 

  14. McNamara, R.J.: Tuned mass dampers for buildings. J. Struct. Div. 103(9), 1785–1798 (1977)

    Article  Google Scholar 

  15. Chen, B.F., Yang, B.H.: Experimental study of a hybrid TMD and TLD on structure motion reduction. Ocean Eng. 165, 538–549 (2018)

    Article  Google Scholar 

  16. Tait, M.J.: Modeling and preliminary design of a structure-TLD system. Eng. Struct. 30(10), 2644–2655 (2008)

    Article  Google Scholar 

  17. Housner, G.W.: Earthquake Pressure on Fluid Containers, Report, pp. 81–95 (1954)

    Google Scholar 

  18. Kajirna Corporation.: Minimizing tremors by Changing Building stiffness AVS Active Variable Stiffness System, Seismic Response Control Series, Technical Panıphlet, 91–65 E

    Google Scholar 

  19. Hüsem, M., Yozgat, E.: Building control systems that can be used in earthquake resistant building design. Chamber Civ. Eng. İzmir Branch 20, 121 (2005)

    Google Scholar 

  20. Fujino, Y., Sun, L.M.: Vibration control by multiple tuned liquid dampers (MTLDs). J. Struct. Eng. 119(12), 3482–3502 (1993)

    Article  Google Scholar 

  21. Tamura, Y., Kousaka, R., Modi, V.J.: Practical application of nutation damper for suppressing wind-induced vibrations of airport towers. J. Wind Eng. Ind. Aerodyn. 43(1–3), 1919–1930 (1992)

    Article  Google Scholar 

  22. Crowley, S., Porter, R.: An analysis of screen arrangements for a tuned liquid damper. J. Fluids Struct. 34, 291–309 (2012)

    Article  Google Scholar 

  23. Giaralis, A., Taflanidis, A.A.: Optimal tuned mass‐damper‐inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Struct. Control Health Monitor. 25(2), e2082 (2018)

    Google Scholar 

  24. Aydın, E., Öztürk, B., Gökdemir, H.M., Çetin, H.: The behavior of pendulum tuned mass dampers under harmonic effects: an experimental study. In: 3rd Turkish earthquake engineering, and seismology conference, pp. 14–16, İzmir, Turkey (2015)

    Google Scholar 

  25. Ormondroyd, J. ve Den Hartog, J.P.: The theory of dynamic vibration absorber. Trans. ASME, APM 50(7), 9–22 (1928)

    Google Scholar 

  26. Hartog, J.P.D.: Mechanical Vibrations, I.T.Ü. Printing House, Istanbul (1949)

    Google Scholar 

  27. Bishop, R.E.D. ve Welbourn, D.B.: The problem of dynamic vibration absorbers. Eng. Lond. 174–769 (1952)

    Google Scholar 

  28. Den Hartog, J.P.: Mechanical vibrations, 4th ed. Mc Graw-Hill, New York (1956)

    MATH  Google Scholar 

  29. Chang, C.M., Shia, S., Lai, Y.A.: Seismic design of passive tuned mass damper parameters using active control algorithm. J. Sound Vibr. 426, 150–165 (2018)

    Google Scholar 

  30. Falcon, K.C., Stone, B.J., Simcock, W.D., Andrew, C.: Optimization of vibration absorbers: a graphical method for use on idealized systems with restricted damping. J. Mech. Eng. Sci. 9(5), 374–381 (1967)

    Article  Google Scholar 

  31. Wirsching, P.H., Campbell, G.W.: Minimal structural response under random excitation using the vibration absorber. Earthq. Eng. Struct. Dyn. 2(4), 303–312 (1973)

    Article  Google Scholar 

  32. Ioi, T., Ikeda, K.: On the dynamic vibration damped absorber of the vibration system. Bull. Japan. Soc. Mech. Eng. 21(151), 64–71 (1978)

    Article  Google Scholar 

  33. Warburton, G.B., Ayorinde, E.O.: Optimum absorber parameters for simple systems. Earthq. Eng. Struct. Dyn. 8(3), 197–217 (1980)

    Article  Google Scholar 

  34. Kaynia, A.M., Biggs, J.M., Veneziano, D.: Seismic effectiveness of tuned mass dampers. J. Struct. Div. 107(8), 1465–1484 (1981)

    Article  Google Scholar 

  35. Vickery, B.J., Isyumov, N., ve Davenport, A. G.: The role of damping, mass, and acceleration. 1. Wind Engnglnd. Aerodyn. 2, 285–294 (1983)

    Article  Google Scholar 

  36. Iwanami, K., ve Seto, K.: Optimum design of dual tuned mass dampers and their effectiveness. Jpn Soc. Mech. Eng. Sayfa 50(1), 44–52 (1984)

    Google Scholar 

  37. Villaverde, R.: Reduction in seismic response with heavily-damped vibration absorber. Earthq. Eng. Struct. Dyn. 13, 33–42 (1985)

    Article  Google Scholar 

  38. Xu, K., ve Igusa, T.: Dynamic characteristics of multiple substructure with closely spaced frequencies. Earthq. Eng. Struct. Dyn. Sayfa 21(12), 1059–1070 (1992)

    Google Scholar 

  39. Tsai, H.C., Lin, G.C.: Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems. Earthq. Eng. Struct. Dyn. 22(11), 957–973 (1993)

    Article  Google Scholar 

  40. Villaverde, R., Koyama, L.A.: Damped resonant appendages to increase inherent damping in buildings. Earthq. Eng. Struct. Dyn. 22(6), 491–507 (1993)

    Article  Google Scholar 

  41. Cetin, H., Aydin, E.: Optimum Placement of Multi-Tuned Mass Dampers in Structures Under Dynamic Effects, Ph.D. Thesis, Niğde Ömer Halis Demir University, Institute of Science and Technology, Niğde (2020)

    Google Scholar 

  42. Yamaguchi, H., Harnpornchai, N.: Fundamental Characteristic of Multiple TunedMass Dampers for suppressing harmonically forced oscillations. Earthq. Eng. Struct. Dynam. 22(1), 51–62 (1993)

    Article  Google Scholar 

  43. Igusa, T., Xu, K.: Vibration control using multiple tuned mass dampers. J. Sound Vibr. 175(4), 491–503 (1994)

    Google Scholar 

  44. Abe, M., Fujino, Y.: Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthq. Eng. Struct. Dyn. 23(8), 813–835 (1994)

    Article  Google Scholar 

  45. Kareem, A., ve Klie, S.: Performance of multiple mass dampers under random loading. J. Struct. Engng. 121(2), 348–361 (1995)

    Article  Google Scholar 

  46. Jangid, R.S.: Dynamic characteristic of structures with multiple tuned mass dampers’. Struct. Eng. Mech. 3(5), 497–509 (1995)

    Article  Google Scholar 

  47. Joshi, A.S., Jangid, R.S.: Optimum Parameters of Multiple Tuned Mass Dampers for base-excited damped systems. J. Sound Vibr. 202(5), 657–667 (1997)

    Google Scholar 

  48. Rana, R., ve Soong, T.T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998)

    Article  Google Scholar 

  49. Jangid, R.S.: Optimum multiple tuned mass dampers for base-excited undamped system’. Struct. Eng. Mech. 28(9), 1041–1049 (1999)

    Google Scholar 

  50. Lin, H.J., Zhang, S.W., Sun, K.D., He, Q., Lark, J.R., Williams, W.F.: Precise and efficient computation of complex structures with TMD devices. J. Sound Vib. 223(5), 693–701 (1999)

    Article  Google Scholar 

  51. Chang, C.C.: Mass dampers and their optimal designs for building vibration control. Eng. Struct. 21(5), 454–463 (1999)

    Article  Google Scholar 

  52. Takewaki, I.: Soil–structure random response reduction via TMD-VD simultaneous use. Comput. Methods Appl. Mech. Eng. 190(5–7), 677–690 (2000)

    Article  MATH  Google Scholar 

  53. Agrawal, A.K.: Response of light equipment on torsional building with passive tuned mass damper. Comput. Struct. 78(4), 591–602 (2000)

    Article  Google Scholar 

  54. Lin, Y.Y., Cheng, C.M., Lee, C.H.: A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges. Eng. Struct. 22(9), 1195–1204 (2000)

    Article  Google Scholar 

  55. Gu, M., Chen, S.R., Chang, C.C.: Parametric study on multiple tuned mass dampers for buffeting control of Yangpu Bridge. J. Wind Eng. Ind. Aerodyn. 89(11–12), 987–1000 (2001)

    Article  Google Scholar 

  56. Chen, G., Wu, J.: Optimal placement of multiple tuned mass dampers for seismic structures. Earthq. Eng. Struct. Dyn. 127(9), 1054–1062 (2001)

    Google Scholar 

  57. Jensen, C.N., Nielsen, S.R., Sørensen, J.D.: Optimal damping of stays in cable-stayed bridges for in-plane vibrations. J. Sound Vib. 256(3), 499–513 (2002)

    Article  Google Scholar 

  58. Chen, G., Wu, J.: Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-story building structure. Earthq. Eng. Struct. Dyn. 32(5), 793–810 (2003)

    Article  Google Scholar 

  59. Gerges, R.R., Vickery, B.J.: Wind tunnel study of the across-wind response of a slender tower with a nonlinear tuned mass damper. J. Wind Eng. Ind. Aerodyn. 91(8), 1069–1092 (2003)

    Article  Google Scholar 

  60. Pinkaew, T., Lukkunaprasit, P., Chatupote, P.J.E.S.: Seismic effectiveness of tuned mass dampers for damage reduction of structures. Eng. Struct. 25(1), 39–46 (2003)

    Article  Google Scholar 

  61. Kwon, S.D., Park, K.S.: Suppression of bridge flutter using tuned mass dampers based on robust performance design. J. Wind Eng. Ind. Aerodyn. 92(11), 919–934 (2004)

    Article  Google Scholar 

  62. Chen, Y.H., Huang, Y.H.: Timoshenko beam with tuned mass dampers and its design curves. J. Sound Vib. 278(4–5), 873–888 (2004)

    Article  MATH  Google Scholar 

  63. Zuo, L., Nayfeh, S.A.: Minimax optimization of multi-degree-of-freedom tuned-mass dampers. J. Sound Vib. 272(3–5), 893–908 (2004)

    Article  Google Scholar 

  64. Yau, J.D., Yang, Y.B.: A wideband MTMD system for reducing the dynamic response of continuous truss bridges to moving train loads. Eng. Struct. 26(12), 1795–1807 (2004)

    Article  Google Scholar 

  65. Gerges, R.R., Vickery, B.J.: Design of tuned mass dampers incorporating wire rope springs: Part II: simple design method. Eng. Struct. 27(5), 662–674 (2005)

    Article  Google Scholar 

  66. Wang, J.F., Lin, C.C.: Seismic performance of multiple tuned mass dampers for soil–irregular building interaction systems. Int. J. Solids Struct. 42(20), 5536–5554 (2005)

    Article  MATH  Google Scholar 

  67. Zuo, L., Nayfeh, S.A.: Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper systems. J. Vib. Acoust. 127(1), 77–83 (2005)

    Article  Google Scholar 

  68. Lee, C.L., Chen, Y.T., Chung, L.L., Wang, Y.P.: Optimal design theories and applications of regulating mass dampers. Eng. Struct. 28(1), 43–53 (2006)

    Article  Google Scholar 

  69. Li, C., Zhu, B.: Estimating double-tuned mass dampers for structures underground acceleration using a novel optimum criterion. J. Sound Vib. 298(1–2), 280–297 (2006)

    Article  Google Scholar 

  70. Li, C., Qu, W.: Optimum properties of multiple tuned mass dampers for reduction of the translational and torsional response of structures subject to ground acceleration. Eng. Struct. 28(4), 472–494 (2006)

    Article  Google Scholar 

  71. Du, D., Gu, X., Chu, D., Hua, H.: Performance and parametric study of infinite multiple TMDs for structures underground acceleration by H∞ optimization. J. Sound Vib. 305(4–5), 843–853 (2007)

    Article  Google Scholar 

  72. Wu, W.J., Cai, C.S.: Theoretical exploration of a taut cable and a TMD system. Eng. Struct. 29(6), 962–972 (2007)

    Article  Google Scholar 

  73. Almazán, J.L., Juan, C., Inaudi, J.A., López-García, D., Izquierdo, L.E.: A bidirectional and homogeneous tuned mass damper: a new device for passive control of vibrations. Eng. Struct. 29(7), 1548–1560 (2007)

    Article  Google Scholar 

  74. Guo, Y.Q., Chen, W.Q.: Dynamic analysis of space structures with multiple tuned mass dampers. Eng. Struct. 29(12), 3390–3403 (2007)

    Article  Google Scholar 

  75. Hoang, N., Fujino, Y., Warnitchai, P.: Optimally tuned mass damper for seismic applications and practical design formulas. Eng. Struct. 30(3), 707–715 (2008)

    Article  Google Scholar 

  76. Liu, M.Y., Chiang, W.L., Hwang, J.H., Chu, C.R.: Wind-induced vibration of a high-rise building with tuned mass damper including soil-structure interaction. J. Wind Eng. Ind. Aerodyn. 96(6–7), 1092–1102 (2008)

    Article  Google Scholar 

  77. Chen, S.R., Wu, J.: Performance enhancement of bridge infrastructure systems: long-span bridge, moving trucks, and wind with tuned mass dampers. Eng. Struct. 30(11), 3316–3324 (2008)

    Article  Google Scholar 

  78. Marano, G.C., Sgobba, S., Greco, R., Mezzina, M.: Robust optimum design of tuned mass dampers devices in random vibrations mitigation. J. Sound Vib. 313(3–5), 472–492 (2008)

    Article  Google Scholar 

  79. Matta, E., De Stefano, A.: Robust design of mass-uncertain rolling-pendulum TMDs for the seismic protection of buildings. Mech. Syst. Signal Process. 23(1), 127–147 (2009)

    Article  Google Scholar 

  80. Leung, A.Y.T., Zhang, H.: Particle swarm optimization of tuned mass dampers. Eng. Struct. 31(3), 715–728 (2009)

    Article  Google Scholar 

  81. Hijmissen, J.W., Van den Heuvel, N.W., Van Horssen, W.T.: On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-mass-damper. Eng. Struct. 31(5), 1276–1285 (2009)

    Article  Google Scholar 

  82. Alexander, N.A., Schilder, F.: Exploring the performance of a nonlinear tuned mass damper. J. Sound Vib. 319(1–2), 445–462 (2009)

    Article  Google Scholar 

  83. Ok, S.Y., Song, J., Park, K.S.: Development of optimal design formula for bi-tuned mass dampers using multi-objective optimization. J. Sound Vib. 322(1–2), 60–77 (2009)

    Article  Google Scholar 

  84. Marano, G.C., Greco, R., Chiaia, B.: A comparison between different optimization criteria for tuned mass dampers design. J. Sound Vib. 329(23), 4880–4890 (2010)

    Article  Google Scholar 

  85. Brownjohn, J.M.W., Carden, E.P., Goddard, C.R., Oudin, G.: Real-time performance monitoring of tuned mass damper system for a 183 m reinforced concrete chimney. J. Wind Eng. Ind. Aerodyn. 98(3), 169–179 (2010)

    Article  Google Scholar 

  86. Li, Q., Fan, J., Nie, J., Li, Q., Chen, Y.: Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers. J. Sound Vib. 329(19), 4068–4092 (2010)

    Article  Google Scholar 

  87. Weber, B., Feltrin, G.: Assessment of long-term behavior of tuned mass dampers by system identification. Eng. Struct. 32(11), 3670–3682 (2010)

    Article  Google Scholar 

  88. Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011)

    Article  Google Scholar 

  89. Almazán, J.L., Espinoza, G., Aguirre, J.J.: Torsional balance of asymmetric structures by means of tuned mass dampers. Eng. Struct. 42, 308–328 (2012)

    Article  Google Scholar 

  90. Bae, J.S., Hwang, J.H., Roh, J.H., Kim, J.H., Yi, M.S., Lim, J.H.: Vibration suppression of a cantilever beam using magnetically tuned-mass-damper. J. Sound Vib. 331(26), 5669–5684 (2012)

    Article  Google Scholar 

  91. Chen, J., Georgakis, C.T.: Tuned rolling-ball dampers for vibration control in wind turbines. J. Sound Vib. 332(21), 5271–5282 (2013)

    Article  Google Scholar 

  92. Zhang, Z., Balendra, T.: Passive control of bilinear hysteretic structures by a tuned mass damper for narrowband seismic motions. Eng. Struct. 54, 103–111 (2013)

    Article  Google Scholar 

  93. Lee, S.H., Lee, K.K., Woo, S.S., Cho, S.H.: Global vertical mode vibrations due to human group rhythmic movement in a 39 story building structure. Eng. Struct. 57, 296–305 (2013)

    Article  Google Scholar 

  94. Daniel, Y., Lavan, O.: Gradient-based optimal seismic retrofitting of 3D irregular buildings using multiple tuned mass dampers. Comput. Struct. 139, 84–97 (2014)

    Article  Google Scholar 

  95. Viet, L.D., Nghi, N.B.: On a nonlinear single-mass two-frequency pendulum tuned mass damper to reduce horizontal vibration. Eng. Struct. 81, 175–180 (2014)

    Article  Google Scholar 

  96. Longarini, N., Zucca, M.: A chimney’s seismic assessment by a tuned mass damper. Eng. Struct. 79, 290–296 (2014)

    Article  Google Scholar 

  97. Marian, L., Giaralis, A.: Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probab. Eng. Mech. 38, 156–164 (2014)

    Article  Google Scholar 

  98. Domizio, M., Ambrosini, D., Curadelli, O.: Performance of tuned mass damper against structural collapse due to near-fault earthquakes. J. Sound Vib. 336, 32–45 (2015)

    Article  Google Scholar 

  99. Mrabet, E., Guedri, M., Ichchou, M., Ghanmi, S.: New approaches in reliability-based optimization of the tuned mass damper in presence of uncertain bounded parameters. J. Sound Vib. 355, 93–116 (2015)

    Article  Google Scholar 

  100. Frans, R., Arfiadi, Y.: Designing optimum locations and properties of MTMD systems. Procedia Eng. 125, 892–898 (2015)

    Article  Google Scholar 

  101. Lievens, K., Lombaert, G., De Roeck, G., Van den Broeck, P.: Robust design of a TMD for the vibration serviceability of a footbridge. Eng. Struct. 123, 408–418 (2016)

    Article  Google Scholar 

  102. Miguel, L.F., Lopez, R.H., Torii, A.J., Miguel, L.F., Beck, A.T.: Robust design optimization of TMDs in-vehicle–bridge coupled vibration problems. Eng. Struct. 126, 703–711 (2016)

    Article  Google Scholar 

  103. Elias, S., Matsagar, V., Datta, T.K.: Effectiveness of distributed tuned mass dampers for multi-mode control of chimneys under earthquakes. Eng. Struct. 124, 1–16 (2016)

    Article  Google Scholar 

  104. Mokrani, B., Tian, Z., Alaluf, D., Meng, F., Preumont, A.: Passive damping of suspension bridges using multi-degree of freedom tuned mass dampers. Eng. Struct. 153, 749–756 (2017)

    Article  Google Scholar 

  105. Carmona, J.E.C., Avila, S.M., Doz, G.: Proposal of a tuned mass damper with friction damping to control excessive floor vibrations. Eng. Struct. 148, 81–100 (2017)

    Article  Google Scholar 

  106. Lu, Z., Chen, X., Dai, D.Z.K.: Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation. Earthq. Eng. Struct. Dyn. 46, 697–714 (2017)

    Google Scholar 

  107. Giaralis, A., Petrini, F.: Optimum design of the tuned mass-damper-inerter for serviceability limit state performance in wind-excited tall buildings. Procedia Eng. 199, 1773–1778 (2017)

    Article  Google Scholar 

  108. Lu, Z., Huang, B., Zhang, Q., Lu, X.: Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations. J. Sound Vib. 421, 153–165 (2018)

    Article  Google Scholar 

  109. De Domenico, D., Ricciardi, G.: Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems. Earthq. Eng. Struct. Dynam. 47(12), 2539–2560 (2018)

    Google Scholar 

  110. Wang, Q., Qiao, H., De Domenico, D., Zhu, Z., Xie, Z.: Wind-induced response control of high-rise buildings using inerter-based vibration absorbers. Appl. Sci. 9(23), 5045 (2019)

    Article  Google Scholar 

  111. Shi, W., Wang, L., Lu, Z., Wang, H.: Experimental and numerical study on adaptive-passive variable mass tuned mass damper. J. Sound Vib. 452, 97–111 (2019)

    Article  Google Scholar 

  112. Mrabet, E., Ichchou, M.N., Bouhaddi, N.: Random vibro-acoustic control of internal noise through optimized Tuned Mass Dampers. Mech. Syst. Signal Process. 130, 17–40 (2019)

    Article  Google Scholar 

  113. Zhang, Z.: Optimal tuning of the tuned mass damper (TMD) for rotating wind turbine blades. Eng. Struct. 207, 110209 (2020)

    Google Scholar 

  114. Khodaie, N.: Vibration control of super-tall buildings using a combination of tapering method and TMD system. J. Wind Eng. Ind. Aerodyn. 196, 104031 (2020)

    Google Scholar 

  115. Pietrosanti, D., De Angelis, M., Giaralis, A.: Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation. Int. J. Mech. Sci. 184, 105762 (2020)

    Google Scholar 

  116. Li, Y., Li, S., Chen, Z.: Optimization and performance evaluation of variable inertial tuned mass damper. Chin. J. Vibr. Eng. 33(5), 877–884 (2020)

    Google Scholar 

  117. Petrini, F., Giaralis, A., Wang, Z.: Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Eng. Struct. 204, 109904 (2020)

    Google Scholar 

  118. Sarkar, S., Fitzgerald, B.: Use of Kane’s method for multi-body dynamic modelling and control of spar-type floating offshore wind turbines. Energies 14(20), 6635 (2021)

    Article  Google Scholar 

  119. De Angelis, M., Petrini, F., Pietrosanti, D.: Optimal design of the ideal grounded tuned mass damper inerter for comfort performances improvement in footbridges with practical implementation considerations. Struct. Control Health Monitor. e2800 (2021)

    Google Scholar 

  120. Wang, Q., Lei, W., Zhu, Z., Tıwarı, N.D.: Comparison of mitigation effects on wind-induced response of connected süper-high-rise buildings controlled by TMDI and MTMDI. J. Build. Struct. 42(4), 25–34 (2021)

    Google Scholar 

  121. Bai, X., Liang, Q., Huo, L.: Vibration control of beam-model using tuned inerter enhanced TMD. J. Sound Vibr. 116304 (2021)

    Google Scholar 

  122. Jahangiri, V., Sun, C., Kong, F.: Study on a 3D pounding pendulum TMD for mitigating bi-directional vibration of offshore wind turbines. Eng. Struct. 241, 112383 (2021)

    Google Scholar 

  123. Moiseyev, N.N.: Dynamics of a ship having a liquid load. Izv Akad Nauk SSSR Old Tekhn Naud 7, 27–45 (1952)

    Google Scholar 

  124. Jamalabadi, M.Y.A.: Frequency analysis and control of sloshing coupled by elastic walls and foundation with smoothed particle hydrodynamics method. J. Sound Vibr. 115310 (2020)

    Google Scholar 

  125. Abramson, H.N., Chu, W.H., Garza, L.R.: Liquid sloshing in spherical tanks. AIAA J. I(2), 384–389 (1963)

    Article  Google Scholar 

  126. Bauer, H.F.: Oscillations of immiscible liquids in a rectangular container: a new damper for excited structures. J. Sound Vib. 93(1), 117–133 (1984)

    Article  Google Scholar 

  127. Modi, V.J., Seto, M.L.: Suppression of flow-induced oscillations using sloshing liquid dampers:analysis and experiments. J. Wind Eng. Ind. Aerodyn. 67, 611–625 (1997)

    Article  Google Scholar 

  128. Won, A.Y., Pires, J.A., Haroun, M.A.: Performance assessment of tuned liquid column dampers under random seismic loading. Int. J. Non-Linear Mech. 32(4), 745–758 (1997)

    Article  MATH  Google Scholar 

  129. Reed, D., Yeh, H., Gardarsson, S.: Tuned liquid dampers under large amplitude excitation. J. Wind Eng. Ind. Aerodyn. 74, 923–930 (1998)

    Article  Google Scholar 

  130. Chang, C.C., Hsu, C.T.: Control performance of liquid column vibration absorbers. Eng. Struct. 20(7), 580–586 (1998)

    Article  Google Scholar 

  131. Yamamoto, K., Kawahara, M.: Structural oscillation control using a tuned liquid damper. Comput. Struct. 71(4), 435–446 (1999)

    Article  Google Scholar 

  132. Chang, C.C., Gu, M.: Suppression of vortex-excited vibration of tall buildings using tuned liquid dampers. J. Wind Eng. Ind. Aerodyn. 83(1–3), 225–237 (1999)

    Article  Google Scholar 

  133. Gao, H., Kwok, K.S.C., Samali, B.: Characteristics of multiple tuned liquid column dampers in suppressing structural vibration. Eng. Struct. 21(4), 316–331 (1999)

    Article  Google Scholar 

  134. Balendra, T., Wang, C.M., Rakesh, G.: Vibration control of various types of buildings using TLCD. J. Wind Eng. Ind. Aerodyn. 83(1–3), 197–208 (1999)

    Article  Google Scholar 

  135. Xue, S.D., Ko, J.M., Xu, Y.L.: Optimum parameters of tuned liquid column damper for suppressing pitching vibration of an undamped structure. J. Sound Vib. 235(4), 639–653 (2000)

    Article  Google Scholar 

  136. Xue, S.D., Ko, J.M., Xu, Y.L.: Tuned liquid column damper for suppressing pitching motion of structures. Eng. Struct. 22(11), 1538–1551 (2000)

    Article  Google Scholar 

  137. Yalla, S.K., Kareem, A., Kantor, J.C.: Semi-active tuned liquid column dampers for vibration control of structures. Eng. Struct. 23(11), 1469–1479 (2001)

    Article  Google Scholar 

  138. Li, S.J., Li, G.Q., Tang, J., Li, Q.S.: Shallow rectangular TLD for structures control implementation. Appl. Acoust. 63(10), 1125–1135 (2002)

    Article  Google Scholar 

  139. Wu, J.S., Hsieh, M.: Study on the dynamic characteristic of a U-type tuned liquid damper. Ocean Eng. 29(6), 689–709 (2002)

    Article  Google Scholar 

  140. Casciati, F., De Stefano, A., Matta, E.: Simulating a conical tuned liquid damper. Simul. Model. Pract. Theory 11(5–6), 353–370 (2003)

    Article  Google Scholar 

  141. Shum, K., Xu, Y.L.: Multiple tuned liquid column dampers for reducing coupled lateral and torsional vibration of structures. Eng. Struct. 26(6), 745–758 (2004)

    Article  Google Scholar 

  142. Felix, J.L., Balthazar, J.M., Brasıl, R.M.: On tuned liquid column dampers mounted on a structural frame under a non-ideal excitation. J. Sound Vib. 282(3–5), 1285–1292 (2005)

    Article  Google Scholar 

  143. Min, K.W., Kim, H.S., Lee, S.H., Kim, H., Ahn, S.K.: Performance evaluation of tuned liquid column dampers for response control of a 76-story benchmark building. Eng. Struct. 27(7), 1101–1112 (2005)

    Article  Google Scholar 

  144. Taflanidis, A.A., Angelides, D.C., Manos, G.C.: Optimal design and performance of liquid column mass dampers for rotational vibration control of structures under white noise excitation. Eng. Struct. 27(4), 524–534 (2005)

    Article  Google Scholar 

  145. Lee, H.H., Wong, S.H., Lee, R.S.: Response mitigation on the offshore floating platform system with tuned liquid column damper. Ocean Eng. 33(8–9), 1118–1142 (2006)

    Article  Google Scholar 

  146. Taflanidis, A.A., Beck, J.L., Angelides, D.C.: Robust reliability-based design of liquid column mass dampers under earthquake excitation using an analytical reliability approximation. Eng. Struct. 29(12), 3525–3537 (2007)

    Article  Google Scholar 

  147. Lee, S.K., Park, E.C., Min, K.W., Lee, S.H., Chung, L., Park, J.H.: Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling the seismic response of building structures. J. Sound Vib. 302(3), 596–612 (2007)

    Article  Google Scholar 

  148. Pirner, M., Urushadze, S.: Liquid damper for suppressing horizontal and vertical motions—parametric study. J. Wind Eng. Ind. Aerodyn. 95(9–11), 1329–1349 (2007)

    Article  Google Scholar 

  149. Wu, J.C., Wang, Y.P., Lee, C.L., Liao, P.H., Chen, Y.H.: Wind-induced interaction of a non-uniform tuned liquid column damper and a structure in the pitching motion. Eng. Struct. 30(12), 3555–3565 (2008)

    Article  Google Scholar 

  150. Samantaray, A.K.: Modeling and analysis of preloaded liquid spring/damper shock absorbers. Simul. Model. Pract. Theory 17(1), 309–325 (2009)

    Article  Google Scholar 

  151. Love, J.S., Tait, M.J.: Nonlinear simulation of a tuned liquid damper with damping screens using a modal expansion technique. J. Fluids Struct. 26(7–8), 1058–1077 (2010)

    Article  Google Scholar 

  152. Marsh, A.P., Prakash, M., Semercigil, S.E., Turan, Ö.F.: A shallow-depth sloshing absorber for structural control. J. Fluids Struct. 26(5), 780–792 (2010)

    Article  MATH  Google Scholar 

  153. Lee, H.H., Min, K.W.: Reducing acceleration response of a SDOF structure with a bi-directional liquid damper. Procedia Eng. 14, 1237–1244 (2011)

    Article  Google Scholar 

  154. Banerji, P., Samanta, A.: Earthquake vibration control of structures using a hybrid mass liquid damper. Eng. Struct. 33(4), 1291–1301 (2011)

    Article  Google Scholar 

  155. Lee, S.K., Min, K.W., Lee, H.R.: Parameter identification of new bidirectional tuned liquid column and sloshing dampers. J. Sound Vib. 330(7), 1312–1327 (2011)

    Article  Google Scholar 

  156. Zahrai, S.M., Abbasi, S., Samali, B., Vrcelj, Z.: Experimental investigation of utilizing TLD with baffles in a scaled-down 5-story benchmark building. J. Fluids Struct. 28, 194–210 (2012)

    Article  Google Scholar 

  157. Hamelin, J.A., Love, J.S., Tait, M.J., Wilson, J.C.: Tuned liquid dampers with a Keulegan-Carpenter number-dependent screen drag coefficient. J. Fluids Struct. 43, 271–286 (2013)

    Article  Google Scholar 

  158. Sarkar, A., Gudmestad, O.T.: Pendulum-type liquid column damper (PLCD) for controlling vibrations of a structure–theoretical and experimental study. Eng. Struct. 49, 221–233 (2013)

    Article  Google Scholar 

  159. Di Matteo, A., Iacono, F.L., Navarra, G., Pirrotta, A.: Direct evaluation of the equivalent linear damping for TLCD systems in random vibration for pre-design purposes. Int. J. Non-Linear Mech. 63, 19–30 (2014)

    Article  Google Scholar 

  160. Di Matteo, A., Iacono, F.L., Navarra, G., Pirrotta, A.: Innovative modeling of tuned liquid column damper motion. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 229–244 (2015)

    Article  Google Scholar 

  161. Zhang, Z., Nielsen, S.R., Basu, B., Li, J.: Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations. J. Fluids Struct. 59, 252–269 (2015)

    Article  Google Scholar 

  162. Sönmez, E., Nagarajaiah, S., Sun, C., Basu, B.: A study on semi-active Tuned Liquid Column Dampers (sTLCDs) for structural response reduction under random excitations. J. Sound Vib. 362, 1–15 (2016)

    Article  Google Scholar 

  163. Zhang, Z., Staino, A., Basu, B., Nielsen, S.R.: Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing. Eng. Struct. 126, 417–431 (2016)

    Article  Google Scholar 

  164. Ong, P.P., Adnan, A., Kwork, K.C., Ma, C.K., Tiong, P.L.Y., Behbahani, H.P.: Dynamic simulation of unrestrained interlocking Tuned Liquid Damper blocks. Constr. Build. Mater. 144, 586–597 (2017)

    Article  Google Scholar 

  165. Zhu, F., Wang, J.T., Jin, F., Lu, L.Q.: Real-time Hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures. Eng. Struct. 138, 74–90 (2017)

    Article  Google Scholar 

  166. Fu, B., Jiang, H., Wu, T.: Comparative studies of vibration control effects between structures with particle dampers and tuned liquid dampers using substructure shake table testing methods. Soil Dyn. Earthq. Eng. 121, 421–435 (2019)

    Article  Google Scholar 

  167. Pandit, A.R., Biswal, K.C.: Seismic control of multi-degree of freedom structure outfitted with sloped bottom tuned liquid damper. In: Structures, vol. 25, pp. 229–240 (2020)

    Google Scholar 

  168. Cavalagli, N., Agresta, A., Biscarini, C., Ubertini, F., Ubertini, S.: Enhanced energy dissipation through 3D printed bottom geometry in Tuned Sloshing Dampers. J. Fluids Struct. 106, 103377 (2021)

    Google Scholar 

  169. Li, Y., Li, S., Sun, B., Liu, M., Chen, Z.: Effectiveness of a tiny tuned liquid damper on mitigating wind-induced responses of cylindrical solar tower based on elastic wind tunnel tests. J. Wind Eng. Ind. Aerodyn. 208, 104455 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Melih Nigdeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ocak, A., Nigdeli, S.M., Bekdaş, G. (2022). Passive Control via Mass Dampers: A Review of State-Of-The-Art Developments. In: Bekdaş, G., Nigdeli, S.M. (eds) Optimization of Tuned Mass Dampers. Studies in Systems, Decision and Control, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-030-98343-7_2

Download citation

Publish with us

Policies and ethics