Skip to main content

Quasi-Static Ropeway Simulation Using Parallel Computing

  • Chapter
  • First Online:
Engineering Design Applications IV

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 172))

  • 289 Accesses

Abstract

In this work, we present the results of a quasi-static simulation of a ropeway. The mathematical background is sketched, and the system of equations is solved numerically for a typical example. The whole computational problem is immediately parallelizable and therefore fast executable. It represents the first approximation of an exact time-dependent calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brownjohn JMW (1998) Dynamics of an aerial cableway system. Eng Struct 20(9):826–836

    Article  Google Scholar 

  2. Bryja D, Knawa M (2011) Computational model of an inclined aerial ropeway and numerical method for analyzing nonlinear cable-car interaction. Comput Struct 98:1895–1905

    Article  Google Scholar 

  3. Renezeder H Chr (2006) On the dynamics of an axially moving cable with application to ropeways. Dissertation TU Wien

    Google Scholar 

  4. Li C, He J, Zhang Z, Liu Y, Ke H, Dong C, Li H (2018) An improved analytical algorithm on main cable system of suspension bridge. Appl Sci 8(8):1358

    Article  Google Scholar 

  5. Lässer Th (2016) Das Dynamische Verhalten von Seilbahnfahrzeugen in Wechselwirkung mit der Dynamik der Seile. Dissertation TU Wien

    Google Scholar 

  6. CEN-Norm (2009) Sicherheitsanforderungen für Seilbahnen für den Personenverkehr, Amtsblatt der EU C51

    Google Scholar 

  7. Czitary E (1962) Seilschwebebahnen, 2nd edn. Springer, Wien

    Book  Google Scholar 

  8. Sofi A (2013) Nonlinear in-plane vibrations of inclined cables carrying moving oscillators. J Sound Vib 332:1712–1724

    Article  Google Scholar 

  9. Arena A, Carboni B, Angeletti F, Babaz M, Lacarbonara W (2019) Ropeway roller batteries dynamics, modeling, identification, and full-scale validation. Eng Struct 180:793–808

    Article  Google Scholar 

  10. Ferretti M, Piccardo G (2013) Dynamic modeling of taut strings carrying a traveling mass. Contin Mech Thermodyn 25:469–488

    Article  MathSciNet  Google Scholar 

  11. Wu J-S, Chen C-C (1989) The dynamic analysis of a suspended cable due to a moving load. Int J Num Methods Eng 28:2361–2381

    Article  Google Scholar 

  12. Petrova R, Karapetkov St, Dechkova S, Petrov Pl (2011) Mathematical simulation of cross-wind vibrations in a mono-cable chair ropeway. Proc Eng 14:2459–2467

    Article  Google Scholar 

  13. Sofi A, Muscolino G (2007) Dynamic analysis of suspended cables carrying moving oscillators. Int J Solids Struct 44:6725–6743

    Article  Google Scholar 

  14. Wang L, Rega G (2010) Modelling and transient planar dynamics of suspended cables with moving mass. Int J Solids Struct 47:2733–2744

    Article  Google Scholar 

  15. Yi Z, Wang Z, Zhou Y, Stanciulescu I (2017) Modeling and vibratory characteristics of a mass-carrying cable system with multiple pulley supports in span range. Appl Math Model 49:59–68

    Article  MathSciNet  Google Scholar 

  16. Irvine HM, Caughey TK (1974) The linear theory of free vibrations of a suspended cable. Proc R Soc London A 341:299–315

    Article  Google Scholar 

  17. Wenin M, Irschara M, Obexer S, Bertotti M L, Modanese G (2019) Cable railway simulation: a two–span oscillator model. In: Öchsner A, Altenbach H (eds) Engineering design applications. Advanced structured materials, vol 92. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

M. Wenin acknowledges financial support by the “Amt für Innovation, Forschung und Universität” Bozen, Südtirol, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wenin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wenin, M., Bertotti, M.L., Modanese, G. (2022). Quasi-Static Ropeway Simulation Using Parallel Computing. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications IV. Advanced Structured Materials, vol 172. Springer, Cham. https://doi.org/10.1007/978-3-030-97925-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97925-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97924-9

  • Online ISBN: 978-3-030-97925-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics