
Modeling Parallel Transport
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Introduction

This paper is about one particular set of models, a set of three material models of
simple curved surfaces dating from 1918. What makes these three surface models
special in the context of a history of mathematical modeling is that they carry an
additional layer of information, i.e. these plain surface models serve to illustrate
a new concept that was painted onto the model surfaces. The basic models were
most likely purchased from a standard collection of models that had been com-
mercially available for a long time. The interesting feature is what was painted
onto them, and this embellishment happened in 1918. These models were turned
into illustrations of a new abstract concept by the Dutch geometer Jan Arnoldus
Schouten (1883–1971). He wanted to illustrate or visualize the new geometric con-
cept of parallel transport. Photographs of his illustrated models were included in
a paper that introduced this new concept. Identical copies of these photographs
appeared in four different publications up until 1924, but it appears that they have
never been republished or referenced again after that.

I will argue that these three illustrative models represent a certain transitional
stage in a process of conceptual development of differential geometry and it is
this transitional nature that makes this case interesting. We also see here that there
were two levels to these models at work because Schouten took existing geometric
models and added a visual layer, so as to illustrate and visualize an emerging new
abstract concept. Such a two-layered use of models was not unusual, but here we
see the significance of using the basic models as background for more abstract
concepts very clearly.
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Fig. 1 Jan A. Schouten’s
model for geodesic motion of
a frame over a spherical cap
as an example of a surface of
positive curvature. From Dirk
J. Struik, Grundzüge der
mehrdimensionalen
Differentialgeometrie in
direkter Darstellung (Berlin:
Springer, 1922), 47. ©
Springer, all rights reserved

Historical Context: Localization of the Models in Space
and Time

The models were first referenced and depicted in Schouten’s monograph-length
contribution to the Verhandelingen der Koninklijke Akademie van Wetenschapen,
entitled Die direkte Analysis zur neueren Relativitätstheorie. Photographs of the
models were reproduced in the paper.1 Max von Laue (1879–1960) then repro-
duced the same pictures in the second volume of his textbook on relativity that
was one of the first textbook expositions in Germany of the new general theory
of relativity.2 Dirk Struik (1894–2000) then reproduced them again in his 1922
monograph on Grundzüge der mehrdimensionalen Differentialgeometrie in direkter
Darstellung3 (see Figs. 1 and 2). The very same photographs were reproduced

1 Jan A. Schouten, Die direkte Analysis zur neueren Relativitätstheorie (Amsterdam: Johannes
Müller, 1918), 48, 70.
2 Max von Laue, Die Relativitätstheorie, vol. 2: Die allgemeine Relativitätstheorie und Einsteins
Lehre von der Schwerkraft (Braunschweig: Vieweg & Sohn, 1921), 110–11.
3 Dirk J. Struik, Grundzüge der mehrdimensionalen Differentialgeometrie in direkter Darstellung
(Berlin: Springer, 1922), 47–48.
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Fig. 2 Jan A. Schouten’s model for geodesic motion of a frame over two examples of surfaces of
negative curvature. From Dirk J. Struik, Grundzüge der mehrdimensionalen Differentialgeometrie
in direkter Darstellung (Berlin: Springer, 1922), 48. © Springer, all rights reserved

once more in an introduction to modern differential geometry jointly authored by
Schouten and Struik.4

When Laue republished Schouten’s photographs in his textbook, he did not
give any information about the origin and creator of these models. In fact, Struik
found it necessary to pass on proper credit for his teacher Schouten and through
this comment we learn about the origin and original location of these models. He
added in a footnote: “These models were made first by Prof. J. A. Schouten and
are part of the model collection of the Technical University Delft.”5 We do have, in
fact, accounts of that larger collection which appears to have been used intensely

4 Jan A. Schouten and Dirk J. Struik, “Einführung in die neueren Methoden der Differentialgeome-
trie,” Christiaan Huygens. International mathematisch Tijdschrift 1 (1922), 333–53, and 2 (1923),
1–24, 155–71, 291–306; For the images see the reprint in: Jan A. Schouten and Dirk J. Struik,
Einführung in die neueren Methoden der Differentialgeometrie (Groningen: Noordhoff, 1924), 31.
5 “Diese Modelle sind zuerst von Prof. J.A. Schouten hergestellt worden und befinden sich in der
Modellsammlung der Technischen Hochschule Delft.” Struik continued by mentioning von Laue:
“Die Abbildungen sind der Arbeit von Schouten, 1918, 10, S. 48 u. 70 entnommen und sind auch
(Fig. 1 teilweise) von v. Laue in sein Buch über die Relativitätstheorie aufgenommen worden.”
(“The images were taken from the work by Schouten, 1918, 10, 48 and 70, and they are also
included (Fig. 1 in parts) by v. Laue in his book on the theory of relativity.”) (Struik, Grundzüge,
48). Incidentally, there is another example of Laue’s reproducing a figure that was not of his own
making without giving proper credit. On page 226, he reproduced a diagram showing possible par-
ticle trajectories in a Schwarzschild space–time, which he had taken from Hilbert’s lecture course
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Fig. 3 David van Dantzig during one of his lectures at Delft Polytechnic with geometric mod-
els in 1938 (Photo: Archiv Gerard Alberts; reproduced in Irene Polo Blanco, “Physical models for
the learning of geometry,” Nieuwe Wiskrant 31, no.1 (September 2011), 36; also reproduced in
Irene Polo-Banco, “Theory and history of geometric models,” (Ph.D. diss., Groningen, 2007, 8).
© Archiv Gerard Alberts, all rights reserved

also in later times: Fig. 3 shows David van Dantzig (1900–1959) during one of his
lectures at Delft Polytechnic in 1937 engaged with a geometric thread model.

The specific interest of these three models derives from the combination of the
material geometric surface together with the inscription on them, painted onto the
surface with white on black.

The geometric model surfaces were, in fact, rather standard and not in any way
exotic shapes, a segment of a sphere, a hyperbolic paraboloid and a pseudosphere,
i.e. the rotational surface of a tractrix. Interest in the shape of a sphere and a pseu-
dosphere derived from the properties that they display constant positive or constant
negative curvature. Plaster models of these shapes could have been ordered readily
from Schilling’s catalogue (see also Fig. 4).6 Spheres were available in different

on General Relativity of the winter semester 1916/17 (Tilman Sauer and Ulrich Majer, eds., David
Hilbert’s Lectures on the Foundations of Physics: 1915–1927 (Dordrecht: Springer, 2009), 277).
But contrary to Schouten, Laue did give credit to Hilbert in the preface, where he wrote: “Vor allem
hat D. Hilbert die Ausarbeitung seiner Vorlesung über die Grundlagen der Physik zur Verfügung
gestellt, aus der sehr viel in unser Buch übergegangen ist.” (“Above all, Hilbert has made available
to us the worked out lecture notes of his course on the Foundations of Physics, from which a lot
was transferred into our book.”) (Laue, Die Relativitätstheorie, VII). Schouten, on the other hand,
is mentioned only once in the book, together with Levi–Civita and Hessenberg as originators of
the concept of parallel transport (Laue, Die Relativitätstheorie, 257), citing Schouten, Die direkte
Analysis, as a general reference.
6 See: Martin Schilling, ed., Catalog mathematischer Modelle für den höheren mathematischen
Unterricht, 7th ed. (Leipzig: Martin Schilling, 1911), 115, 114, 144, for a sphere, a hyperbolic
paraboloid, and a pseudosphere, respectively.
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Fig. 4 The basic shapes of Jan A. Schouten’s models could be purchased from Schilling’s cata-
logue. From Martin Schilling, ed., Catalog mathematischer Modelle für den höheren mathemati-
schen Unterricht, 7th ed. (Leipzig: Martin Schilling, 1911), 115, 114, 144. Similar pictures can be
found in Walther Dyck, ed., Katalog mathematischer und mathematisch-physikalischer Modelle,
Apparate und Instrumente (Munich: C. Wolf und Sohn, 1892), 259, 292

sizes “with black board paint and a wooden stand” (“mit schwarzem Tafelanstrich
und Holzuntersatz”) so that they could be drawn on with chalk as on a regular
blackboard.7

Spheres were available with diameters of 35, 14, and 10 cm, with price tags
of Mk. 43.20, 12.20, or 9.50, respectively. The size of the paraboloid was 15
by 13 cm and its cost was Mk. 4.50 or 8.00 depending on whether it had the
lines of horizontal cuts, i.e. equilateral hyperbolas imprinted on them or not. The
production of the pseudosphere was credited to “stud. math. Bacharach” from
Munich, its size was given as 25 by 18 cm and its price tag was Mk. 11.00.8

Examples of the hyperbolic paraboloid and of the pseudosphere are depicted also
in Gerd Fischer’s Mathematische Modelle9 (see Fig. 5a, b) and in Digitales Archiv
mathematischer Modelle.10

The materiality of the models reflects a culture of preparing modeling clay of
a kind especially suitable for the making of geometric models. Fischer cites a
contemporary recipe for making modeling clay, an elaborate procedure involving
various ingredients, specific temperatures, kneading, and patience.11

7 “Die drei Kugeln in den verschiedenen Größen gestatten wie auf einer Wandtafel leicht die
Anwendung von Kreide und Schwamm zum Zeichnen.” [“The three spheres of different sizes
allow the easy application of chalk and sponge for drawing as on a blackboard.”] (Schilling, ed.,
Catalog, 115).
8 Schilling, ed., Catalog, 144.
9 Gerd Fischer, ed., Mathematische Modelle: Aus den Sammlungen von Universitäten und Museen,
vol. 1 (Braunschweig: Vieweg & Teubner, 1986), 8, 77.
10 www.mathematical-models.org (accessed November 23, 2021).
11 Fischer, ed., Mathematische Modelle, vol. 1, VIII.

http://www.mathematical-models.org
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Fig. 5 Photographs of typical specimens of models of the hyperbolic paraboloid and the pseudo-
sphere. Reprinted by permission from Springer Nature: Gerd Fischer, ed., Mathematical Models,
vol. 1, 2nd ed. (Wiesbaden: Springer Spektrum, 2017), 8, photo 7; 77, photo 82. © Springer Nature,
all rights reserved

The Notion of Parallel Transport

The completion of the general theory of relativity in late 1915 triggered a renewed
interest in higher-dimensional differential geometry. Thus, Struik wrote in a 1922
monograph: “Einstein’s theory of relativity, which had made use of the Ricci Cal-
culus since 1913, has kindled an interest in this method of calculation and in
the differential geometry of higher manifolds in broader circles of society and
has stimulated new investigations.”12 As an example he mentions the “geometric
meaning of covariant differentiation.”

Similarly, Ludwig Berwald (1883–1942) wrote in his chapter on differential
invariants for the Encyklopädie der mathematischen Wissenschaften (Encyclopedia
of Mathematical Sciences):

In recent years the interest in Riemannian manifolds has been given new incentive from Ein-
stein’s gravitation theory, a boost that has also resulted in an important principal theoretical
advance: the introduction of the concept of parallelism in a [Riemannian manifold] Vn by
Levi-Civita.13

12 “Die Einsteinsche Relativitätstheorie, die sich seit 1913 des Ricci-Kalküls bedient hat, hat
das Interesse für diese Rechnungsmethode und für die Differentialgeometrie höherer Mannig-
faltigkeiten in weiteren Kreisen wachgerufen und zu neuen Arbeiten angeregt.” [“Einstein’s rel-
ativity theory, which had made use of Ricci’s calculus since 1913, kindled interest in this method
of computation and in the differential geometry of higher-dimensional manifolds in a wider public
and instigated further work in these fields.”] (Struik, Grundzüge, 4).
13 “In den letzten Jahren hat das Interesse für die Riemannschen Mannigfaltigkeiten durch die
Gravitationstheorie A. Einsteins einen neuen Aufschwung genommen, der auch einen wichti-
gen prinzipiellen Fortschritt in der Theorie zur Folge hatte: die Einführung des Begriffes des
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Einstein had worked out the general theory of relativity in the years prior to its
completion in late 1915 in a purely analytic way using only concepts from invari-
ant theory. The transition from a scalar theory of gravitation to a metric one was
taken in 1912 and involved the introduction of a metric tensor and a differen-
tial line element defined by it. The theory of differential invariants was the main
resource for Einstein and his collaborator Marcel Grossmann (1878–1936) when
they began developing a relativistic theory of gravitation. In the analytic tradition,
the field had been established by Elwin Bruno Christoffel (1829–1900) and oth-
ers. To be sure, there was an implicit geometric meaning, which was more explicit
in Riemann’s work and the tradition based on his work14 and which came to the
fore when the general theory was restricted to binary forms in two variables that
could then be interpreted in terms of Gaussian surface coordinates. But Christof-
fel did not emphasize this geometric implication nor did Einstein and Grossmann
make any use of it. Instead, Grossmann explicitly denied the advantage of geomet-
ric conceptualization in their endeavor, writing: “I have purposely not employed
geometrical aids because, in my opinion, they contribute very little to an intuitive
understanding of the conceptions of vector analysis.”15

When Einstein and Grossmann were searching for field equations of general-
ized covariance, the geometric intuition of the two-dimensional case may have
been distracting from the general case of a four-dimensional space–time with the
added complication of a Lorentz signature metric or an imaginary time coordinate.
But with the establishment of the general theory, and especially after the publica-
tion of Einstein’s gravitational field equations in November 1915, mathematicians
and physicists began to explore the geometric implications introduced by the new
theory. General Relativity had introduced a curvature in space–time, a consequence
that was only by and by extracted from the differential equations.

Parallelismus in einer Vn durch T. Levi–Civita.” (Ludwig Berwald, “Differentialinvarianten in der
Geometrie: Riemannsche Mannigfaltigkeiten und ihre Verallgemeinerungen,” in Encyklopädie der
mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, ed. Wilhelm Franz Meyer and
Hans Mohrmann, vol. 3, bk. 3: Geometrie (Leibniz: Teubner, 1902–1927), 73–181, here 124–25).
14 Alberto Cogliati, “Riemann’s Commentatio Mathematica: A Reassessment,” Revue d’histoire
des mathematiques 20, no. 1 (2014): 73–94.
15 “Dabei habe ich mit Absicht geometrische Hilfsmittel beiseite gelassen, da sie meines Erach-
tens wenig zur Veranschaulichung der Begriffsbildungen der Vektoranalysis beitragen.” (Albert
Einstein and Marcel Grossmann, “Entwurf einer verallgemeinerten Relativitätstheorie und einer
Theorie der Gravitation,” Zeitschrift für Mathematik und Physik 62, no. 3 (1913): 225–61, here
244. English translation: The Collected Papers of Albert Einstein, ed. Martin. J. Klein, Anne J.
Kox, Jürgen Renn, and Robert Schulmann, vol. 4: The Swiss Years, 1912–1914 (Princeton: Prince-
ton University Press, 1995), Docs. 13, 26, 325), see also Tilman Sauer, “Marcel Grossmann and
his contribution to the general theory of relativity,” in Proceedings of the 13th Marcel Grossmann
Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation,
and Relativistic Field Theory, ed. Robert T. Jantzen, Kjell Rosquist, and Remo Ruffini (Singapore:
World Scientific, 2015), 456–503.
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In the course of this early elaboration of Einstein’s new theory, a conceptual
distinction between the metric and the affine connection was introduced.16 The
introduction of the related concept of parallel transport allowed the geometric
interpretation of the new theory of space–time in terms of parallel transport of
vectors, etc. After the introduction of general relativity, it was Tullio Levi-Civita
(1873–1941), Jan Arnoldus Schouten, Gerhard Hessenberg (1874–1925), Hermann
Weyl (1885–1955), and others who realized the implications.17

The Context of the History of Mathematics

The notion of a covariant derivative generalizes the notion of ordinary differentia-
tion for the case when invariance of a differential form was required for arbitrary
(smoothly differentiable) transformations of the basic variables. This concept was
readily available to Einstein and Grossmann in the so-called absolute differential
calculus of Gregorio Ricci-Curbastro and Tullio Levi-Civita.18 That calculus was
designed and presented from the outset for manifolds of an arbitrary number of
dimensions.

From the outset, the problem of parallel transport, therefore, was one of inter-
preting an analytical concept for an arbitrary number of dimensions. It was only
when the geometric meaning of the generalized n-dimensional algebraic concept
became an object of study that the geometric interpretation for the case of a two-
dimensional manifold (a surface) embedded in Euclidean three-dimensional space
was reconsidered.

Gauss, indeed, had introduced the notion of the intrinsic curvature of a sur-
face, a notion of curvature that was independent of the specific way the surface
was embedded in space. Riemann had begun to generalize this notion of intrinsic
curvature from surfaces to n-dimensional spaces.

For spaces with intrinsic curvature, the notion of parallelism needs to be gener-
alized: how can one define a notion of parallelism or equivalently of the transport
of a vector such that the transported vectors remain parallel to each other in a
curved space, especially if the notion of the parallelism of the embedding space
can no longer be drawn upon? The answer is provided by the concept of an affine
connection and its associated notion of parallel transport.

16 John Stachel, “The Story of Newstein or: Is Gravity Just Another Pretty Force,” in The Genesis
of General Relativity, ed. Jürgen Renn, vol. 4 (Dordrecht: Springer, 2007), 1041–78.
17 Karin Reich, “Levi-Civitasche Parallelverschiebung, affiner Zusammenhang, Übertra-
gungsprinzip: 1916/17–1922/23,” Archive for History of Exact Sciences 44, no. 1 (1992):
77–105.
18 Gregorio Ricci-Curbastro Ricci and Tullio Levi–Civita, “Méthodes de calcul différentiel absolu
et leurs applications,” Mathematische Annalen 54, no. 1–2 (1900): 125–201. Reprinted in Tullio
Levi–Civita, Opere Matematiche: Memorie e note, vol. 1 (Bologna: Nicola Zanichelli, 1954), 479–
559.
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The Levi-Civita Connection

Nowadays, we call a Levi-Civita connection the uniquely defined affine connection
that is symmetric and compatible with the metric. For most practical purposes, it is
the affine connection used routinely in standard applications of general relativity.
At the time, however, it was a pioneering concept that established the link between
the algebraic formulation of field equations in Einstein’s original formulation with
a geometric interpretation.

Let me briefly recapitulate the early history of the notion of an affine connec-
tion.19 Levi-Civita’s notion of affine connection was presented in a paper entitled
“Nozione di parallelismo in una varietà qualunque e conseguente specificazione
geometrica della curvature Riemanniana” that was published in Rendiconti del Cir-
colo Matematico di Palermo, presented on 24 December 1916.20 In it, Levi-Civita
explicitly stated his motivation to further develop what he called the “embryo” of
Riemann’s ideas.21 In the sequel, Levi-Civita argued very explicitly in geometric
language and with the notion of parallelism. The latter concept was established by
way of embedding the manifold in a Euclidean reference space, which can always
be obtained by increasing the number of dimensions (at most you need n(n + 1)/2
according to a theorem going back to Ludwig Schläfli (1814–1895) if n is the
dimension of the original manifold). Nevertheless, in Levi-Civita’s original paper
the reference to the embedding space is only for convenience, it is not a conceptual
necessity.22

Another relevant paper that even predates Levi-Civita’s “Nozione” paper,
although it was published later, was written by Gerhard Hessenberg and is entitled
“Vektorielle Begründung der Differentialgeometrie.” It is dated “June 1916” but
apparently was issued only later. This paper of 32 pages begins with a general
remark on the relevance of differential forms for relativity theory. It states that the
aim of the paper was to establish a “connection between the theory of differen-
tial forms and differential geometry.” Hessenberg explicitly refers to Christoffel’s
1869 paper and to the 1901 paper by Ricci and Levi-Civita. He further mentioned
work by Knoblauch, Maschke, Wright, Gauss, Riemann, Grassmann, Pfaff, and
Beltrami.

19 For the following, I am drawing on Reich, “Levi-Civitasche Parallelverschiebung” and Alberto
Cogliati, “Schouten, Levi–Civita and the notion of parallelism in Riemannian geometry,” Historia
Mathematica 43, no. 4 (2016): 427–43.
20 On Levi–Civita, see: Judith Goodstein, Einstein’s Italian Mathematicians: Ricci, Levi–Civita,
and the Birth of General Relativity (Providence: American Mathematical Society, 2018).
21 Tullio Levi–Civita, “Nozione di parallelismo in una varietà qualunque e consequente specifi-
cazione geometrica della curvature Riemanniana,” Rendiconti del Circolo Matematico di Palermo
42 (1917): 173–204, here 173.
22 Iurato and Ruta recently looked at Levi–Civita’s paper and claim that the mechanical princi-
ple of virtual work plays a significant role in its formulation. See: Giuseppe Iurato and Giuseppe
Ruta, “On the role of virtual work in Levi–Civita’s parallel transport,” Archive for History of Exact
Sciences 70, no. 5 (2016): 553–65.
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Although Hessenberg wants to give a geometric formulation, the word ‘parallel’
does not appear in the paper. Instead, his program is captured by the following
quote:

The path we shall follow will lead us to Christoffel’s three index expressions via the equa-
tions (12) and (13) [i.e. the vanishing of the covariant derivative of the metric and the
symmetry of the Christoffel symbols]. It will become clear that for the invariant relations
that we will get, also for the curvature tensor, only the equations (12) are relevant, while
the Christoffel symmetry (13) can be discarded. Their meaning can be summarized by say-
ing that in the geometry of an n-dimensional manifold the ‘straightest’ lines are also the
‘shortest.’23

Let us now look at Schouten’s work. His so-called “direct analysis” aimed at
giving a formulation of geometric quantities that was explicitly independent of
coordinates and already in its form displayed the relevant geometric characteristics.
Schouten’s 1918 paper, in this sense, extended earlier work of his from 1914 which
had been motivated by the wish to look at geometric quantities from an engineer’s
point of view.24

Schouten’s notion of a geodesically transported frame was constituted in a tech-
nically elaborate way, a detailed discussion that would go beyond the framework
of this paper. Schouten relied on a so-called ‘symbolic method’ which was widely
used in invariant theory at the time and which allowed an algebraic handling of
invariance and transformation properties. The method introduced so-called ideal
vectors, which do not have a simple interpretation from a modern understanding,
for the representation of the metric tensor and other invariant objects. In more mod-
ern terms, the basic presuppositions here were a manifold with a differentiability
structure and a metric field defined on it that allows the intrinsic determination of
distances within the manifold. It therefore also allowed the definition of the notion
of shortest lines, i.e. lines between two points A and B along which the integrated
distance is minimal. Schouten then looked at infinitesimally small rigid frames, i.e.
linearly independent, small vectors at each point of the manifold. Since a notion
of parallel transport was not available, a clear distinction between the manifold
and its tangent space in a point was only emerging and was not made explicit.
Geodesic transport of frames was then defined in terms of ideal vectors which
were introduced in such a way that the resulting relations did not depend on them
explicitly.

23 Gerhard Hessenberg, “Vektorielle Begründung der Differentialgeometrie,” Mathematische
Annalen 78 (1917): 187–217, here 192: “DerWeg, den wir im Folgenden einschlagen werden, führt
zu den Christoffelschen Dreizeigergrößen über die Formeln (12) und (13). Dabei wird sich zeigen,
daß für die abzuleitenden Invarianzen, auch diejenige des Krümmungstensors, nur die Formeln
(12) wesentlich sind, während die christoffelsche Symmetrie (13) völlig ausgeschieden werden
kann. Ihre Bedeutung läßt sich dagegen in der Aussage zusammenfassen, daß in der Geometrie der
betrachteten n-dimensionalen Mannigfaltigkeit die ‘geradesten’ Linien zugleich die ‘kürzesten’
sind.”
24 Jan A. Schouten, Grundlagen der Vektor-und Affinoranalysis (Leipzig: Teubner, 1914).
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Schouten then developed the notion of parallel transport by arguing that one
needs a geodesically co-moving coordinate system that follows a geodesic line
and at each point of the geodesic line is uniquely determined in its orientation.
At this point, he illustrated this idea with the above-mentioned models of surfaces
of positive and negative curvature. The illustration consists, on the one hand, in
drawing frames of reference onto the curved surfaces, i.e. by depicting the moving
frames in this curved two-dimensional manifold directly as a pair of orthogonal
vectors in the local tangent spaces. For the case of the sphere, he also showed a
piece of paper that can be laid out, without tearing or wrinkling, onto the sphere
along the connecting line (not the geodesic) where we follow the rigid frame. The
picture thus illustrated the ability to develop the notion of geodesic transport.25

Schouten also created two examples of parallel transport on surfaces with nega-
tive curvature (Fig. 2): he painted geodesically moving frames onto models of a
hyperbolic paraboloid and on a model of a pseudosphere, i.e. a rotated tractrix.
Together with the illustration of the geodesic transport on the spherical surface
(Fig. 1), these models seem to be the first visual illustration of the concept of par-
allel transport, i.e. a two-dimensional illustration of a vector parallel transported
along a path in a two-dimensional curved space. If the transport is done along
a closed loop, e.g. along a closing parallelogram, the difference between the ini-
tial and the final orientation of the frame is a measure of the integrated curvature
of the enclosed area. Such a loop is nowadays often referred to as a Levi-Civita
parallelogram.

Before continuing with our story, we should mention also Hermann Weyl’s
concept of infinitesimal geometry. His work was published together with the first
edition of his highly influential book entitled Space-Time-Matter, the preface of
which was dated “Easter, 1918.” In this preface Weyl wrote that he could make use
of Levi-Civita’s paper, but that Hessenberg’s paper had appeared only just before
his book was going to press. Weyl clearly formulated the problem in terms of
his philosophy of a “pure near geometry” (“reine Nahegeometrie”). Perhaps more
importantly, Weyl realized very clearly in this context that the affine connection
is an independent concept that can be defined without recourse or reference to the
notion of a metric. Schouten listed and discussed Hessenberg’s paper, and he also
refers to Levi-Civita’s work. However, it appears that Schouten’s creation of the
notion of geodesic transport was an independent discovery. In fact, Dirk Struik,
who was a collaborator of Schouten at the time, later reminisced:

Schouten and Levi-Civita had thus obtained the same result, but there were differences
in the way each of them introduced parallelism. Schouten’s method was entirely intrinsic,
whereas that of Levi-Civita utilized a surface embedded in space. He also had derived his
result only for the case n = 2, although it was clear that it was intrinsic and valid for all
values of n. The main difference, however, insofar as influence was concerned, was that
Levi-Civita’s text was elegant and employed his absolute differential calculus (the tensor

25 As Struik emphasized, the part of the illustration that shows the piece of paper for the spherical
case was left out in Laue’s reproduction of the illustration.
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calculus with which mathematicians all over the world were becoming familiar) whereas
Schouten’s work was difficult to read due to its unfamiliar notation. And, of course, Levi-
Civita also had priority of publication, so that the discovery has since become known as the
‘parallelism of Levi-Civita.’26

As to the question of priority, Struik remarked:

Schouten published this work in 1918. Although he translated some of his formulas into the
language of the Ricci-Einstein tensor calculus, his theory was so overloaded with symbols
that it proved next to impossible to follow. Direct analysis is fine for vectors, when only two
multiplications · and x are involved, but for higher systems one gets lost in the maze of the
dots, hooks, and crosses necessary to perform the various multiplications.
Despite all this, Schouten had succeeded in giving a geometrical interpretation of the covari-
ant derivative, an important accomplishment. Circumstances conspired against him, how-
ever, preventing him from being credited with a major mathematical achievement. It was
nearing the climax of the war, so that communications with Italy were most difficult.
Thus Schouten was totally unaware of Levi-Civita’s work. I still remember how Schouten
came running into my office one day waving a reprint he had just received of Levi-Civita’s
paper. ‘He has it, too!’ he cried out.27

Struik’s recollection many years later may be subject to the skepticism that all
such reminiscences should evoke. But we do have contemporary evidence to back
up some of Struik’s claims. Schouten refers to Levi-Civita’s “Nozione” paper in
his 1918 article. In a footnote, he wrote:

T. Levi-Civita conceived of the concept of parallelism in a general space already in 1917
in a work of which I only received an offprint by friendly mediation after finalizing this
manuscript due to the political circumstances. The geodesically comoving frame succes-
sively takes on positions, which are parallel in the sense of Levi-Civita, and the notion
of geodesic motion therefore is contained in the notion of parallelism. The relationship
between the covariant differential and the geodesically co-moving frame, and the funda-
mental importance, which the motion of such a system carries for the geometric properties
of space [...] Levi-Civita, however, has not yet been made aware of.28

A Mechanical Model of Parallel Transport

It is interesting to note that Schouten, perhaps due to his engineering background,
also thought about other ways of illustrating his concept of geodesic transport. In
a footnote to his 1918 paper, he wrote:

26 Dirk J. Struik, “Schouten, Levi–Civita, and the Emergence of Tensor Calculus,” in The History of
Modern Mathematics, ed. David E. Rowe and John McCleary, vol. 2, Institutions and Applications
(Boston: Academic Press, 1989), 98–105, here 104.
27 Struik, “Schouten,” 103.
28 Schouten, Die direkte Analysis, 46.
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For surfaces the geodesically transported frame can sometimes be realized by a three-
dimensional mechanism. A Foucault pendulum which travels around any line of constant
latitude along the earth thought to be at rest and perfectly spherical, will always remain ori-
ented with respect to the geodesically co-moving coordinate system, and the same will hold
when the pendulum runs along any arbitrary curve on the surface. We can also construct a
two-wheeled mechanism by means of a differential wheel, which rolled over the surface
will show at each point the geodesically co-moving system.29

Schouten’s reference to the Foucault pendulum references a discussion about real-
izing what he called a Kompaszkörper, i.e. a rigid solid whose motion realizes
the geodesic transport of a frame. The question whether an extended rigid solid
has enough degrees of freedom to realize geodesic motion in an arbitrary curved
manifold was clarified in discussion with Adriaan D. Fokker (1887–1972). The
problem is whether different points of a rigid frame can each follow the geodesic
trajectories of curved space while at the same time preserving their mutual dis-
tances, a more detailed discussion of this problem by Fokker30 was communicated
to the Amsterdam Academy a year later. The problem was still relevant for the
well-known Gravity Probe B experiment of the early twenty-first century.31

In our context, the other reference is equally interesting. Schouten did not expli-
cate his idea any further than this, but it seems clear that what he refers to is the
same as what was and is known as a south-pointing chariot.32 Such a mechanical
device is said to have been known already in ancient China and to have been built
in that period, although the documentary evidence is thin. Later reconstructions
and rebuilds nevertheless abound. Figure 6 shows a picture of a reconstruction
of such a device that was erected in front of the National Museum in Taipeh.
Figure 7 shows a model built using Fischer-Technik and was designed by Thomas
Püttmann.

The idea is to create a mechanism that is devised in such a way that on a
plane surface any difference in path length between the left and the right wheels is
compensated by a differential gear mechanism such that a flag or pointer connected
to the mechanism will always point in the same direction, even if the carriage is

29 Schouten, Die direkte Analysis, 50: “Für gewöhnliche Flächen kann das geodätisch mitbewegte
Bezugssystem manchmal durch einen dreidimensionalen Mechanismus realisiert werden. Ein Fou-
cault’sches Pendel welches irgend einen Breitenkreis entlang die ruhend und kugelförmig gedachte
Erde umkreist, bleibt stets zu einem geodätisch mitbewegten Koordinatensystem orientiert und
das Selbe gilt, wenn das Pendel irgend eine beliebige Kurve auf der Oberfläche durch läuft. Auch
mit Hilfe eines Differentialrades ließe sich ein zweirädriger Mechanismus konstruieren, welcher,
rollend über die Oberfläche geführt, in jedem Punkte das geodätisch mitbewegte System anzeigt.”
30 Adriaan D. Fokker, “On the equivalent of parallel translation in non-Euclidean space and on Rie-
mann’s measure of curvature,” Proceedings of the Section of Sciences. Koninklijke Akademie van
Wetenschappen te Amsterdam 21, no. 1 (1919): 505–17.
31 Egbertus P. J. de Haas, “The geodetic precession as a 3D Schouten precession and a gravitational
Thomas precession,” Canadian Journal of Physics 92, no. 10 (2014): 1082–93.
32 See, for example: Dierck-E. Liebscher, “Mit dem Kompasswagen über den Globus,” Der
mathematisch-naturwissenschaftliche Unterricht 52 (1999): 140–44.
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Fig. 6 Model of a south-pointing chariot in front of the National Museum in Taipeh. From
Dierck-E. Liebscher, “Mit dem Kompasswagen über den Globus,” Der mathematisch-
naturwissenschaftliche Unterricht 52 (1999): 140–144, Fig. 4. All rights reserved

pushed along curved paths. Naturally, the device works on curved surfaces as well
and will then indicate the path difference between the two wheels on the curved
ground. Pushing the carriage along a closed loop, i.e. along a Levi-Civita loop, the
difference between the initial and final position of the pointer will not in general
coincide and will instead be a measure of the local curvature integrated over the
loop.

It is unclear whether Schouten had anything like this in mind when he added
his footnote about the mechanical device, but it appears quite possible, if not likely
given his intellectual background as an engineer.
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Fig. 7 Model of a south-pointing chariot realized with Fischer-Technik according to a design by
Thomas Püttmann. © Photo: Tilman Sauer, all rights reserved

Later History

It seems a notable fact that the very same photographic images of Schouten’s
models for geodesic frame transport were reproduced three more times between
1921 and 1924 after the initial publication in 1918. I have not seen later instances
of reproduction. In fact, I have not come across later instances of material models
of curved surfaces for the purpose of illustrating the notion of parallel transport of
vectors. But I cannot claim that such material models do not exist.

Graphical representations of parallel transport of vectors or connections of tan-
gent spaces to two-dimensional surfaces embedded in three-dimensional space,
however, have become rather common, both in textbooks on general relativity as
on differential geometry, although they by no means accompany each and every
analytical discussion.

As an example of such common illustrations of parallel transport, Fig. 8 illus-
trates the definition of the covariant derivative of a vector field v along a curve P(λ)
in an abstract sense. Figure 9 then illustrates the notion of connection coefficients
by geodesic transport of two-dimensional frames over a spherical surface.

These illustrations appear in the widely used, highly influential textbook on
relativity and gravitation published by Charles W. Misner, Kip S. Thorne, and
John A. Wheeler in 1973, a textbook that became a standard source of reference
for generations of physicists for many reasons, one of them being its emphasis
on physical intuition and visual illustration. In fact, the authors quite explicitly
reflected on the necessity of what they called a “pictorial treatment” of geome-
try: “Gain the power […] to discuss tangent vectors, 1-forms, tensors in curved
spacetime; gain the power […] to parallel-transport vectors, to differentiate them,
to discuss geodesics; use this power […] to discuss geodesic deviation, to define
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Fig. 8 Graphical
Representation of the
covariant derivative of a
vector field along a curve.
From Charles W. Misner, Kip
S. Thorne, and John A.
Wheeler, Gravitation (New
York: Freeman, 1973), 209,
Fig. 8.2. © Freeman, all
rights reserved

Fig. 9 Graphical
Representation of geodesic
transport of a frame over a
curved spherical surface.
From Charles W. Misner, Kip
S. Thorne, and John A.
Wheeler, Gravitation (New
York: Freeman, 1973),
Fig. 8.3. © Freeman, all
rights reserved

curvature, […] But full power this will be only if it can be exercised in three ways:
in pictures, in abstract notation, and in component notation.”33

Another example of how Schouten’s illustrative model of parallel transport has
found its way onto modern textbooks is shown in Fig. 10, taken from V.I. Arnold’s,
Mathematical Methods of Classical Mechanics.34 Although the vector that is being
parallel-transported here points off the surface, the illustration almost looks like a
graphical representation of Schouten’s original model.

33 Charles W. Misner, Kip S. Thorne, and John A. Wheeler, Gravitation (New York: Freeman,
1973), 198.
34 Vladimir I. Arnold, Mathematical Methods of Classical Mechanics (New York: Springer, 1989).
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Fig. 10 Graphical representation of parallel transport on the sphere as shown in Vladimir I.
Arnold, Mathematical Methods of Classical Mechanics (New York: Springer, 1989), 302, Fig. 231.
© Springer, all rights reserved

Concluding Remarks

The transitional nature of Schouten’s model of parallel transport is indicative of
the primacy of the ideal in mathematics. Parallel transport, even though it can be
regarded as a genuine geometric concept, is defined and represented exclusively
in analytic terms for an arbitrary number of dimensions. Geometric intuition is
derived from finite objects and their properties in three-dimensional Euclidean
space. Our intuition for higher dimensions, curvature, or extensions to infinity,
even though genuinely geometrical, must be assisted by and eventually based on
other means. Schouten’s model for geodesic transport was mostly and from the
beginning merely illustrative. It built on a well-established tradition of models that
were used for teaching. Yet it was illustrative for a conceptual problem that was
at the time still in the process of being explored and discovered. It investigated a
notion that is inherently n-dimensional and associated with curvature, and it helps
our understanding of the abstract concept by providing an interpretation of the
special and intuitive case of a curved two-dimensional surface embedded in three-
dimensional Euclidean space. His mechanical devices, like the Foucault pendulum
or the south-pointing chariot are also illustrative but in a different sense. Their
physical properties help us understand the necessary implications of the abstract
concept and may indeed have played an important role in Schouten’s heuristics of
concept development.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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