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8.1 Introduction

Researchers have a natural tendency to classify
biological systems into categories. For example,
organisms can be classified based on biome, eco-
system, taxon, phylogeny, niche, demographic
class, behavior type, etc., and this allows complex
systems to be organized. Categorization also can
make recognition of patterns easier and assist in
understanding the ways in which biological
systems work. Classification provides a convenient

method for comparing features, making systematic
measurements, testing hypotheses, and performing
statistical analyses.

Bioacousticians have categorized sounds pro-
duced by animals for decades, and new methods
for classification continue to be developed (Horn
and Falls 1996; Beeman 1998). Animals produce
many different types of sounds that span orders of
magnitude along the dimensions of time, frequency,
and amplitude. For example, the repertoire of marine
mammal acoustic signals includes broadband echo-
location clicks as short as 10 μs in duration and with
energy up to 200 kHz, as well as narrowband tonal
sounds as low as 10–20 Hz, lasting more than10 s.
Song birds and some species of baleen whales
arrange individual sounds into patterns called song
and repeat these patterns for hours or days. Some
mammal species produce distinctive, stereotyped
sounds (e.g., chipmunks, dogs, and blue whales),
while others produce signals with high variability
(e.g., mimicking birds, primates, and dolphins).

Because animals produce so many different
types of sounds, developing algorithms to detect,
recognize, and classify a wide range of acoustic
signals can be challenging. In the past, detection
and classification tasks were performed by an
experienced bioacoustician who listened to the
sounds and visually reviewed spectrographic
displays (e.g., for birds by Baptista and Gaunt
1997; chipmunks by Gannon and Lawlor 1989;
baleen whales by Stafford et al. 1999; and
delphinids by Oswald et al. 2003). Before the
advent of digital signal-analysis, data were
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analyzed while enduring the acrid smell of etched
Kay Sona-Graph paper and piles of 8-s printouts
removed from a spinning recording drum littering
laboratory tables and floors. Output from a long-
duration sound had to be spliced together (see
Chap. 1). Many bioacoustic studies generated an
enormous amount of data, which made this man-
ual review process at best inefficient, and at worst
impossible to accomplish.

For decades, scientists have worked to auto-
mate the process of detecting and classifying
sounds into categories or types. Automated clas-
sification involves three main steps: (1) detection
of potential sounds of interest, (2) extraction of
relevant acoustic characteristics (or, features)
from these sounds, and (3) classification of these
sounds as produced by a particular species, sex,
age, or individual. Methods for the automated
detection of sounds have progressed quickly
with technological advances in digital recording
(see Chap. 2). Likewise, the extraction of sound
variables useful in analysis has expanded with an
increasing amount of information provided by
new technology. For instance, where features
such as maximum frequency or time between
sounds originally were measured manually off
sonagraph paper, devices today allow for measur-
ing these, and many more variables, automati-
cally or semi-automatically using computer
software. Now, derived variables, such as time
difference between individual signal elements,
frequency modulation, running averages of
sound frequency, and harmonic structure can be
easily obtained for classifying the sounds in a
repertoire.

Some of the earliest methods used for
automated detection and classification included
energy threshold detectors (e.g., Clark 1980) and
matched filters (e.g., Freitag and Tyack 1993;
Stafford et al. 1998; Dang et al. 2008; Mankin
et al. 2008). These methods were used to detect
and classify simple, stereotypical sounds pro-
duced by species such as the Asian longhorn
beetle (Anoplophora glabripennis), cane toads
(Rhinella marina), blue whales (Balaenoptera
spp.), and fin whales (Balaenoptera physalus).
Once sounds are detected, they can be organized
into groups, or classified, based on selected

acoustic characteristics. For example, develop-
ment of methods for detection and automated
signal processing of bat sounds led to a variety
of automated, off-the-shelf, ready-to-deploy bat
detectors that detect and classify sounds by spe-
cies (Fenton and Jacobson 1973; Gannon et al.
2004). These detectors can be very useful in
addressing biological or management issues in
ecology, evolution, and impact mitigation.
While the accuracy and robustness of automated
approaches are always a matter of concern (Herr
et al. 1997; Parsons et al. 2000), modern
techniques promise much improved recognition
performances that could rival manual analyses
(e.g., Brown and Smaragdis 2009).

Multivariate statistical methods can be power-
ful for classification of sounds produced by spe-
cies with variable vocal repertoires because they
can identify complex relationships among many
acoustic features (see Chap. 9). With the advent
of powerful personal computers in the 1980s and
1990s, the use of multivariate techniques became
popular for classifying bird sounds (e.g., Sparling
and Williams 1978; Martindale 1980a, b). Since
then, enormous effort has been expended to
develop these and other automatic methods for
the detection of sounds produced by many taxa
and their classification into discrete categories,
such as species, population, sex, or individual.

These days, there are applications (apps) for
smartphones that use advanced algorithms to
automatically detect and recognize sounds. For
example, the BirdNET app detects and classifies
bird song—similar to the Shazam app for
music—and provides a listing of the top-ranked
matching species. It includes almost 1000 of the
most common species of North America and
Europe. A similar app, Song Sleuth, recognizes
songs of nearly 200 bird species likely to be heard
in North America and also provides references for
species identification, such as the David Sibley
Bird Reference (Sibley 2000), allowing the user
to “dig into” the bird's biology and conservation
needs.

In this chapter, we present an overview of
methods for detection and classification of sounds
along with examples from different taxa. No sin-
gle method is appropriate for every research
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project and so the strengths and weaknesses of
each method are summarized to help guide
decisions on which methods are better suited for
particular research scenarios. Because algorithms
for statistical analyses, automated detection, and
computer classification of animal sounds are
advancing rapidly, this is not a comprehensive
overview of methods, but rather a starting point
to stimulate further investigations.

8.2 Qualitative Naming
and Classification of Animal
Sounds

Prior to computer-assisted detection and classifi-
cation of animal sounds, bioacousticians used
various qualitative methods to categorize sounds.

8.2.1 Onomatopoeic Names

Frequently, researchers describe and name animal
sounds based on their perception of the sound and
thus based on their own language. This approach
has been common in the study of terrestrial
animals (in particular, birds) and marine
mammals (in particular, pinnipeds and
mysticetes). Researchers also have given ono-
matopoeic names to sounds. These are names
that phonetically resemble the sound they
describe. For example, the sounds of squirrels
and chipmunks have been described as barks,
chatters, chirps, and growls. The primate litera-
ture is also rich in these sorts of sound
descriptions (e.g., the hack sequences and
boom-hack sequences described for Campbell’s
monkeys, Cercopithecus campbelli; Ouattara
et al. 2009). Bioacousticians studying humpback
whales (Megaptera novaeangliae) have described
a repertoire of sounds including barks, bellows,
chirps, cries, croaks, groans, growls, grumbles,
horns, moans, purrs, screams, shrieks, sighs,
sirens, snorts, squeaks, thwops, trumpets, violins,
wops, and yaps (Dunlop et al. 2007, 2013). While
it is potentially convenient for researchers within
a group to discuss sounds this way, it is more
difficult for others, and perhaps impossible for
foreign-language speakers to recognize the

sound type. An example of this difficulty in
describing a sound is the ubiquitous rooster
crow, which can be described by a US citizen as
“cock-a-doodle-doo” and by a German citizen as
“kikeriki”. Roosters make the same sound, no
matter in which country they live, yet their single
sound has been named so differently, as has the
bark of dogs (Fig. 8.1). Of course, onomatopoeic
naming of sounds also fails when the sounds are
outside of the human hearing range.

If the above was not confusing enough, bird
calls have been described using onomatopoeic
phrases. For example, the song of a white-
throated sparrow (Zonotrichia albicollis) has
been described in Canada as sounding like “O
sweet Canada Canada Canada” and in New
England, USA, as “Old Sam Peabody Peabody
Peabody.” Another example is the barred owl
(Strix varia), which hoots “Who cooks for you?
Who cooks for you all?”.

8.2.2 Naming Sounds Based
on Animal Behavior

Researchers sometimes name sounds based on
observed and interpreted animal behavior. For
example, the various echolocation signals
described for insectivorous bats have been
named “search clicks” (i.e., slow and regular
clicks) while pursuing insect prey and “terminal
feeding buzz” (i.e., accelerated click trains) dur-
ing prey capture (Griffin et al. 1960). The bird and
mammal literature is replete with sounds named
for a behavior, such as the begging call of nestling
chicks (Briskie et al. 1999; Leonard and Horn
2001), the contact call for isolated young
(Kondo and Watanabe 2009), and the alarm call
warning of a nearby predator (Zuberbuhler et al.
1999; Gill and Bierema 2013). In some cases, the
function of sounds has been studied in detail,
which justifies using their function in the name.
Examples are feeding buzzes in echolocation or
alarm calls in primates. However, naming sounds
according to behavior can be misleading because
a sound can be associated with several contexts.
Names based on the associated behavior should
really only be used after detailed studies of
context-specificity of the calls in question.
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8.2.3 Naming Sounds Based
on Mechanism of Sound
Production

Some bioacousticians identify and classify
sounds based on the mechanism of sound produc-
tion. For example, one syllable in insect song
corresponds to a single to- and fro-movement of
a stridulatory anatomy or one cycle of a forewing
opening and closing in the field cricket (Gryllus
spp.). McLister et al. (1995) defined a note in
chorusing frogs as the sound unit produced dur-
ing a single expiration. Classifying sound types
by their mode of production perhaps is less
ambiguous and unequivocal, but there are limited
data on the mechanisms of sound production in
many animals.

8.2.4 Naming Sounds Based
on Spectro-Temporal Features

An alternative, but not necessarily better, way of
naming sounds is based on their spectro-temporal
features. For instance, in distinguishing two mor-
phologically similar species of bats, Myotis
californicus is referred to as a “50-kHz bat” and

M. ciliolabrum as a “40-kHz bat,” which
describes the terminal frequency of the
downsweep of their ultrasonic echolocation
signals (Gannon et al. 2001). Under water, the
most common sound recorded from southern
right whales (Eubalaena australis) is a 1–2 s
frequency-modulated (FM) upsweep from about
50–200 Hz, commonly recorded with overtones,
and referred to in the literature as the upcall
(Fig. 8.2; Clark 1982). Antarctic blue whales
(Balaenoptera musculus intermedia) produce a
Z-call, which consists of a 10-s constant fre-
quency (also called constant-wave, CW) sound
at 28 Hz, followed by a rapid FM downsweep to
18 Hz, where the sound continues for another
15-s CW component (Rankin et al. 2005).

While the measurement of features from
spectrograms and waveforms can be expected to
be more objective than onomatopoeic or func-
tional naming, the appearance of a spectrogram,
and thus the measurements made, depend on
characteristics of the recording system, the time
and frequency settings of the analysis algorithm,
and analysis algorithm used. This can make
sounds look rather different at various scales and
therefore lead to inconsistent classification.
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Fig. 8.1 Dogs speak out. Labels used for dog barks in different countries
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An example of the confusion that can
arise from different representations of sound
is the boing sound made by minke whales
(Balaenoptera acutorostrata), which was given
an onomatopoeic name. In spectrograms, the
boing might look like an FM sound (Fig. 8.3a),
however, it is actually a series of rapid pulses
(Rankin and Barlow 2005), similar to burst-
pulse sounds produced by odontocetes (e.g.,
Wellard et al. 2015). As another example, the
bioduck sound made by Antarctic minke whales
(Balaenoptera bonaerensis) got its name because
it resembles a duck’s quack to human listeners
(Risch et al. 2014). A spectrogram of the bioduck

sound appears as a series of pulses; however, each
pulse actually is a 0.3-s FM downswept tone from
300 to 100 Hz (Fig. 8.3b). As if this was not
enough in terms of interesting sounds and odd
names, dwarf minke whales produce the so-called
star-wars sound, which is composed of a series of
pulses with varying pulse rates (Gedamke et al.
2001). The different pulse rates make this sound
appear as a mixture of broadband pulses and FM
sounds in spectrograms, depending on the spec-
trogram settings (Fig. 8.3c). The sound name
presumes the reader is familiar with the sound-
track of an American movie from the 1970s.

Fig. 8.2 Spectrograms of
southern right whale
“upcall” (left; sampling
frequency fs ¼ 12 kHz,
Fourier window length
NFFT ¼ 1200, 50%
overlap, Hann window) and
Antarctic blue whale “Z-
call” (right; fs ¼ 6 kHz,
NFFT ¼ 16384, 50%
overlap, Hann window)
recorded off southern
Australia (Erbe et al. 2017)

Fig. 8.3 Spectrograms of the dwarf minke whale boing
(a fs ¼ 16 kHz, NFFT ¼ 1024, 50% overlap, Hann win-
dow), the Antarctic minke whale bioduck sound (b fs ¼
96 kHz, NFFT ¼ 8192, 50% overlap, Hann window), and

the dwarf minke whale star-wars sound (c fs ¼ 44 kHz,
NFFT ¼ 4096, 50% overlap, Hann window). Recordings
a and b from Erbe et al. (2017), c from Gedamke et al.
(2001)
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8.2.5 Naming Sounds Based
on Human Communication
Patterns

The term “song” is perhaps the best-known exam-
ple of using human communication labels in the
description of animal sounds. The word “song”
may be used to simply indicate long-duration
displays of a specific structure. Songs of insects
and frogs are relatively simple sequences,
consisting of the same sound repeated over long
periods of time. The New River tree frog
(Trachycephalus hadroceps), for example,
produces nearly 38,000 calls in a single night
(Starnberger et al. 2014). Many frogs use trilling
notes in mate attraction, which has been described
as song, but switch to a different vocal pattern in
aggressive territorial displays (Wells 2007). In
some frog songs, different notes serve different
purposes, with one type of note warding off com-
peting males, and another attracting females. In
birds and mammals, songs are often more com-
plex, consisting of several successive sounds in a
recognizable pattern. They appear to be used pri-
marily for territorial defense or mate attraction
(Bradbury and Vehrencamp 2011). Our
statements in this chapter show one way to
describe calls and songs in animals; however, it
is important to note that borrowing terminology
from human communication when studying
animals can lead to confusion. The terms we
discuss here are not well defined and are used
differently by different authors. Make sure to
pay close attention to these definitions when
reading literature about animal communication.

Some ornithologists have used human-
language properties further to describe the struc-
ture of bird song. Song may be broken down into
phrases (also called motifs). Each phrase is com-
posed of syllables, which consist of notes
(or elements, the smallest building blocks; Catch-
pole and Slater 2008). Notes, syllables, and
phrases are identified and defined based on their
repeated occurrence. An entire taxon of birds
(songbirds, Order Passeriformes) has been
designated by ornithologists because of their use
of these elaborate sounds for territorial defense

and/or mate attraction. Birds of this taxon usually
use sets of sounds that are repeated in an
organized structure. In many species, males pro-
duce such songs continuously for several hours
each day, producing thousands of songs in each
performance. In the bird song literature, songs are
distinguished from calls by their more complex
and sustained nature, species-typical patterns, or
syntax that governs their combination of syllables
and notes into a song. Songs are under the influ-
ence of reproductive hormones and associated
with courtship (Bradbury and Vehrencamp
2011). Bird song can vary geographically and
over time (e.g., Fig. 8.4; Camacho-Alpizar et al.
2018). In contrast, calls are typically acoustically
simple and serve non-reproductive, maintenance
functions, such as coordination of parental duties,
foraging, responding to threats of predation, or
keeping members of a group in contact (Marler
2004).

Several terrestrial mammals have been
reported to sing. For instance, adult male rock
hyraxes (Procavia capensis) engage throughout
most of the year in rich and complex vocalization
behavior that is termed singing (Koren et al.
2008). These songs are complex signals and are
composed of multiple elements (chucks, snorts,
squeaks, tweets, and wails) that encode the iden-
tity, age, body mass, size, social rank, and hor-
monal status of the singer (Koren and Geffen
2009, 2011). Holy and Guo (2005) described
ultrasonic sounds from male laboratory mice
(Mus musculus) as song. Von Muggenthaler
et al. (2003) reported that Sumatran rhinoceros
(Dicerorhinus sumatrensis) produce a song com-
posed of three sound types: eeps (simple short
signals, 70 Hz–4 kHz), humpback whale like
sounds (100 Hz–3.2 kHz, varying in length,
only produced by females), and whistle blows
(loud, 17 Hz–8 kHz vocalizations followed by a
burst of air with strong infrasonic content). Clarke
et al. (2006) described the syntax and meaning of
wild white-handed gibbon (Hylobates lar) songs.

Among marine mammals, blue, bowhead
(Balaena mysticetus), fin, humpback, minke, and
right whales, Weddell seals (Leptonychotes
weddellii), harbor seals (Phoca vitulina), and
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Fig. 8.4 Geographic variation in birdsong. These
spectrograms show a portion of song from Timberline
wrens (Thryorchilus browni) recorded at four locations
in Costa Rica (CBV ¼ Cerro Buena Vista, CV ¼ Cerro
Vueltas, CCH ¼ Cerro Chirripó, IV ¼ Irazú Volcano)

(Camacho-Alpizar et al. 2018). # Camacho-Alpizar
et al.; https://doi.org/10.1371/journal.pone.0209508.
Licensed under CC BY 4.0; https://creativecommons.org/
licenses/by/4.0/
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walrus (Odobenus rosmarus) have all been
reported to sing (Payne and Payne 1985; Sjare
et al. 2003; McDonald et al. 2006; Stafford et al.
2008; Oleson et al. 2014; Crance et al. 2019). The
songs of blue, bowhead, fin, minke, and right
whales are simple compared to those of the hump-
back whale and little is known about the behav-
ioral context of song in any marine mammal
species besides the humpback whale. Humpback
whales are well-known for their long, elaborate
songs. These songs are composed of themes
consisting of repetitions of phrases made up of
patterns of units similar to syllables in bird song
(Fig. 8.5; Payne and Payne 1985; Helweg et al.
1998). Winn and Winn (1978) suggested that
only male baleen whales sing, as a means of
reproductive display. Sjare et al. (2003) reported
that Atlantic walrus produce two main songs: the
coda song and the diving vocalization song that
differ by their pattern of knocks, taps, and bell
sounds.

Song production does not exclude the emis-
sion of non-song sounds and most singing species
likely emit both. The non-song sounds of hump-
back and pygmy blue whales (Balaenoptera
musculus brevicauda), for example, have been
cataloged (e.g., Recalde-Salas et al. 2014, 2020).
Some song units may resemble non-song sounds.

Whether sounds are part of song or not, their
detection and classification can be challenging
when repertoires are large and possibly variable
across time and space. Humpback whale songs,
for example, vary by region and year (Cerchio
et al. 2001; Payne and Payne 1985).
Characterizing and describing the structure of
song can be a difficult task even for the experi-
enced bioacoustician. With the assistance of com-
puter analysis tools, sound detection and
classification may be more efficient.

8.3 Detection of Animal Sounds

The problem to be solved may seem simple. For
example, a bioacoustician deployed an autono-
mous recorder in the field for a month, and after
recovery of the gear, downloaded all data in the
laboratory and now wants to pick all frog calls

recorded in order to study the mating behavior of
this species. Listening to the first few minutes of
recording, the bioacoustician can easily hear the
target species, but there are calls every few
seconds—too many to pick by hand. So, the
scientist looks for software tools to help detect
all frog signals, and potentially sort them based
on their acoustic features. The first step, signal
detection, is discussed in Sect. 8.3; the second
step, signal classification, is discussed in
Sect. 8.4.

Automated signal detectors work by common
principles. The raw input data are the ideally
calibrated time series of pressure recorded with
a microphone in air or hydrophone in water.
There might be one or more pre-processing
steps to filter or Fourier transform the data in
successive time windows (see Chap. 4). The
pre-processed time series is then fed into the
detector, which computes a specific quantity
from the acoustic data. This may be instantaneous
energy, energy within a specified time window,
entropy, or a correlation coefficient, as a few
examples. Then, a detection threshold is applied.
If the quantity exceeds the threshold, the signal is
deemed present, otherwise not.

The threshold is commonly computed the
following way:

Eth ¼ �E þ γσE

where E symbolizes the chosen quantity (e.g.,
energy), �E is its mean value computed over a
long time window (e.g., an entire file), σE is the
standard deviation, and γ is a multiplier (integer
or real). Setting a high threshold will result in
only the strongest signals being detected and
weaker ones being missed. Setting a low thresh-
old will result in many false alarms, which are not
signals. By varying γ, the ideal threshold may be
found and the performance of the detector may be
assessed (see Sect. 8.3.6).

8.3.1 Energy Threshold Detector

One of the most common methods for detecting
animal sounds from recordings is to measure the
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energy, or amplitude, of the incoming signal in a
specified frequency band and to determine
whether it exceeds a user-defined threshold. If
the threshold within the frequency band is
exceeded, the sound is scored as being present.
The threshold value typically is set relative to the
ambient noise in the frequency band of interest
(e.g., Mellinger 2008; Ou et al. 2012). A simple
energy threshold detector does not perform well
when signals have low signal-to-noise ratio
(SNR) or when sounds overlap. A number of
techniques have been devised to overcome these
problems, including spectrogram equalization
(e.g., Esfahanian et al. 2017) to reduce back-
ground noise, time-varying (adaptive) detection
thresholds (e.g., Morrissey et al. 2006), and using
concurrent, but different, detection thresholds for
different frequency bands (e.g., Brandes 2008;
Ward et al. 2008). Apart from finding individual
animal sounds, energy threshold detectors also
have been successfully applied to the detection
of animal choruses, such as those produced by
spawning fish, migrating whales (Erbe et al.
2015), and chorusing insects or amphibians.
These choruses are composed of many sounds
from large and often distant groups of animals
and so individual signals often are not detectable
in them. Choruses can last for hours and signifi-
cantly raise ambient levels in a species-specific
frequency band (Fig. 8.6).

8.3.2 Spectrogram Cross-Correlation

Spectrogram cross-correlation is a well-known
technique to detect sounds produced by many
species, such as rockfish (genus Sebastes; Širović
et al. 2009), African elephants (Loxodonta afri-
cana; Venter and Hanekom 2010), maned wolves
(Chrysocyon brachyurus; Rocha et al. 2015),
minke whales (Oswald et al. 2011), and sei
whales (Balaenoptera borealis; Baumgartner
and Fratantoni 2008). In this method,
spectrograms of reference sounds from the spe-
cies of interest are converted into reference
coefficients, or kernels, with one kernel for each
sound type (Fig. 8.7). These reference kernels
then are cross-correlated with the incoming spec-
trogram on a frame-by-frame basis. Kernels can
be a statistical representation of spectrograms of
known sound types, or they can be created empir-
ically by trial-and-error from previously analyzed
recordings.

Proper selection of reference signals is critical
to the performance of the detector and thus this
method is only suited for detection of stereotypi-
cal sounds. Seasonal and annual variability in call
structure can significantly impact performance of
these detectors and so an analysis of the
variability in call structure is vital when applying
spectrogram cross-correlation to detect calls in
long-term datasets (Širović 2016). Another
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drawback to this method is that it can be
prohibitively processor-intensive. To speed up
the calculations, Harland (2008) first employed
an energy threshold detector (as described above)
to detect times of potential signal presence and
then used spectrogram cross-correlation to detect
individual signals within the flagged time periods.

8.3.3 Matched Filter

The matched filter approach for sound classifica-
tion is similar to spectrogram cross-correlation
but is performed in the time-domain. This means
that the waveforms (i.e., sound pressure levels as
a function of time) are correlated instead of the
spectrogram. A kernel of the waveform of the
sound to be detected is produced, often empiri-
cally using a high-quality recording, and then
cross-correlated with the incoming signal (i.e.,
the time series of sound pressure). Matched filters
are efficient at detecting signals in Gaussian noise
(white noise), but colored noise (typical in many
natural environments) poses more of a problem.
As with spectrogram cross-correlation, the selec-
tion of kernels is critical to the performance of the
detector. Matched filters are only appropriate for
detection of well-known, stereotyped acoustic
features, such as sounds produced by cane toads
(Dang et al. 2008), blue whales (Stafford et al.

1998; Bouffaut et al. 2018), and beaked whales
(Hamilton and Cleary 2010). Their performance
suffers in the presence of even a small amount of
sound variation compared to the kernel.

8.3.4 Spectral Entropy Detector

In general, entropy measures the disorder or
uncertainty of a system. Applied to communica-
tion theory, the information entropy (also called
Shannon entropy; Shannon and Weaver 1998)
measures the amount of information contained
in a data stream. Entropy is computed as the
negative product of a probability distribution
and its logarithm. Therefore, a strongly peaked
probability distribution has low entropy, while a
broad probability distribution has high entropy. If
applied to an acoustic power spectral density dis-
tribution, entropy measures the peakedness of the
power spectra and detects narrowband signals in
broadband noise (Fig. 8.8). Spectral entropy has
successfully been applied to animal sounds; for
example, from birds, beluga whales
(Delphinapterus leucas), bowhead whales, and
walruses (Erbe and King 2008; Mellinger and
Bradbury 2007; Valente et al. 2007).

Fig. 8.7 Spectrogram of the kernel for Omura’s whales’
(Balaenoptera omurai) doublet calls, computed as the
average of over 800 hand-picked calls (Madhusudhana
et al. 2020)
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Fig. 8.8 Spectrogram of marine mammal tonal sounds
with negative entropy (black curve) overlain. Negative
entropy is high when the power spectral density is
concentrated in a few narrow frequency bands (Erbe and
King 2008)
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8.3.5 Teager–Kaiser Energy Operator

The Teager–Kaiser energy operator (TKEO) is a
nonlinear operator that tracks the energy of a data
stream (Fig. 8.9). Operating on a time series, at any
one instance, the TKEO computes the square of the
sample and subtracts the product of the previous
and next sample. The output is therefore high for
very brief signals. The TKEO has successfully
been applied to the detection of clicks, such as
bat or odontocete biosonar sounds (Kandia and
Stylianou 2006; Klinck and Mellinger 2011).
Many biosonar signals are of Gabor type (i.e., a
sinusoid modulated by a Gaussian envelope). The
TKEO output of the signals is a simple Gaussian,
which can be detected with simple tools, such as
energy threshold detection or matched filtering
(Madhusudhana et al. 2015).

8.3.6 Evaluating the Performance
of Automated Detectors

Automated detectors can produce two types of
errors: missed detections (i.e., missing a sound
that exists) and false alarms (i.e., incorrectly
reporting a sound that does not exist or reporting
a sound that is not the target signal). There is an
inevitable trade-off when choosing the acceptable
rate of each. Most detectors allow the user to adjust
a threshold, and depending on where this threshold

is set, the probability of one type of error increases
while the other decreases. The acceptability of
either type of error is determined by the particular
application of the detector. For example, for rare
animals in critical habitats, detecting every sound,
even those that are very faint, is desired. In this
situation, a low threshold can be chosen that
minimizes the number of missed detections; how-
ever, this can result in many false alarms. Quantifi-
cation of these two errors is a useful way to
evaluate the performance of an automated detector.

8.3.6.1 Confusion Matrices
One of the simplest and most common methods
for conveying the performance of a detector (or a
classifier) is a confusion matrix (i.e., a type of
contingency table). A confusion matrix
(Fig. 8.10) gives the number of true positives
(i.e., correctly classified sounds, also called cor-
rect detections), false positives (i.e., false alarms),
true negatives (i.e., correct rejections), and false
negatives (i.e., missed detections).

8.3.6.2 Receiver Operating
Characteristic (ROC) Curve

The performance of detectors can be visualized
using the receiver operating characteristic (ROC)
curve. A ROC curve is a graph that depicts the
trade-offs between true positives and false
positives (Egan 1975; Swets et al. 2000). The
false positive rate (i.e., FP/(FP+TN)) is plotted on
the x-axis, while the true positive rate (i.e., TP/(TP
+FN)) is plotted on the y-axis (Fig. 8.11). A curve
is generated by plotting these values for the detec-
tor at different threshold values. The (0|1) point on
the graph represents perfect performance: 100%
true positives and no false positives.

Fig. 8.9 Waveforms of odontocete clicks and their Gabor
fit (top) and TKEO outputs and Gaussian fit (bottom)
(Madhusudhana et al. 2015)
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True Positive (TP) 
Correct Detection

False Positive (FP) 
False Alarm

Signal 
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False Negative (FN) 
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True Negative (TN) 
Correct Rejection

Detector Input

Reported 
Output

Fig. 8.10 Confusion matrix showing the possible
outcomes of a detector when a signal is present versus
absent
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The major diagonal in Fig. 8.11a represents
performance at chance, where the probabilities
of TP and FP are equal. Responses falling below
the line would indicate deliberate mistakes. The
minor diagonal represents neutral bias, and splits
responses into conservative versus liberal. A con-
servative response strategy yields decreased cor-
rect detection and false alarm probabilities; a
liberal response strategy yields increased correct
detection and false alarm probabilities. An exam-
ple ROC curve is given in Fig. 8.11b, comparing
the performances of three detectors (operating on
underwater acoustic recordings from the Arctic
and trying to detect marine mammal calls)
based on: (1) spectral entropy, (2) bandpassed
energy, and (3) waveform (i.e., broadband)
energy. The performance of the entropy detector
surpassed that of the other two.

8.3.6.3 Precision and Recall
The performance of a detector can be over-
estimated using a ROC curve when there is a
large difference between the numbers of TPs
and TNs. In addition, estimation of the number
of TNs requires discrete sampling units. The
duration of the discrete sampling units is often
somewhat arbitrary and can lead to unrealistic

differences between the numbers of TPs and
TNs. In these situations, precision and recall
(P-R) can provide a more accurate representation
of detector performance because this representa-
tion does not rely on determining the number of
true negatives (Davis and Goadrich 2006). In the
P-R framework, events are scored only as TPs,
FPs, and FNs.

Precision is a measure of accuracy and is the
proportion of automated detections that are true
detections.

Precision ¼ TP
TPþ FP

Recall is a measure of completeness and is the
proportion of true events that are detected. This is
the same as the true positive rate defined in the
ROC framework.

Recall ¼ TP
TPþ FN

Detectors can be evaluated by plotting preci-
sion against recall (Fig. 8.12). An ideal detector
would have both scores approaching a value of
1. In other words, the curve would approach the
upper right-hand corner of the graph (Davis and
Goadrich 2006). Precision and recall also can be

Fig. 8.11 (a) Generalized receiver operating characteris-
tic (ROC) plot, in which the probability of true positives is
plotted against the probability of false positives. Areas in
this graph that correspond to a liberal bias, conservative
bias, and deliberate mistakes are indicated. (b) Example

ROC curves computed during the development of
automated detectors for marine mammal calls in the Arc-
tic. The spectral entropy detector outperformed others
(Erbe and King 2008)
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represented by an F-score, which is the geometric
mean of these values. The F-score can be
weighted to emphasize either precision or recall
when optimizing detector performance (Jacobson
et al. 2013).

8.4 Quantitative Classification
of Animal Sounds

Quantitative classification of animal sounds is
based on measured features of sounds, no matter
whether these are used to manually or automati-
cally group sounds with the aid of software
algorithms. These features can be measured
from different representations of sounds, such as
waveforms, power spectra, spectrograms, and
others. A large variety of classification methods
have been applied to animal sounds, many draw-
ing from human speech analysis.

8.4.1 Feature Selection

The acoustic features selected and the consistency
with which the measurements are taken have a
significant influence on the success (or failure) of

a classification algorithm. Feature sets (also called
feature vectors) should provide as much informa-
tion as sensible about the sounds. With today’s
software tools and computing power, a limitless
number of features can easily be measured that
would allow distinction between sounds even of
the same type. Such over-parameterization can
make it difficult to group like sounds, which can
be just as important as distinguishing between
different sounds. The challenge is to find the
trade-off and produce a set of representative
features for each sound type. Once the features
have been selected, automating the extraction and
subsequent analysis of these features reduces the
time required to analyze large datasets. Some
commonly used feature vectors are described
below.

8.4.1.1 Spectrographic Features
Perhaps the most commonly used feature vectors
are those consisting of values measured from
spectrograms. These measurements include, but
are not limited to, frequency variables (e.g., fre-
quency at the beginning of the sound, frequency
at the end of the sound, minimum frequency,
maximum frequency, frequency of peak energy,
bandwidth, and presence/absence of harmonics or
sidebands; Fig. 8.13; also see Chap. 4, Sect. 4.
2.3), and time variables (e.g., signal duration,
phrase and song length, inter-signal intervals,
and repetition rate). More complex features,
such as those describing the spectrographic
shape of a sound (e.g., upsweep, downsweep,
chevron, U-loop, inverted U-loop, or warble),
slopes, and numbers and relative positions of
local extrema and inflection points (places where
the contour changes from positive to negative
slope or vice versa) also have been used in classi-
fication. These measurements often are taken
manually from spectrographic displays (e.g., by
a technician using a mouse-controlled cursor).
Automated techniques for extracting spectro-
graphic measurements can be less subjective and
less time-consuming, but are sometimes not as
accurate as manual methods. Examples are avail-
able in the bird literature (e.g., Tchernichovski
et al. 2000), bat literature (Gannon et al. 2004;
O’Farrell et al. 1999), and marine mammal
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Fig. 8.12 Precision-Recall curves for three types of
detectors: (1) spectrogram cross-correlation, (2) blob
detection, and (3) spectral entropy for Omura’s whale
calls (Madhusudhana et al. 2020)
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literature (e.g., Mellinger et al. 2011; Roch et al.
2011; Gillespie et al. 2013; Kershenbaum et al.
2016). Spectrographic measurements of bat calls,
for example, can be extracted using Analook
(Titley Scientific, Columbia, MO, USA),
SonoBat (Joe Szewczak, Department of Biology,
Humboldt State University, Arcata, CA, USA), or
Kaleidoscope Pro (Wildlife Acoustics, Inc., May-
nard, MA, USA), exported to an Excel spread-
sheet (XML, CSV, and other formats), classified
using machine learning algorithms, and compared
to a reference library for identification.

8.4.1.2 Cepstral Features
Cepstral coefficients are spectral features of
bioacoustic signals commonly used in human
speech processing (Davis and Mermelstein
1980). These features are based on the source-
filter model of human speech analysis, which has
been applied to many different animal species
(Fitch 2003). Cepstral coefficients are well-suited
for statistical pattern-recognition models because
they tend to be uncorrelated (Clemins et al. 2005),

which significantly reduces the number of
parameters that must be estimated (Picone
1993). Cepstral coefficients are calculated by
computing the Fourier transform in successive
time windows over the recorded pressure time
series of a sound (see Chap. 4). The frequency
axis then is warped by multiplying the spectrum
with a series of n filter functions at appropriately
spaced frequencies. This is done because there is
evidence that many animals perceive frequencies
on a logarithmic scale, in a similar fashion to
humans (Clemins et al. 2005). The output of the
frequency band filters is then used as input to a
discrete cosine transform, which results in an n-
dimensional cepstral feature vector (Picone 1993;
Clemins et al. 2005; Roch et al. 2007, 2008).

Using cepstral feature space allows the timbre
of sounds to be captured, a quality that is lost
when extracting parameters from spectrograms.
Roch et al. (2007) developed an automated clas-
sification system based on cepstral feature vectors
extracted for whistles, burst-pulse sounds, and
clicks produced by short- and long-beaked
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Fig. 8.13 Spectrogram of a pilot whale (Globicephala
melas) whistle showing the following features: Start fre-
quency (Start f), End frequency (End f), Maximum fre-
quency (Max f), Minimum frequency (Min f), locations of
two local maxima and one local minimum in the funda-
mental contour, four inflection points (where the curvature

changes from clockwise to counter-clockwise, or vice
versa), and one overtone (Courts et al. 2020). # Courts
et al.; https://www.nature.com/articles/s41598-020-
74111-y/figures/5. Licensed under CC BY 4.0; https://
creativecommons.org/licenses/by/4.0/
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common dolphins (Delphinus spp.), Pacific
white-sided dolphins (Lagenorhynchus
obliquidens), and bottlenose dolphins (Tursiops
truncatus). The system did not rely on specific
sound types and had no requirement for
separating individual sounds. The system
performed relatively well, with correct classifica-
tion scores of 65–75%, depending on the
partitioning of the training- and test-data. Cepstral
feature vectors also have been used as input to
classifiers for many other animal species, includ-
ing groupers (Epinephelus guttatus, E. striatus,
Mycteroperca venenosa, M. bonaci; Ibrahim et al.
2018), frogs (Gingras and Fitch 2013), song birds
(Somervuo et al. 2006), African elephants
(Zeppelzauer et al. 2015), and beluga, bowhead,
gray (Eschrichtius robustus), humpback, and
killer (Orcinus orca) whales, and walrus (Mouy
et al. 2008). Cepstral features appear to be a
promising alternative to the traditional time- and
frequency-parameters measured from
spectrograms as input to classification algorithms.
However, cepstral features are relatively sensitive
to the SNR, the signal’s phase, and modeling
order (Ghosh et al. 1992).

Noda et al. (2016) used mel-frequency cepstral
coefficients and random forest analyses to classify
sounds produced by 102 species of fish and com-
pared the performance of three classifiers:
k-nearest neighbors, random forest, and support
vector machines (SVMs). The mel-frequency
cepstrum (or cepstrogram) is a form of acoustic
power spectrum (or spectrogram) that is
computed as a linear cosine transform of a
log-power spectrum that is presented on a nonlin-
ear mel-scale of frequency. The mel-scale
resembles the human auditory system better than
the linearly-spaced frequency bands of the normal
cepstrum. All three classifiers performed simi-
larly, with average classification accuracy ranging
between 93% and 95%.

8.4.2 Statistical Classification
of Animal Sounds

For some sounds, qualitative classification is suf-
ficient. Janik (1999) reported that humans were

able to identify dolphin signature whistles more
reliably than computer methods. A problem with
qualitative classification of sounds in a repertoire
(and taxonomy in general), however, is that some
listeners are “splitters” and other listeners are
“lumpers.” So, even researchers on the same proj-
ect could classify an animal’s sound repertoire
differently. One way to avoid individual
researcher differences in classification is to use
graphical, statistical, and computer-automated
methods that objectively sort and compare
measured variables that describe the sounds. A
variety of statistical methods can be employed to
classify animal sounds into categories (Frommolt
et al. 2007). Below are brief descriptions of some
of the statistical methods that are commonly used
for classification of animal sounds.

8.4.2.1 Parametric Clustering
Parametric cluster analysis produces a dendro-
gram (i.e., classification tree) that organizes simi-
lar sounds into branches of a tree. A distance
matrix also is generated, which gives correlation
coefficients between all variables in the dataset.
The resulting distance index ranges from 0 (very
similar sounds) to 1 (totally dissimilar sounds).
The matrix can then be joined by rows or columns
to examine relationships. The type of linkage and
type of distance measurement can be selected to
find the best fit for a particular dataset (Zar 2009).

Cluster analysis has been used to classify
sound types in several species, including owls
(Nagy and Rockwell 2012), mice
(Hammerschmidt et al. 2012), rats (Rattus
norvegicus, Takahashi et al. 2010), African
elephants (Wood et al. 2005), and primates
(Hammerschmidt and Fischer 1998). In a study
of six populations of the neotropical frog
(Proceratophrys moratoi) in Brazil, Forti et al.
(2016) measured spectrographic variables from
calls produced by males and performed cluster
analysis to examine similarities in acoustic traits
(based on the Bray–Curtis index of acoustic simi-
larity) across the six locations (Fig. 8.14).
Baptista and Gaunt (1997) used hierarchical clus-
ter analysis of correlation coefficients of several
acoustic parameters to categorize sounds of the
sparkling violet-eared hummingbird (Colibri

284 J. N. Oswald et al.



coruscans), which is found in two neighboring
assemblages in their study area. A matrix of
sound similarity values obtained from spectral
cross-correlation of these birds’ songs indicated
similar sound types from the two areas. Yang
et al. (2007) used cluster analysis to examine

syllable sharing between individuals of Anna’s
hummingbird (Calypte anna). They identified
38 syllable types in songs of 44 males, which
clustered into five basic syllable categories:
“Bzz,” “bzz,” “chur,” “ZWEE,” and “dz!”. Also,
microgeographic song variation patterns were

Fig. 8.14 Dendrogram from a hierarchical cluster analy-
sis of the call similarities between 15 male Proceratophrys
moratoi from different sites and two other

Odontophrynidae species (Forti et al. 2016). # Forti
et al.; https://peerj.com/articles/2014/. Licensed under
CC BY 4.0; https://creativecommons.org/licenses/by/4.0/
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found in that nearest neighbors sang more similar
songs than non-neighbors. Pozzi et al. (2010)
used several acoustic variables to group black
lemur (Eulemur macaco macaco) sounds into
categories, including the frequencies of the fun-
damental and of the first three harmonic overtones
(measured at the start, middle, and end of each
call), and the total duration. The agreement of this
analysis with manual classification was high
(>88.4%) for six of eight categories.

8.4.2.2 Principal Component Analysis
Principal component analysis (PCA) is a multi-
variate statistical method that examines a set of
measurements such as the feature vectors
discussed earlier in Sect. 8.4. These features
may well be correlated. For example, bandwidth
is sometimes correlated with maximum fre-
quency, or the number of inflection points can
be correlated with signal duration (Ward et al.
2016). PCA performs an orthogonal transforma-
tion that converts the potentially correlated

variables (i.e., the features) into a set of linearly
uncorrelated variables (i.e., the principal
components; Hotelling 1933; Zar 2009). The
principal components are linear combinations of
the original variables (features). Plotting the prin-
cipal components against each other shows how
the measurements cluster.

For example, by examining bat biosonar
signals in multivariate space, bat species that are
very similar in external appearance can be distin-
guished. Using PCA, Gannon et al. (2001) found
ear height and characteristic frequency were
correlated, along with duration of the signal
(Fig. 8.15).

As another example, Briefer et al. (2015)
categorized emotional states associated with vari-
ation in whinnies from 20 domestic horses (Equus
ferus) using PCA. They designed four situations
to elicit different levels of emotional arousal that
were likely to stimulate whinnies: separation
(negative situation) and reunion (positive situa-
tion) with either all group members (high
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Fig. 8.15 Plot showing the results of principal compo-
nent analysis, in which two cryptic species of myotis bats
(California myotis, Myotis californicus, MYCA, black
squares; western small-footed bat, M. ciliolabrum,
MYCI, hollow circles) were distinguished by differences

in ear height and characteristic frequency of their echolo-
cation signals. Plotted is characteristic frequency versus
signal duration for these species recorded from field sites
in New Mexico and Arizona, USA
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emotional arousal) or only one group member
(moderate emotional arousal). The authors
measured 21 acoustic features from whinnies
(Fig. 8.16). PCA transformed the feature vectors
into six principal components that accounted for
83% of the variance in the original dataset.

8.4.2.3 Discriminant Function Analysis
In discriminant function analysis (DFA), canoni-
cal discriminant functions are calculated using

variables measured from a training dataset. One
canonical discriminant function is produced for
each sound type in the dataset. Variables
measured from sounds in the test dataset are
then substituted into each function and each
sound type is classified according to the function
that produced the highest value. Because DFA is
a parametric technique, it is assumed that input
data have a multivariate normal distribution with
the same covariance matrix (Afifi and Clark 1996;

Fig. 8.16 Spectrograms and oscillograms of horse
whinnies in negative (a, c) and positive (b, d) situations
emitted by two different horses. Red arrows point to fun-
damental frequencies (F0, G0) and first overtones (H1).
Negative whinnies (a, c) are longer in duration and have

higher G0 fundamentals than positive whinnies
(b, d Briefer et al. 2015). # Briefer et al.; https://www.
nature.com/articles/srep09989/figures/3. Licensed under
CC BY 4.0; http://creativecommons.org/licenses/by/4.0/
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Zar 2009). Violations of these assumptions can
create problems with some datasets. One of the
main weaknesses of DFA for animal sound clas-
sification is that it assumes classes are linearly
separable. Because a linear combination of
variables takes place in this analysis, the feature
space can only be separated in certain, restricted
ways that are not appropriate for all animal
sounds. Figure 8.17 shows the DFA separation
of California chipmunk (genus Neotamias) taxa
that are morphologically similar but acoustically
different, using six variables measured from their
sounds.

8.4.2.4 Classification Trees
Classification tree analysis is a non-parametric sta-
tistical technique that recursively partitions data
into groups known as “nodes” through a series of
binary splits of the dataset (Clark and Pregibon
1992; Breiman et al. 1984). Each split is based on
a value for a single variable and the criteria for
making splits are known as primary splitting rules.

The goal for each split is to divide the data into two
nodes, each as homogeneous as possible. As the
tree is grown, results are split into successively
purer nodes. This continues until each node
contains perfectly homogeneous data (Gillespie
and Caillat 2008). Once this maximal tree has
been generated, it is pruned by removing nodes
and examining the error rates of these smaller trees.
The smallest tree with the highest predictive accu-
racy is the optimal tree (Oswald et al. 2003).

Tree-based analysis provides several
advantages over some of the other classification
techniques. It is a non-parametric technique;
therefore, data do not need to be normally
distributed as required for other methods, such
as DFA. In addition, tree-based analysis is a sim-
ple and naturally intuitive way for humans to
classify sounds. It is essentially a series of true/
false questions, which makes the classification
process transparent. This allows easy examina-
tion of which variables are most important in the
classification process. Tree-based analysis also
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Fig. 8.17 Plot resulting from discriminant function anal-
ysis. Four species of Townsend-group chipmunks
(Townsend’s chipmunk, Neotamias townsendii; Siskiyou
chipmunk, N. siskiyou; Allen’s chipmunk, N. senex; and
yellow-cheeked chipmunk, N. ochrogenys) in northern
California, USA, produced discernibly different sounds.

Discriminant function 1 was dominated by differences in
maximum frequency of the signal and discriminant func-
tion 2 was most influenced by temporal features including
total signal length and the number of signals emitted by a
chipmunk during a signaling bout
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accommodates for a high degree of diversity
within classes. For example, if a species produces
two or more distinct sound types, a tree-based
analysis can create two different nodes. In other
classification techniques, different sound types
within a species simply act to increase variability
and make classification more difficult. Finally,
surrogate splitters are provided at each node
(Oswald et al. 2003). Surrogate splitters closely
follow primary splitting rules and can be used in
cases when the primary splitting variable is miss-
ing. Therefore, sounds can be classified even if
data for some variables are missing due to noise
or other factors.

To address some controversy as to whether
closely related species of myotis bats could be
differentiated by their sounds, Gannon et al.

(2004) completed an analysis of echolocation
pulses from free-flying, wild bats. Fig. 8.18 is a
classification tree grown from nearly 1400 calls
using at least seven variables measured from each
call. The tree produced terminal nodes identified
to species (MYVO is Myotis volans, MYCA
M. californicus, etc.). In this study, recordings
were made under field conditions where sounds
were affected by the environment, Doppler shift,
and diversity of equipment. Still, classification
trees worked well to predict group membership
and additional techniques, such as DFA, were
able to distinguish five Myotis species acousti-
cally with greater than 75% accuracy (greater
than 90% in most instances).

Classification trees have been applied to
marine mammal sounds by several researchers,

Fig. 8.18 Classification tree grown using Splus computer
software (version S-PLUS 6.2 2003, TIBCO Software
Inc., Palo Alto, CA, USA) from 1369 bat calls. The pruned
tree used variables measured from each bat call: duration
(DUR), minimum frequency (Fmin), characteristic fre-
quency (Fc; i.e., frequency at the flattest part of the call),
frequency at the “knee” of the call (Fk), time of Fc, time at

Fk, and slope (S1). Along the tangents between boxes are
values for variables used to split the nodes (for instance,
Fmin is minimum frequency). The fraction below each
box is the misclassification rate (e.g., 1/5¼ 20%misclassi-
fication rate). The tree has 12 terminal nodes defining the
branches, resulting in a classification designation for each
species (Gannon et al. 2004)
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with promising results. Fristrup and Watkins
(1993) used tree-based analysis to classify the
sounds of 53 species of marine mammal (includ-
ing mysticetes, odontocetes, pinnipeds, and
manatees). Their correct classification score of
66% was 16% higher than the score obtained
when applying DFA to the same dataset. The
whistles of nine delphinid species were correctly
classified 53% of the time by Oswald et al. (2003)
using tree-based analysis. Oswald et al. (2007)
subsequently applied classification tree analysis
to the whistles of seven species and one genus of
marine mammal, resulting in a correct classifica-
tion score of 41%. This score was improved
slightly, to 46%, when classification decisions
were based on a combination of classification
tree and DFA results. Gannier et al. (2010) used
classification trees to identify the whistles of
five delphinid species recorded in the Mediterra-
nean, with a correct classification score of 63%.
Finally, Gillespie and Caillat (2008) classified the
clicks of Blainville’s beaked whales (Mesoplodon
densirostris), short-finned pilot whales
(Globicephala macrorhynchus), and Risso’s
dolphins (Grampus griseus). Their tree-based anal-
ysis classified 80% of clicks to the correct species.

8.4.2.5 Nonlinear Dimensionality
Reduction

Clustering techniques described above require
that certain features or measurements, as appro-
priate for the problem domain, be available
beforehand. They are gathered from sound
recordings either manually (e.g., number of
inflection points in whistle contours, number of
harmonics) or using signal processing tools (e.g.,
peak frequency, energy), or both. Manual extrac-
tion of features is usually time-consuming and
often inefficient, especially when dealing with
recordings covering large spatial and temporal
scales. Automated extraction of measurements
improves efficiency and eliminates the risk of
human biases. However, when recordings contain
a lot of confounding sounds or have extreme
noise variations, reliability and accuracy of the
measurements can become questionable and can
have adverse effects on clustering outcomes.
Regardless of whether manual or automated

approaches were employed, the resulting limited
set of chosen features or measurements are essen-
tially representations of the underlying data in a
reduced space. Such dimensionality reduction is
typically aimed at making the downstream task of
clustering (with PCA, DFA, etc.) computationally
tractable.

In recent years, nonlinear dimensionality
reduction methods have gained widespread pop-
ularity, specifically in applications for exploring
and visualizing very high-dimensional data.
Originally popular for processing image-like
data in the field of machine learning, these
methods bring about dimensionality reduction
without requiring one to explicitly choose and
extract features. The methods can be easily
adapted for processing bioacoustic recordings
wherein the qualitative cluster structure (i.e.,
similarities in the visually identifiable informa-
tion) in spectrogram-like data (e.g.,
mel-spectrogram or cepstrogram) containing
hundreds or thousands of time-frequency points
is effectively captured in an equivalent 2- or
3-dimensional space (e.g., Sainburg et al. 2019;
Kollmorgen et al. 2020).

One of the earlier methods for capturing non-
linear structure, the t-distributed stochastic neigh-
bor embedding (t-SNE; van der Maaten and
Hinton 2008) is based on non-convex optimiza-
tion. It computes a similarity measure between
pairs of points (data samples) in the original
high-dimensional space and in the reduced
space, then minimizes the Kullback–Leibler
divergence between the two sets of similarity
measures. t-SNE tries to preserve distances in a
neighborhood whereby points close together in
the high-dimensional space have a high probabil-
ity of staying close in the reduced space. The Bird
Sounds project (Tan and McDonald 2017)
presents an excellent demonstration of using
t-SNE for organizing thousands of bird sound
spectrograms in a 2-dimensional similarity grid.

Some of the shortcomings of t-SNE were
addressed in a newer method called uniform man-
ifold approximation and projection (UMAP;
McInnes et al. 2018). UMAP is backed with a
strong theoretical framework. While effectively
capturing local structures like t-SNE, UMAP
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also offers a better promise for preserving
global structures (inter-cluster relationships).
UMAP processes data faster and is capable of
handling very large dimensional data. Fig. 8.19
is a demonstration of the use of UMAP for clus-
tering sounds of five species of katydids
(Tettigoniidae) from Panamanian rainforest
recordings (Madhusudhana et al. 2019). Inputs
to UMAP clustering comprised of spectrograms
(dimensions 216h x 469w) computed from 1-s
clips containing katydid call(s). The inputs often
contained confounding sounds and varying noise
levels. The clustering results, however, demon-
strate the utility of UMAP as a quick means to
effective clustering. UMAP has also been used, in
combination with a pre-trained neural network,
for assessing habitat quality and biodiversity
variations from soundscape recordings across dif-
ferent ecosystems (Sethi et al. 2020).

We have presented here two popular methods
that are currently trending in this field of research.
There are, however, other alternatives available
including earlier methods such as isomap
(Tenenbaum et al. 2000) and diffusion map
(Coifman et al. 2005), newer variants of t-SNE
(e.g., Maaten 2014; Linderman et al. 2017), and

some modern variants of variational autoencoders
(Kingma and Welling 2013).

8.4.3 Model Based Classification

8.4.3.1 Artificial Neural Networks
Artificial neural networks (ANNs) were devel-
oped by modeling biological systems of
information-processing (Rosenblatt 1958) and
became very popular in the areas of word recog-
nition in human speech studies (e.g., Waibel et al.
1989; Gemello and Mana 1991) and character or
image-recognition (e.g., Fukushima and Wake
1990; Van Allen et al. 1990; Belliustin et al.
1991) in the 1980s. Since that time, ANNs have
been used successfully to classify a number of
complex signal types, including quail crows
(Coturnix spp., Deregnaucourt et al. 2001),
alarm sounds of Gunnison’s prairie dogs
(Cynomys gunnisoni, Placer and Slobodchikoff
2000), stress sounds by domestic pigs (Sus scrofa
domesticus, Schon et al. 2001), and dolphin echo-
location clicks (Roitblat et al. 1989; Au and
Nachtigall 1995).

Acantheremus major (n = 57)

Docidocercus gigliotosi (n = 201)

Pristonotus tuberosus (n = 43)

Scopiorinus fragilis (n = 220)

Thamnobates subfalcata (n = 220)

Fig. 8.19 Demonstration of clustering katydid sounds
using UMAP. Randomly chosen samples of call
spectrograms of the five species considered are shown on

the left, and clustering outcomes are shown on the right.
The clustering activity has successfully captured both
inter-species and intra-species variations
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In their primitive forms, there are 20 or more
basic architectures of ANNs (see Lippman 1989
for a review). Each ANN approach results in
trade-offs in computer memory and computation
requirements, training complexity, and time and
ease of implementation and adaptation (Lippman
1989). The choice of ANN depends on the type
of problem to be solved, size and complexity of
the dataset, and the computational resources
available. All ANNs are composed of units called
neurons and connections among them. They typ-
ically consist of three or more neuron layers: one
input layer, one output layer, and one or more
hidden layers (Fig. 8.20). The input layer consists
of n neurons that code for n features in the feature
vector representing the signal (X1 . . . Xn). The
output layer consists of k neurons representing
the k classes. The number of hidden layers
between the input and output layers, as well as
the number of neurons per layer, is empirically
chosen by the researcher. Each connection
among neurons in the network is associated
with a weight-value, which is modified by suc-
cessive iterations during the training of the
network.

ANNs are promising for automatic signal clas-
sification for several reasons. First, the input to an
ANN can range from feature vectors of
measurements taken from spectrograms or
waveforms, to frequency contours, to complete
spectrograms. Second, ANNs serve as adaptive
classifiers which learn through examples. As a
result, it is not necessary to develop a good math-
ematical model for the underlying signal
characteristics before analysis begins (Ghosh

et al. 1992). In addition, ANNs are nonlinear
estimators that are well-suited for problems
involving arbitrary distributions and noisy input
(Ghosh et al. 1992; Potter et al. 1994).

Dawson et al. (2006) used artificial neural
networks as a means to classify the chick-a-dee-
dee-dee call of the black-capped chickadee
(Poecile atricapillus), which contains four note
types carrying important functional roles in this
species. In their study, an ANN first was trained
to identify the note type based on several acoustic
variables and then correctly classified recordings
of the notes with 98% accuracy. The performance
of the network was compared with classification
using DFA, which also achieved a high level of
correct classification (95%). The authors
concluded that “there is little reason to prefer
one technique over another. Either method
would perform extremely well as a note-
classification tool in a research laboratory”
(Dawson et al. 2006).

Placer and Slobodchikoff (2000) used artificial
neural networks to classify alarm sounds of
Gunnison’s prairie dogs (Cynomys gunnisoni) to
predator species with a classification accuracy of
78.6 to 96.3%. The ANN identified unique
signals for four different species of predators:
red-tailed hawk (Buteo jamaicensis), domestic
dog (Canis familiaris), coyote (Canis latrans),
and humans (Homo sapiens).

Deecke et al. (1999) used artificial neural
networks to examine dialects in underwater
sounds of killer whale pods. The neural network
extracted the frequency contours of one sound
type shared by nine social groups of killer whales
and created a neural network similarity index.
Results were compared to the sound similarity
judged by three humans in pair-wise classification
tasks. Similarity ratings of the neural network
mostly agreed with those of the humans, and
were significantly correlated with the killer
whale group, indicating that the similarity indices
were biologically meaningful. According to the
authors, “an index based on neural network anal-
ysis therefore represents an objective and repeat-
able means of measuring acoustic similarity, and
allows comparison of results across studies, spe-
cies, and time” (Deecke et al. 1999).

Fig. 8.20 Diagram of the structure of an artificial neural
network
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The greater potential of ANNs remained
largely untapped for many years, in part due to
prevailing limitations in computational
capabilities. In the mid-1980s, backpropagation
paved a way for efficiently training multi-layer
ANNs (Rumelhart et al. 1986). Backpropagation,
an algorithm for supervised learning of the
weights in an ANN using gradient descent,
greatly facilitated development of deeper
networks (having many hidden layers). Many
classes of deep neural networks (DNNs; LeCun
et al. 2015) such as convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs) became easier to train. While the afore-
mentioned ANN approaches often require hand-
picked features or measurements as inputs, DNNs
trained with backpropagation demonstrated the
ability to learn good internal representations
from raw data (i.e., the hidden layers captured
non-trivial representations effectively). In their
landmark work on using CNNs for the automatic
recognition of handwritten digits, LeCun et al.
(1989a, b) used backpropagation to learn
convolutional kernel coefficients directly from
images. Over the past two decades, advances in
computing technology, especially the wider avail-
ability of graphics processing units (GPUs), have
considerably accelerated machine learning
(ML) research in many disciplines such as com-
puter vision, speech processing, natural language
processing, recommendation systems, etc. Shift
invariance is an attractive characteristic of
CNNs, which makes them suitable for analyzing
visual imagery (LeCun et al. 1989a, b, 1998).
CNN-based solutions have consistently
dominated many of the large-scale visual recog-
nition challenges. As such, several competing
architectures of CNNs have been developed:
AlexNet (Krizhevsky et al. 2017), ResNet
(He et al. 2016), DenseNet (Huang et al. 2017),
etc. Some of these architectures have become the
state-of-the-art in computer vision applications
such as face recognition, emotion detection,
object extraction, scene classification, and also
in conservation applications (e.g., species identi-
fication in camera trap data, land-use monitoring
in aerial surveys). Given the image-like nature of
time-frequency representations of acoustic

signals (e.g., spectrogram), many of the successes
of CNNs in computer vision have been replicated
in the field of animal bioacoustics. In contrast to
CNNs, RNNs are better suited for processing
sequence inputs. RNNs contain internal states
(memory) that allow them to “learn” temporal
patterns. However, their utility is limited by the
“vanishing gradient problem,” wherein the
gradients (from the gradient descent algorithm)
of the network's output with respect to the
weights in the early layers become extremely
small. The problem is overcome in modern
flavors of RNNs such as long short-term memory
(LSTM; Hochreiter and Schmidhuber 1997)
networks and gated recurrent unit (GRU; Cho
et al. 2014) networks.

These types of ML solutions are heavily data-
driven and often require large quantities of train-
ing samples. Typically, the training samples are
time-frequency representations (e.g., spectrogram
or mel-spectrogram) of short clips of recordings
(e.g., Stowell et al. 2016; Shiu et al. 2020).
Robustness of the resulting models are improved
by ensuring that the inputs adequately cover pos-
sible variations of the target signals and of the
ambient background conditions. Data scientists
employ a variety of data augmentation techniques
to overcome data shortage. Some examples
include introducing synthetic variations such as
infusion of Gaussian noise, shifting in time (hori-
zontal shift) and frequency content (vertical shift)
(Jaitly and Hinton 2013; Ko et al. 2015; Park et al.
2019). The training process, which involves suc-
cessively lowering a loss function iteratively
using the backpropagation algorithm, is usually
computationally intensive and is often sped up
with the use of GPUs.

DNNs have been used in the automatic recog-
nition vocalizations of insects (e.g.,
Madhusudhana et al. 2019), fish (e.g., Malfante
et al. 2018), birds (e.g., Stowell et al. 2016; Goëau
et al. 2016), bats (e.g., Mac Aodha et al. 2018),
marsupials (e.g., Himawan et al. 2018), primates
(e.g., Zhang et al. 2018), and marine mammals
(e.g., Bergler et al. 2019). CNNs have been used
in the recognition of social calls, song calls, and
whistles (e.g., Jiang et al. 2019; Thomas et al.
2019). While typical 2-dimensional CNNs have
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been successfully used in the detection of echolo-
cation clicks (e.g., Bermant et al. 2019),
1-dimensional CNNs (with waveforms as inputs)
have been attempted as well (e.g., Luo et al.
2019). CNNs and LSTM networks have been
compared in an application for classifying grou-
per species (Ibrahim et al. 2018) where the
authors observed similar performances between
the two models. Shiu et al. (2020) attempted
combining a CNN with a GRU network for
detecting North Atlantic right whale (Eubalaena
glacialis) calls. Madhusudhana et al. (2021)
incorporated long-term temporal context by com-
bining independently trained CNNs and LSTM
networks and achieved notable improvements in
recognition performance. An attractive approach
for developing recognition models is the use of
transfer learning technique (Torrey and Shavlik
2010), where components of an already trained
model are reused. Typically, weights of the early
layers of a pre-trained network are frozen
(no longer trainable) and the model is adapted to
the target domain by training only the leaf nodes
with data from the target domain. Zhong et al.
(2020) used transfer learning to produce a CNN
model for classifying the calls of a few species of
frogs and birds.

8.4.3.2 Random Forest Analysis
A random forest is a collection of many (hundreds
or thousands) individual classification trees,
which are grown without pruning. Each tree is
different from every other tree in the forest
because at each node, the variable to be used as
a splitter is chosen from a random subset of the
variables (Breiman 2001). Each tree in the forest
produces a predicted category for the sound to be
classified as, and the sound is ultimately classified
as the category that was predicted by the majority
of trees. Random forests are often more accurate
than single classification trees because they are
robust to over-fitting and stable to small
perturbations in the data, correlations between
predictor variables, and noisy predictor variables.
Random forests perform well on polymorphic
categories such as the variety of flight calls pro-
duced by many bird species (e.g., Liaw and

Wiener 2002; Cutler et al. 2007; Armitage and
Ober 2010; Ross and Allen 2014).

One of the advantages of a random forest
analysis is that it provides information on the
degree to which each one of the input variables
contributes to the final species classification. This
information is given by the Gini index and is
known as the Gini variable importance. The
Gini index is calculated based on the “purity” of
each node in each of the classification trees,
where purity is a measure of the number of
whistles from different species in a given node
(Breiman et al. 1984). Smaller Gini indices repre-
sent higher purity. When a random forest analysis
is run, the algorithm assigns splitting variables so
that the Gini index is minimized at each node
(Oh et al. 2003). When a forest has been grown,
the Gini importance value is calculated for each
variable by summing the decreases in Gini index
from one node to the next each time the variable is
used. Variables are ranked according to their Gini
importance values—those with the highest values
contribute the most to the random forest model
predictions. Random forests also produce a prox-
imity measure, which is the fraction of trees in
which particular observations end up in the same
terminal nodes. This measure provides informa-
tion about the similarity of individual
observations because similar observations should
end up in the same terminal nodes more often
than dissimilar observations (Liaw and Wiener
2002).

Armitage and Ober (2010) compared the
classification performance of random forests, sup-
port vector machines (SVMs), artificial neural
networks, and DFA for bat echolocation signals
and found that, with the exception of DFA, which
had the lowest classification accuracy, all
classifiers performed similarly. Keen et al.
(2014) compared the performance of four classi-
fication algorithms using spectrographic
measurements (spectrographic cross-correlation,
dynamic time-warping, Euclidean distance, and
random forest) for flight calls from four warbler
species. In this study, random forests produced
the most accurate results, correctly classifying
68% of calls.
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Oswald et al. (2013) compared classifiers
generated using DFA versus random forest
classifiers for whistles produced by eight
delphinid species recorded in the tropical Pacific
Ocean and found that random forests resulted in
the highest overall correct classification score.
Rankin et al. (2016) trained a random forest clas-
sifier for five delphinid species in the California
Current ecosystem. This classifier used informa-
tion from whistles, clicks, and burst-pulse sounds
and correctly classified 84% of acoustic
encounters. Both Oswald et al. (2013) and Rankin
et al. (2016) used spectrographic measurements
as input variables for their classifiers.

8.4.3.3 Gaussian Mixture Models
Gaussian Mixture Models (GMMs) are used com-
monly to model arbitrary distributions as linear
combinations of parametric variables. They are
appropriate for species identification when there
are no expectations, such as the sequence of
sounds (Roch et al. 2007). To create a GMM, a
set of n normal distributions with separate means
and diagonal covariance matrices are scaled by
weight-factors ci (1 < i < n). The sum over all ci
must be 1 to ensure that the GMM represents a
probability distribution (Huang et al. 2001; Roch
et al. 2007, 2008). The number of mixtures in the
GMM is chosen empirically and its parameters
are estimated using an iterative algorithm, such as
the Expectation Maximization algorithm (Moon
1996). Once a GMM has been trained, likelihood
is computed for each sound type and a log-
likelihood-ratio test is used to decide the species
(Roch et al. 2008).

Gingras and Fitch (2013) used GMMs to clas-
sify male advertisement songs of four genera of
anurans (Bufo, Hyla, Leptodactylus, Rana) based
on spectral features and mel-frequency cepstral
coefficients. The GMM based on spectral features
resulted in 60% true positives and 13% false
positives, and the GMM based on
mel-frequency cepstral coefficients resulted in
41% true positives and 20% false positives.
Somervuo et al. (2006) correctly classified
55–71% of song fragments from 14 different spe-
cies of birds based on mel-frequency cepstral
coefficients. The correct classification score

depended on the number of cepstral coefficients
and the number of Gaussian mixtures in the
model. Lee et al. (2013) used GMMs to classify
song segments of 28 species of birds based on
image-shape features instead of traditional spec-
trographic features. This approach resulted in
86% or 95% classification accuracy for 3- or 5-s
birdsong segments, respectively.

Roch et al. (2008) classified clicks produced
by Blainville’s beaked whales, pilot whales, and
Risso’s dolphins using a GMM. Correct classifi-
cation scores for these three species were 96.7%,
83.2%, and 99.9%, respectively. Brown and
Smaragdis (2008, 2009) used GMMs to classify
sounds of killer whales, resulting in up to 92%
agreement with 75 perceptually created
categories of sound types, depending on the num-
ber of cepstral coefficients and Gaussians in the
estimate of the probability density function.
GMMs were used to classify the A and B type
sounds produced by blue whales in the Northeast
Pacific (McLaughlin et al. 2008), and six marine
mammal species (Mouy et al. 2008) recorded in
the Chukchi Sea: bowhead whales, humpback
whales, gray whales, beluga whales, killer
whales, and walruses. Both studies reported that
their classifiers worked very well, but correct
classification scores were not provided.

8.4.3.4 Support Vector Machines
Support vector machines (SVMs) are a rich fam-
ily of learning algorithms based on Vapnik’s
(1998) statistical learning theory. An SVM
works by mapping features measured from
sounds into a high-dimensional feature space.
The SVM then finds the optimal hyperplane
(function) that maximizes the separation among
classes with the lowest number of parameters and
the lowest risk of error. This approach attempts to
meet the goal of minimizing both the training
error and the complexity of the classifier (Mazhar
et al. 2007). The best hyperplane is one that
maximizes the distance between the hyperplane
and the nearest data points belonging to different
classes. The support vectors are the data points
that determine the position of the hyperplane, and
the distance between the hyperplane and the sup-
port vectors is called the margin (Fig. 8.21). The
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optimal classifier maximizes the margin on both
sides of the hyperplane. Because the hyperplane
can be defined by only a few of the training
samples, SVMs tend to be generalized and robust
(Cortes and Vapnik 1995; Duda et al. 2001).
When classes cannot be separated linearly,
SVMs can map features onto a higher dimen-
sional space where the samples become linearly
separable (see Fig. 8.26 in Zeppelzauer et al.
2015).

SVMs originally were designed for binary
classification, but a number of methods have
been developed for applying them to multi-class
problems. The three most common methods are:
(1) form k binary “one-against-the-rest”
classifiers, where k is the number of classes and
the class whose decision-function is maximized is
chosen (Vapnik 1998), (2) form all k(k � 1)/2
pair-wise binary classifiers, and choose the
class whose pair-wise decision-functions are
maximized (Li et al. 2002), and (3) reformulate
the objective function of SVM for the multi-class
case so decision boundaries for all classes are
optimized jointly (Guemeur et al. 2000).

Gingras and Fitch (2013) used four different
algorithms (SVM, k-nearest neighbor, multivari-
ate Gaussian distribution classifier, and GMM) to
classify advertisement calls from four genera of
anurans and obtained comparable accuracy levels
from all three models. Fagerlund (2007) used
SVMs to classify bird sounds produced by several
species using decision trees with binary SVM

classifiers at each node. The two datasets used
by Fagerlund (2007) contained six and eight
bird species and correct classification scores
were 78–88% and 96–98% for the two datasets,
respectively, depending on which variables were
used in the classifiers.

Zeppelzauer et al. (2015) and Stoeger et al.
(2012) both used SVM to identify African ele-
phant rumbles. Zeppelzauer et al. (2015) used
cepstral feature vectors and an SVM to distin-
guish African elephant rumbles from background
noise. This SVM resulted in an 88% correct
detection rate and a 14% false alarm rate. In
addition to SVM, Stoeger et al. (2012) also used
linear discriminant analysis (LDA) and nearest
neighbor classification algorithms to categorize
two types of rumbles produced by five captive
African elephants based on spectral
representations of the sounds. They obtained a
classification accuracy of greater than 97% for
all three classification methods.

Jarvis et al. (2006) developed a new type of
multi-class SVM, called the class-specific SVM
(CS-SVM). In this method, k binary SVMs are
created, where each SVM discriminates between
one of the k classes of interest and a common
reference-class. The class whose decision-
function is maximized with respect to the
reference-class is selected. If all decision-
functions are negative, the reference-class is
selected. The advantage of this method is that
noise in recordings is treated as the reference-

Fig. 8.21 Examples of support vector machine hyperplanes. (a) The margin of the hyperplane is not optimal, (b) a
hyperplane with a maximized margin. The support vectors are circled
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class. Jarvis et al. (2006) used their CS-SVM to
discriminate clicks produced by Blainville’s
beaked whales from ambient noise and obtained
a correct classification score of 98.5%. They also
created a multi-class CS-SVM that classified
clicks produced by Blainville’s beaked whales,
spotted dolphins (Stenella attenuata), and
human-made sonar pings. This CS-SVM resulted
in 98% correct classification for Blainville’s
beaked whale clicks, 88% correct classification
for spotted dolphin clicks, and 95% correct clas-
sification for sonar pings. It is important to note
that the training data were included in their test
data, which likely resulted in inflated correct clas-
sification scores.

8.4.3.5 Dynamic Time-Warping
Dynamic time-warping (DTW) is a class of
algorithms originally developed for automated
human speech recognition (Myers et al. 1980).
DTW is used to quantitatively compare time-
frequency contours of different durations using
variable extension and compression of the time
axis (Deecke and Janik 2006; Roch et al. 2007).
There are different DTW techniques (e.g., Itakura
1975; Sakoe and Chiba 1978; Kruskal and
Sankoff 1983), but all are based on comparing a
reference sound to a test sound. The test sound is
stretched and compressed along its contour to
minimize the difference between the shapes of
the two contours. Restrictions can be placed on
the amount of time-warping that takes place. For
example, Buck and Tyack (1993) did not time-
warp contours that differed by a factor of more
than 2 in duration and assigned those contours a
similarity score of zero. Deecke and Janik (2006)
stated that contours could only be stretched or
compressed up to a factor of 3 to fit the reference
contour. In a DTW analysis, all individual
contours are compared to all other contours and
a similarity matrix is constructed. Sounds are
clustered into categories based on the similarity
matrix using methods such as k-nearest neighbor
cluster analysis or ANNs (Deecke and Janik
2006; Brown and Miller 2007).

DTW has been used to classify bird sounds.
Anderson et al. (1996) applied DTW to recognize
individual song syllables for two species of

songbirds: indigo buntings (Passerina cyanea)
and zebra finches (Taeniopygia guttata). Their
analysis resulted in 97% correct classification of
stereotyped syllables and 84% correct classifica-
tion of syllables in plastic song. It is important to
note, however, that these results were obtained for
song recorded from a single individual of each
species in a controlled setting. Somervuo et al.
(2006) performed DTW to classify bird song
syllables produced by 14 different species. They
compared two different methods for computing
distance between syllables: (1) simple Euclidean
distances between frequency-amplitude vectors,
and (2) absolute distance between frequencies
weighted by the sum of their amplitudes. Classi-
fication accuracy was low, at about 40–50%,
depending on the species and the distance method
used. They obtained higher classification success
using classification methods such as hidden Mar-
kov models (HMM) and GMM based on song
fragments, rather than on single syllables.

Buck and Tyack (1993) performed DTW to
classify three signature whistles from each of
five wild bottlenose dolphins recorded in
Sarasota, Florida, USA, with 100% accuracy.
Deecke and Janik (2006) used DTW to classify
signature whistles produced by captive bottlenose
dolphins. The DTW algorithm outperformed
human analysts and other statistical methods
tested by Janik (1999). DTW also was applied
to classify stereotypical pulsed sounds produced
by killer whales, both in captivity (Brown et al.
2006) and at sea (Deecke and Janik 2006; Brown
and Miller 2007). In all of these studies, sounds
were classified into categories that were identified
perceptually by humans with very high correct
classification scores.

Oswald et al. (2021) used dynamic time-
warping and neural network analysis to group
whistle contours produced by short- and long-
beaked common dolphins (Delphinus delphis
and D. bairdii) into categories. Many of the
resulting categories were shared between the
two species, but each species also produced a
number of species-specific categories. Random
forest analysis showed that whistles in species-
specific categories could be classified to species
with significantly higher accuracy than whistles
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in shared categories. This suggests that not every
whistle carries species information, and that spe-
cific whistle types play an important role in dol-
phin species identification.

8.4.3.6 Hidden Markov Models
Hidden Markov mode (HMM) theory was devel-
oped in the late 1960s by Baum and Eagon (1967)
and now is used commonly for human speech
recognition (Rabiner et al. 1983, 1996; Levinson
1985; Rabiner 1989). To create an HMM, a vec-
tor of features is extracted from a signal at discrete
time steps. The temporal evolution of these
features from one state to the next is modeled by
creating a transition matrix M, where Mij is the
probability of transition from state i to state j, and
an emission matrix E, where Eis is the probability
of observing signal s in state i (Rickwood and
Taylor 2008). A different HMM is created for
each species in the dataset and a sound is classi-
fied by determining which of the HMMs has the
highest likelihood of producing that particular set
of signal states. Training HMMs requires signifi-
cant amounts of computing, and proper estima-
tion of the transition and output probabilities is of
crucial importance (Makhoul and Schwarz 1995).
Excellent tutorials on HMMs can be found in
Rabiner and Juang (1986) and Rabiner (1989).

A significant advantage inherent to HMMs is
their ability to model time and spectral variability
simultaneously (Makhoul and Schwarz 1995).
They are able to model time series that have subtle
temporal structure and are efficient for modeling
signals with varying durations by performing non-
linear, temporal alignment during both the training
and classification processes (Clemins et al. 2005;
Roch et al. 2007; Trifa et al. 2008). Using HMMs,
complex models can be built to deal with compli-
cated biological signals (Rickwood and Taylor
2008), but care must be taken when choosing train-
ing samples to obtain a high generalization ability.
The performance of an HMM is influenced by the
size of the training set, the feature extraction
method, and the number of states in the model
(Trifa et al. 2008). Recognition performance is
also affected by noise (Trifa et al. 2008).

In addition to being successfully implemented
in human speech recognition, HMMs have been

used to classify the sounds produced by birds
(Kogan and Margoliash 1998; Trawicki et al.
2005, Trifa et al. 2008, Adi et al. 2010), red
deer (Cervus elaphus; Reby et al. 2006), African
elephants (Clemins et al. 2005), common
dolphins (Sturtivant and Datta 1997; Datta and
Sturtivant 2002), killer whales (Brown and
Smaragdis 2008, 2009); beluga whales (Clemins
and Johnson 2005; Leblanc et al. 2008), bowhead
whales (Mellinger and Clark 2000), and hump-
back whales (Suzuki et al. 2006). HMMs perform
as well as, or better than, both GMMs and DTW
(Weisburn et al. 1993; Kogan and Margoliash
1998) and are becoming more common in animal
classification studies.

Adi et al. (2010) also used HMMs to examine
individually distinct acoustic features in songs
produced by ortolan buntings (Emberiza
hortulana). They represented each song syllable
using a 15-state HMM (Fig. 8.22). These HMMs
then were connected to represent song types. The
14 most common song types were included in the
analysis and correct classification ranged from
50% to 99%, depending on the song type. Over-
all, 90% of songs were correctly classified. Adi
et al. (2010) used these results to illustrate the
feasibility of using acoustic data to assess popula-
tion sizes for these birds.

Reby et al. (2006) used HMMs to examine
whether common roars uttered by red deer during
the rutting season can be used for individual
recognition. They recorded roar bouts from
seven captive red deer and used HMMs to
model roar bouts as successions of silences and
roars. Each roar in the analysis was modeled as a
succession of states of frequency components
measured from the roars. Overall, the HMM
correctly identified 85% of roar bouts to the indi-
vidual deer, showing that roars were individually
specific. Reby et al. (2006) also used HMMs to
examine stability in this individuality over the
rutting season. They did this by training an
HMM using roar bouts recorded at the beginning
of the rutting season and testing the model using
roar bouts recorded later in the rutting season.
Overall, 58% of roar bouts were classified
correctly, suggesting that individual identification
cues in roar bouts varied over time.
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8.5 Challenges in Classifying
Animal Sounds

Placing sounds into categories is not always
straightforward. Sounds produced by a particular
species often contain a great deal of variability
caused by different factors (e.g., location, date,
age, sex, and individuality), which can make it
difficult to define categories. In addition, sound
categories are not always sharply demarcated, but
instead grade or gradually transition from one
form to another. It is important to be aware of
the challenges in a particular dataset. Below are
some types of variation that can be encountered in
the classification of animal sounds.

8.5.1 Recording Artifacts

Bioacousticians need to be aware that recorded
animal sounds are affected by the frequency and
sensitivity specifications of the recording system
used. An inappropriate recording system can
result in distorted or partial sounds, which

complicates their classification. For example,
sounds can be misrepresented in recordings if
the frequency response of the recording system
is not linear, if the sampling frequency is too low,
if sounds exist below or above the functional
frequency range of the recording system, or if
aliasing occurs (see Chap. 4). Ideally, recording
systems should be carefully assembled and
calibrated for the specific application. If the
effects of the recording system could always be
removed completely from recordings, sound clas-
sification would be more consistent and compara-
ble. However, sounds published in the literature
are sometimes received sounds that were affected
by the recorder and/or the sound propagation
environment.

One of the most common problems in under-
water acoustic recordings is mooring noise. If
hydrophones are held over the side of a boat, the
recordings will contain sound from waves
splashing against the boat or the hydrophone
cable rubbing against the boat. Recorders built
into mooring lines can record cable strum or
clanking chains. If multiple oceanographic
sensors are moored together, sounds from other

Fig. 8.22 Example of a 15-state hidden Markov model
representation of the waveform of a song syllable pro-
duced by an ortolan bunting to capture the temporal

pattern of the syllable (Adi et al. 2010). # Acoustical
Society of America, 2010. All rights reserved
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instruments (e.g., wipers on a turbidity sensor)
may be recorded. Recorders resting on soft sea-
floor in coastal water may record the sound of
sand swishing over the mooring. In addition,
hydrostatic pressure fluctuations from the
recorder bouncing in the water column or vortices
at the hydrophone if deployed in strong currents
will cause flow noise. All of these artifacts can
last from seconds to minutes and appear in
spectrograms as power from a few hertz to high
kilohertz. Minimization of mooring noise and
identification of recording artifacts is an art (also
see Chaps. 2 and 3).

Similarly, artifacts can be recorded during air-
borne recordings. Wind is a primary artifact;
however, moving vegetation and precipitation
can also add noise to a recording. Any distur-
bance to the microphone can generate unwanted
tapping or static on a recording. Recording
systems in terrestrial environments need to be
secured to minimize such noises.

8.5.2 Sound Propagation Effects

Environmental features of air or water can change
the way sound propagates and thus the acoustic
characteristics of a recorded sound. Bioacousticians
need to understand environmental effects on the
features of received sound to avoid classification
of a signal variant as a new type, rather than as a
particular sound type affected by propagation
conditions. The sound propagation environment
can affect both the spectral and temporal features
of sound as it propagates from the animal to the
recorder (see Chaps. 5 and 6). For example, energy
at high frequencies is lost (attenuates) very quickly
due to scattering and absorption, and therefore high-
frequency harmonics do not propagate over long
ranges. Acoustic energy at low frequencies (i.e.,
long wavelengths) does not travel well in narrow
waveguides (e.g., shallow water). Because different
frequencies within a sound can attenuate at different
rates, the same sound can appear differently on a
spectrogram, depending on the distance at which it
was recorded.

Differential attenuation of frequencies in air is
shown in Fig. 8.23. Signals produced by a big
brown bat (Eptesicus fuscus) flying toward a

microphone contain more ultrasonic components
than signals recorded from a bat flying away from
the microphone. The signal with the longest fre-
quency modulation (from 100 to 50 kHz) is
received when the bat is closest to the micro-
phone. Variations in this spectrogram show how
one sound type could be categorized differently
simply because of distance between the animal
and recorder, orientation to the microphone, and
the gain setting.

Other sound propagation effects include rever-
beration (which leads to the temporal spreading of
brief, pulsed sounds) and frequency dispersion.
Frequency dispersion is a result of energy at dif-
ferent frequencies traveling at different speeds.
This leads to sounds being spread out in time
and, specifically in some underwater
environments, can cause pulsed sounds to
become frequency-modulated sounds (either up-
or downsweeps; Fig. 8.24).

Finally, ambient noise (i.e., geophysical noise,
anthropogenic noise, and non-target biological
noise) superimposes with animal sounds, and at
some distances and frequencies, parts of the ani-
mal sound spectrum will begin to drop below the
levels of ambient noise. As a result, the same
animal sound in a different environment and at a
different distance from the animal can look quite
different on a spectrogram and cause it to be
misclassified as two different sound types.

8.5.3 Angular Aspects of Sound
Emission

The orientation of an animal relative to the
receiver (microphone or hydrophone) can change
the acoustic features of the recorded sound. This
complicates classification, and off-axis variations
of a sound need to be known so they can be
categorized as just a variant of a particular
sound type, rather than as a new sound type.
Not all sounds emitted by animals are omni-
directional (i.e., propagate equally in all angles
relative to the animal). Au et al. (2012) studied the
directionality of bottlenose dolphin echolocation
clicks by measuring the horizontal and vertical
emission beam patterns of these sounds. The
angle at which an echolocation click was
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recorded relative to the transducer
(or echolocating animal) not only affected its
received level, but also the waveform and fre-
quency spectrum (Fig. 8.25). Sperm whale
(Physeter macrocephalus) echolocation clicks,
when recorded off-axis (i.e., away from the center
of its emission beam), consisted of multiple com-
plex pulses that were likely due to internal
reflections within the sperm whale’s head (Møhl
et al. 2003; also see Chap. 12).

8.5.4 Geographic Variation

Geographic variation, or differences in the sounds
produced by populations of the same species

living in different regions, has been documented
for many terrestrial and aquatic animals, includ-
ing Hawaiian crickets (Mendelson and Shaw
2003), Túngara frogs (Engystomops pustulosus,
Prӧhl et al. 2006), bats (Law et al. 2002;
Aspetsberger et al. 2003; Russo et al. 2007;
Yoshino et al. 2008), pikas (Borisova et al.
2008), sciurid rodents (Gannon and Lawlor
1989; Slobodchikoff et al. 1998; Yamamoto
et al. 2001; Eiler and Banack 2004), singing
mice (Scotinomys spp., Campbell et al. 2010),
primates (Mitani et al. 1992; Delgado 2007;
Wich et al. 2008), cetaceans (Helweg et al.
1998; McDonald et al. 2006; Delarue et al.
2009; Papale et al. 2013, 2014), and elephant
seals (Mirounga spp., Le Boeuf and Peterson
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Fig. 8.23 Spectrogram of big brown bat (Eptesicus
fuscus) circling a recording device while searching and
pursuing aerial prey. As the bat approaches the micro-
phone, more of the ultrasonic signal is received (calls
reach up to 70 kHz). As the bat moves away, the signal
is attenuated. Time between calls shortens notably as the

bat pursues an insect prey for capture. Notice that the bat
emits “search” calls at 25–40 kHz, approach calls at
30–70 kHz when it is in pursuit or trying to navigate flight
through complex space, and finally terminal calls at
30–55 kHz
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1969). When developing classifiers, it is impor-
tant to understand the degree of geographic varia-
tion in a sound repertoire and the range over
which this occurs. If geographic variation exists,
then a classifier trained using data collected in one
location may not work well when applied to data
collected in another location.

One of the underlying causes of geographic
variation may be reproductive isolation of a pop-
ulation. Keighley et al. (2017) used DFA with
stepwise variable selection to determine geo-
graphic variation in sounds from six major
populations of palm cockatoos (Probosciger
aterrimus) in Australia. Palm cockatoos from

the east coast (Iron Range National Park) had
unique contact sounds and produced fewer
sound types than at other locations. The authors
speculated that this large difference was due to
long-term isolation at this site and noted that
documentation of geographic variation in sounds
provided important conservation information
for determining connectivity of these six
populations.

Thomas and Golladay (1995) employed PCA
to classify nine underwater vocalization types
produced by leopard seals (Hydrurga leptonyx)
at three study sites near Palmer Peninsula,
Antarctica. The PCA successfully separated
vocalizations from the three study areas and
provided information about what features of the
sounds were driving the differences among
locations. For example, the first principal compo-
nent was influenced by maximum, minimum,
start, and end frequencies, the second principal
component was influenced by the presence or
absence of overtones, and the third principal com-
ponent was predominantly related to time
relationships, such as duration and time between
successive sounds. Note that some sound types
were absent at some locations.

8.5.5 Graded Sounds

Some animals produce sound types that grade or
gradually transition from one type to another.
Researchers should not neglect the potential exis-
tence of vocal intermediates in classification. For
example, Schassburger (1993) described sounds
produced by timber wolves (Canis lupus) as
barks, growl-moans, growls, howls moans, snarls,
whimpers, whine-moans, whines, woofs, and
yelps. Wolves combine these 11 principal sounds
to create mixed-sounds that often grade from one
type into another.

Clicks trains, burst-pulse sounds, and whistles
produced by delphinids are typically considered
as three distinct categories of sound. Click trains
and burst-pulse sounds are composed of short,
exponentially damped sine waves separated by
periods of silence, while whistles are generally
thought of as continuous tonal sounds, often
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Fig. 8.24 Spectrograms of marine seismic airgun signals
recorded at three different ranges: 1.5 km (top), 80 km
over soft seabed (middle), and 40 km over a hard seabed
(bottom). The top and bottom spectrograms are of the
same seismic survey. Pulses were brief and broadband
near the source, but became frequency-modulated and
narrowband some distance away due to dispersion (Erbe
et al. 2016).# Erbe et al.; https://ars.els-cdn.com/content/
image/1-s2.0-S0025326X15302125-gr9_lrg.jpg. Licensed
under CC BY 4.0; https://creativecommons.org/licenses/
by/4.0/
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Fig. 8.25 Waveforms and spectra of a bottlenose dolphin echolocation click in the horizontal (a) and vertical (b) planes
(Au et al. 2012). # Acoustical Society of America, 2012. All rights reserved
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sweeping in frequency. While these sounds
appear quite different from one another on
spectrograms, closer inspection of their
waveforms reveals that some sounds that look
like whistles on a spectrogram actually contain a
high degree of amplitude modulation. In other
words, some sounds that are considered to be
whistles are made up of pulses with inter-pulse
intervals that are too short to hear or be resolved
by the analysis window of the spectrogram
(Fig. 8.26). As an example of this, Murray et al.
(1998) used self-organizing neural networks to
analyze the vocal repertoires of two captive false
killer whales (Pseudorca crassidens) based on
measurements taken from waveforms. They
found that rather than organizing sounds into
distinct categories, the vocal repertoire was more
accurately represented by a graded continuum,
with exponentially damped sinusoidal pulses on
one end and continuous sinusoidal signals at the
other. Beluga whales also have been shown to
have a graded vocal repertoire (Karlsen et al.
2002; Garland et al. 2015). Whistles with a high
degree of amplitude modulation have been
recorded from Atlantic spotted and spinner
(Stenella longirostris) dolphins (Lammers et al.
2003), suggesting that this graded continuum
model is applicable to these species as well.

8.5.6 Repertoire Changes Over Time

Some animal sound repertoires change over time,
which complicates their classification. For exam-
ple, humpback whale song slowly changes over
the course of a breeding season as new units are
introduced and old ones discarded (Noad et al.
2000). Song also changes from one season to the
next, and in one instance, eastern Australian
humpback whales changed to the song of the
western Australian population within 1 year
(Noad et al. 2000).

Antarctic blue whales can be heard off south-
western Australia from February to October every
year. The upper frequency of their Z-call
decreases over the season by about 0.4–0.5
Hz. At the beginning of the next season, the
Z-call jumps in frequency to about the mean of
the Z frequency of the previous season, and then
decreases again, leading to an average decrease in
the frequency of the upper part of the Z-call by
0.135 � 0.003 Hz/year (Fig. 8.27; Gavrilov et al.
2012). A similar decrease (albeit at different rates
at different locations) has been observed for the
“spot call,” of which the animal source remains
elusive (Fig. 8.27; Ward et al. 2017). The reasons
for these shifts are unknown.

8.6 Summary

Animals, whether they are in air, on land, or under
water, produce sound in support of their various
life functions. Cicadas join in chorus to repel
predatory birds (Simmons et al. 1971); male
fishes chorus on spawning grounds to attract
females (Amorim et al. 2015); frogs call to attract
mates and to mark out their territory (Narins et al.
2006); birds, too, sing for territorial and reproduc-
tive reasons (Catchpole and Slater 2008); bats
emit clicks for echolocation during hunting and
navigating, as do dolphins (Madsen and Surlykke
2013). In order to study animals by listening to
their sounds, sounds need to be classified to spe-
cies, to behavior, etc. In the early days, this was
done without measurements or with only the sim-
plest measuring tools. Scientists listened to the

Fig. 8.26 Spectrogram and waveform of a false killer
whale vocalization. The vocalization appears to be a whis-
tle in the spectrogram, but the waveform reveals discrete
pulses between 61 and 67 ms (Murray et al. 1998).
# Acoustical Society of America, 1998. All rights
reserved
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sounds in the field, often while visually observing
animals. Scientists recorded sounds in the field
and analyzed the recordings in the laboratory by
listening, looking at oscillograms or
spectrograms, and manually sorting sounds into
types. Nowadays, with the affordability of auton-
omous recording equipment, bioacousticians col-
lect vast amounts of data, which can no longer be
analyzed without the aid of automated data
processing, data reduction, and data analysis
tools. Given simultaneous advances in computer
hard- and software, datasets may be analyzed
more efficiently, and with the added advantage
of reducing opportunities for human subjective
biases.

In this chapter, we presented software tools for
automatically detecting animal sounds in acoustic
recordings, and for classifying those sounds. The
detectors we discussed compute a specific quan-
tity of the sound (such as its instantaneous energy
or entropy) and then apply a threshold above
which the sound is deemed detected. The specific
detectors were based on acoustic energy, Teager–
Kaiser energy, entropy, matched filtering, and
spectrogram cross-correlation. Setting the detec-
tion threshold critically affects how many signals

are detected and how many are missed. We
presented two ways of finding the best threshold
and assessing detector performance: receiver
operating characteristics and precision-recall
curves.

Once signals have been detected, they can be
classified. A common pre-processing step imme-
diately prior to classification includes the mea-
surement of sound features such as minimum
and maximum frequency, duration, or cepstral
features. The software tools we presented for
classification included parametric clustering,
principal component analysis, discriminant func-
tion analysis, classification trees, and machine
learning algorithms. No single tool outperforms
all others; rather, the best tool suited for the spe-
cific task needs to be employed. We discussed
advantages and limitations of the various tools
and provided numerous examples from the litera-
ture. Finally, challenges resulting from recording
artifacts, the environment affecting sound
features, and changes in sound features over
time and space were explored.

It is important to remember that human per-
ception of a sound likely is not the same as an
animal’s perception of the sound and yet
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Fig. 8.27 Weekly means of the upper part of the Antarc-
tic blue whale Z-call over several years, as well as of the
spot call, which remains to be identified to species. All

locations are off Australia (GAB: Great Australian Bight).
Data updated from Gavrilov et al. (2012) and Ward et al.
(2017). Courtesy of Sasha Gavrilov
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bioacousticians commonly describe or classify ani-
mal sounds in human terms. Classification of the
acoustic repertoire of an animal into sound types
provides a convenient framework for comparing
and contrasting sounds, taking systematic
measurements from portions of the repertoire, and
performing statistical analyses. However, categories
determined based on human perception may have
little or no relevance to the animals and so human
categorizations can be biologically meaningless.
For example, humans have limited low-frequency
and high-frequency hearing abilities compared to
many other species, and so aural classification of
sound types is sometimes based on only a portion of
a sound audible to the human listener. Whether
sound types determined by humans are meaningful
classes to the animals is mostly unknown. While
categorizing sounds based on function is an attrac-
tive approach for the behavioral zoologist,
establishing the functions of these sounds is often
challenging. In our review of classification
methods, it was clear that methods developed for
human speech could be applied to animal sounds.
Some fascinating questions lie ahead for
bioacousticians as they attempt to extend under-
standing of the perception experienced by other
animals.

Even with the above caveats, detection and
classification of animal sounds is useful for
research and conservation. It allows populations
to be monitored, their distribution and abun-
dance to be determined, and impacts (e.g., from
human presence or climate change) to be
assessed. It can also be useful for conservation
of a species (i.e., to create taxonomy, identify
geographic variation in populations, examine
ecological connectivity among populations, and
detect changes in the biological uses sounds due
to the advent and growth of anthropogenic
noise). Classification of animal sounds is impor-
tant for understanding behavioral ecology and
social systems of animals and can be used to
identify individuals, social groups, and
populations. The ability to study these types of
topics will ultimately lead to a deeper under-
standing of the evolutionary forces that shape
animal bioacoustics.

With a goal to foster wider participation in
research on bioacoustic pattern recognition, a
number of global competitions are held regularly.
The annual Detection and Classification of
Acoustic Scenes and Event (DCASE) workshops
and BirdCLEF challenges (part of Cross Lan-
guage Evaluation Forum) attract hundreds of
data scientists for developing machine learning
solutions for recognizing bird sounds in
soundscape recordings. The marine mammal
community organizes the biennial Detection,
Classification, Localization, and Density Estima-
tion (DCLDE) workshops. These challenges put
out large training datasets for researchers to
develop detection and classification systems,
assess the performance of submitted solutions
with “held out” datasets, and reward the
top-ranked submissions. The datasets from these
challenges are often made available for use by the
research community after the competitions, while
some workshops make available the submitted
solutions as well.

8.7 Additional Resources

• PAMGuard is an open-source software pack-
age for acoustic detection, classification, and
localization of cetacean sounds: https://www.
pamguard.org/

• Ishmael is a free software package for acoustic
detection, classification, and localization of
cetacean sounds: http://www.bioacoustics.us/
ishmael.html

• Koe is a free, web-based software for annota-
tion, measurement, and classification of bio-
acoustics signals: https://koe.io.ac.nz/#
(Fukuzawa et al. 2020)

• Praat is free software originally designed for
human speech analysis, but used by many
bioacousticians: https://www.fon.hum.uva.nl/
praat/

• Characterization Of Recorded Underwater
Sound (CHORUS) is a MATLAB graphic user
interface developed by Curtin University,
Perth, WA, Australia, with built-in automatic
detectors for pygmy blue and fin whales
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(Gavrilov and Parsons 2014): https://cmst.
curtin.edu.au/products/chorus-software/

• Detection, Classification, Localization, and
Density Estimation of Marine Mammals
using Passive Acoustics meeting websites:
– Mount Hood, Oregon, USA, 2011: http://

www.bioacoustics.us/dcl.html
– St Andrews, Scotland, UK, 2013: https://

soi.st-andrews.ac.uk/dclde2013/
– San Diego, California, USA, 2015: http://

www.cetus.ucsd.edu/dclde/index.html
– Paris, France, 2018: http://sabiod.univ-tln.

fr/DCLDE/
– Hawaii, USA, 2022: http://www.soest.

hawaii.edu/ore/dclde/
• Bird sound recognition challenges: http://

dcase.community/ (DCASE), https://www.
imageclef.org/BirdCLEF2020 (BirdCLEF)

• BirdNET is an Android app for birdsong rec-
ognition: https://birdnet.cornell.edu/

• SongSleuth is an Apple or Android app for
b i rdsong recogni t ion : h t tps : / /www.
songsleuth.com/#/

• All accessed 5 Aug 2022.

References

Adi K, Johnson MT, Osiejuk TS (2010) Acoustic
censusing using automatic vocalization classification
and identity recognition. J Acoust Soc Am 127:874–
883. https://doi.org/10.1121/1.3273887

Afifi AA, Clark V (1996) Computer-aided multivariate
analysis, 3rd edn. Chapman and Hall/CRC, New York

Amorim MC, Vasconcelos RO, Fonseca PJ (2015) Fish
sounds and mate choice. In: Ladich F (ed) Sound com-
munication in fishes. Springer, Vienna, pp 1–33

Anderson SE, Dave AS, Margoliash D (1996) Template-
based automatic recognition of birdsong syllables from
continuous recordings. J Acoust Soc Am 100:1209–
1219. https://doi.org/10.1121/1.415968

Armitage DW, Ober HK (2010) A comparison of
supervised learning techniques in the classification of
bat echolocation calls. Ecol Inform 5:465–473. https://
doi.org/10.1016/j.ecoinf.2010.08.001

Aspetsberger F, Brandsen D, Jacobs DS (2003) Geo-
graphic variation in the morphology, echolocation
and diet of the little free-tailed bat, Chaerephon
pumilus (Molossidae). Afr Zool 38:245–254. https://
doi.org/10.1080/15627020.2003.11407278

Au WWL, Nachtigall PE (1995) Artificial neural network
modeling of dolphin echolocation. In: Kastelein RA,
Thomas JA, Nachtigall PE (eds) Sensory systems of

aquatic mammals. De Spil Publishers, Woerden, The
Netherlands, pp 183–199

Au WWL, Branstetter B, Moore P, Finneran J (2012) The
biosonar field around an Atlantic bottlenose dolphin
(Tursiops truncatus). J Acoust Soc Am 131(1):
569–576. https://doi.org/10.1121/1.3662077

Baptista LF, Gaunt SSL (1997) Social interaction and
vocal development in birds. In: Snowden CT,
Hausberger M (eds) Social influences on vocal devel-
opment. Cambridge Univ Press, Cambridge, pp 23–40

Baum LE, Eagon JA (1967) An inequality with
applications to statistical estimation for probabilistic
functions of Markov processes and to a model for
ecology. Bull Am Math Soc 73:360–363

Baumgartner MF, Fratantoni DM (2008) Diel periodicity
in both Sei whale vocalization rates and the vertical
migration of their copepod prey observed from ocean
gliders. Limnol Oceanogr 53:2197–2209. https://doi.
org/10.4319/lo.2008.53.5_part_2.2197

Beeman K (1998) Digital signal analysis, editing and
synthesis. In: Hopp SL, Owren MJ, Evans CS (eds)
Animal acoustic communication: sound analysis and
research methods. Springer, Berlin, pp 59–103

Belliustin NS, Kuznetsov SO, Nuidel IV, Yakhno VG
(1991) Neural networks with close nonlocal coupling
for analyzing composite image. Neurocomputing 3:
231–246. https://doi.org/10.1016/0925-2312(91)
90005-V

Bergler C, Schröter H, Cheng RX, Barth V, Weber M,
Nöth E, Hofer H, Maier A (2019) ORCA-SPOT: an
automatic killer whale sound detection toolkit using
deep learning. Sci Rep 9(1):1–7. https://doi.org/10.
1038/s41598-019-47335-w

Bermant PC, Bronstein MM, Wood RJ, Gero S, Gruber
DF (2019) Deep machine learning techniques for the
detection and classification of sperm whale bioacous-
tics. Sci Rep 9(1):1–10. https://doi.org/10.1038/
s41598-019-48909-4

Borisova NG, Rudneva LV, Starkov AI (2008) Interpopu-
lation variability of vocalizations in the Daurian pika
(Ochotona daurica). Zool Zh 87:850–861

Bouffaut L, Dréo R, Labat V, Boudraa AO, Barruol G
(2018) Passive stochastic matched filter for Antarctic
blue whale call detection. J Acoust Soc Am 144(2):
955–965. https://doi.org/10.1121/1.5050520

Bradbury JW, Vehrencamp SL (2011) Principles of animal
communication, 2nd edn. Sinauer Associates,
New York

Brandes TS (2008) Feature-vector selection and use with
Hidden Markov Models to identify frequency-
modulated bioacoustic signals amidst noise. IEEE
Trans Speech Lang Process 16:1173–1180. https://
doi.org/10.1109/TASL.2008.925872

Breiman L (2001) Random forests. Mach Learn 45:5–32
Breiman L, Friedman J, Olshen R, Stone C (1984) Classi-

fication and regression trees. Wadsworth, Pacific
Grove, CA

Briefer EF, Maigrot A-L, Roi T, Mandel R, Briefer
Freymond S, Bachmann I, Hillmann E (2015) Segre-
gation of information about emotional arousal and

8 Detection and Classification Methods for Animal Sounds 307

https://cmst.curtin.edu.au/products/chorus-software/
https://cmst.curtin.edu.au/products/chorus-software/
http://www.bioacoustics.us/dcl.html
http://www.bioacoustics.us/dcl.html
https://soi.st-andrews.ac.uk/dclde2013/
https://soi.st-andrews.ac.uk/dclde2013/
http://www.cetus.ucsd.edu/dclde/index.html
http://www.cetus.ucsd.edu/dclde/index.html
http://sabiod.univ-tln.fr/DCLDE/
http://sabiod.univ-tln.fr/DCLDE/
http://www.soest.hawaii.edu/ore/dclde/
http://www.soest.hawaii.edu/ore/dclde/
http://dcase.community/
http://dcase.community/
https://www.imageclef.org/BirdCLEF2020
https://www.imageclef.org/BirdCLEF2020
https://birdnet.cornell.edu/
https://www.songsleuth.com/#/
https://www.songsleuth.com/#/
https://doi.org/10.1121/1.3273887
https://doi.org/10.1121/1.415968
https://doi.org/10.1016/j.ecoinf.2010.08.001
https://doi.org/10.1016/j.ecoinf.2010.08.001
https://doi.org/10.1080/15627020.2003.11407278
https://doi.org/10.1080/15627020.2003.11407278
https://doi.org/10.1121/1.3662077
https://doi.org/10.4319/lo.2008.53.5_part_2.2197
https://doi.org/10.4319/lo.2008.53.5_part_2.2197
https://doi.org/10.1016/0925-2312(91)90005-V
https://doi.org/10.1016/0925-2312(91)90005-V
https://doi.org/10.1038/s41598-019-47335-w
https://doi.org/10.1038/s41598-019-47335-w
https://doi.org/10.1038/s41598-019-48909-4
https://doi.org/10.1038/s41598-019-48909-4
https://doi.org/10.1121/1.5050520
https://doi.org/10.1109/TASL.2008.925872
https://doi.org/10.1109/TASL.2008.925872


valence in horse whinnies. Sci Rep 5(1):1–11. https://
doi.org/10.1038/srep09989

Briskie JV, Martin PR, Martin TE (1999) Nest predation
and the evolution of nestling begging calls. Proc R Soc
Lond B 266:2153–2159. https://doi.org/10.1098/rspb.
1999.0902

Brown JC, Miller PJO (2007) Automatic classification of
killer whale vocalizations using dynamic time warping.
J Acoust Soc Am 122:1201–1207. https://doi.org/10.
1121/1.2747198

Brown JC, Smaragdis P (2008) Automatic classification of
vocalizations with Gaussian mixture models and
Hidden Markov Models. J Acoust Soc Am 123:3345.
https://doi.org/10.1121/1.2933896

Brown JC, Smaragdis P (2009) Hidden Markov and
Gaussian mixture models for automatic sound classifi-
cation. J Acoust Soc Am 125:EL221–EL224. https://
doi.org/10.1121/1.3124659

Brown JC, Hodgins-Davis A, Miller PJO (2006) Classifi-
cation of vocalizations of killer whales using dynamic
time warping. J Acoust Soc Am 119:EL34–EL40.
https://doi.org/10.1121/1.2166949

Buck JR, Tyack PL (1993) A quantitative measure of
similarity for Tursiops truncatus signature whistles. J
Acoust Soc Am 94:2497–2506. https://doi.org/10.
1121/1.407385

Camacho-Alpízar A, Fuchs EJ, Barrantes G (2018) Effect
of barriers and distance on song, genetic, and morpho-
logical divergence in the highland endemic Timberline
Wren (Thryorchilus browni, Troglodytidae). PLoS
One 13(12):e0209508. https://doi.org/10.1371/jour
nal.pone.0209508

Campbell P, Pasch B, Pino JL, Crino OL, Phillips M,
Phelps SM (2010) Geographic variation in the songs
of neotropical singing mice: testing the relative impor-
tance of drift and local adaptation. Evolution 64(7):
1955–1972. https://doi.org/10.1111/j.1558-5646.
2010.00962.x

Catchpole CK, Slater PJB (2008) Bird song: biological
themes and variations, 2nd edn. Cambridge University
Press, Cambridge

Cerchio S, Jacobsen JK, Norris TF (2001) Temporal and
geographical variation in songs of humpback whales,
Megaptera novaeangliae: synchronous change in
Hawaiian and Mexican breeding assemblages. Anim
Behav 62(2):313–329. https://doi.org/10.1006/anbe.
2001.1747

Cho K, Van Merriënboer B, Bahdanau D, Bengio Y
(2014) On the properties of neural machine translation:
encoder-decoder approaches. arXiv:1409.1259

Clark CW (1980) A real-time direction-finding device for
determining the bearing to the underwater sounds of
southern right whales, Eubalaena australis. J Acoust
Soc Am 68:508–511. https://doi.org/10.1121/1.
384762

Clark CW (1982) The acoustic repertoire of the southern
right whale, a quantitative analysis. Anim Behav 30(4):
1060–1071. https://doi.org/10.1016/S0003-3472(82)
80196-6

Clark LA, Pregibon D (1992) Statistical models. In:
Chambers SJM, Hastie TJ (eds) Statistical models in
S. Wadsworth and Brooks/Cole, Pacific Grove, CA

Clarke E, Reichard UH, Zuberbühler K (2006) The syntax
and meaning of wild gibbon songs. PLoS One 1(1):
E73. https://doi.org/10.1371/journal.pone.0000073

Clemins PJ, Johnson MT (2005) Unsupervised classifica-
tion of beluga whale vocalizations. J Acoust Soc Am
117:2470. https://doi.org/10.1121/1.4809461

Clemins PJ, Johnson MT, Leong KM, Savage A (2005)
Automatic classification and speaker identification of
African elephant (Loxodonta africana) vocalizations. J
Acoust Soc Am 117:956–963. https://doi.org/10.1121/
1.1847850

Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B,
Warner F, Zucker SW (2005) Geometric diffusions as
a tool for harmonic analysis and structure definition
of data: diffusion maps. Proc Natl Acad Sci 102(21):
7426–7431. https://doi.org/10.1073/pnas.0500334102

Cortes C, Vapnik V (1995) Support-vector networks.
Mach Learn 20:273–297

Courts R, Erbe C, Wellard R, Boisseau O, Jenner KC,
Jenner M-N (2020) Australian long-finned pilot whales
(Globicephala melas) emit stereotypical, variable,
biphonic, multi-component, and sequenced
vocalisations, similar to those recorded in the northern
hemisphere. Sci Rep 10(1):20609. https://doi.org/10.
1038/s41598-020-74111-y

Crance JL, Berchok CL, Wright DL, Brewer AM,
Woodrich DF (2019) Song production by the North
Pacific right whale, Eubalaena japonica. J Acoust Soc
Am 145(6):3467–3479. https://doi.org/10.1121/1.
5111338

Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT,
Gibson J, Lawler JJ (2007) Random forests for classi-
fication in ecology. Ecology 88:2783–2792. https://
doi.org/10.1890/07-0539.1

Dang T, Bulusu N, Hu W (2008) Lightweight acoustic
classification for cane toad monitoring. In: 42nd
Asilomar Conference on Signals, Systems and
Computers. IEEE, New York, pp 1601–1605

Datta S, Sturtivant C (2002) Dolphin whistle classification
for determining group identities. Sig Process 82(2):
251–258. https://doi.org/10.1016/S0165-1684(01)
00184-0

Davis J, Goadrich M (2006) The relationship between
precision-recall and ROC curves. In: Proceedings of
the 23rd International Conference on Machine
Learning, Pittsburgh, PA

Davis SB, Mermelstein P (1980) Comparison of
parametric representations for monosyllabic word rec-
ognition in continuously spoken sentences. IEEE Trans
Acoust Speech Sig Process 28:357–366. https://doi.
org/10.1109/TASSP.1980.1163420

Dawson MRW, Charrier I, Sturdy CB (2006) Using an
Artificial Neural Network to classify black-capped
chickadee (Poecile atricapillus) sound note types. J
Acoust Soc Am 119(5):3161–3172. https://doi.org/
10.1121/1.2189028

308 J. N. Oswald et al.

https://doi.org/10.1038/srep09989
https://doi.org/10.1038/srep09989
https://doi.org/10.1098/rspb.1999.0902
https://doi.org/10.1098/rspb.1999.0902
https://doi.org/10.1121/1.2747198
https://doi.org/10.1121/1.2747198
https://doi.org/10.1121/1.2933896
https://doi.org/10.1121/1.3124659
https://doi.org/10.1121/1.3124659
https://doi.org/10.1121/1.2166949
https://doi.org/10.1121/1.407385
https://doi.org/10.1121/1.407385
https://doi.org/10.1371/journal.pone.0209508
https://doi.org/10.1371/journal.pone.0209508
https://doi.org/10.1111/j.1558-5646.2010.00962.x
https://doi.org/10.1111/j.1558-5646.2010.00962.x
https://doi.org/10.1006/anbe.2001.1747
https://doi.org/10.1006/anbe.2001.1747
https://doi.org/10.1121/1.384762
https://doi.org/10.1121/1.384762
https://doi.org/10.1016/S0003-3472(82)80196-6
https://doi.org/10.1016/S0003-3472(82)80196-6
https://doi.org/10.1371/journal.pone.0000073
https://doi.org/10.1121/1.4809461
https://doi.org/10.1121/1.1847850
https://doi.org/10.1121/1.1847850
https://doi.org/10.1073/pnas.0500334102
https://doi.org/10.1038/s41598-020-74111-y
https://doi.org/10.1038/s41598-020-74111-y
https://doi.org/10.1121/1.5111338
https://doi.org/10.1121/1.5111338
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1016/S0165-1684(01)00184-0
https://doi.org/10.1016/S0165-1684(01)00184-0
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.1121/1.2189028
https://doi.org/10.1121/1.2189028


Deecke VB, Janik VM (2006) Automated categorization
of bioacoustic signals: avoiding perceptual pitfalls. J
Acoust Soc Am 119:645–653. https://doi.org/10.1121/
1.2139067

Deecke VB, Ford JKB, Spong P (1999) Quantifying com-
plex patterns of bioacoustic variation: use of a neural
network to compare killer whale (Orcinus orca)
dialects. J Acoust Soc Am 105:2499–2507. https://
doi.org/10.1121/1.426853

Delarue J, Todd SK, Van Parijs SM, Di Iorio L (2009)
Geographic variation in Northwest Atlantic fin whale
(Balaenoptera physalus) song: implications for stock
structure assessment. J Acoust Soc Am 125:1774–
1782. https://doi.org/10.1121/1.3068454

Delgado RA (2007) Geographic variation in the long
sounds of male orangutans (Pongo spp.). Ethology
113:487–498. https://doi.org/10.1111/j.1439-0310.
2007.01345.x

Deregnaucourt S, Guyomarch JC, Richard V (2001) Clas-
sification of hybrid crows in quail using artificial neural
networks. Behav Process 56:103–112. https://doi.org/
10.1016/S0376-6357(01)00188-7

Duda R, Hart P, Stork D (2001) Pattern classification, 2nd
edn. Wiley, Hoboken, NJ

Dunlop RA, Noad MJ, Cato DH, Stokes D (2007) The
social vocalization repertoire of east Australian migrat-
ing humpback whales (Megaptera novaeangliae). J
Acoust Soc Am 122(5):2893–2905. https://doi.org/
10.1121/1.2783115

Dunlop RA, Cato DH, Noad MJ, Stokes DM (2013)
Source levels of social sounds in migrating humpback
whales (Megaptera novaeangliae). J Acoust Soc Am
134(1):706–714. https://doi.org/10.1121/1.4807828

Egan JP (1975) Signal detection theory and ROC analysis.
Academic Press, New York

Eiler KC, Banack SA (2004) Variability in the alarm call
of golden-mantled ground squirrels (Spermophilus
lateralis and S. saturatus). J Mammal 85:43–50.
https://doi.org/10.1644/1545-1542(2004)085<0043:
VITACO>2.0.CO;2

Erbe C, King AR (2008) Automatic detection of marine
mammals using information entropy. J Acoust Soc Am
124(5):2833–2840. https://doi.org/10.1121/1.2982368

Erbe C, Verma A, McCauley R, Gavrilov A, Parnum I
(2015) The marine soundscape of the Perth Canyon.
Prog Oceanogr 137:38–51. https://doi.org/10.1016/j.
pocean.2015.05.015

Erbe C, Reichmuth C, Cunningham K, Lucke K, Dooling R
(2016) Communication masking in marine mammals: a
review and research strategy. Mar Pollut Bull 103:15–
38. https://doi.org/10.1016/j.marpolbul.2015.12.007

Erbe C, Dunlop R, Jenner KCS, Jenner M-NM, McCauley
RD, Parnum I, Parsons M, Rogers T, Salgado-Kent C
(2017) Review of underwater and in-air sounds emitted
by Australian and Antarctic marine mammals. Acoust
Aust 45:179–241. https://doi.org/10.1007/s40857-
017-0101-z

Esfahanian M, Erdol N, Gerstein E, Zhuang H (2017)
Two-stage detection of north Atlantic right whale
upcalls using local binary patterns and machine

learning algorithms. Appl Acoust 120:158–166.
https://doi.org/10.1016/j.apacoust.2017.01.025

Fagerlund S (2007) Bird species recognition using support
vector machines. EURASIP J Appl Sig Proc 2007(1):
1–8. https://doi.org/10.1155/2007/38637

Fenton MB, Jacobson SL (1973) An automatic ultrasonic
sensing system for monitoring the activity of some
bats. Can J Zool 51:291–299. https://doi.org/10.1139/
z73-041

Fitch WT (2003) Mammalian vocal production: themes
and variation. In: Proceedings of the 1st International
Conference on Acoustic Communication by Animals,
27–30 July, pp 81–82

Forti LR, Costa WP, Martins LB, Nunes-de-Almeida CH,
Toledo LF (2016) Advertisement call and genetic
structure conservatism: good news for an endangered
Neotropical frog. PeerJ 4:e2014. https://doi.org/10.
7717/peerj.2014

Freitag LE, Tyack PL (1993) Passive acoustic localization
of the Atlantic bottlenose dolphin using whistles and
echolocation clicks. J Acoust Soc Am 93:2197–2205.
https://doi.org/10.1121/1.406681

Fristrup KM, Watkins WA (1993) Marine animal sound
classification. Woods Hole Oceanographic Institution
Technical Report WHOI-94-13, p 29

Frommolt K-H, Bardeli R, Clausen M (eds) (2007)
Computational bioacoustics for assessing biodiversity.
Proceed Internat Expert meeting on IT-based detection
of bioacoustical patterns, 7–10 December 2007 at the
International Academy for Nature Conservation (INA)
Isle of Vilm, Germany. BfN - Skripten Federal Agency
for Nature Conservation, p 234

Fukushima K, Wake N (1990) Alphanumeric character
recognition by neocognitron. In: Miller RE
(ed) Advanced neural computers. Elsevier Science,
Amsterdam, pp 263–270

Fukuzawa Y, Webb WH, Pawley MD, Roper MM,
Marsland S, Brunton DH, Gilman A (2020) Koe:
web-based software to classify acoustic units and ana-
lyse sequence structure in animal vocalizations.
Methods Ecol Evol 11:431–441. https://doi.org/10.
1111/2041-210X.13336

Gannier A, Fuchs S, Quebre P, Oswald JN (2010) Perfor-
mance of a contour-based classification method for
whistles of Mediterranean dolphins. Appl Acoust 7:
1063–1069. https://doi.org/10.1016/j.apacoust.2010.
05.019

Gannon WL, Lawlor TE (1989) Variation in the chip
vocalization of three species of Townsend’s
chipmunks (genus Eutamias). J Mammal 70:740–753

Gannon WL, Sherwin RE, deCarvalho TN, O’Farrell MJ
(2001) Pinnae and echolocation call differences
between Myotis californicus and M. ciliolabrum
(Chiroptera: Vespertilionidae). Acta Chiropterol 3(1):
77–91

Gannon WL, O’Farrell MJ, Corben C, Bedrick EJ (2004)
Call character lexicon and analysis of field recorded bat
echolocation calls. In: Thomas J, Moss C, Vater M
(eds) Echolocation in bats and dolphins. The Univer-
sity of Chicago Press, Chicago, pp 478–484

8 Detection and Classification Methods for Animal Sounds 309

https://doi.org/10.1121/1.2139067
https://doi.org/10.1121/1.2139067
https://doi.org/10.1121/1.426853
https://doi.org/10.1121/1.426853
https://doi.org/10.1121/1.3068454
https://doi.org/10.1111/j.1439-0310.2007.01345.x
https://doi.org/10.1111/j.1439-0310.2007.01345.x
https://doi.org/10.1016/S0376-6357(01)00188-7
https://doi.org/10.1016/S0376-6357(01)00188-7
https://doi.org/10.1121/1.2783115
https://doi.org/10.1121/1.2783115
https://doi.org/10.1121/1.4807828
https://doi.org/10.1644/1545-1542(2004)085<0043:VITACO>2.0.CO;2
https://doi.org/10.1644/1545-1542(2004)085<0043:VITACO>2.0.CO;2
https://doi.org/10.1644/1545-1542(2004)085<0043:VITACO>2.0.CO;2
https://doi.org/10.1644/1545-1542(2004)085<0043:VITACO>2.0.CO;2
https://doi.org/10.1121/1.2982368
https://doi.org/10.1016/j.pocean.2015.05.015
https://doi.org/10.1016/j.pocean.2015.05.015
https://doi.org/10.1016/j.marpolbul.2015.12.007
https://doi.org/10.1007/s40857-017-0101-z
https://doi.org/10.1007/s40857-017-0101-z
https://doi.org/10.1016/j.apacoust.2017.01.025
https://doi.org/10.1155/2007/38637
https://doi.org/10.1139/z73-041
https://doi.org/10.1139/z73-041
https://doi.org/10.7717/peerj.2014
https://doi.org/10.7717/peerj.2014
https://doi.org/10.1121/1.406681
https://doi.org/10.1111/2041-210X.13336
https://doi.org/10.1111/2041-210X.13336
https://doi.org/10.1016/j.apacoust.2010.05.019
https://doi.org/10.1016/j.apacoust.2010.05.019


Garland EC, Castellote M, Berchok CL (2015) Beluga
whale (Delphinapterus leucas) vocalizations and call
classification from the eastern Beaufort Sea population.
J Acoust Soc Am 137:3054–3067. https://doi.org/10.
1121/1.4919338

Garland EC, Rendell L, Lilley MS, Poole MM, Allen J,
Noad MJ (2017) The devil is in the detail: quantifying
vocal variation in a complex, multi-levelled, and rap-
idly evolving display. J Acoust Soc Am 142(1):
460–472. https://doi.org/10.1121/1.4991320

Gavrilov AN, Parsons MJG (2014) A MATLAB tool for
the characterization of recorded underwater sound
(CHORUS). Acoust Aust 42(3):190–196

Gavrilov A, McCauley R, Gedamke J (2012) Steady inter
and intra-annual decrease in the vocalization frequency
of Antarctic blue whales. J Acoust Soc Am 131(6):
4476–4480. https://doi.org/10.1121/1.4707425

Gedamke J, Costa DP, Dunstan A (2001) Localization and
visual verification of a complex minke whale vocaliza-
tion. J Acoust Soc Am 109(6):3038–3047. https://doi.
org/10.1121/1.1371763

Gemello R, Mana F (1991) A neural approach to speaker
independent isolated word recognition in an uncon-
trolled environment. In: Proceedings of the Interna-
tional Neural Networks Conference, Paris 9–13 July
1990, vol 1. Kluwer Academic Publishers, Dordrecht,
pp 83–86

Ghosh J, Deuser LM, Beck SD (1992) A neural network
based hybrid system for detection, characterization,
and classification of short-duration oceanic signals.
IEEE J Ocean Eng 17:351–363. https://doi.org/10.
1109/48.180304

Gill SA, Bierema AM-K (2013) On the meaning of alarm
calls: a review of functional reference in avian alarm
calling. Ethology 119:449–461. https://doi.org/10.
1111/eth.12097

Gillespie D, Caillat M (2008) Statistical classification of
odontocete clicks. Can Acoust 36:20–26

Gillespie D, Caillat M, Gordon J (2013) Automatic detec-
tion and classification of odontocete whistles. J Acoust
Soc Am 134:2427–2437. https://doi.org/10.1121/1.
4816555

Gingras G, Fitch WT (2013) A three-parameter model for
classifying anurans into four genera based on adver-
tisement calls. J Acoust Soc Am 133:547–559. https://
doi.org/10.1121/1.4768878

Goëau H, Glotin H, Vellinga WP, Planqué R, Joly A
(2016) LifeCLEF bird identification task 2016: the
arrival of deep learning. CLEF 1609:440–449

Griffin DR, Webster FA, Michael CR (1960) The echolo-
cation of flying insects by bats. Anim Behav 8:141–
154

Guemeur Y, Elisseeff A, Paugam-Moisey H (2000) A new
multi-class SVM based on a uniform convergence
result. Proceedings of the IEEE-INNS-ENNS Interna-
tional Joint Conference on Neural Networks. IJCNN
2000. Neural Computing: New Challenges and
Perspectives for the New Millennium 4:183–188

Hamilton LJ, Cleary J (2010) Automatic discrimination of
beaked whale clicks in noisy acoustic time series. In:
OCEANS’10 IEEE Sydney, pp 1–5

Hammerschmidt K, Fischer J (1998) The vocal repertoire
of Barbary macaques: a quantitative analysis of a
graded signal system. Ethology 104(3):203–216.
https://doi.org/10.1111/j.1439-0310.1998.tb00063.x

Hammerschmidt K, Reisinger E, Westekemper K,
Ehrenreich L, Strenzke N, Fischer J (2012) Mice do
not require auditory input for the normal development
of their ultrasonic vocalizations. BMC Neurosci 13:40

Harland E (2008) Processing the workshop datasets using
the TRUD algorithm. Can Acoust 36:27–33

He K, Zhang X, Ren S, Sun J (2016) Deep residual
learning for image recognition. Proc IEEE Conf
Comput Vis Pattern Recogn 2016:770–778

Helweg DA, Cato ADH, Jenkins PF, Garrigue D,
McCauley RD (1998) Geographic variation in South
Pacific humpback whale songs. Behaviour 135:1–27

Herr, A, Klomp, NL, Atkinson, JS (1997) Identification of
bat echolocation calls using decision tree classification
system Complexity International. https://www.
researchgate.net/publication/293134471_Identifica
tion_of_bat_echolocation_calls_using_a_decision_
tree_classification_system. Accessed 17 July 2017

Himawan I, Towsey M, Law B, Roe P (2018). Deep
learning techniques for Koala Activity detection. In:
INTERSPEECH, pp. 2107–2111

Hochreiter S, Schmidhuber J (1997) Long short-term
memory. Neural Comput 9(8):1735–1780

Holy TE, Guo Z (2005) Ultrasonic songs of male mice.
PLoS One Biol 3(12):e386. https://doi.org/10.1371/
journal.pbio.0030386

Horn AG, Falls JB (1996) Categorization and the design of
signals: the case of song repertoires. In: Kroodsma DE,
Miller EH (eds) Ecology and evolution of acoustic
communication in birds. Comstock Publishing
Associates, Ithaca, pp 121–135

Hotelling H (1933) Analysis of a complex of statistical
variables into principal components. J Edu Psychol 24:
417–441

Huang X, Acero A, Hon H-W (2001) Spoken language
processing. Prentice Hall, Upper Saddle River, NJ

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ
(2017) Densely connected convolutional networks.
Proc IEEE Conf Comput Vis Pattern Recogn 2017:
4700–4708

Ibrahim AK, Chérubin LM, Zhuang H, Schärer Umpierre
MT, Dalgleish F, Erdol N, Ouyang B, Dalgleish A
(2018) An approach for automatic classification of
grouper vocalizations with passive acoustic monitor-
ing. J Acoust Soc Am 143:666–676. https://doi.org/10.
1121/1.5022281

Itakura F (1975) Minimum prediction residual principle
applied to speech recognition. IEEE Trans Acoust
Speech Sig Process 23:57–72

Jacobson EK, Yack TM, Barlow J (2013) Evaluation of an
automated acoustic beaked whale detection algorithm

310 J. N. Oswald et al.

https://doi.org/10.1121/1.4919338
https://doi.org/10.1121/1.4919338
https://doi.org/10.1121/1.4991320
https://doi.org/10.1121/1.4707425
https://doi.org/10.1121/1.1371763
https://doi.org/10.1121/1.1371763
https://doi.org/10.1109/48.180304
https://doi.org/10.1109/48.180304
https://doi.org/10.1111/eth.12097
https://doi.org/10.1111/eth.12097
https://doi.org/10.1121/1.4816555
https://doi.org/10.1121/1.4816555
https://doi.org/10.1121/1.4768878
https://doi.org/10.1121/1.4768878
https://doi.org/10.1111/j.1439-0310.1998.tb00063.x
https://www.researchgate.net/publication/293134471_Identification_of_bat_echolocation_calls_using_a_decision_tree_classification_system
https://www.researchgate.net/publication/293134471_Identification_of_bat_echolocation_calls_using_a_decision_tree_classification_system
https://www.researchgate.net/publication/293134471_Identification_of_bat_echolocation_calls_using_a_decision_tree_classification_system
https://www.researchgate.net/publication/293134471_Identification_of_bat_echolocation_calls_using_a_decision_tree_classification_system
https://doi.org/10.1371/journal.pbio.0030386
https://doi.org/10.1371/journal.pbio.0030386
https://doi.org/10.1121/1.5022281
https://doi.org/10.1121/1.5022281


using multiple validation and assessment methods. In:
NOAA Technical Memorandum NOAA-TM-NMFS-
SWFSC-509

Jaitly N, Hinton GE (2013) Vocal tract length perturbation
(VTLP) improves speech recognition. In: Proceedings
of ICML Workshop on Deep Learning for Audio,
Speech and Language, vol 117

Janik VM (1999) Pitfalls in the categorization of behavior:
a comparison of dolphin whistle classification
methods. Anim Behav 57:133–143. https://doi.org/10.
1006/anbe.1998.0923

Jarvis S, Dimarzio N, Morrissey R, Moretti D (2006)
Automated classification of beaked whales and other
small odontocetes in the Tongue of the Ocean,
Bahamas. Oceans 2006:1–6. https://doi.org/10.1109/
OCEANS.2006.307124

Jiang JJ, Bu LR, Duan FJ, Wang XQ, Liu W, Sun ZB, Li
CY (2019) Whistle detection and classification for
whales based on convolutional neural networks. Appl
Acoust 150:169–178. https://doi.org/10.1016/j.
apacoust.2019.02.007

Kandia V, Stylianou Y (2006) Detection of sperm whale
clicks based on the Teager–Kaiser energy operator.
Appl Acoust 67(11):1144–1163. https://doi.org/10.
1016/j.apacoust.2006.05.007

Karlsen JD, Bisther A, Lyndersen C, Haug T, Kovacs KM
(2002) Summer vocalizations of adult male white
whales (Delphinapterus leucas) in Svalbard, Norway.
Polar Biol 25:808–817. https://doi.org/10.1007/
s00300-002-0415-6

Keen S, Ross JC, Griffiths ET, Lanzone M, Farnsworth A
(2014) A comparison of similarity-based approaches
in the classification of flight calls of four species of
North American wood-warblers (Parulidae). Ecol Inf
21:25–33. https://doi.org/10.1016/j.ecoinf.2014.01.
001

Keighley MV, Langmore NE, Zdenek CN, Heinsohn R
(2017) Geographic variation in the vocalizations of
Australian palm cockatoos (Probosciger aterrimus).
Bioacoustics 26(1):91–108. https://doi.org/10.1080/
09524622.2016.1201778

Kershenbaum A, Blumstein DT, Roch MA, Akcay C,
Backus G, Bee MA, Bohn K, Cao Y, Carter G,
Cäsar C, Coen M, DeRuiter SL, Doyle L, Edelman S,
Ferrer-i-Cancho R, Freeberg TM, Garland EC,
Gustison M, Harley HE, Huetz C, Hughes M, Bruno
JH, Ilany A, Jin DZ, Johnson M, Ju C, Karnowski J,
Lohr B, Manser MB, McCowan B, Mercado E, Narins
PM, Piel A, Rice M, Salmi R, Sasahara K, Sayigh L,
Shiu Y, Taylor C, Vallejo EE, Waller S, Zamora-
Gutierrez V (2016) Acoustic sequences in non-human
animals: a tutorial review and prospectus. Biol Rev 91:
13–52

Kingma DP, Welling M (2013) Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114

Klinck H, Mellinger DK (2011) The energy ratio mapping
algorithm: a tool to improve the energy-based detection
of odontocete echolocation clicks. J Acoust Soc Am
129(4):1807–1812. https://doi.org/10.1121/1.3531924

Ko T, Peddinti V, Povey D, Khudanpur S (2015) Audio
augmentation for speech recognition. In: Sixteenth
Annual Conference of the International Speech Com-
munication Association

Kogan J, Margoliash D (1998) Automated recognition of
bird song elements from continuous recordings using
dynamic time warping and hidden Markov models: a
comparative study. J Acoust Soc Am 103:2185–2196.
https://doi.org/10.1121/1.421364

Kollmorgen S, Hahnloser RH, Mante V (2020) Nearest
neighbours reveal fast and slow components of motor
learning. Nature 577(7791):526–530. https://doi.org/
10.1038/s41586-019-1892-x

Kondo N, Watanabe S (2009) Contact calls: information
and social function. Jpn Psych Res 51:197–208.
https://doi.org/10.1111/j.1468-5884.2009.00399.x

Koren L, Geffen E (2009) Complex call in male rock
hyrax (Procavia capensis): a multi-information
distributing channel. Behav Ecol Sociobiol 63(4):
581–590. https://doi.org/10.1007/s00265-008-0693-2

Koren L, Geffen E (2011) Individual identity is
communicated through multiple pathways in male
rock hyrax (Procavia capensis) songs. Behav Ecol
Sociobiol 65(4):675–684. https://doi.org/10.1007/
s00265-010-1069-y

Koren L, Mokady O, Geffen E (2008) Social status and
cortisol levels in singing rock hyraxes. Horm Behav
54:212–216

Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet
classification with deep convolutional neural networks.
Commun ACM 60(6):84–90

Kruskal J, Sankoff D (1983) An anthology of algorithms
and concepts for sequence comparison. In: Sankoff D,
Kruskal J (eds) Time warps, string edits and
macromolecules: the theory and practice of string com-
parison. Addison-Wesley, Reading, MA, pp 265–310

Lammers MO, Au WWL, Herzing DL (2003) The broad-
band social acoustic signaling behavior of spinner and
spotted dolphins. J Acoust Soc Am 114:1629–1639.
https://doi.org/10.1121/1.1596173

Law BS, Reinhold L, Pennay M (2002) Geographic varia-
tion in the echolocation sounds of Vespadelus spp.
(Vespertilionidae) from New South Wales and
Queensland, Australia. Acta Chiropt 4:201–215.
https://doi.org/10.3161/001.004.0208

Le Boeuf BJ, Peterson RS (1969) Dialects in elephant
seals. Science 166(3913):1654–1656. https://doi.org/
10.1126/science.166.3913.1654

Leblanc E, Bahoura M, Simard Y (2008) Comparison of
automatic classification methods for beluga whale
vocalizations. J Acoust Soc Am 123:3772

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE,
Hubbard W, Jackel LD (1989a) Backpropagation
applied to handwritten zip code recognition. Neural
Comput 1(4):541–551. https://doi.org/10.1162/neco.
1989.1.4.541

LeCun Y, Boser B, Denker JS, Henderson D, Howard RE,
Hubbard W, Jackel LD (1989b) Handwritten digit rec-
ognition with a back-propagation network. In:

8 Detection and Classification Methods for Animal Sounds 311

https://doi.org/10.1006/anbe.1998.0923
https://doi.org/10.1006/anbe.1998.0923
https://doi.org/10.1109/OCEANS.2006.307124
https://doi.org/10.1109/OCEANS.2006.307124
https://doi.org/10.1016/j.apacoust.2019.02.007
https://doi.org/10.1016/j.apacoust.2019.02.007
https://doi.org/10.1016/j.apacoust.2006.05.007
https://doi.org/10.1016/j.apacoust.2006.05.007
https://doi.org/10.1007/s00300-002-0415-6
https://doi.org/10.1007/s00300-002-0415-6
https://doi.org/10.1016/j.ecoinf.2014.01.001
https://doi.org/10.1016/j.ecoinf.2014.01.001
https://doi.org/10.1080/09524622.2016.1201778
https://doi.org/10.1080/09524622.2016.1201778
https://doi.org/10.1121/1.3531924
https://doi.org/10.1121/1.421364
https://doi.org/10.1038/s41586-019-1892-x
https://doi.org/10.1038/s41586-019-1892-x
https://doi.org/10.1111/j.1468-5884.2009.00399.x
https://doi.org/10.1007/s00265-008-0693-2
https://doi.org/10.1007/s00265-010-1069-y
https://doi.org/10.1007/s00265-010-1069-y
https://doi.org/10.1121/1.1596173
https://doi.org/10.3161/001.004.0208
https://doi.org/10.1126/science.166.3913.1654
https://doi.org/10.1126/science.166.3913.1654
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541


Proceedings of the 2nd International Conference on
Neural Information Processing Systems, pp 396–404

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc
IEEE 86(11):2278–2324. https://doi.org/10.1109/5.
726791

LeCun Y, Bengio Y, Hinton G (2015) Deep learning.
Nature 521(7553):436–444. https://doi.org/10.1038/
nature14539

Lee C-H, Hsu S-B, Shih J-L, Chou C-H (2013) Continu-
ous birdsong recognition using Gaussian mixture
modeling of image shape features. IEEE Trans Multi-
media 15:454–464. https://doi.org/10.1109/TMM.
2012.2229969

Leonard ML, Horn AG (2001) Begging calls and parental
feeding decisions in tree swallows (Tachycineta
bicolor). Behav Ecol Sociobiol 49:170–175. https://
doi.org/10.1007/s002650000290

Levinson S (1985) Structural methods in automatic speech
recognition. Proc IEEE 73:1625–1648. https://doi.org/
10.1109/PROC.1985.13344

Li Z, Tang S, Yan S (2002) Multi-class SVM classifier
based on pair wise coupling. In: Proceedings of the
First International Workshop, SVM 2002, Niagara
Falls, Canada, p 321

Liaw A, Wiener M (2002) Classification and regression by
Random Forest. R News 2:18–22

Linderman GC, Rachh M, Hoskins JG, Steinerberger S,
Kluger Y (2017) Efficient algorithms for t-distributed
stochastic neighborhood embedding. arXiv preprint
arXiv:1712.09005

Lippman R (1989) Pattern classification using neural
networks. IEEE Commun Mag 1989:47–64

Luo W, Yang W, Zhang Y (2019) Convolutional neural
network for detecting odontocete echolocation clicks. J
Acoust Soc Am 145(1):EL7–EL12. https://doi.org/10.
1121/1.5085647

Maaten LV (2014) Accelerating t-SNE using tree-based
algorithms. J Mach Learn Res 15(1):3221–3245

Maaten LV, Hinton G (2008) Visualizing data using
t-SNE. J Mach Learn Res 9:2579–2605

Mac Aodha O, Gibb R, Barlow KE, Browning E,
Firman M, Freeman R, Harder B, Kinsey L, Mead
GR, Newson SE, Pandourski I (2018) Bat detective—
deep learning tools for bat acoustic signal detection.
PLoS Comput Biol 14(3):e1005995. https://doi.org/10.
1371/journal.pcbi.1005995

Madhusudhana S, Gavrilov AN, Erbe C (2015) Automatic
detection of echolocation clicks based on a Gabor
model of their waveform. J Acoust Soc Am 137(6):
3077–3086. https://doi.org/10.1121/1.4921609

Madhusudhana S, Symes LB, Klinck H (2019) A deep
convolutional neural network based classifier for pas-
sive acoustic monitoring of neotropical katydids. J
Acoust Soc Am 146(4):2982–2982. https://doi.org/
10.1121/1.5137323

Madhusudhana S, Murray A, Erbe C (2020) Automatic
detectors for low-frequency vocalizations of Omura’s
whales, Balaenoptera omurai: a performance

comparison. J Acoust Soc Am 147(5):3078–3090.
https://doi.org/10.1121/10.0001108

Madhusudhana S, Shiu Y, Klinck H, Fleishman E, Liu X,
Nosal EM, Helble T, Cholewiak D, Gillespie D,
Širović A, Roch MA (2021) Improve automatic detec-
tion of animal call sequences with temporal context. J
R Soc Interface 18:20210297. https://doi.org/10.1098/
rsif.2021.0297

Madsen PT, Surlykke A (2013) Functional convergence in
bat and toothed whale biosonars. Physiology 28(5):
276–283. https://doi.org/10.1152/physiol.00008.2013

Makhoul J, Schwarz R (1995) State of the art in continu-
ous speech recognition. Proc Nat Acad Sci USA 92:
9956–9963. https://doi.org/10.1073/pnas.92.22.9956

Malfante M, Mohammed O, Gervaise C, Dalla Mura M,
Mars JI (2018) Use of deep features for the automatic
classification of fish sounds. In: 2018 OCEANS-MTS/
IEEE Kobe Techno-Oceans (OTO), pp 1–5. https://doi.
org/10.1109/OCEANSKOBE.2018.8559276

Mankin RW, Smith T, Tropp JM, Atkinson EB, Young DY
(2008) Detection of Anoplophora glabripennis (Coleop-
tera: Cerambycidae) larvae in different host trees and
tissues by automated analysis of sound-impulse fre-
quency and temporal patterns. J Econ Entomol 101(3):
838–849. https://doi.org/10.1093/jee/101.3.838

Marler P (2004) Bird calls: a cornucopia for
communication. In: Marler P, Slabbekoorn H (eds)
Nature’s music: the science of birdsong. Elsevier,
Amsterdam, pp 132–177

Martindale S (1980a) On the multivariate analysis of avian
vocalizations. J Theor Biol 83:107–110. https://doi.
org/10.1016/0022-5193(80)90374-4

Martindale S (1980b) A numeric approach to the analysis
of solitary vireo songs. Condor 82:199–211. https://
doi.org/10.2307/1367478

Mazhar S, Ura T, Bahl R (2007) Vocalization based indi-
vidual classification of humpback whales using sup-
port-vector-machine. Oceans 2007:1–9. https://doi.
org/10.1109/OCEANS.2007.4449356

McDonald MA, Mesnick SL, Hildebrand JA (2006) Bio-
geographic characterisation of blue whale song world-
wide: using song to identify populations. J Cetacean
Res Manag 8(1):55–65

McInnes L, Healy J, Melville J (2018) UMAP: uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426

McLaughlin J, Josso N, Ioana C (2008) Detection and
classification of sound types in the vocalizations of
north-east pacific blue whales. J Acoust Soc Am 123:
3102

McLister D, Stevens ED, Bogart JP (1995) Comparative
contractile dynamics of calling and locomotor muscles
in three hylid frogs. J Exp Biol 198(7):1527–1538.
https://doi.org/10.1242/jeb.198.7.1527

Mellinger DK (2008) A neural network for classifying
clicks of Blainville’s beaked whales (Mesoplodon
densirostris). Can Acoust 36:55–59

Mellinger DK, Bradbury JW (2007) Acoustic measure-
ment of marine mammal sounds in noisy

312 J. N. Oswald et al.

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TMM.2012.2229969
https://doi.org/10.1109/TMM.2012.2229969
https://doi.org/10.1007/s002650000290
https://doi.org/10.1007/s002650000290
https://doi.org/10.1109/PROC.1985.13344
https://doi.org/10.1109/PROC.1985.13344
https://doi.org/10.1121/1.5085647
https://doi.org/10.1121/1.5085647
https://doi.org/10.1371/journal.pcbi.1005995
https://doi.org/10.1371/journal.pcbi.1005995
https://doi.org/10.1121/1.4921609
https://doi.org/10.1121/1.5137323
https://doi.org/10.1121/1.5137323
https://doi.org/10.1121/10.0001108
https://doi.org/10.1098/rsif.2021.0297
https://doi.org/10.1098/rsif.2021.0297
https://doi.org/10.1152/physiol.00008.2013
https://doi.org/10.1073/pnas.92.22.9956
https://doi.org/10.1109/OCEANSKOBE.2018.8559276
https://doi.org/10.1109/OCEANSKOBE.2018.8559276
https://doi.org/10.1093/jee/101.3.838
https://doi.org/10.1016/0022-5193(80)90374-4
https://doi.org/10.1016/0022-5193(80)90374-4
https://doi.org/10.2307/1367478
https://doi.org/10.2307/1367478
https://doi.org/10.1109/OCEANS.2007.4449356
https://doi.org/10.1109/OCEANS.2007.4449356
https://doi.org/10.1242/jeb.198.7.1527


environments. In: Proceedings of the 2nd International
Conference on Underwater Acoustic Measurements:
Technologies and Results, Heraklion, Greece,
25–29 June 2007

Mellinger DK, Clark CW (2000) Recognizing transient
low-frequency whale sounds by spectrogram correla-
tion. J Acoust Soc Am 107(6):3518–3529. https://doi.
org/10.1121/1.429434

Mellinger DK, Martin SW, Morrissey RP, Thomas L,
Yosco JJ (2011) A method for detecting whistles,
moans and other frequency contour sounds. J Acoust
Soc Am 129:4055–4061. https://doi.org/10.1121/1.
3531926

Mendelson TC, Shaw KL (2003) Rapid speciation in an
arthropod. Nature 433:375–376. https://doi.org/10.
1038/433375a

Mitani JC, Hasegawa T, Groslouis J, Marler P, Byrne R
(1992) Dialects in wild chimpanzees. Am J Primatol
27:233–243

Møhl B, Wahlberg M, Madsen PT, Heerford A, Lund A
(2003) The monopulsed nature of sperm whale sonar
clicks. J Acoust Soc Am 114(2):1143–1154. https://
doi.org/10.1121/1.1586258

Moon TK (1996) The expectation-maximization algo-
rithm. IEEE Sig Process Mag 13:47–60. https://doi.
org/10.1109/79.543975

Morrissey RP, Ward J, DiMarzio N, Jarvis S, Moretti DJ
(2006) Passive acoustic detection and localization of
sperm whales (Physeter macrocephalus) in the tongue
of the ocean. Appl Acoust 67:1091–1105. https://doi.
org/10.1016/j.apacoust.2006.05.014

Mouy X, Leary D, Martin B, Laurinolli M (2008) A
comparison of methods for the automatic classification
of marine mammal vocalizations in the Arctic. In:
Proceedings of the PASSIVE’08 Workshop on New
Trends for Environmental Monitoring using Passive
Systems, Hyeres, France, 14–17 October 2008

Murray SO, Mercado E, Roitblat HL (1998)
Characterizing the graded structure of false killer
whale (Pseudorca crassidens) vocalizations. J Acoust
Soc Am 104:1679–1687. https://doi.org/10.1121/1.
424380

Myers C, Rabiner LR, Rosenberg AE (1980) Performance
tradeoffs in dynamic time warping algorithms for
isolated word recognition. IEEE Trans Acoust Speech
Sig Process 28:623–635. https://doi.org/10.1109/
TASSP.1980.1163491

Nagy CM, Rockwell RF (2012) Identification of individ-
ual eastern screech-owls (Megascops asio) via vocali-
zation analysis. Bioacoustics 21:127–140. https://doi.
org/10.1080/09524622.2011.651829

Narins PM, Feng AS, Fay RR (eds) (2006) Hearing
and sound communication in amphibians. Springer,
New York

Noad MJ, Cato DH, Bryden MM, Jenner MN, Jenner KCS
(2000) Cultural revolution in whale songs. Nature 408:
537. https://doi.org/10.1038/35046199

Noda JJ, Travieso CM, Sánchez-Rodríguez D (2016)
Automatic taxonomic classification of fish based on

their acoustic signals. Appl Sci 6(12):443. https://doi.
org/10.3390/app6120443

O’Farrell MJ, Miller BW, Gannon WL (1999) Qualitative
identification of free-flying bats using Anabat detector.
J Mammal 80:11–23

Oh J, Laubach M, Luczak A (2003) Estimating neuronal
variable importance with random forest. Proc IEEE
Bioeng Conf:33–34. https://doi.org/10.1109/NEBC.
2003.1215978

Oleson EM, Širović A, Bayless AR, Hildebrand JA (2014)
Synchronous seasonal change in fin whale song in the
North Pacific. PLoS One 9(12):e115678. https://doi.
org/10.1371/journal.pone.0115678

Oswald JN, Barlow J, Norris TF (2003) Acoustic identifi-
cation of nine delphinid species in the eastern tropical
Pacific Ocean. Mar Mamm Sci 19:20–37. https://doi.
org/10.1111/j.1748-7692.2003.tb01090.x

Oswald JN, Rankin S, Barlow J, Lammers MO (2007) A
tool for real-time acoustic species identification of
delphinid whistles. J Acoust Soc Am 122:587–595.
https://doi.org/10.1121/1.2743157

Oswald JN, Au WWL, Duennebier F (2011) Minke whale
(Balaenoptera acutorostrata) boings detected at the Sta-
tion ALOHA cabled observatory. J Acoust Soc Am 129:
3353–3360. https://doi.org/10.1121/1.3575555

Oswald JN, Rankin S, Barlow J, Oswald M (2013) Real-
time odontocete call classification algorithm: software
for species identification of delphinid whistles. In:
Adam O, Samaran F (eds) Detection, classification
and localization of marine mammals using passive
acoustics, 2003-2013: 10 years of international
research. DIRAC NGO, Paris, France

Oswald JN, Walmsley SF, Casey C, Fregosi S, Southall B,
Janik VM (2021) Species information in whistle fre-
quency modulation patterns of common dolphins.
Philos Trans R Soc B 376:20210046. https://doi.org/
10.1098/rstb.2021.0046

Ou H, Au WWL, Oswald JN (2012) A non-spectrogram-
correlation method of automatically detecting minke
whale boings. J Acoust Soc Am 132:EL317–EL322

Ouattara K, Lemasson A, Zuberbunter K (2009)
Campbell’s monkeys concatenate vocalizations into
context-specific call sequences. Proc Natl Acad Sci
USA 106(51):22026

Papale E, Azzolin M, Cascao I, Gannier A, Lammers MO,
Martin VM, Oswald JN, Perez-Gil M, Prieto R, Silva
MA, Giacoma C (2013) Geographic variability in the
acoustic parameters of striped dolphin’s (Stenella
coeruleoalba) whistles. J Acoust Soc Am 133:1126–
1134. https://doi.org/10.1121/1.4774274

Papale E, Azzolin M, Cascao I, Gannier A, Lammers MO,
Martin VM, Oswald J, Perez-Gil M, Prieto R, Silva
MA, Giacoma C (2014) Macro- and micro- geographic
variation of short-beaked common dolphin’s whistles
in the Mediterranean Sea and Atlantic Ocean. Ethol
Ecol Evol 26:392–404. https://doi.org/10.1080/
03949370.2013.851122

Park DS, Chan W, Zhang Y, Chiu C, Zoph B, Cubuk ED,
Le QV (2019) SpecAugment: a simple data

8 Detection and Classification Methods for Animal Sounds 313

https://doi.org/10.1121/1.429434
https://doi.org/10.1121/1.429434
https://doi.org/10.1121/1.3531926
https://doi.org/10.1121/1.3531926
https://doi.org/10.1038/433375a
https://doi.org/10.1038/433375a
https://doi.org/10.1121/1.1586258
https://doi.org/10.1121/1.1586258
https://doi.org/10.1109/79.543975
https://doi.org/10.1109/79.543975
https://doi.org/10.1016/j.apacoust.2006.05.014
https://doi.org/10.1016/j.apacoust.2006.05.014
https://doi.org/10.1121/1.424380
https://doi.org/10.1121/1.424380
https://doi.org/10.1109/TASSP.1980.1163491
https://doi.org/10.1109/TASSP.1980.1163491
https://doi.org/10.1080/09524622.2011.651829
https://doi.org/10.1080/09524622.2011.651829
https://doi.org/10.1038/35046199
https://doi.org/10.3390/app6120443
https://doi.org/10.3390/app6120443
https://doi.org/10.1109/NEBC.2003.1215978
https://doi.org/10.1109/NEBC.2003.1215978
https://doi.org/10.1371/journal.pone.0115678
https://doi.org/10.1371/journal.pone.0115678
https://doi.org/10.1111/j.1748-7692.2003.tb01090.x
https://doi.org/10.1111/j.1748-7692.2003.tb01090.x
https://doi.org/10.1121/1.2743157
https://doi.org/10.1121/1.3575555
https://doi.org/10.1098/rstb.2021.0046
https://doi.org/10.1098/rstb.2021.0046
https://doi.org/10.1121/1.4774274
https://doi.org/10.1080/03949370.2013.851122
https://doi.org/10.1080/03949370.2013.851122


augmentation method for automatic speech recogni-
tion. Proc Interspeech 2019:2613–2617. https://doi.
org/10.21437/Interspeech.2019-2680

Parsons S, Boonman AM, Obrist MK (2000) Advantages
and disadvantages of techniques for transforming and
analyzing chiropteran echolocation calls. J Mammal
81:927–938. https://doi.org/10.1644/1545-1542(2000)
081<0927:AADOTF>2.0.CO;2

Payne K, Payne R (1985) Large scale changes over
19 years in songs of humpback whales in Bermuda. Z
Tierpsychol 68:89–114. https://doi.org/10.1111/j.
1439-0310.1985.tb00118.x

Picone JW (1993) Signal modeling techniques in speech
recognition. Proc IEEE 81:1215–1247. https://doi.org/
10.1109/5.237532

Placer J, Slobodchikoff CN (2000) A fuzzy-neural system
for identification of species-specific alarm sounds of
Gunnison’s prairie dogs. Behav Process 52:1–9.
https://doi.org/10.1016/S0376-6357(00)00105-4

Potter JR, Mellinger DK, Clark CW (1994) Marine mam-
mal sound discrimination using artificial neural
networks. J Acoust Soc Am 96:1255–1262. https://
doi.org/10.1121/1.410274

Pozzi L, Gamba M, Giacoma C (2010) The use of Artifi-
cial Neural Networks to classify primate vocalizations:
a pilot study on black lemurs. Am J Primatol 72(4):
337–348. https://doi.org/10.1002/ajp.20786

Prӧhl H, Koshy RA, Mueller U, Rand AS, Ryan MJ
(2006) Geographic variation of genetic and behavioral
traits in northern and southern Túngara frogs. Evol 60:
1669–1679. https://doi.org/10.1111/j.0014-3820.2006.
tb00511.x

Rabiner LR (1989) A tutorial on hidden Markov models
and selected applications in speech recognition. Proc
IEEE 77:257–285

Rabiner LR, Juang BH (1986) An introduction to Hidden
Markov Models. IEEE ASSP Mag 1986:4–16

Rabiner LR, Levinson S, Sondhi M (1983) On the appli-
cation of vector quantization and hidden Markov
models to speaker-independent, isolated word recogni-
tion. Bell Syst Tech J 62:1075–1106. https://doi.org/
10.1002/j.1538-7305.1983.tb03115.x

Rabiner LR, Juang B, Lee C (1996) An overview of
automatic speech recognition. In: Lee C, Soong F,
Paliwal K (eds) Automatic speech and speaker recog-
nition. Kluwer Academic, New York, pp 1–30

Rankin S, Barlow J (2005) Source of the North Pacific
‘boing’ sound attributed to minke whales. J Acoust Soc
Am 118(5):3346–3351. https://doi.org/10.1121/1.
2046747

Rankin S, Ljungblad D, Clark CW, Kato H (2005)
Vocalisations of Antarctic blue whales, Balaenoptera
musculus intermedia, recorded during the 2001/2002
and 2002/2003 IWC/SOWER circumpolar cruises,
Area V, Antarctica. J Cet Res Manag 7(1):13–20

Rankin S, Archer F, Keating JL, Oswald JN, Oswald M,
Curtis A, Barlow J (2016) Acoustic classification of
dolphins in the California Current using whistles,

clicks and burst-pulses. Mar Mamm Sci 33:520–540.
https://doi.org/10.1111/mms.12381

Reby D, André-Obrecht R, Galinier A, Farinas J,
Cargnelutti B (2006) Cepstral coefficients and hidden
Markov models reveal idiosyncratic voice
characteristics in red deer (Cervus elaphus) stags. J
Acoust Soc Am 120:4080–4089. https://doi.org/10.
1121/1.2358006

Recalde-Salas A, Salgado Kent CP, Parsons MJG, Marley
SA, McCauley RD (2014) Non-song vocalizations of
pygmy blue whales in Geographe Bay, Western
Australia. J Acoust Soc Am 135(5):EL213–EL218.
https://doi.org/10.1121/1.4871581

Recalde-Salas A, Erbe C, Salgado Kent C, Parsons M
(2020) Non-song vocalizations of humpback whales
in Western Australia. Front Mar Sci 7:141. https://
doi.org/10.3389/fmars.2020.00141

Rickwood P, Taylor A (2008) Methods for automatically
analyzing humpback song units. J Acoust Soc Am 123:
1763–1772. https://doi.org/10.1121/1.2836748

Risch D, Gales NJ, Gedamke J, Kindermann L, Nowacek
DP, Read AJ, Siebert U, Van Opzeeland IC, Van Parijs
SM, Friedlander AS (2014) Mysterious bio-duck
sound attributed to the Antarctic minke whale
(Balaenoptera bonaerensis). Biol Lett 10:20140175.
https://doi.org/10.1098/rsbl.2014.0175

Roch MA, Soldevilla MS, Burtenshaw JC, Henderson EE,
Hildebrand JA (2007) Gaussian mixture model classi-
fication of odontocetes in the Southern California
Bight and the Gulf of California. J Acoust Soc Am
121:1737–1748. https://doi.org/10.1121/1.2400663

Roch MA, Soldevilla MS, Hoenigman R, Wiggins SM,
Hildebrand JA (2008) Comparison of machine-
learning techniques for the classification of echoloca-
tion clicks from three species of odontocetes. Can
Acoust 36:41–47

Roch MA, Brandes TS, Patel B, Barkley Y, Baumann-
Pickering S, Soldevilla MS (2011) Automated
extraction of odontocete whistle contours. J Acoust
Soc Am 130:2212–2223. https://doi.org/10.1121/1.
3624821

Rocha HS, Ferreira LS, Paula BC, Rodrigues HG, Sousa-
Lima RS (2015) An evaluation of manual and
automated methods for detecting sounds of mane
wolves (Chrysocyon brachyurus Illiger 1815). Bio-
acoustics 24:185–198. https://doi.org/10.1080/
09524622.2015.1019361

Roitblat HL, Moore PWB, Nachtigall PE, Penner RH, Au
WWL (1989) Natural echolocation with an artificial
neural network. Int J Neural Syst 1:239–247

Rosenblatt F (1958) The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychol Rev 65:386–408. https://doi.org/10.1037/
h0042519

Ross JC, Allen PE (2014) Random forest for improved
analysis efficiency in passive acoustic monitoring. Ecol
Inform 21:34–39. https://doi.org/10.1016/j.ecoinf.
2013.12.002

314 J. N. Oswald et al.

https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.1644/1545-1542(2000)081<0927:AADOTF>2.0.CO;2
https://doi.org/10.1644/1545-1542(2000)081<0927:AADOTF>2.0.CO;2
https://doi.org/10.1644/1545-1542(2000)081<0927:AADOTF>2.0.CO;2
https://doi.org/10.1644/1545-1542(2000)081<0927:AADOTF>2.0.CO;2
https://doi.org/10.1111/j.1439-0310.1985.tb00118.x
https://doi.org/10.1111/j.1439-0310.1985.tb00118.x
https://doi.org/10.1109/5.237532
https://doi.org/10.1109/5.237532
https://doi.org/10.1016/S0376-6357(00)00105-4
https://doi.org/10.1121/1.410274
https://doi.org/10.1121/1.410274
https://doi.org/10.1002/ajp.20786
https://doi.org/10.1111/j.0014-3820.2006.tb00511.x
https://doi.org/10.1111/j.0014-3820.2006.tb00511.x
https://doi.org/10.1002/j.1538-7305.1983.tb03115.x
https://doi.org/10.1002/j.1538-7305.1983.tb03115.x
https://doi.org/10.1121/1.2046747
https://doi.org/10.1121/1.2046747
https://doi.org/10.1111/mms.12381
https://doi.org/10.1121/1.2358006
https://doi.org/10.1121/1.2358006
https://doi.org/10.1121/1.4871581
https://doi.org/10.3389/fmars.2020.00141
https://doi.org/10.3389/fmars.2020.00141
https://doi.org/10.1121/1.2836748
https://doi.org/10.1098/rsbl.2014.0175
https://doi.org/10.1121/1.2400663
https://doi.org/10.1121/1.3624821
https://doi.org/10.1121/1.3624821
https://doi.org/10.1080/09524622.2015.1019361
https://doi.org/10.1080/09524622.2015.1019361
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/j.ecoinf.2013.12.002
https://doi.org/10.1016/j.ecoinf.2013.12.002


Rumelhart DE, Hinton GE, Williams RJ (1986) Learning
representations by back-propagating errors. Nature
323(6088):533–536. https://doi.org/10.1038/323533a0

Russo D, Mucedda M, Bello M, Biscardi S,
Pidinchedda E, Jones G (2007) Divergent echolocation
sound frequencies in insular rhinolophids (Chiroptera):
a case of character displacement? J Bioeng 34:2129–
2138. https://doi.org/10.1111/j.1365-2699.2007.
01762.x

Sainburg T, Theilman B, Thielk M, Gentner TQ (2019)
Parallels in the sequential organization of birdsong and
human speech. Nat Commun 10:3636. https://doi.org/
10.1038/s41467-019-11605-y

Sakoe H, Chiba S (1978) Dynamic programming optimi-
zation for spoken word recognition. IEEE Trans
Acoust Speech Sig Process 26:43–49. https://doi.org/
10.1109/TASSP.1978.1163055

Schassburger RM (1993) Vocal communication in the
timber wolf, Canis lupus, Linnaeus: structure, motiva-
tion, and ontogeny. Parey Scientific Publication,
New York

Schon PC, Puppe B, Manteauffel G (2001) Linear predic-
tion coding analysis and self-organizing feature map as
tools to classify stress sounds of domestic pigs (Sus
scrofa). J Acoust Soc Am 110:1425–1431. https://doi.
org/10.1121/1.1388003

Sethi SS, Jones NS, Fulcher BD, Picinali L, Clink DJ,
Klinck H, Orme CD, Wrege PH, Ewers RM (2020)
Characterizing soundscapes across diverse ecosystems
using a universal acoustic feature set. Proc Natl Acad
Sci 117(29):17049–17055. https://doi.org/10.1073/
pnas.2004702117

Shannon CE, Weaver W (1998) The mathematical theory
of communication. University of Illinois Press,
Champaign

Shiu Y, Palmer KJ, Roch MA, Fleishman E, Liu X, Nosal
EM, Helble T, Cholewiak D, Gillespie D, Klinck H
(2020) Deep neural networks for automated detection
of marine mammal species. Sci Rep 10(1):1–12.
https://doi.org/10.1038/s41598-020-57549-y

Sibley DA (2000) The Sibley field guide to birds. Knopf,
New York

Simmons JA, Wever EG, Pylka JM (1971) Periodical
cicada: sound production and hearing. Science
171(3967):212–213. https://doi.org/10.1126/science.
171.3967.212

Širović A (2016) Variability in the performance of the
spectrogram correlation detector for north-east Pacific
blue whale calls. Bioacoustics 25(2):145–160. https://
doi.org/10.1080/09524622.2015.1124248

Širović A, Cutter GR, Butler JL, Demer DA (2009)
Rockfish sounds and their potential use for population
monitoring in the Southern California Bight. ICES J
Mar Sci 66:981–990. https://doi.org/10.1093/icesjms/
fsp064

Sjare B, Stirling I, Spencer C (2003) Seasonal and longer-
term variability in the songs of Atlantic walruses
breeding in the Canadian High Arctic. Aquat Mamm
29(2):297–318

Slobodchikoff CN, Ackers SH, Van Ert M (1998) Geo-
graphic variation in alarm calls of Gunnison’s prairie
dogs. J Mammal 79(4):1265–1272. https://doi.org/10.
2307/1383018

Somervuo P, Härmä A, Fagerlund S (2006) Parametric
representations of bird sounds for automatic species
recognition. IEEE Trans Audio Speech Lang Process
14:2252–2263. https://doi.org/10.1109/TASL.2006.
872624

Sparling DW, Williams JD (1978) Multivariate analysis of
avian vocalizations. J Theor Biol 74:83–107. https://
doi.org/10.1016/0022-5193(78)90291-6

Stafford KM, Fox CG, Clark DS (1998) Long-range
acoustic detection and localization of blue whale
sounds in the northeast Pacific Ocean. J Acoust Soc
Am 104(6):3616–3625. https://doi.org/10.1121/1.
423944

Stafford KM, Nieukirk SL, Fox CG (1999)
Low-frequency whale sounds recorded on
hydrophones moored in the eastern tropical Pacific. J
Acoust Soc Am 106:3687–3698. https://doi.org/10.
1121/1.428220

Stafford KM, Moore SE, Laidre KL, Heide-Jørgensen MP
(2008) Bowhead whale springtime song off West
Greenland. J Acoust Soc Am 124(5):3315–3323.
https://doi.org/10.1121/1.2980443

Starnberger I, Preininger D, Hödl W (2014) The anuran
vocal sac: a tool for multimodal signalling. Anim
Behav 97:281–288. https://doi.org/10.1016/j.anbehav.
2014.07.027

Stoeger AS, Heilmann G, Zeppelzauer M, Ganswindt A,
Hensman S, Charlton BD (2012) Visualizing sound
emission of elephant vocalizations: evidence for two
rumble production types. PLoS One 7:1–8. https://doi.
org/10.1371/journal.pone.0048907

Stowell D, Wood M, Stylianou Y, Glotin H (2016). Bird
detection in audio: a survey and a challenge. In: 2016
IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), pp 1–6.
https://doi.org/10.1109/MLSP.2016.7738875

Sturtivant C, Datta S (1997) Automatic dolphin whistle
detection, extraction, encoding, and classification. Proc
Inst Acoust 19:259–266

Suzuki R, Buck J, Tyack P (2006) Information entropy
of humpback whale songs. J Acoust Soc Am 119:
1849–1866. https://doi.org/10.1121/1.2161827

Swets JA, Dawes RM, Monahan J (2000) Better decisions
through science. Sci Am 283:82–87

Takahashi N, Kashino M, Hironaka N (2010) Structure of
rat ultrasonic vocalizations and its relevance to behav-
ior. PLoS One 5(11):e14115. https://doi.org/10.1371/
journal.pone.0014115

Tan M, McDonald K (2017) Bird sounds | Experiments
with Google [online]. https://experiments.withgoogle.
com/bird-sounds

Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra
PP (2000) A procedure for an automated measurement
of song similarity. Anim Behav 59:1167–1176. https://
doi.org/10.1006/anbe.1999.1416

8 Detection and Classification Methods for Animal Sounds 315

https://doi.org/10.1038/323533a0
https://doi.org/10.1111/j.1365-2699.2007.01762.x
https://doi.org/10.1111/j.1365-2699.2007.01762.x
https://doi.org/10.1038/s41467-019-11605-y
https://doi.org/10.1038/s41467-019-11605-y
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1121/1.1388003
https://doi.org/10.1121/1.1388003
https://doi.org/10.1073/pnas.2004702117
https://doi.org/10.1073/pnas.2004702117
https://doi.org/10.1038/s41598-020-57549-y
https://doi.org/10.1126/science.171.3967.212
https://doi.org/10.1126/science.171.3967.212
https://doi.org/10.1080/09524622.2015.1124248
https://doi.org/10.1080/09524622.2015.1124248
https://doi.org/10.1093/icesjms/fsp064
https://doi.org/10.1093/icesjms/fsp064
https://doi.org/10.2307/1383018
https://doi.org/10.2307/1383018
https://doi.org/10.1109/TASL.2006.872624
https://doi.org/10.1109/TASL.2006.872624
https://doi.org/10.1016/0022-5193(78)90291-6
https://doi.org/10.1016/0022-5193(78)90291-6
https://doi.org/10.1121/1.423944
https://doi.org/10.1121/1.423944
https://doi.org/10.1121/1.428220
https://doi.org/10.1121/1.428220
https://doi.org/10.1121/1.2980443
https://doi.org/10.1016/j.anbehav.2014.07.027
https://doi.org/10.1016/j.anbehav.2014.07.027
https://doi.org/10.1371/journal.pone.0048907
https://doi.org/10.1371/journal.pone.0048907
https://doi.org/10.1109/MLSP.2016.7738875
https://doi.org/10.1121/1.2161827
https://doi.org/10.1371/journal.pone.0014115
https://doi.org/10.1371/journal.pone.0014115
https://experiments.withgoogle.com/bird-sounds
https://experiments.withgoogle.com/bird-sounds
https://doi.org/10.1006/anbe.1999.1416
https://doi.org/10.1006/anbe.1999.1416


Tenenbaum JB, De Silva V, Langford JC (2000) A global
geometric framework for nonlinear dimensionality
reduction. Science 290(5500):2319–2323. https://doi.
org/10.1126/science.290.5500.2319

Thomas JA, Golladay CL (1995) Analysis of underwater
vocalizations of leopard seals (Hydrurga leptonyx). In:
Kastelein RA, Thomas JA, Nachtigall PE (eds) Sen-
sory systems of aquatic mammals. De Spil Publishers,
Amsterdam, pp 201–221

Thomas M, Martin B, Kowarski K, Gaudet B, Matwin S
(2019) Marine mammal species classification using
convolutional neural networks and a novel acoustic
representation. In: Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases, pp 290–305

Torrey L, Shavlik J (2010) Transfer learning. In: Hand-
book of research on machine learning applications and
trends: algorithms, methods, and techniques. IGI
Global, New York, pp 242–264

Trawicki MB, Johnson MT, Osiejuk TS (2005) Automatic
song-type classification and speaker identification of
Norwegian ortolan bunting. IEEE Int Conf Mach Learn
Sig Process (MLSP) 2005:277–282. https://doi.org/10.
1109/MLSP.2005.1532913

Trifa VM, Kirschel ANG, Taylor CE (2008) Automated
species recognition of antbirds in a Mexican rainforest
using hidden Markov Models. J Acoust Soc Am 123:
2424–2431. https://doi.org/10.1121/1.2839017

Valente D, Wang H, Andrews P, Mitra PP, Saar S,
Tchernichovski O, Golani I, Benjamini Y (2007)
Characterizing animal behavior through audio and
video signal processing. IEEE Multimedia 14:32–41.
https://doi.org/10.1109/MMUL.2007.71

Van Allen E, Menon MM, Dicaprio N (1990) A modular
architecture for object recognition using neural
networks. In: Proceedings of International Neural
Networks Conference, Paris, vol 1, pp 35–379,
13 July 1990. Kluwer Academic Publishers, Dordrecht

Vapnik VN (1998) Statistical learning theory. Wiley,
New York

Venter PJ, Hanekom JJ (2010) Automatic detection of
African elephant (Loxodonta africana) infrasonic
vocalizations from recordings. Biosyst Eng 106:286–
294. https://doi.org/10.1016/j.biosystemseng.2010.04.
001

Von Muggenthaler E, Reinhart P, Lympany B, Craft RB
(2003) Songlike vocalizations from the Sumatran rhi-
noceros (Dicerorhinus sumatrensis). Acoust Res Lett
4(3):83–88. https://doi.org/10.1121/1.1588271

Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KL
(1989) Phoneme recognition using time-delay neural
networks. IEEE Trans Acoust Speech Signal Proc 37:
328–339. https://doi.org/10.1109/29.21701

Ward J, Morrissey R, Moretti D, DiMarzio N, Jarvis S,
Johnson M, Tyack PL, White C (2008) Passive acous-
tic detection and localization of Mesoplodon
densirostris (Blainville’s beaked whale) vocalizations
using distributed bottom-mounted hydrophones in

conjunction with a digital tag (DTag) recording. Can
Acoust 36:60–66

Ward R, Parnum I, Erbe C, Salgado-Kent CP (2016)
Whistle characteristics of Indo-Pacific bottlenose
dolphins (Tursiops aduncus) in the Fremantle Inner
Harbour, Western Australia. Acoust Aust 44(1):
159–169. https://doi.org/10.1007/s40857-015-0041-4

Ward R, Gavrilov AN, McCauley RD (2017) “Spot” call:
A common sound from an unidentified great whale in
Australian temperate waters. J Acoust Soc Am 142(2):
EL231–EL236. https://doi.org/10.1121/1.4998608

Weisburn BA, Mitchell SG, Clark CW, Parks TW (1993)
Isolating biological acoustic transient signals. Proc
IEEE Int Conf Acoust Speech Sig Process 1:269–
272. https://doi.org/10.1109/ICASSP.1993.319107

Wellard R, Erbe C, Fouda L, Blewitt M (2015)
Vocalisations of killer whales (Orcinus orca) in the
Bremer Canyon, Western Australia. PLoS One 10(9):
e0136535. https://doi.org/10.1371/journal.pone.
0136535

Wells KD (2007) The ecology and behaviour of
amphibians. University of Chicago Press, Chicago, IL

Wich SA, Schel AM, De Vries H (2008) Geographic
variation in Thomas langur (Presbytis thomasi) loud
sounds. Am J Primatol 70:566–574. https://doi.org/10.
1002/ajp.20527

Winn HE, Winn LK (1978) The song of the humpback
whale Megaptera novaeangliae in the West Indies.
Mar Biol 47:97–114. https://doi.org/10.1007/
BF00395631

Wood JD, McCowan B, Langbauer WR, Viljoen JJ,
Hart LA (2005) Classification of African elephant
Loxodonta africana rumbles using acoustic
parameters and cluster analysis. Bioacoustics 15:
143–161. https://doi.org/10.1080/09524622.2005.
9753544

Yamamoto O, Moore B, Brand L (2001) Variation in the
bark sound of the red squirrel (Tamiasciurus
hudsonicus). West N Am Nat 61:395–402

Yang X-J, Lei F-M, Wang G, Jesse AJ (2007) Syllable
sharing and inter-individual syllable variation in
Anna’s hummingbird Calypte anna songs, in San
Francisco, California. Folia Zool 56:307–318

Yoshino H, Armstrong KN, Izawa M, Yokoyama J,
Kawata M (2008) Genetic and acoustic population
structuring in the Okinawa least horseshoe bat: are
intercolony acoustic differences maintained by vertical
maternal transmission? Mol Ecol 17:4978–4991.
https://doi.org/10.1111/j.1365-294X.2008.03975.x

Zar JH (2009) Biostatistical analysis, 5th edn. Pearson,
New York, p 960

Zeppelzauer M, Hensman S, Stoeger AS (2015) Towards
an automated acoustic detection system for free-
ranging elephants. Bioacoustics 24:13–29. https://doi.
org/10.1080/09524622.2014.906321

Zhang YJ, Huang JF, Gong N, Ling ZH, Hu Y (2018)
Automatic detection and classification of marmoset
vocalizations using deep and recurrent neural

316 J. N. Oswald et al.

https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1109/MLSP.2005.1532913
https://doi.org/10.1109/MLSP.2005.1532913
https://doi.org/10.1121/1.2839017
https://doi.org/10.1109/MMUL.2007.71
https://doi.org/10.1016/j.biosystemseng.2010.04.001
https://doi.org/10.1016/j.biosystemseng.2010.04.001
https://doi.org/10.1121/1.1588271
https://doi.org/10.1109/29.21701
https://doi.org/10.1007/s40857-015-0041-4
https://doi.org/10.1121/1.4998608
https://doi.org/10.1109/ICASSP.1993.319107
https://doi.org/10.1371/journal.pone.0136535
https://doi.org/10.1371/journal.pone.0136535
https://doi.org/10.1002/ajp.20527
https://doi.org/10.1002/ajp.20527
https://doi.org/10.1007/BF00395631
https://doi.org/10.1007/BF00395631
https://doi.org/10.1080/09524622.2005.9753544
https://doi.org/10.1080/09524622.2005.9753544
https://doi.org/10.1111/j.1365-294X.2008.03975.x
https://doi.org/10.1080/09524622.2014.906321
https://doi.org/10.1080/09524622.2014.906321


networks. J Acoust Soc Am 144(1):478–487. https://
doi.org/10.1121/1.5047743

Zhong M, LeBien J, Campos-Cerqueira M, Dodhia R,
Ferres JL, Velev JP, Aide TM (2020) Multispecies
bioacoustic classification using transfer learning of
deep convolutional neural networks with pseudo-

labeling. Appl Acoust 166:107375. https://doi.org/10.
1016/j.apacoust.2020.107375

Zuberbuhler K, Jenny D, Bshary R (1999) The predator
deterrence function of primate alarm calls. Ethology
105:477–490. https://doi.org/10.1046/j.1439-0310.
1999.00396.x

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

8 Detection and Classification Methods for Animal Sounds 317

https://doi.org/10.1121/1.5047743
https://doi.org/10.1121/1.5047743
https://doi.org/10.1016/j.apacoust.2020.107375
https://doi.org/10.1016/j.apacoust.2020.107375
https://doi.org/10.1046/j.1439-0310.1999.00396.x
https://doi.org/10.1046/j.1439-0310.1999.00396.x
http://creativecommons.org/licenses/by/4.0/

	8: Detection and Classification Methods for Animal Sounds
	8.1 Introduction
	8.2 Qualitative Naming and Classification of Animal Sounds
	8.2.1 Onomatopoeic Names
	8.2.2 Naming Sounds Based on Animal Behavior
	8.2.3 Naming Sounds Based on Mechanism of Sound Production
	8.2.4 Naming Sounds Based on Spectro-Temporal Features
	8.2.5 Naming Sounds Based on Human Communication Patterns

	8.3 Detection of Animal Sounds
	8.3.1 Energy Threshold Detector
	8.3.2 Spectrogram Cross-Correlation
	8.3.3 Matched Filter
	8.3.4 Spectral Entropy Detector
	8.3.5 Teager-Kaiser Energy Operator
	8.3.6 Evaluating the Performance of Automated Detectors
	8.3.6.1 Confusion Matrices
	8.3.6.2 Receiver Operating Characteristic (ROC) Curve
	8.3.6.3 Precision and Recall


	8.4 Quantitative Classification of Animal Sounds
	8.4.1 Feature Selection
	8.4.1.1 Spectrographic Features
	8.4.1.2 Cepstral Features

	8.4.2 Statistical Classification of Animal Sounds
	8.4.2.1 Parametric Clustering
	8.4.2.2 Principal Component Analysis
	8.4.2.3 Discriminant Function Analysis
	8.4.2.4 Classification Trees
	8.4.2.5 Nonlinear Dimensionality Reduction

	8.4.3 Model Based Classification
	8.4.3.1 Artificial Neural Networks
	8.4.3.2 Random Forest Analysis
	8.4.3.3 Gaussian Mixture Models
	8.4.3.4 Support Vector Machines
	8.4.3.5 Dynamic Time-Warping
	8.4.3.6 Hidden Markov Models


	8.5 Challenges in Classifying Animal Sounds
	8.5.1 Recording Artifacts
	8.5.2 Sound Propagation Effects
	8.5.3 Angular Aspects of Sound Emission
	8.5.4 Geographic Variation
	8.5.5 Graded Sounds
	8.5.6 Repertoire Changes Over Time

	8.6 Summary
	8.7 Additional Resources
	References


