Skip to main content

Peptides and Oligonucleotide-Based Therapy: Bioanalytical Challenges and Practical Solutions

  • Chapter
  • First Online:
An Introduction to Bioanalysis of Biopharmaceuticals

Abstract

Peptide and Oligonucleotide (ON) are gaining popularity with multiple regulatory approvals in recent years. Most of the approvals are in genetic disorders for various disease areas. Peptides and ON molecules are considered as small-molecule drugs that are synthesized with various chemical and structural modifications to improve their physicochemical and biological properties, such as efficacy, stability, bioavailability, safety, etc. These modifications require thorough understanding of these molecules and exclusive strategies to quantify these molecules in various biological matrices. This chapter provides an overview of currently available methodologies and strategies employed for bioanalytical and immunogenicity assessment of  peptides and ON therapeutic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science. 1993;262(5138):1448–51.

    Article  CAS  PubMed  Google Scholar 

  • Bajan S, Hutvagner G. RNA-based therapeutics: from antisense oligonucleotides to miRNAs. Cell. 2020;9:1.

    CAS  Google Scholar 

  • Basu R, Hatton RD, Weaver CT. The Th17 family: flexibility follows function. Immunol Rev. 2013;252(1):89–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bodera P, Stankiewicz W, Kocik J. Synthetic immunostimulatory oligonucleotides in experimental and clinical practice. Pharmacol Rep. 2012;64(5):1003–10.

    Article  CAS  PubMed  Google Scholar 

  • Brinks V, Jiskoot W, Schellekens H. Immunogenicity of therapeutic proteins: the use of animal models. Pharm Res. 2011;28(10):2379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronsema KJ, Bischoff R, van de Merbel NC. High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: the impact of enzymatic digestion and internal standard selection on method performance. Anal Chem. 2013;85(20):9528–35.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos-Rizaldos E, Brown CR, Dennin S, Kim J, Gupta S, Najarian D, Gu Y, Aluri K, Enders J, Brown K, Xu Y. RT-qPCR methods to support pharmacokinetics and drug mechanism of action to advance development of RNAi therapeutics. Nucleic Acid Ther. 2020;30(3):133–42.

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Kolis SJ, Linderholm KH, Julian TF, Nachi R, Dzerk AM, Lin PP, Lee JW, Bansal SK. Bioanalytical method development and validation for a large peptide HIV fusion inhibitor (enfuvirtide, T-20) and its metabolite in human plasma using LC-MS/MS. J Pharm Biomed Anal. 2005;38(3):487–96.

    Article  CAS  PubMed  Google Scholar 

  • Chappell DL, Lassman ME, McAvoy T, Lin M, Spellman DS, Laterza OF. Quantitation of human peptides and proteins via MS: review of analytically validated assays. Bioanalysis. 2014;6(13):1843–57.

    Article  CAS  PubMed  Google Scholar 

  • Charignon D, Spath P, Martin L, Drouet C. Icatibant , the bradykinin B2 receptor antagonist with target to the interconnected kinin systems. Expert Opin Pharmacother. 2012;13(15):2233–47.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Alelyunas YW, Wrona MD, Kehler JR, Szapacs ME, Evans CA. Microflow UPLC and high-resolution MS as a sensitive and robust platform for quantitation of intact peptide hormones. Bioanalysis. 2019;11(13):1275–89.

    Article  CAS  PubMed  Google Scholar 

  • Chester KA, Baker M, Mayer A. Overcoming the immunologic response to foreign enzymes in cancer therapy. Expert Rev Clin Immunol. 2005;1(4):549–59.

    Article  CAS  PubMed  Google Scholar 

  • de la Torre BG, Albericio F. Peptide therapeutics 2.0. Molecules. 2020;25:10.

    Google Scholar 

  • Dintzis RZ, Okajima M, Middleton MH, Greene G, Dintzis HM. The immunogenicity of soluble haptenated polymers is determined by molecular mass and hapten valence. J Immunol. 1989;143(4):1239–44.

    CAS  PubMed  Google Scholar 

  • EMA-CHMP. Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins; 2007.

    Google Scholar 

  • Eon-duval A, Valax P, Solacroup T, Broly H, Gleixner R, Strat CL, Sutter J. Application of the quality by design approach to the drug substance manufacturing process of an fc fusion protein: towards a global multi-step design space. J Pharm Sci. 2012;101(10):3604–18.

    Article  CAS  PubMed  Google Scholar 

  • Ewles M, Goodwin L, Schneider A, Rothhammer-Hampl T. Quantification of oligonucleotides by LC-MS/MS: the challenges of quantifying a phosphorothioate oligonucleotide and multiple metabolites. Bioanalysis. 2014;6(4):447–64.

    Article  CAS  PubMed  Google Scholar 

  • FDA, U. Guidance for industry—immunogenicity assessment for therapeutic protein products; 2014.

    Google Scholar 

  • FDA, U. Bioanalytical method validation guidance for industry. US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research and Center for Veterinary Medicine; 2018a.

    Google Scholar 

  • FDA, U. Definition of the term “biological product” final regulatory impact analysis; 2018b.

    Google Scholar 

  • FDA, U. Immunogenicity testing of therapeutic protein products—developing and validating assays for anti-drug antibody detection; 2019.

    Google Scholar 

  • FDA, U. IND submissions for individualized antisense oligonucleotide drug products: administrative and procedural recommendations. Draft Guidance. 2021a.

    Google Scholar 

  • FDA, U. Nonclinical testing of individualized antisense oligonucleotide drug products for severely debilitating or life-threatening diseases. Draft Guidance.pdf.; 2021b.

    Google Scholar 

  • FDA, U. ANDAs for certain highly purified synthetic peptide drug products that refer to listed drugs of rDNA origin guidance for industry; 2021c.

    Google Scholar 

  • Featherston AL, Kwon Y, Pompeo MM, Engl OD, Leahy DK, Miller SJ. Catalytic asymmetric and stereodivergent oligonucleotide synthesis. Science. 2021;371(6530):702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaubin M, Autiero M, Houlgatte R, Basmaciogullari S, Auffray C, Piatier-Tonneau D. Molecular basis of T lymphocyte CD4 antigen functions. Eur J Clin Chem Clin Biochem. 1996;34(9):723–8.

    CAS  PubMed  Google Scholar 

  • Hagelskamp F, Borland K, Ramos J, Hendrick AG, Fu D, Kellner S. Broadly applicable oligonucleotide mass spectrometry for the analysis of RNA writers and erasers in vitro. Nucleic Acids Res. 2020;48(7):e41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes JJ, Jones H, Gibson D, Clark GT. Bioanalytical determination of unstable endogenous small peptides: RFRP3 and its metabolites in rat blood. Bioanalysis. 2011;3(7):763–78.

    Article  CAS  PubMed  Google Scholar 

  • Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto N, Butler DCD, Svrzikapa N, Mohapatra S, Zlatev I, Sah D, Meena SSM, Lu G, Apponi LH, Frank-Kamenetsky M, Zhang JJ, Vargeese C, Verdine GL. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat Biotechnol. 2017;35(9):845–51.

    Article  CAS  PubMed  Google Scholar 

  • Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation-updated consensus and review 2020. Front Immunol. 2020;11:1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, Goletz TJ, Kerwin BA, Chirmule N, Narhi LO, Jawa V. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem. 2012;287(30):25266–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23(4):457–62.

    Article  CAS  PubMed  Google Scholar 

  • Kang L, Weng N, Jian W. LC-MS bioanalysis of intact proteins and peptides. Biomed Chromatogr. 2020;34(1):e4633.

    Article  CAS  PubMed  Google Scholar 

  • Kay RG, Howard J, Stensson S. A current perspective of supercharging reagents and peptide bioanalysis. Bioanalysis. 2016;8(3):157–61.

    Article  CAS  PubMed  Google Scholar 

  • Kay RG, Roberts A. Bioanalysis of biotherapeutic proteins and peptides: immunological or MS approach? Bioanalysis. 2012;4(8):857–60.

    Article  CAS  PubMed  Google Scholar 

  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee AC, Harris JL, Khanna KK, Hong JH. A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci. 2019;20:10.

    Google Scholar 

  • Levin JD, Fiala D, Samala MF, Kahn JD, Peterson RJ. Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Res. 2006;34(20):e142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Zhang J, Tse FL. Strategies in quantitative LC-MS/MS analysis of unstable small molecules in biological matrices. Biomed Chromatogr. 2011;25(1–2):258–77.

    Article  PubMed  CAS  Google Scholar 

  • Liczner C, Duke K, Juneau G, Egli M, Wilds CJ. Beyond ribose and phosphate: selected nucleic acid modifications for structure-function investigations and therapeutic applications. Beilstein J Org Chem. 2021;17:908–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Dodart JC, Tran H, Berkovitch S, Braun M, Byrne M, Durbin AF, Hu XS, Iwamoto N, Jang HG, Kandasamy P, Liu F, Longo K, Ruschel J, Shelke J, Yang H, Yin Y, Donner A, Zhong Z, Vargeese C, Brown RH Jr. Variant-selective stereopure oligonucleotides protect against pathologies associated with C9orf72-repeat expansion in preclinical models. Nat Commun. 2021;12:847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenson MY, Chen KE, Walker AM. Enzyme-linked oligonucleotide hybridization assay for direct oligo measurement in blood. Biol Methods Protoc. 2019;4(1):bpy014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maes K, Smolders I, Michotte Y, Van Eeckhaut A. Strategies to reduce aspecific adsorption of peptides and proteins in liquid chromatography-mass spectrometry based bioanalyses: an overview. J Chromatogr A. 2014;1358:1–13.

    Article  CAS  PubMed  Google Scholar 

  • McGinley M, Scott G, Rivera B. Analyzing oligos from biological matrices. GEN Genetic Eng Biotech News. 2010;30:11.

    Google Scholar 

  • Merkle T, Merz S, Reautschnig P, Blaha A, Li Q, Vogel P, Wettengel J, Li JB, Stafforst T. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol. 2019;37(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  • Montazersaheb S, Hejazi MS, Nozad Charoudeh H. Potential of peptide nucleic acids in future therapeutic applications. Adv Pharm Bull. 2018;8(4):551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller KT, Waldron E, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, August KJ, Hamilton J, Awasthi R, Stein AM, Sickert D, Chakraborty A, Levine BL, June CH, Tomassian L, Shah SS, Leung M, Taran T, Wood PA, Maude SL. Clinical pharmacology of Tisagenlecleucel in B-cell acute lymphoblastic Leukemia. Clin Cancer Res. 2018;24(24):6175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muttenthaler M, King GF, Adams DJ, Alewood PF. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021;20(4):309–25.

    Article  CAS  PubMed  Google Scholar 

  • Nshanian M, Lakshmanan R, Chen H, Ogorzalek Loo RR, Loo JA. Enhancing sensitivity of liquid chromatography-mass spectrometry of peptides and proteins using supercharging agents. Int J Mass Spectrom. 2018;427:157–64.

    Article  CAS  PubMed  Google Scholar 

  • Nuckowski L, Kaczmarkiewicz A, Studzinska S. Review on sample preparation methods for oligonucleotides analysis by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1090:90–100.

    Article  CAS  PubMed  Google Scholar 

  • Pala P, Hussell T, Openshaw PJ. Flow cytometric measurement of intracellular cytokines. J Immunol Methods. 2000;243(1–2):107–24.

    Article  CAS  PubMed  Google Scholar 

  • Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;785(2):263–75.

    Article  CAS  PubMed  Google Scholar 

  • Quijano E, Bahal R, Ricciardi A, Saltzman WM, Glazer PM. Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale J Biol Med. 2017;90(4):583–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rauh M. LC-MS/MS for protein and peptide quantification in clinical chemistry. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;883-884:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz SL, Park EN, Vachon VK, Danzy S, Lowen AC, Conn GL. Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Res. 2020;48(13):7520–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4(6):469–78.

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Krishnamurthy PM, Watts JK. Quantification of antisense oligonucleotides by splint ligation and quantitative polymerase chain reaction. bioRxiv. 2021;2021:2006.2005.447195.

    Google Scholar 

  • Shokrzadeh N, Winkler AM, Dirin M, Winkler J. Oligonucleotides conjugated with short chemically defined polyethylene glycol chains are efficient antisense agents. Bioorg Med Chem Lett. 2014;24(24):5758–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sips L, Ediage EN, Ingelse B, Verhaeghe T, Dillen L. LC-MS quantification of oligonucleotides in biological matrices with SPE or hybridization extraction. Bioanalysis. 2019;11(21):1941–54.

    Article  CAS  PubMed  Google Scholar 

  • Sutton JM, Kim J, El Zahar NM, Bartlett MG. Bioanalysis and biotransformation of oligonucleotide therapeutics by liquid chromatography-mass spectrometry. Mass Spectrom Rev. 2021;40(4):334–58.

    Article  CAS  PubMed  Google Scholar 

  • Thayer MB, Lade JM, Doherty D, Xie F, Basiri B, Barnaby OS, Bala NS, Rock BM. Application of locked nucleic acid oligonucleotides for siRNA preclinical bioanalytics. Sci Rep. 2019;9(1):3566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiel KW, Giangrande PH. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides. 2009;19(3):209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas A, Schanzer W, Delahaut P, Thevis M. Immunoaffinity purification of peptide hormones prior to liquid chromatography-mass spectrometry in doping controls. Methods. 2012;56(2):230–5.

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Schanzer W, Thevis M. Immunoaffinity techniques coupled to mass spectrometry for the analysis of human peptide hormones: advances and applications. Expert Rev Proteomics. 2017;14(9):799–807.

    Article  CAS  PubMed  Google Scholar 

  • Tozaki T, Karasawa K, Minamijima Y, Ishii H, Kikuchi M, Kakoi H, Hirota KI, Kusano K, Nagata SI. Detection of phosphorothioated (PS) oligonucleotides in horse plasma using a product ion (m/z 94.9362) derived from the PS moiety for doping control. BMC Res Notes. 2018;11(1):770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnpenny P, Rawal J, Schardt T, Lamoratta S, Mueller H, Weber M, Brady K. Quantitation of locked nucleic acid antisense oligonucleotides in mouse tissue using a liquid-liquid extraction LC-MS/MS analytical approach. Bioanalysis. 2011;3(17):1911–21.

    Article  CAS  PubMed  Google Scholar 

  • van den Broek I, Sparidans RW, Schellens JH, Beijnen JH. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;872(1–2):1–22.

    Article  PubMed  CAS  Google Scholar 

  • van Dongen WD, Niessen WM. Bioanalytical LC-MS of therapeutic oligonucleotides. Bioanalysis. 2011;3(5):541–64.

    Article  PubMed  CAS  Google Scholar 

  • van Midwoud PM, Rieux L, Bischoff R, Verpoorte E, Niederlander HA. Improvement of recovery and repeatability in liquid chromatography-mass spectrometry analysis of peptides. J Proteome Res. 2007;6(2):781–91.

    Article  PubMed  CAS  Google Scholar 

  • Verthelyi D, Wang V. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One. 2010;5(12):e15252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadhwa M, Knezevic I, Kang HN, Thorpe R. Immunogenicity assessment of biotherapeutic products: an overview of assays and their utility. Biologicals. 2015;43(5):298–306.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa M, Thorpe R. Unwanted immunogenicity: lessons learned and future challenges. Bioanalysis. 2010;2(6):1073–84.

    Article  CAS  PubMed  Google Scholar 

  • Wakankar AA, Borchardt RT. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci. 2006;95(11):2321–36.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lon HK, Lee SL, Burckart GJ, Pisetsky DS. Oligonucleotide-based drug development: considerations for clinical pharmacology and immunogenicity. Ther Innov Regul Sci. 2015;49(6):861–8.

    Article  PubMed  Google Scholar 

  • Wang L, Ji C. Advances in quantitative bioanalysis of oligonucleotide biomarkers and therapeutics. Bioanalysis. 2016;8(2):143–55.

    Article  CAS  PubMed  Google Scholar 

  • Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin. 2017;38(6):798–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Garofolo F, Musuku A. The exciting world of oligonucleotides: a multidisciplinary complex challenge for multitasking ingenious bioanalysts. Bioanalysis. 2019;11(21):1905–8.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Goykhman D, Wang M, Jackson T, Xie I, Willson K, Breidinger S, Schuck H, Harrelson J, Woolf EJ. Strategy for peptide quantification using LC-MS in regulated bioanalysis: case study with a glucose-responsive insulin. Bioanalysis. 2018;10(15):1207–20.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Mehl JT, Bakhtiar R, Woolf EJ. Immunoaffinity purification using anti-PEG antibody followed by two-dimensional liquid chromatography/tandem mass spectrometry for the quantification of a PEGylated therapeutic peptide in human plasma. Anal Chem. 2010;82(16):6877–86.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Sun L, Anderson M, Belanger P, Trinh V, Lavallee P, Kantesaria B, Marcoux MJ, Breidinger S, Bateman KP, Goykhman D, Woolf EJ. Insulin glargine and its two active metabolites: a sensitive (16pM) and robust simultaneous hybrid assay coupling immunoaffinity purification with LC-MS/MS to support biosimilar clinical studies. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1063:50–9.

    Article  CAS  PubMed  Google Scholar 

  • Yuan L. Sample preparation for LC-MS bioanalysis of peptides. In: Sample preparation in LC-MS bioanalysis; 2019. p. 284–303.

    Chapter  Google Scholar 

  • Zhang G, Lin J, Srinivasan K, Kavetskaia O, Duncan JN. Strategies for bioanalysis of an oligonucleotide class macromolecule from rat plasma using liquid chromatography-tandem mass spectrometry. Anal Chem. 2007;79(9):3416–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclaimer

Any opinions or forward-looking statements expressed are those of the authors and may not reflect views held by their employers (Thermo Fisher Scientific for Morse Faria, Spark therapeutics for Inderpal Singh, and Wave Life Sciences for Ramakrishna Boyanapalli).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyanapalli, R., Singh, I., Faria, M. (2022). Peptides and Oligonucleotide-Based Therapy: Bioanalytical Challenges and Practical Solutions. In: Kumar, S. (eds) An Introduction to Bioanalysis of Biopharmaceuticals. AAPS Advances in the Pharmaceutical Sciences Series, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-030-97193-9_6

Download citation

Publish with us

Policies and ethics