Skip to main content

Role of Metabolomics and Next-Generation Sequencing for Sustainable Crop Production

  • Chapter
  • First Online:
Principles and Practices of OMICS and Genome Editing for Crop Improvement

Abstract

The development of cutting-edge technologies dramatically accelerated the functional genomics and metabolomics to understanding plant physiology and genetics. However, advancements in next-generation sequencing have opened new perspectives of different omics approaches like transcriptomics, proteomics, and genomics. Among these, however, metabolomics has been well documented in crop sciences. Plants produced an array of secondary metabolites in a spatiotemporal manner which challenges the understanding of plant metabolic diversity and renders dissecting metabolic pathways. However, genomics provides the basis for metabolic diversity. In this chapter, we reviewed to date the role of plant metabolic research using genomics. We focus on approaches adapted in exploring genomic diversity and underlying features for sustainable agriculture. Hereby, we also summarize the current knowledge on the genomics and metabolomics underlying plant growth and development and responses to stress. We further focus on the contributions of metabolomics to practical applications in crop safety and quality assessment. We also summarize how the knowledge generated on metabolome and genomics has been used to develop metabolic engineering techniques in sustainable agriculture. Given this, we highlight the significance and future perspectives of plant metabolomics to accelerate plant breeding and crop selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, Pietrella M, Giuliano G, Chiusano ML, Baldoni L, Perrotta G (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:1–15

    Google Scholar 

  • Allwood JW, Gibon Y, Osorio S, Araújo WL, Vallarino JG, Pétriacq P, Moing A (2021) Developmental metabolomics to decipher and improve fleshy fruit quality. In: Advances in botanical research. Academic Press, pp 3–34

    Google Scholar 

  • Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D (2020) Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:145-161.e23

    PubMed  PubMed Central  Google Scholar 

  • Andersen MM, Landes X, Xiang W, Anyshchenko A, Falhof J, Østerberg JT, Olsen LI, Edenbrandt AK, Vedel SE, Thorsen BJ (2015) Feasibility of new breeding techniques for organic farming. Trends Plant Sci 20:426–434

    CAS  PubMed  Google Scholar 

  • Ando K, Carr KM, Grumet R (2012) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics 13:1–16

    Google Scholar 

  • Anguraj Vadivel AK (2015) Gel-based proteomics in plants: time to move on from the tradition. Front Plant Sci 6:369

    PubMed  PubMed Central  Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149

    CAS  PubMed  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T (2011) Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid–mediated effect on stomatal aperture. Plant Cell 23:600–627

    PubMed  PubMed Central  Google Scholar 

  • Azam S, Thakur V, Ruperao P, Shah T, Balaji J, Amindala B, Farmer AD, Studholme DJ, May GD, Edwards D (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192

    CAS  PubMed  Google Scholar 

  • Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Brière C, Owens GL, Carrère S, Mayjonade B (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148–152

    CAS  PubMed  Google Scholar 

  • Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020) Plant pan-genomes are the new reference. Nat Plants 6:914–920

    PubMed  Google Scholar 

  • Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 2013

    Google Scholar 

  • Bohra A, Saxena K, Varshney RK, Saxena RK (2020) Genomics-assisted breeding for pigeonpea improvement. Theor Appl Genet 133:1721–1737

    CAS  PubMed  Google Scholar 

  • Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP (2017) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206:573–585

    PubMed  PubMed Central  Google Scholar 

  • Breseghello F, Coelho ASG (2013) Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem 61:8277–8286

    CAS  PubMed  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297

    PubMed  PubMed Central  Google Scholar 

  • Bueno PCP, Norberto PL (2020) Metabolomics to characterize adaptive and signaling responses in legume crops under abiotic stresses. ACS omega 5, no. 4:1752–1763.

    Google Scholar 

  • Cantrell RP, Reeves TG (2002) The cereal of the world’s poor takes center stage. Science 296:53–53

    CAS  PubMed  Google Scholar 

  • Carreno-Quintero N, Acharjee A, Maliepaard C, Bachem CWB, Mumm R, Bouwmeester H, Visser RGF, Keurentjes JJB (2012) Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol 158:1306–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJB (2013) Genetic analysis of metabolome–phenotype interactions: from model to crop species. Trends Genet 29:41–50

    CAS  PubMed  Google Scholar 

  • Carroll D (2012) A CRISPR approach to gene targeting. Mol Ther 20:1658–1660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Centeno DC, Osorio S, Nunes-Nesi A, Bertolo ALF, Carneiro RT, Araújo WL, Steinhauser M-C, Michalska J, Rohrmann J, Geigenberger P (2011) Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. Plant Cell 23:162–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    CAS  PubMed  Google Scholar 

  • Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834

    CAS  PubMed  Google Scholar 

  • Cortés AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827

    PubMed  Google Scholar 

  • Costa V, Gallo MA, Letizia F, Aprile M, Casamassimi A, Ciccodicola A (2010) PPARG: gene expression regulation and next-generation sequencing for unsolved issues. PPAR Res 2010

    Google Scholar 

  • Dassanayake M, Haas J, Bohnert H, Cheeseman J (2009) Shedding light on an extremophile lifestyle through transcriptomics. New Phytol 183:764–775

    CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    CAS  PubMed  Google Scholar 

  • Daygon VD, Fitzgerald MA (2013) Application of metabolomics for providing a new generation of selection tools for crop improvement. Future Medicine

    Google Scholar 

  • Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing AL, Aung HH, Nelissen H, Baute J (2015) Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol 16:1–23

    Google Scholar 

  • Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, Tjeerdema RS, Jeffery EH, German JB, Ridley WP (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994

    CAS  PubMed  Google Scholar 

  • Do TD, Vuong TD, Dunn D, Clubb M, Valliyodan B, Patil G, Chen P, Xu D, Nguyen HT, Shannon JG (2019) Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping. BMC Genomics 20:1–16

    Google Scholar 

  • Domingos S, Fino J, Paulo OS, Oliveira CM, Goulao LF (2016) Molecular candidates for early-stage flower-to-fruit transition in stenospermocarpic table grape (Vitis vinifera L.) inflorescences ascribed by differential transcriptome and metabolome profiles. Plant Sci 244:40–56

    CAS  PubMed  Google Scholar 

  • Dong X, Gao Y, Chen W, Wang W, Gong L, Liu X, Luo J (2015) Spatiotemporal Distribution of Phenolamides and the Genetics of Natural Variation of Hydroxycinnamoyl Spermidine in Rice. Mol Plant 8:111–121

    CAS  PubMed  Google Scholar 

  • Eamens A, Wang M-B, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ (2017) Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Sci p. 1147

    Google Scholar 

  • Feldman MJ, Poirier BC, Lange BM (2015) Misexpression of the Niemann-Pick disease type C1 (NPC1)-like protein in Arabidopsis causes sphingolipid accumulation and reproductive defects. Planta 242:921–933

    CAS  PubMed  Google Scholar 

  • Fichtner F, Castellanos RU, Ülker B (2014) Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239:921–939

    CAS  PubMed  Google Scholar 

  • Fortes AM, Granell A, Pezzotti M, Bouzayen M (2017) Molecular and metabolic mechanisms associated with fleshy fruit quality. Front Plant Sci 8:1236

    PubMed  PubMed Central  Google Scholar 

  • Fragoso CA, Moreno M, Wang Z, Heffelfinger C, Arbelaez LJ, Aguirre JA, Franco N, Romero LE, Labadie K, Zhao H (2017) Genetic architecture of a rice nested association mapping population. G3 Gene Genom Genet 7:1913–1926

    Google Scholar 

  • Fuentes RR, Chebotarov D, Duitama J, Smith S, De la Hoz JF, Mohiyuddin M, Wing RA, McNally KL, Tatarinova T, Grigoriev A (2019) Structural variants in 3000 rice genomes. Genome Res 29:870–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gage JL, Vaillancourt B, Hamilton JP, Manrique-Carpintero NC, Gustafson TJ, Barry K, Lipzen A, Tracy WF, Mikel MA, Kaeppler SM (2019) Multiple maize reference genomes impact the identification of variants by genome-wide association study in a diverse inbred panel. Plant Geno 12

    Google Scholar 

  • Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott MC, Han H, Busi R, Yu Q, Powles SB (2014) RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J 78:865–876

    CAS  PubMed  Google Scholar 

  • Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51:1044–1051

    CAS  PubMed  Google Scholar 

  • Garnica DP, Upadhyaya NM, Dodds PN, Rathjen JP (2013) Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PloS one 8:e67150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones W, Garg S, Markello C, Lin MF (2018) Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat Biotechnol 36:875–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, Pretty J, Robinson S, Toulmin C, Whiteley R (2010) The future of the global food system. The Royal Society

    Google Scholar 

  • Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14:1099–1105

    PubMed  Google Scholar 

  • Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D (2020) Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 36:132–145

    CAS  PubMed  Google Scholar 

  • Gong L, Chen W, Gao Y, Liu X, Zhang H, Xu C, Yu S, Zhang Q, Luo J (2013) Genetic analysis of the metabolome exemplified using a rice population. Proc Natl Acad Sci 110:20320–20325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4:1–11

    Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15:529–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Kärenlampi S, Aharoni A (2008) Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria× ananassa) flowers. Phytochemistry 69:2463–2481

    CAS  PubMed  Google Scholar 

  • Harrigan GG, Lundry D, Drury S, Berman K, Riordan SG, Nemeth MA, Ridley WP, Glenn KC (2010) Natural variation in crop composition and the impact of transgenesis. Nat Biotechnol 28:402–404

    CAS  PubMed  Google Scholar 

  • Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17:767

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    CAS  PubMed  Google Scholar 

  • Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IA (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16:1265–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh BL, Ehlers JD, Huang BE, Muñoz-Amatriaín M, Lonardi S, Santos JRP, Ndeve A, Batieno BJ, Boukar O, Cisse N (2018) A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J 93:1129–1142

    CAS  PubMed  Google Scholar 

  • Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P (2015) Plant transcriptomics and responses to environmental stress: an overview. J Genet 94:525–537

    CAS  PubMed  Google Scholar 

  • Jacobs DM, van den Berg MA, Hall RD (2021) Towards superior plant-based foods using metabolomics. Curr Opin Biotechnol 70:23–28

    CAS  PubMed  Google Scholar 

  • Jaganathan D, Bohra A, Thudi M, Varshney RK (2020) Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theor Appl Genet 133:1791–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayakodi M, Padmarasu S, Haberer G, Bonthala VS, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588:284–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188–e188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake NK (2018) The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. Plant J 95:1039–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juntawong P, Sirikhachornkit A, Pimjan R, Sonthirod C, Sangsrakru D, Yoocha T, Tangphatsornruang S, Srinives P (2014) Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. Front Plant Sci 5:658

    PubMed  PubMed Central  Google Scholar 

  • Kamei CLA, Severing EI, Dechesne A, Furrer H, Dolstra O, Trindade LM (2016) Orphan crops browser: a bridge between model and orphan crops. Mol Breed 36:9

    PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N., . . . Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136(4):4159–4168.

    Google Scholar 

  • Kidane YG, Gesesse CA, Hailemariam BN, Desta EA, Mengistu DK, Fadda C, Pè ME, Dell’Acqua M (2019) A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. Plant Biotechnol J 17:1380–1393

    PubMed  PubMed Central  Google Scholar 

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302

    PubMed  PubMed Central  Google Scholar 

  • Kumar M, Kumar Patel M, Kumar N, Bajpai AB, Siddique KHM (2021) Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int J Mol Sci 22:9108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano M, Saito K (2012) Role of metabolomics in crop improvement. J Plant Biochem Biotechnol 21:24–31

    CAS  Google Scholar 

  • Lankadurai BP, Nagato EG, Simpson MJ (2013) Environmental metabolomics:an emerging approach to study organism responses to environmental stressors. Environ Rev 21:180−205

    Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenaerts B, Collard BC, Demont M (2019) Improving global food security through accelerated plant breeding. Plant Sci 287:110207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Fang J, Qi X, Lin M, Zhong Y, Sun L, Cui W (2018) Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. Int J Mol Sci 19:1471

    PubMed  PubMed Central  Google Scholar 

  • Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka-Wall H, Fiehn O, Törjék O, Selbig J, Altmann T (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J 53:960–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G-A, Zhang H, Liu Z, Shi M (2020) Pan-genome of wild and cultivated soybeans. Cell 182:162-176.e13

    PubMed  Google Scholar 

  • Lönnerdal B (2003) Genetically Modified Plants for Improved Trace Element Nutrition. J Nutr 133:1490S–1493S

    PubMed  Google Scholar 

  • Lyu S, Gao L, Zhang R, Zhang C, Hou X (2020) Correlation analysis of expression profile and quantitative iTRAQ-LC-MS/MS proteomics reveals resistance mechanism against TuMV in Chinese cabbage (Brassica rapa ssp. pekinensis). Front Genet 11:963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813

    CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    CAS  PubMed  Google Scholar 

  • Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara K, Provart NJ, Sakurai T, Shimada Y, Saito K (2010) AtMetExpress development: a phytochemical atlas of Arabidopsis development. Plant Physiol 152:566–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2:e347

    PubMed  PubMed Central  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Doležel J, Batley J (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013

    CAS  PubMed  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    CAS  Google Scholar 

  • Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M (2009) Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol 149:1505–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S (2018) Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 8:1–18.

    Google Scholar 

  • Nadarajah, Kalaivani K (2020) ROS homeostasis in abiotic stress tolerance in plants. Inter J Molecul Sci 21(15):5208

    Google Scholar 

  • Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL, Blake TK, Horsley RD, Smith KP (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild× cultivated barley. Genetics 203:1453–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:1–14

    Google Scholar 

  • Ogawa D, Nonoue Y, Tsunematsu H, Kanno N, Yamamoto T, J-i Y (2018) Discovery of QTL alleles for grain shape in the Japan-MAGIC rice population using haplotype information. G3 Gene Genom Genet 8:3559–3565

    CAS  Google Scholar 

  • Ongom PO, Ejeta G (2018) Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of sorghum (Sorghum bicolor (L.) Moench). G3 Gene Genom Genet 8:331–341

    CAS  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56:389–400

    CAS  PubMed  Google Scholar 

  • Park S, Kang K, Kim YS, Back K (2009) Endosperm-specific expression of tyramine N-hydroxycinnamoyltransferase and tyrosine decarboxylase from a single self-processing polypeptide produces high levels of tyramine derivatives in rice seeds. Biotechnol Lett 31:911–915

    CAS  PubMed  Google Scholar 

  • Patil G, Do T, Vuong TD, Valliyodan B, Lee J-D, Chaudhary J, Shannon JG, Nguyen HT (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:1–13

    CAS  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Geno 5

    Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci 108:6893–6898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Jagadeeshselvam N, Valarmathi R, Sachin B, Sasikala R, Senthil N, Sudhakar D, Robin S, Muthurajan R (2014) Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol Biol 85:485–503

    CAS  PubMed  Google Scholar 

  • Ray S, Satya P (2014) Next generation sequencing technologies for next generation plant breeding. Front Plant Sci 5:367

    PubMed  PubMed Central  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PloS one 8:e66428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F (2019) Metabolomics: A way forward for crop improvement. Metabolites 9:303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci 109:8872–8877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roldan MVG, Engel B, de Vos RC, Vereijken P, Astola L, Groenenboom M, van de Geest H, Bovy A, Molenaar J, van Eeuwijk F (2014) Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics 10:958–974

    Google Scholar 

  • Ronald PC (2014) Lab to farm: applying research on plant genetics and genomics to crop improvement. PLoS Biol 12:e1001878

    PubMed  PubMed Central  Google Scholar 

  • Ru L, Osorio S, Wang L, Fernie AR, Patrick JW, Ruan Y-L (2017) Transcriptomic and metabolomics responses to elevated cell wall invertase activity during tomato fruit set. J Exp Bot 68:4263–4279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sallam A, Martsch R (2015) Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica 143:501–514

    PubMed  Google Scholar 

  • Satterthwaite D, McGranahan G, Tacoli C (2010) Urbanization and its implications for food and farming. Philos Trans Royal Soc B Biol Sci 365:2809–2820

    Google Scholar 

  • Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genomics 13:296–307

    PubMed  PubMed Central  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    CAS  PubMed  Google Scholar 

  • Scheben A, Edwards D (2018) Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol 19:1–7

    Google Scholar 

  • Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W (2014) Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346:1084–1088

    CAS  PubMed  Google Scholar 

  • Sharma R, Draicchio F, Bull H, Herzig P, Maurer A, Pillen K, Thomas WTB, Flavell AJ (2018) Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding. J Exp Bot 69:3811–3822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simó C, Ibáez C, Valdés A, Cifuentes A, García-Cañas V (2014) Metabolomics of genetically modified crops. Int J Mol Sci 15:18941–18966

    PubMed  PubMed Central  Google Scholar 

  • Song H-H, Ryu HW, Lee KJ, Jeong IY, Kim DS, Oh S-R (2014) Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage. Metabolomics 10:833–841

    CAS  Google Scholar 

  • Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F, Barad O, Barbazuk WB, Bass HW, Baruch K, Ben-Zvi G (2018) The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat Genet 50:1282–1288

    CAS  PubMed  Google Scholar 

  • Stadlmeier M, Hartl L, Mohler V (2018) Usefulness of a multiparent advanced generation intercross population with a greatly reduced mating design for genetic studies in winter wheat. Front Plant Sci 9:1825

    PubMed  PubMed Central  Google Scholar 

  • Stevens RG, Baldet P, Bouchet J-P, Causse M, Deborde C, Deschodt C, Faurobert M, Garchery C, Garcia V, Gautier H (2018) A systems biology study in tomato fruit reveals correlations between the ascorbate pool and genes involved in ribosome biogenesis, translation, and the heat-shock response. Front Plant Sci 9:137

    PubMed  PubMed Central  Google Scholar 

  • Stewart D, Shepherd LVT (2013) Chapter 9: Metabolomics for the safety assessment of genetically modified (GM) crops. In: Weimer BC, Slupsky C (eds) Metabolomics in food and nutrition. Woodhead Publishing, pp 192–216

    Google Scholar 

  • Sun X, Zhu A, Liu S, Sheng L, Ma Q, Zhang L, Nishawy EME, Zeng Y, Xu J, Ma Z (2013) Integration of metabolomics and subcellular organelle expression microarray to increase understanding the organic acid changes in post-harvest citrus fruit. J Integr Plant Biol 55:1038–1053

    CAS  PubMed  Google Scholar 

  • Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, Duan N, Khan A, Ban S, Xu K, Cheng L (2020) Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet 52:1423–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takáč T, Šamajová O, Šamaj J (2017) Integrating cell biology and proteomic approaches in plants. J Proteome 169:165–175

    Google Scholar 

  • Tang S, Liang H, Yan D, Zhao Y, Han X, Carlson JE, Xia X, Yin W (2013) Populus euphratica: the transcriptomic response to drought stress. Plant Mol Biol 83:539–557

    CAS  PubMed  Google Scholar 

  • Tarpley L, Duran AL, Kebrom TH, Sumner LW (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5:1–12

    Google Scholar 

  • Tayeh N, Klein A, Le Paslier M-C, Jacquin F, Houtin H, Rond C, Chabert-Martinello M, Magnin-Robert J-B, Marget P, Aubert G (2015) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941

    PubMed  PubMed Central  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Google Scholar 

  • Tian X, Li R, Fu W, Li Y, Wang X, Li M, Du D, Tang Q, Cai Y, Long Y (2020) Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Sci China Life Sci 63:750–763

    PubMed  Google Scholar 

  • Tietel Z, Feldmesser E, Lewinsohn E, Fallik E, Porat R (2011) Changes in the transcriptome of Mor’mandarin flesh during storage: emphasis on molecular regulation of fruit flavor deterioration. J Agric Food Chem 59:3819–3827

    CAS  PubMed  Google Scholar 

  • Tomlinson I (2013) Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud 29:81–90

    Google Scholar 

  • Toubiana D, Semel Y, Tohge T, Beleggia R, Cattivelli L, Rosental L, Nikoloski Z, Zamir D, Fernie AR, Fait A (2012) Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genet 8:e1002612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569

    PubMed  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    CAS  PubMed  Google Scholar 

  • Turner MF, Heuberger AL, Kirkwood JS, Collins CC, Wolfrum EJ, Broeckling CD, Prenni JE, Jahn CE (2016) Non-targeted metabolomics in diverse sorghum breeding lines indicates primary and secondary metabolite profiles are associated with plant biomass accumulation and photosynthesis. Front Plant Sci 7:953

    PubMed  PubMed Central  Google Scholar 

  • Uarrota VG, Fuentealba C, Hernández I, Defilippi-Bruzzone B, Meneses C, Campos-Vargas R, Lurie S, Hertog M, Carpentier S, Poblete-Echeverría C (2019) Integration of proteomics and metabolomics data of early and middle season Hass avocados under heat treatment. Food Chem 289:512–521

    Google Scholar 

  • Valdés A, Simó C, Ibáñez C, García-Cañas V (2013) Foodomics strategies for the analysis of transgenic foods. TrAC Trends Anal Chem 52:2–15

    Google Scholar 

  • Van Bel M, Proost S, Van Neste C, Deforce D, Van de Peer Y, Vandepoele K (2013) TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biol 14:1–10

    Google Scholar 

  • van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265

    PubMed  Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S (2017a) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088

    CAS  PubMed  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A (2017b) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, Bajaj P, Cubry P, Rathore A, Jian J (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51:857–864

    CAS  PubMed  Google Scholar 

  • Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol 56:190–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    CAS  PubMed  Google Scholar 

  • Vidal M (2011) E. Cusick M. & Barabási A.-L. Interactome networks and human disease. Cell 144:986–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W-S, Pan Y-J, Zhao X-Q, Dwivedi D, Zhu L-H, Ali J, Fu B-Y, Li Z-K (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    CAS  PubMed  Google Scholar 

  • Wang C, Hu S, Gardner C, Lübberstedt T (2017a) Emerging avenues for utilization of exotic germplasm. Trends Plant Sci 22:624–637

    CAS  PubMed  Google Scholar 

  • Wang Z, Cui Y, Vainstein A, Chen S, Ma H (2017b) Regulation of fig (Ficus carica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci 8:1990

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X (2015) Genetic discovery for oil production and quality in sesame. Nat Commun 6:1–10

    Google Scholar 

  • Wen W, Li K, Alseekh S, Omranian N, Zhao L, Zhou Y, Xiao Y, Jin M, Yang N, Liu H (2015) Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. Plant Cell 27:1839–1856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins KE, Booher NJ, Wang L, Bogdanove AJ (2015) TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors. Front Plant Sci 6:536

    PubMed  PubMed Central  Google Scholar 

  • Xavier A, Hall B, Hearst AA, Cherkauer KA, Rainey KM (2017) Genetic architecture of phenomic-enabled canopy coverage in Glycine max. Genetics 206:1081–1089

    PubMed  PubMed Central  Google Scholar 

  • Xavier A, Jarquin D, Howard R, Ramasubramanian V, Specht JE, Graef GL, Beavis WD, Diers BW, Song Q, Cregan PB (2018) Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population. G3 Gene Genom Genet 8:519–529

    CAS  Google Scholar 

  • Xu P, Liu Z, Fan X, Gao J, Zhang X, Zhang X, Shen X (2013) De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress. Gene 525:26–34

    CAS  PubMed  Google Scholar 

  • Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY (2012) Transcriptional regulation of plant secondary metabolism F. J Integr Plant Biol 54:703–712

    CAS  PubMed  Google Scholar 

  • Yang L, Wen K-S, Ruan X, Zhao Y-X, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F (2021) Applications of multi-omics technologies for crop improvement. Front Plant Sci 1846

    Google Scholar 

  • Yates SA, Swain MT, Hegarty MJ, Chernukin I, Lowe M, Allison GG, Ruttink T, Abberton MT, Jenkins G, Skøt L (2014) De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics 15:1–15

    Google Scholar 

  • Ying H, Shi J, Zhang S, Pingcuo G, Wang S, Zhao F, Cui Y, Zeng X (2019) Transcriptomic and metabolomic profiling provide novel insights into fruit development and flesh coloration in Prunus mira Koehne, a special wild peach species. BMC Plant Biol 19:1–16

    CAS  Google Scholar 

  • Yu J, Golicz AA, Lu K, Dossa K, Zhang Y, Chen J, Wang L, You J, Fan D, Edwards D (2019) Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Plant Biotechnol J 17:881–892

    CAS  PubMed  Google Scholar 

  • Yuan Y, Bayer PE, Batley J, Edwards D (2017) Improvements in genomic technologies: application to crop genomics. Trends Biotechnol 35:547–558

    CAS  PubMed  Google Scholar 

  • Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028–12033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N (2014) The CRISPR/C as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    CAS  PubMed  Google Scholar 

  • Zhang Z, Ge X, Luo X, Wang P, Fan Q, Hu G, Xiao J, Li F, Wu J (2018) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front Plant Sci 9:842

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J (2019) QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant 12:426–437

    PubMed  Google Scholar 

  • Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284

    CAS  PubMed  Google Scholar 

  • Zhao J, Bayer PE, Ruperao P, Saxena RK, Khan AW, Golicz AA, Nguyen HT, Batley J, Edwards D, Varshney RK (2020) Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnol J 18:1946–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Ma C, Xu H, Yuan K, Lu X, Zhu Z, Wu Y, Xu G (2009) Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by using GC-FID and GC–MS. J Chromatogr B 877:725–732

    CAS  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    CAS  PubMed  Google Scholar 

  • Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Liu Z, Zeng K, Zhong Y (2016) Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants 2:1–8

    Google Scholar 

  • Zivy M, Wienkoop S, Renaut J, Pinheiro C, Goulas E, Carpentier S (2015) The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping. Front Plant Sci 6:448

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Waseem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waseem, M., Nkurikiyimfura, O., Niyitanga, S., Nyimbo, W.J., Shaheen, I., Aslam, M.M. (2022). Role of Metabolomics and Next-Generation Sequencing for Sustainable Crop Production. In: Prakash, C.S., Fiaz, S., Fahad, S. (eds) Principles and Practices of OMICS and Genome Editing for Crop Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-96925-7_5

Download citation

Publish with us

Policies and ethics