
3MaximumaPosteriori Solution

We will now introduce a fundamental approximation used in most practical data-
assimilation methods, namely the definition of Gaussian priors. This approximation
simplifies the Bayesian posterior, which allows us to compute the maximum a poste-
riori (MAP) estimate and sample from the posterior pdf. This chapter will introduce
the Gaussian approximation and then discuss the Gauss–Newton method for finding
theMAP estimate. This method is the starting point for many of the data-assimilation
algorithms discussed in the following chapters.

3.1 Maximum a Posteriori (MAP) Estimate

TheMAP solution is the state vector z that maximizes the posterior pdf, and can thus
be seen as the most probable solution for z given the measurements d. We define it
as

zMAP = argmax
z

(
f (z|d)

)
. (3.1)

The variable z is called the control variable or control vector in the inverse modeling
and control literature. Since we can write any smooth posterior pdf as

f (z|d) ∝ exp
{−J(z)

}
, (3.2)

and the logarithm is a monotonically increasing function of its argument, the vector
that maximizes the posterior pdf equals the vector that minimizes the cost function
J(z). Hence, we can write

zMAP = argmin
z

J(z). (3.3)

We can find a function’s minimum by setting its gradient equal to zero. So, at the
minimum, we have

∇zJ(zMAP) = 0. (3.4)
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28 3 Maximum a Posteriori Solution

Furthermore, the second derivative of the cost function, the so-called Hessian, has
information on the cost function’s curvature at the minimum. As we will see, the
inverse of that Hessian provides a first-order estimate of the posterior covariance.

In most geoscience applications of data assimilation that compute the MAP esti-
mate, one assumes that both the prior and observation errors are Gaussian, leading to
a more tractable problem. We will explore such methods in the following sections,
followed by the explicit solutions for linear problems and an extensive treatment of
iterative methods for nonlinear problems.

3.2 Gaussian Prior and Likelihood

Manypopular data-assimilationmethods assume that the prior distributions areGaus-
sian, leading to a simple representation of the data-assimilation problem. Note that
the cost function is not quadratic in z as the measurement operator is still nonlinear.
Hence, we introduce the following approximation.

Approximation 4 (Gaussian prior and likelihood) We assume that the prior dis-
tributions of the state vector’s components z and observation errors ε are both
Gaussian distributed. ��

We will in Chap. 9 discuss methods that do not apply Approx. 4. Now, we define

f (z) = N(
zf ,Czz

)
, (3.5)

f
(
d | g(z)) = f (ε) = N(

0,Cdd
)
, (3.6)

where the superscript f denote “first guess.” Thus, zf is the “first guess” or prior
estimate of the state vector, andCzz is its error covariance. The prior error covariance
includes the covariances between all the uncertain variables in the state vector,

Czz =

⎛

⎜
⎜
⎝

Cx0x0 Cx0θ Cx0u Cx0q

Cθx0 Cθθ Cθu Cθq

Cux0 Cuθ Cuu Cuq

Cqx0 Cqθ Cqu Cqq

⎞

⎟
⎟
⎠ . (3.7)

Note that we formulate z such that it contains the model state at time zero and the
model errors at other times, the so-called forcing formulation. In this case, the Gaus-
sian prior assumption is reasonable and often assumed. However, if we reformulate
the problem so that z contains the model solution, there is no model error in z. A
Gaussian prior for zwould then force us to assume that the model is linear since only
a linear model initialized with a Gaussian initial state would yield a model state that
remainsGaussian over a timewindow. For this reason,we use the forcing formulation
here. In most data-assimilation problems, we would neglect the covariances between
different variables and retain only the covariance matrices on the diagonal. However,
for the derivation of the methods below, we do not need to make this assumption.
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The introduction of Gaussian priors leads to a posterior pdf formulation that we
use in Bayes theorem to find

f (z|d) ∝ exp
{ − J(z)

}
, (3.8)

with the cost function J(z) defined as

Cost function

J(z) = 1

2

(
z − zf

)TC−1
zz

(
z − zf

) + 1

2

(
g(z) − d

)TC−1
dd

(
g(z) − d

)
. (3.9)

Note thatg(z) is the nonlinearmapping from the state vector, i.e., initial conditions,
model errors, and parameters, to the predictedmeasurements. Thus, we have used the
Bayesian formulation fromEq. (2.43). Asmentioned,minimizingJ(z) in Eq. (3.9) is
equivalent tomaximizing the a posteriori probability (MAP) solution of the posterior
pdf in Eq. (3.8) with Approx. 4 on the Gaussian priors.

To find the MAP solution, we start with the cost function’s gradient

∇zJ(z) = C−1
zz

(
z − zf

) + ∇zg(z)C
−1
dd

(
g(z) − d

)
, (3.10)

and by setting it to zero we define the minimizing solution za from

The gradient set to zero

C−1
zz

(
za − zf

) + ∇zg
(
za

)
C−1
dd

(
g
(
za

) − d
)

= 0. (3.11)

Here the superscript a denote “analysis.” This equation forms the implicit, closed-
form solution of our estimation problem that minimizes the cost function in Eq. (3.9).
The model sensitivity ∇zg

(
za

)
is the gradient of the predicted measurements to

the state vector. The following sections will present iterative methods that solve
Eq. (3.11), leading to various 4DVar formulations.

3.3 Iterative Solutions

Even if g is a linear function of its argument and we can write down the explicit
solution to Eq. (3.11), it is not uncommon to solve the problem iteratively. The
reason is that the matrices involved can be of very high dimension and impossible
to store in a computer. Another more practical reason is to avoid inverting matrices.

An important iterative minimization method is the so-called Newton method,
which we can derive from a second-order Taylor expansion of the cost function.
If we have an estimate of the minimum zi , we can improve this estimate by mini-
mizing the expression

J
(
zi + δz

)
≈ J

(
zi

)
+ δzT ∇zJ i + 1

2
δzT ∇z∇zJ i δz, (3.12)
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for δz. Here ∇zJ i denotes the cost function’s gradient evaluated at zi , and ∇z∇zJ i

is the cost function’s Hessian where we use the gradient operator twice. We readily
find the solution for δz as

1

2
∇z∇zJ iδz = −∇zJ i . (3.13)

The solution to this problem leads to a new estimate of the cost function’s minimum,
zi+1 = zi + δz, and we repeat the process with a second-order Taylor expansion
around zi+1.

As mentioned above, although we could multiply this equation by the inverse of
the Hessian to directly find the solution for δz, this is often not the way this equation
is solved. The reason is that the covariance matrices are often so large that they
cannot be stored, not even on the world’s most giant supercomputers. Instead, we
use operators that return the matrix-vector products with these matrices. A beautiful
example of this procedure is the so-called variational methods such as 4DVar, which
replaces matrix-vector products with adjoint and forward model integrations. This
procedure effectively leads to an iterative solution of the form

zi+1 = zi − γ i Bi ∇zJ
(
zi

)
. (3.14)

In Eq. (3.14), i is the iteration index, γ i is a scalar that determines the so-called step
size, and Bi is a matrix we can choose, typically in operator form, as mentioned
above. The simplest choice, Bi = I, leads to the so-called steepest descent method,
where the new iterate is directly downhill of the previous iterate. In many geoscience
applications of data assimilation, this approach turns out to be a poor choice with a
low convergence rate because the cost function often has a very irregular shape in
high-dimensional spaces.

Aswe have seen, in theNewtonmethod, onewould like to chooseBi as the inverse
of the Hessian, and γ i = 1. The advantage of this choice is that if the Hessian is
positive definite, the convergence rate is quadratic, meaning that |zi+1 − za| =
r |zi − za|2, where za denotes the state that minimizes the cost function and r is a
positive constant that depends on details of the Hessian.

Often the Hessian is not available, so it is common to use an approximate Hessian.
For instance, the Gauss–Newtonmethod discussed below ignores part of the Hessian
to ensure that the matrix in front of δz is symmetric positive definite by construc-
tion. Other approaches may start with an approximation to the Hessian and make
this approximation more accurate at each iteration by using new gradient informa-
tion. These are so-called quasi-Newton methods, and a much-used alternative is the
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method. Because these methods
use information from the Hessian, their convergence rate is faster than methods that
ignore that information, such as steepest descent, but still not quadratic as in the
Newton method. We say their convergence is superlinear.

If the matrix in front of δz is symmetric and positive definite, we can use an
extremely efficientmethod called conjugate gradient. It has the advantage that it only
requires the computation of onematrix-vector product at each iteration. Furthermore,
we do not need to store the matrix. We can often represent it by a code that takes a
vector as input and gives the matrix times that vector as output.
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The Newton method is used in 3DVar and 4DVar, as we will discuss in Chaps. 4,
5, and 6. Primarily used, however, is the Gauss–Newton method, leading to im-
plementations such as incremental 4DVar, which explores the conjugate-gradient
minimization method commonly used in numerical weather and ocean forecasting.
Furthermore, this formalism has led to a general methodology that can effectively be
solved in ensemble space, resulting in iterative ensemble smoothers used in reservoir-
engineering applications, amongst others. We will discuss this method next.

3.4 Gauss–Newton Iterations

A popular choice for finding an iterative solution to the cost function is the so-called
Gauss–Newton method (Lawless et al., 2005). The Gauss–Newton method is an
approximate Newton method where we approximate the Hessian by ignoring the
second-order derivative of the nonlinear measurement operator. Let’s take a deeper
look at this approximation. We can write the full Hessian of the cost function in
Eq. (3.9) as

∇z∇zJ = C−1
zz + ∇zg(z)C

−1
dd

(∇zg(z)
)T + ∇z∇zg(z)C

−1
dd

(
g(z) − d

)
. (3.15)

The Gauss–Newton method ignores the last term, leading to

∇z∇zJ(z) ≈ C−1
zz + ∇zg(z)C

−1
dd

(∇zg(z)
)T

. (3.16)

We can now write a Gauss–Newton iteration similar to Eq. (3.14) as

Gauss–Newton iteration

zi+1 = zi−γ i
(
C−1
zz +GiTC−1

dd G
i
)−1 (

C−1
zz (zi−zf)+GiTC−1

dd

(
g(zi )−d

))
. (3.17)

Here the increment is a steplength γ times the gradient normalized by (C−1
zz +

GiTC−1
dd G

i
)
, the approximate Hessian. In correspondence with Eq. (3.14), we have

chosen Bi =
(
C−1
zz + GiTC−1

dd G
i
)−1

. Furthermore, we have defined the gradient of
g(z) at iteration i as

GiT = ∇zg
(
zi

)
. (3.18)

We can interpret the operator Gi as the tangent-linear-model operator at iteration
i , which provides the linear relation between the state vector and the observations.

Likewise, we can interpret the operator GiT as the tangent-linear model’s adjoint.

3.5 Incremental Form of Gauss–Newton Iterations

As mentioned earlier, the storage of the approximate Hessian would require sub-
stantial memory if we use the direct Gauss–Newton method for high-dimensional
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problems, and the Hessian’s inversion can be rather expensive. We will present
two solutions to solve this problem. In Chap 7, we will use Eq. (3.17) to develop
the ensemble-random-maximum-likelihood (EnRML) method, which is commonly
used in the petroleum industry.

An alternative is to write Eq. (3.17) with γ i = 1 as
(
C−1
zz +GiTC−1

dd G
i
)(
zi+1 − zi

) = −
(
C−1
zz (zi − zf)+GiTC−1

dd

(
g(zi )−d

))
. (3.19)

When we define, as before,
δz = zi+1 − zi , (3.20)

this equation also arises as the minimum of the following quadratic cost function
for δz

J(δz) = 1

2

(
δz + zi − z f )TC−1

zz

(
δz + zi − z f )

+ 1

2

(
Giδz + g(zi ) − d

)TC−1
dd

(
Giδz + g(zi ) − d

)
.

(3.21)

This cost function linearizes the model and observation operators around the model
trajectory for each Gauss–Newton iteration starting from the initial condition zi .
Because δz is small, we can approximate g

(
zi + δz

) ≈ g
(
zi

) + Giδz in which Gi is
the transpose of the gradient of g

(
zi

)
from Eq. (3.18). For convenience, we define

the innovation vector
ηi = d − g

(
zi

)
, (3.22)

and the residual
ξ i = zf − zi . (3.23)

With η and ξ , we can now write the cost function in Eq. (3.21) for the increments δz
as

Quadratic cost function for the increments

J(δz) = 1

2

(
δz − ξ i

)T C−1
zz

(
δz − ξ i

) + 1

2

(
Giδz − ηi

)T C−1
dd

(
Giδz − ηi

)
. (3.24)

The solution for the increments becomes, from Eq. (3.19),
(
C−1
zz + GiTC−1

dd G
i
)
δz = C−1

zz ξ i + GiTC−1
dd ηi . (3.25)

We can solve this linear set of equations iteratively, and we usually implement the
approximate Hessian as a set of operations working on the vector δz. Quasi-Newton
methods like BFGS and conjugate gradient are highly efficient for minimizing this
cost function.

Thus, the incremental form of the Gauss–Newton method corresponds to an iter-
ative scheme where we find the minimum of a quadratic cost function for δz in each
iteration. After that, we update zi+1 = zi + δz from (3.20), integrate the nonlinear
model with the updated state vector, and recompute the variables ηi and ξ i from
Eqs. (3.22) and (3.23) before we solve the quadratic minimization problem again.
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Gauss–Newton has a special status among minimization methods. It turns non-
quadratic minimization problems into a sequence of quadratic minimization prob-
lems. We can solve each of these quadratic problems iteratively, leading to one
iteration within another. We will explore this approach in the methods discussed in
the following chapters.
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