Skip to main content

Some Noncommunicable Diseases of the Central Nervous System with a Possible Infectious Etiology (in Collaboration with V.A. Orlova, I.I. Mikhailova, A.A. Garbuzov, D.A. Khavkina, P.V. Chukhliaev, T.A. Ruzhentsova I. L. Naidenova, A. B. Danilov, A.V. Simonova, E.G. Filatova, I.A. Pavlovsky, O.V. Bystrova, A.M. Zatevalov, S.L. Bezrodny, T.Sh. Sadekov)

  • Chapter
  • First Online:
Infectious Lesions of the Central Nervous System
  • 565 Accesses

Abstract

The authors’ review and own data are presented, indicating the possible role of infectious agents as an etiologic factor of schizophrenia, schizoaffective psychosis (SHAP), Alzheimer's disease, atherosclerosis, migraine, and autism spectrum disorders (ASD).

The results of a multidisciplinary study (psychiatric, immunological, immunochemical, neurophysiological, structural MRI, MR angiography) of 180 patients with schizophrenia and SHAP made it possible to substantiate the presence in patients of a chronic polyinfectious process in which herpesviruses are the most significant etiological factor. This process is associated with psychiatric disorders, and is also manifested by inflammatory and degenerative symptoms in brain tissues, cerebral vessels and the collector system, which allows us to raise the question of defining the disease as atypical encephalitis.

Possible pathogens that can both activate and initiate a pathological process in the brain tissues in Alzheimer's disease are considered. The available data on the influence of pathogens on the occurrence and progression of atherosclerosis are analyzed. The authors’ own research results using PCR diagnostics of autopsy material are presented. The dependence of vascular lesions on the detection of infectious agents is shown.

Literature and own data evaluating the possible role of different pathogens in the development of lesions of atherosclerotic origin, including stroke, are discussed specially. Clinical aspects, results of molecular biological and morphological study are presented.

For the first time, the authors present the features of the microbial landscape of the pharynx of patients with migraine – the association of pathogenic microorganisms (herpesviruses, cocci) in the presence of dysbiosis in the throat (a decrease in the content of normal microflora characteristic of the oropharynx, and the appearance of intestinal microflora, normally not peculiar to it) is described. The degree of disruption of the throat microbiota correlated with the severity of the clinical picture of the disease. The etiotropic therapy carried out led to a narrowing or complete disappearance of migraine attacks.

A review of publications on the influence of infectious agents and the composition of the intestinal microbiota and the oropharyngeal microbiota on the dynamics of ASD is presented. Modern ideas about the role of propionic acid, the level of which increases with endotoxemia, in the development of inflammation of brain structures and aggravation of symptoms in ASD are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to modern ideas about multifactorial diseases, which include schizophrenia, the concept of risk factor (environmental, genetic) coincides with the concept of etiopathogenetic factor. However, at present, the question of removing a number of diseases of this group into the category of atypical slow infections has been raised.

References

  1. Tiganov AS. A Guide to Psychiatry. Ch. 1, 2. M: Medicine, 1999. (In Russian).

    Google Scholar 

  2. Orlovskaya DD. Pathological anatomy of psychosis. In: Snezhnevsky AV, editor. A guide to psychiatry, Part 1. M.: Medicine; 1983. p. 158–86. (In Russian).

    Google Scholar 

  3. Tiganov AS. Pathological anatomy of schizophrenia. In: Tiganov AS, editor. A guide to psychiatry, Ch.1. M.: Medicine; 1999. p. 506–10. (In Russian).

    Google Scholar 

  4. Orlova VA, Savina TD, Trubnikov V and., Yu SN. etc. Structural features of the brain (according to magnetic resonance imaging) and their functional connections in the families of patients with schizophrenia. Russian Psychiatr J. 6: 48-56. 199 (In Russian).

    Google Scholar 

  5. Gur RE, Pearlson GD. Neuroimaging in schizophrenia research. Schizophr Bull. 1993;19(2):337–53.

    Article  CAS  PubMed  Google Scholar 

  6. Pearlson GD. Marsh L Structural brain imaging in schizophrenia: a selective review. Biol Psychiatry. 1999;46(5):627–49.

    Article  CAS  PubMed  Google Scholar 

  7. Sigmundsson T, Suckling J, Maier M, et al. Structural abnormalities in frontal, temporal and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry. 2001;158:234–43.

    Article  CAS  PubMed  Google Scholar 

  8. Mc Donald C, Grech A, Toulopoulou T, et al. Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet. 2002;114:616–25.

    Article  Google Scholar 

  9. Bogerts B. Recent advances in the neuropathology of schizophrenia. Schizophr Bull. 1993;19(2):431–45. https://doi.org/10.1093/schbul/19.2.431.

    Article  CAS  PubMed  Google Scholar 

  10. Chua SE, Murray RM. The neurodevelopment theory of schizophrenia: evidence concerning structure and neuropsychology. Acta Neuropsychiatry. 1996;8:25–34.

    Article  CAS  Google Scholar 

  11. Jones P, Murray RM. The genetics of schizophrenia is the genetics of neurodevelopment. Br J Psychiatry. 1991;158:615–23.

    Article  CAS  PubMed  Google Scholar 

  12. Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm. 1986;65:303–26.

    Article  CAS  PubMed  Google Scholar 

  13. Jaskiw GE, Juliano DM, GoldbergT E, et al. Cerebral ventricular enlargement in schizophreniform disorder does not progress. A seven year follow-up study. Schizophr Res. 1994;14:23–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lim KO, Harris D, Beal M, J. G., et al. Gray matter deficits in young onset schizophrenia are independent of age of onset. Biol Psychiatry. 1996;40:4–13.

    Article  CAS  PubMed  Google Scholar 

  15. Vita A, Dieci M, Giobbio GM, et al. CT scan abnormalities and outcome of chronic schizophrenia. Am J Psychiatry. 1991;148:1577–9.

    Article  CAS  PubMed  Google Scholar 

  16. Mathalon DH, Sullivan EV, Lim KO, et al. Progressive Brain Volume Changes and the Clinical Course of Schizophrenia in Men. A Longitudinal Magnetic Resonance Imaging Study. Arch Genet Psychiatry. 2001;58(2):148–57. https://doi.org/10.1001/archpsyc.58.2.148.

    Article  CAS  Google Scholar 

  17. Perez-Neri I, Ramirez-Bermudez J, Montes S, Rios C. Possible mechanisms of neurodegeneration in schizophrenia. Neurochem Res. 2006;31:1279–94.

    Article  CAS  PubMed  Google Scholar 

  18. Uranova N, Orlovskaya D, Vikhreva O, et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Research Bulletin. 2001;55(5):597–610.

    Article  CAS  PubMed  Google Scholar 

  19. Keshavan MS. Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. J Psych Research. 1999;33:513–21.

    Article  CAS  Google Scholar 

  20. Orlova VA, Trubnikov VI, Odintsova SA, et al. Genetic analysis of the anatomical and morphological signs of the brain detected by magnetic resonance imaging in families of patients with schizophrenia. Genetics. 1999;35(7):998–1004. (In Russian)

    CAS  Google Scholar 

  21. Orlova VA. Clinical and genetic studies of schizophrenia (current state and development prospects). Russian Psychiatric J. 2003;1:31–5. (In Russian)

    Google Scholar 

  22. Miloserdov EA, Gubsky LV, Orlova VA, et al. Structural peculiarities of the brain in patients with schizophrenia and their relatives according to morphometric analysis of MRI images of the brain. Soc Clin Psychiatry. 2005;15(1):5–12. (In Russian)

    Google Scholar 

  23. Karlsson JL. Partly dominant transmission of schizophrenia in Iceland. Br J Psychiatry. 1988;152:324–9. https://doi.org/10.1192/bjp.152.3.324.

    Article  CAS  PubMed  Google Scholar 

  24. Kendler KS, Karkowski-Shuman L, Walsh D. The risk for psychiatric illness in siblings of schizophrenics: the impact of psychotic and non-psychotic affective illness and alcoholism in parents. Acta Psychiatr Scand. 1996;94(1):49–55. https://doi.org/10.1111/j.1600-0447.1996.tb09824.x.

    Article  CAS  PubMed  Google Scholar 

  25. Gottesman I. Schizophrenia genesis: the origins of madness. New York: NY: Freeman; 1991. p. 296. https://doi.org/10.1192/S0007125000030919.

    Book  Google Scholar 

  26. Torrey EF. Are we overestimating the genetic contribution to schizophrenia? Schizophr Bull. 1992;18:159–70. https://doi.org/10.1093/schbul/18.2.159.

    Article  CAS  PubMed  Google Scholar 

  27. Boyd JH, Pulver AE, Stewart W. Season of birth: schizophrenia and bipolar disorder. Schizophr Bull. 1986;12:173–85. https://doi.org/10.1093/schbul/12.2.173.

    Article  CAS  PubMed  Google Scholar 

  28. Bradbury TN, Miller GA. Season of birth in schizophrenia a review of evidence, methodology, and etiology. Psychol Bull. 1985;98(3):569–94. https://doi.org/10.1037/0033-2909.98.3.569.

    Article  CAS  PubMed  Google Scholar 

  29. Susser E, Lin SP. Schizophrenia after prenatal exposure to the Dutch hunger winter of 1944–1945. Arch Gen Psychiatry. 1994;51(333–334) https://doi.org/10.1001/archpsyc.1992.01820120071010.

  30. Torrey EF, Bowler AE, Taylor EH, et al. Schizophrenia and manic depressive disorder: the biological roots of mental illness as revealed by a landmark study of identical twins. New York: Basic Books; 1994. p. 274. https://doi.org/10.1176/ajp.152.9.1395.

    Book  Google Scholar 

  31. Adams W, Kendell RE, Hare EH, et al. Epidemiological evidence that maternal influenza contributes to the etiology of schizophrenia. An analysis of Scottish, English, and Danish data. Br J Psychiatry. 1993;163:522–34. https://doi.org/10.1192/bjp.163.4.522.

    Article  CAS  PubMed  Google Scholar 

  32. Buka SL, Cannon TD, Torrey EF, et al. Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biol Psychiatry. 2007;63:809–15. https://doi.org/10.1016/j.biopsych.2007.09.022.

    Article  PubMed  Google Scholar 

  33. Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull. 2006;32:200–2. https://doi.org/10.1093/schbul/sbj052.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dalman C, Allebeck P, Gunnell D, et al. Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than one million Swedish subjects. Am J Psychiatry. 2008;165:59–65. https://doi.org/10.1176/appi.ajp.2007.07050740.

    Article  PubMed  Google Scholar 

  35. Sham PC, MacLean CJ, Kendler KS. Risk of schizophrenia and age difference with older siblings: evidence for a maternal viral infection hypothesis? Br J Psychiatry. 1993;163:627–33. https://doi.org/10.1192/bjp.163.5.627.

    Article  CAS  PubMed  Google Scholar 

  36. Lewis GA, Andreasson DS, Allebeck P. Schizophrenia and city life. Lancet. 1992;340:137–40. https://doi.org/10.1016/0140-6736(92)93213-7.

    Article  CAS  PubMed  Google Scholar 

  37. Torrey EF. Schizophrenia and civilization. New York: Jason Aronson; 1980. p. 230.

    Google Scholar 

  38. Book JA, Wetterberg L, Modrzewska K. Schizophrenia in a North Swedish geographical isolate 1900–1977: epidemiology, genetics andbiochemistry. Clin Genet. 1978;14:373–94. https://doi.org/10.1111/j.1399-0004.1978.tb02105.x.

    Article  CAS  PubMed  Google Scholar 

  39. Kohn ML. Social class and schizophrenia: a review. J Psychiatr Res. 1968;6:155–73. https://doi.org/10.1016/0022-3956(68)90014-9.

    Article  Google Scholar 

  40. Schweitzer L, Su W-H. Population density and the rate of mental illness. Am J Public Health. 1977;67:1165–72. https://doi.org/10.2105/AJPH.67.12.1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eskirol J-E. 1845. Cit. by Oifa A.I. The brain and viruses. Moscow: Russkiy Mir Publishing House; 1999. p. 191. (In Russian)

    Google Scholar 

  42. Drecke T. On the germ-theory of disease. Am J Insanity. 1874;30:443–68.

    Google Scholar 

  43. Morozov VM. On the viral nature of schizophrenia. J Neuropathol Psychiatry named S. S. Korsakov. 1954;54:732–4. (In Russian)

    CAS  Google Scholar 

  44. Orlova VA, Mikhailova II, Lavrov VF, et al. The role of viral factors in the development of endogenous mental pathology (schizophrenia, schizoaffective psychosis): clinical-biological aspects. Mental Health. 2021;12:65–78.

    Google Scholar 

  45. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature. 2007;449(7164):804–10. https://doi.org/10.1038/nature06244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Agorastos A, Bozikas VP. Gut microbiome and adaptive immunity in schizophrenia. Psychiatriki. 2019;30(3):189–92. https://doi.org/10.22365/jpsych.2019.303.189.

    Article  CAS  PubMed  Google Scholar 

  47. Global virome project. http://www.globalviromeproject.org/.

  48. Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycle of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and toxoplasma gondii. Schizophr Bull. 2009;35(6):1163–82. https://doi.org/10.1093/schbul/sbn054.

    Article  CAS  PubMed  Google Scholar 

  49. Barinskij IF, Mahmudov FR. Gerpes. Baku: Victory, 2013; 352p. (In Russian).

    Google Scholar 

  50. Prokofieva-Belgovskaya A. A. Action of genes. Mutations. Population genetics. M.: Meditsina, 1969. 544 p. (In Russian)

    Google Scholar 

  51. Khesin R. B. Impermanence of the genome. M.: Nauka; 1985. 472 p. (In Russian)

    Google Scholar 

  52. Crow TJ. Psychosis as a continuum and the virogene concept. Br Med Bull. 1987;43:754–67.

    Article  CAS  PubMed  Google Scholar 

  53. Oifa A Brain and viruses (virus-genetic hypothesis of the origin of mental diseases). M: Russkii mir 1999. 190 p. (In Russian)

    Google Scholar 

  54. Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 2007;7(2):161–7. https://doi.org/10.1038/nri2015.

    Article  CAS  PubMed  Google Scholar 

  55. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005;25(40):9275–84. https://doi.org/10.1523/JNEUROSCI.2614-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun. 2007;21(1):47–59. https://doi.org/10.1016/j.bbi.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  57. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80. https://doi.org/10.1176/appi.ajp.2009.09030361.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2013;43(2):239–57. https://doi.org/10.1017/S0033291712000736.

    Article  CAS  PubMed  Google Scholar 

  59. Bramham CR, Wells DG. Dendritic mRNA: transport, translation and function. Nat Rev Neurosci. 2007;8:776–89.

    Article  CAS  PubMed  Google Scholar 

  60. Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 2003;24:242–8.

    Article  CAS  PubMed  Google Scholar 

  61. Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry. 2001;50(7):521–30.

    Article  CAS  PubMed  Google Scholar 

  62. Muller N, Schwarz MJ. The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm Suppl. 2007;72:269–80.

    Article  Google Scholar 

  63. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA. 2005;102:9341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Domegan LM, Atkins GJ. Apoptosis induction by the Therien and vaccine RA27/3 strains of rubella virus causes depletion of oligodendrocytes from rat neural cell cultures. J Gen Virol. 2002;83:2135–43.

    Article  CAS  PubMed  Google Scholar 

  65. Bello-Morales R, Fedetz M, Alcina A, Tabares E, Lopez-Guerrero JA. High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. J Neurovirol. 2005;11:190–8.

    Article  CAS  PubMed  Google Scholar 

  66. Casanova AS, Lavrov VF, Zverev VV. Varicella Zoster virus and vascular diseases of the central nervous system. J Microbiol. 2015;3:106–16. (In Russian)

    Google Scholar 

  67. Lavrov VF, Svitich OA, Casanova AS, Kinkulkina AR, Zverev VV. Varicella zoster-viral infection: immunity, diagnosis and modeling in vivo. J Microbiol. 2019;4:82–9. (In Russian). https://doi.org/10.36233/0372-9311-2019-4-82-89.

    Article  Google Scholar 

  68. Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, et al. Defective corticogenesis and reduction in reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry. 1999;4:145–54.

    Article  CAS  PubMed  Google Scholar 

  69. Zuev VA The many faces of the virus: the secrets of latent infections. М.; 2020. 370 p. (in Russian)

    Google Scholar 

  70. Brok HP, Boven L, van Meurs M, Kerlero de Rosbo N. The human CMV-UL86 peptide 981-1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34-56, but lacks the capacity to induce EAE in rhesus monkeys. J Neuroimmunol. 2007;182(1–2):135–52.

    Article  CAS  PubMed  Google Scholar 

  71. Sugita S, Takase H, Kawaguchi T, Taguchi C, Mochizuki M. Cross-reaction between tyrosinase peptides and cytomegalovirus antigen by T cells from patients with Vogt-Koyanagi-Harada disease. Int Ophthalmol. 2007;27(2-3):87–95.

    Article  PubMed  Google Scholar 

  72. Ou D, Mitchell LA, Metzger DL, Gillam S, Tingle AJ. Cross-reactive rubella virus and glutamic acid decarboxylase (65 and 67) protein determinants recognised by T cells of patients with type I diabetes mellitus. Diabetologia. 2000;43(6):750–62.

    Article  CAS  PubMed  Google Scholar 

  73. Lvov ND. Human herpesviruses—systemic, integrative, lymphoproliferative immuno-ocopatology. ILR (Russian Medical Journal). 2012;22:1133. (In Russian)

    Google Scholar 

  74. Witte L, Mierlo H, Litjens M, Klein H, Bahn S & Osterhaus AB. The association between antibodies to neurotropic pathogens and schizophrenia: a case-control study. npj Schizophrenia 1, Article number: 15041 (2015). http://www.nature.com/articles/npjschz201541

  75. Mañanes-González S, Carrillo-Ávila JA, Gutiérrez B, Cervilla J, Sorlózano-Puerto A. Different presence of Chlamydia pneumoniae, herpes simplex virus type 1, human herpes virus 6, and Toxoplasma gondii in schizophrenia: meta-analysis and analytical study. Neuropsychiatric Disease and Treatment. 2015;11:843–52.

    PubMed  PubMed Central  Google Scholar 

  76. Fukuda R, Sasaki T, Kunugi H, Nanko S. No changes in paired viral antibody titers during the course of acute schizophrenia. Neuropsychobiology. 1999;40(2):57–62.

    Article  CAS  PubMed  Google Scholar 

  77. Maltsev DV. Modern methods of diagnosis of human herpesvirus infections and principles of interpretation of their results. Clin Immunol Allergol Infectol. 2010;1(30):23–33. (In Russian)

    Google Scholar 

  78. Pokrovsky VI. Laboratory diagnostics of infectious diseases. Directory. M: Binom. 2016; 648 p. (In Russian).

    Google Scholar 

  79. Leweke FM, Gerth CW, Koethe D, Klosterkötter J, Ruslanova I, Krivogorsky B, Torrey EF, Yolken RH. Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur Arch Psychiatry Neurosci. 2004;254(1):4–8. https://doi.org/10.1007/s00406-004-0481-6.

    Article  Google Scholar 

  80. Krause D, Matz J, Weidinger E, Wagner J, Wildenauer A, Obermeier M, Riedel M, Müller N. The association of infectious agents and schizophrenia. World J Biol Psychiatry. 2010;11(5):739–43. https://doi.org/10.3109/15622971003653246.

    Article  PubMed  Google Scholar 

  81. Tedla Y, Shibre T, Ali O, Tadele G, Woldeamanuel Y, Asrat D, et al. Serum antibodies to Toxoplasma gondii and Herpesvidae family viruses in individuals with schizophrenia and bipolar disorder: a case-control study. Ethiop Med J. 2011;49(3):211–20.

    PubMed  Google Scholar 

  82. Mohagheghia M, Alikhanib MY, Taheri M, Eftekhariane MM. Determining the IgM and IgG antibodies titer against HSV1, HSV2 and CMV in the serum of schizophrenia patients. Human Antibodies. 2017;26(2):1–6. https://doi.org/10.3233/HAB-170325.

    Article  CAS  Google Scholar 

  83. Tanaka T, Matsuda T, Hayes LN, Yan S, Rodriguez KM, et al. Infection and inflammation in schizophrenia and bipolar disorder. Neurosci Res. 2017;115:59–63. https://doi.org/10.1016/j.neures.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  84. Dickerson F, Jones-Brando L, Ford G, Genovese G. Schizophrenia is associated with an aberrant immune response to Epstein–Barr Virus. Schizophr Bull. 2019;45(5):1112–9. https://doi.org/10.1093/schbul/sby164.

    Article  PubMed  Google Scholar 

  85. Torrey EF, Leweke MF, Schwarz MJ, Mueller N, Bachmann S, Schroeder J, et al. Cytomegalovirus and schizophrenia. CNS Drugs. 2006;20:879–85. https://doi.org/10.2165/00023210-200620110-00001.

    Article  PubMed  Google Scholar 

  86. Brusov OS, Kaleda VG, Kolyaskina GI, Lavrov VF, Ebralidze LK, et al. Cytomegalovirus infection as a factor in the formation of resistance to treatment with neuroleptics in adolescent patients with the first attack of endogenous psychosis. Psychiatry. 2007;4(28):62–71. (In Russian)

    Google Scholar 

  87. Arias I, Sorlozano A, Villegas E, et al. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr. Res. 2012;136(1–3):128–36. https://doi.org/10.1016/j.schres.2011.10.026.

    Article  PubMed  Google Scholar 

  88. Niebuhr DW, Millikan AM, Yolken R, Li Y, Weber NS. Results from a hypothesis generating case-control study: Herpes family viruses and schizophrenia among military personnel. Schizophr Bull. 2008;34(6):1182–8. https://doi.org/10.1093/schbul/sbm139.

    Article  PubMed  Google Scholar 

  89. Wang H, Yolken RH, Hoekstra PJ, et al. Antibodies to infectious agents and the positive symptom dimension of subclinical psychosis: The TRAILS study. Schizophr Res. 2011;129(1):47–51. https://doi.org/10.1016/j.schres.2011.03.013.

    Article  PubMed  Google Scholar 

  90. Hannachi N, El Kissi Y, Samoud S, Jaafar NJ, Letaief L, Gaabout S, Ben Hadj Ali B, Boukadida J. High prevalence of Human Herpesvirus 8 in schizophrenic patients. Psychiatry Res. 2014;216(2):192–7. https://doi.org/10.1016/j.psychres.2013.12.035.

    Article  PubMed  Google Scholar 

  91. Yolken RH, Torrey EF, Lieberman JA, et al. Serological evidence of exposure to Herpes Simplex Virus type 1 is associated with cognitive deficits in the CATIE schizophrenia sample. Schizophr Res. 2011;128(1-3):61–5. https://doi.org/10.1016/j.schres.2011.01.020.

    Article  PubMed  Google Scholar 

  92. Schretlen DJ, Vannorsdall TD, Winicki JM, et al. Neuroanatomic and cognitive abnormalities related to herpes simplex virus type 1 in schizophrenia. Schizophr Res. 2010;118(1–3):224–31. https://doi.org/10.1016/j.schres.2010.01.008.

  93. Prasad KM, Watson AM, Dickerson FB, et al. Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia. Schizophr. Bull. 2012;38(6):1137–48. https://doi.org/10.1093/schbul/sbs046.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zakharova MN, Logunov DY, Kochergin DA, Bakulin IS. Endogenous retroviruses: from basic research to etiotropic therapy of multiple sclerosis. Ann Clin Exp Neurol. 2015;1(5):49–51. (In Russian)

    Google Scholar 

  95. Yolken R. Viruses and schizophrenia: a focus on herpes simplex virus. Herpes. 2004;11(2):83A–8A.

    PubMed  Google Scholar 

  96. Aftab A, Shah AA, Hashmi AM. Pathophysiological role of HERV-W in Schizophrenia. J Neuropsychiatry Clin Neurosci. 2016;28(1):17–25. https://doi.org/10.1176/appi.neuropsych.15030059.

    Article  PubMed  Google Scholar 

  97. Da R, Ren JK. Pathogenic significance and possible pathogenic mechanism of human endogenous viruses in development of schizophrenia. Bing Du Xue Bao. 2014;30(1):98–102.

    CAS  PubMed  Google Scholar 

  98. Ellul P, Groc L, Leboyer M. Implication of human endogenous retroviruses in schizophrenia and bipolar disorder. Med Sci (Paris). 2017;33(4):404–9. (In French). https://doi.org/10.1051/medsci/20173304010.

    Article  Google Scholar 

  99. Ermakov EA, Smirnova LP, Parkhomenko TA, et al. DNA-hydrolysing activity of IgG antibodies from the sera of patients with schizophrenia. Open. Biology. 2015;5:150064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Khandaker GM, Cousins L, Deakin J, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. The Lancet. 2015;2(3):258–27.

    PubMed  Google Scholar 

  101. Kolyaskina GI, Brusov OS, Sekirina TP, Androsova LV, Kushner SG, Vasilyeva EF, Lavrov VF, Ebralidze LK, Burbayeva OA, Ya M, Tsutsulkovskaya, Kaleda VG, Barkhatova AN. (Moscow). Immune system in juvenile schizophrenia at the moment of the first disease manifestation. Siberian Bulletin of Psychiatry and Narcology. 2008;1:22–6. (In Russian.)

    Google Scholar 

  102. Vetlugina TP, Lobacheva AO, Naidenova NN, et al. Psychoneuroimmunomodulation in schizophrenia. Pathogenesis. 2006;4(1):42–3. (In Russian)

    Google Scholar 

  103. Mikhailova II, Orlova VA, Berezovskaya TP, Shavladze NZ, Minutkо VL. MRI- parameters of brain abnormality in attack-like schizophrenia: new data with angiography using. http://vestnik.rncrr.ru/vestnik/v13/papers/michail_v13.htm) (In Russian.)

  104. Mikhailova II, Orlova VA, Minutkо MIN, Eliseeva NA. Relationship between clinical symptomatology and the level of serum antibodies to human herpesvirus in patients with different types of schizophrenia. Russian Psychiatric Journal. 2014;3:61–6. (In Russian)

    Google Scholar 

  105. Mikhailova II, Orlova VA, Minutko VL, Simonova AV, Pogodina EA. The relationship between the features of immunity and the clinical parameters of episodic paranoid schizophrenia. Norwegian J Dev Int Sci. 2019;34:19–27. (In Russian)

    Google Scholar 

  106. Mikhailova II, Orlova VA, Minutko VL, Simonova AV, Pogodina EA. Episodic paranoid schizophrenia as an infectious process (multidisciplinary study). Norwegian J Dev Int Sci. 2019;37:31–5. (In Russian).

    Google Scholar 

  107. Orlova VA, Gerasimova OV, Mikhailova II, Minutko VL, Gnezdickij VV. Correlation between the functional state of the central link of the auditory analyzer (according to cognitive EP data) and the level of serum antibodies to herpes viruses in schizophrenia. Social and Clinical Psychiatry. 2017;1:13–9. (In Russian)

    Google Scholar 

  108. Kolker IA. Auditory evoked potentials in neurology. Int Neurol J. 2006;6:10. http://www.mif-ua.com/archive/article_print/2343 (In Russian).

  109. Bechter K, Reiber H, Herzog S, et al. Cerebrospinal fl uid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood-CSF barrier dysfunction. J Psychiatry Res. 2010;44:321–30.

    Article  CAS  Google Scholar 

  110. Lee EE, Hong S, Martin AS, Eyler LT, Jeste DV. Inflammation in schizophrenia: cytokine levels and their relationships to demographic and clinical variables. Am J Geriatr Psychiatry. 2017;25(1):50–61. https://doi.org/10.1016/j.jagp.2016.09.009.

    Article  PubMed  Google Scholar 

  111. Orlova VA, Mikhaylova II, Minutko VL, Simonova AV, Pogodina EA. Anomalies in the levels of serum autoantibodies to antigens of nervous tissue in patients with schizoaffective psychosis: association with herpes viruses. Doctor RU Neurol Psychiatry. 2020;19(4):43–9. (in Russian)

    Google Scholar 

  112. Poletaev AB. Immunology and immunopathology. M.: MIA; 2008: 207 p. (in Russian).

    Google Scholar 

  113. Poletaev AB, Sherstnev VV. S100 proteins: overview of functional properties. Advances in Contemporary Biology. 1987;10(1):124–32. (in Russian)

    Google Scholar 

  114. Arumugam T, Simeone DM, Schmidt AM, Logsdon CD. S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem. 2004;279(7):5059–65. https://doi.org/10.1074/jbc.M310124200.

    Article  CAS  PubMed  Google Scholar 

  115. Sheng JG, Mrak RE, Griffin WST. Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1α+ microglia and S100β+ astrocytes with neurofibrillary tangle stage. J Neuropath Exp Neurol. 1997;56(3):285–90.

    Article  CAS  PubMed  Google Scholar 

  116. Rasulova KA, Azizova RB. Natural neurotropic autoantibodies in blood serum of epilepsy patients. Ann Russian Acad Med Sci. 2014;5–6:111–5. (in Russian.)

    Article  Google Scholar 

  117. Mikhaylova II, Orlova VA, Minutko VL, Simonova AV, Pogodina EA. Clinical significance of laboratory parameters of the erythrocyte level of peripheral blood in the acute period of schizoaffective psychosis. Soc Clin Psychiatry. 2018;2:39–44. (in Russian)

    Google Scholar 

  118. Teterina TP, Light, eye, brain. Principles of color therapy. Kaluga: "Oblizdat". 1998;1:216с. (in Russian). http://www.medsecret.net/ginekologiya/mochepolovye-infekcii/538-citomegalovirusnaja-infekcija.

    Google Scholar 

  119. Miskowiak K, Inkster B, Selvaraj S, Wise R, Goodwin GM, Harmer CJ. Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology. 2007;33:611–8.

    Article  CAS  PubMed  Google Scholar 

  120. Lvov ND. Development of therapeutic antiherpetic drugs and diagnostic test systems: Author's abstract. diss. ... doct. honey. sciences. 1992. The original article was published on the RMJ website (Russian medical journal): https://www.rmj.ru/articles/dermatologiya/Gerpesvirusy_cheloveka__sistemnaya_integrativnayalimfoproliferativnaya_immunoonkopatologiya/#ixzz5BRm0gS5m. (in Russian).

  121. Uranova N, Vikhreva O, Rachmanova V, Orlovskaya D. Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr Res Treat. 2011., Article ID;325789:13. https://doi.org/10.1155/2011/325789.

  122. Porcellini E, Carbone I, et al. Alzheimer’s disease gene signature says: beware of brain viral infections. Immun Ageing. 2010;14(7):16.

    Article  CAS  Google Scholar 

  123. Konry S, Bondurant M, Konry M. Localization of erythropoietin synthesising cells in murine kidneys by in situ hybridization. Blood. 1988;71:524–7.

    Article  Google Scholar 

  124. Tomilina NA, Bikbov BT. Chronic renal epidemiology insufficiency and new approaches to the classification and assessment of the severity of chronic progressive kidney disease. Therapeutic Archive. 2005;77(6):87–91. (In Russian)

    CAS  Google Scholar 

  125. Shilo VY, Khasabov NN. Anemia in chronic kidney disease. Therapist. 2008;1:25–31. (In Russian)

    Google Scholar 

  126. Maslov LN, Sazonova SI. Use of cytokines to stimulate neoangiogenesis and heart regeneration. Exp Clin Pharmacol. 2006;69(5):70–6. (In Russian)

    CAS  Google Scholar 

  127. Joyeux-Faure M. Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther. 2007;323:759–62.

    Article  CAS  PubMed  Google Scholar 

  128. Kolesnik IM, Pokrovsky MV, Pokrovskaya TG, et al. Pharmacological preconditioning with erythropoietin in limb ischemia. Biomedicine. 2011;4:90–2. (In Russian)

    Google Scholar 

  129. Mikhailova II, Orlova VA, Minutko VL, Malysheva IN, Eliseeva NA. Relationships between clinical symptoms and the level of serum antibodies to herpes viruses in patients with different forms of schizophrenia. Russian Psychiatric J. 2014;3:61–6. (In Russian)

    Google Scholar 

  130. Orlova VA, Gerasimova OV, Mikhailova II, Minutko VL, Gnezditskiy VV. Correlations of the parameters of auditory EPs (long-latency, cognitive) with the level of serum antibodies to herpes viruses in schizophrenia. Magazine Evol Nat Sci. 2016;6:27–32. (In Russian)

    Google Scholar 

  131. Mikhailova II, Orlova VA, Minutko VL, Malisheva IN, Berezovskaya TP. The role of Herpes family viruses in the pathogenesis of paranoid schizophrenia: the data of multidimensional correlations of immunological, morphological and clinical characteristics. Int Neuropsychiatr Dis J. 2015;3(3):74–83.

    Article  Google Scholar 

  132. Vainshaker YI, Ivchenko IM, Tsinzerling VA, Nuralova IV, Khlopunova OV, Berezina LA, Kulyashova LB, Vyazovaya AA, Kalinina OVV, Korotkov AD, Kataeva GV, Medvedev SV. Low-manifest infections with lesions of the central nervous system in patients with prolonged unconsciousness of non-inflammatory etiology. J Microbiol Epidemiol Immunobiol (ZhMEI). 2011;6:85–9.

    Google Scholar 

  133. Yolken RH, Bachmann S, Ruslanova I, Lillehoj E, Ford G, Torrey EF, Schroeder J, Rouslanova I. Antibodies to Toxoplasma gondii in individuals with first-episode schizophrenia. Clin Infect Dis. 2001;32:842–4.

    Article  CAS  PubMed  Google Scholar 

  134. Chaudhury A, Ramana BV. Schizophrenia and bipolar disorders: The Toxoplasma connection. Trop Parasitol. 2019;9(2):71–6. https://doi.org/10.4103/tp.TP_28_19.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Diagnostics by the GLC method (in Russian) http://www.labtechperm.ru/articles/636.

  136. Severance EG, Yolken RH. From infection to the microbiome: an evolving role of microbes in schizophrenia. Version 2. Curr Top Behav Neurosci. 2020;44:67–84. https://doi.org/10.1007/7854_2018_84.

    Article  CAS  PubMed  Google Scholar 

  137. Cryan JF, Dinan TG. Talking about a microbiome revolution. Nat Microbiol. 2019;4(4):552. https://doi.org/10.1038/s41564-019-0422-9.

    Article  CAS  PubMed  Google Scholar 

  138. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4(4):623–32. https://doi.org/10.1038/s41564-018-0337-x.

    Article  CAS  PubMed  Google Scholar 

  139. Mangalam A, Shahi SK, Luckey D, Ma K, Marietta E, et al. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep. 2017;20:1269–77. https://doi.org/10.1016/j.celrep.2017.07.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12. https://doi.org/10.1038/nrn3346.

    Article  CAS  PubMed  Google Scholar 

  141. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–63. https://doi.org/10.1016/j.cell.2013.11.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kanji S, Fonseka TM, Marshe VS, Sriretnakumar V, Hahn MK, Müller DJ. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain.Eur Arch Psychiatry. Clin Neurosci. 2018;268(1):3–15. https://doi.org/10.1007/s00406-017-0820-z.

    Article  CAS  Google Scholar 

  143. De Paepe M, Leclerc M, Tinsley CR, Petit MA. Bacteriophages: an underestimated role in human and animal health? Front Cell Infect Microbiol. 2014;4:39. https://doi.org/10.3389/fcimb.2014.00039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yolken RH, Severance EG, Sabunciyan S, Gressitt KL, Chen O, Stallings C, Origoni A, Katsafanas E, Schweinfurth LA, Savage CL, Banis M, Khushalani S, Dickerson FB. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr Bull. 2015;41(5):1153–61. https://doi.org/10.1093/schbul/sbu197.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Beketova GV, Savichuk NO. Virom of man and its role in the formation of diseases. Herpetic infection in children: modern approaches to therapy. Pediatr Eastern Europe. 2016;1:47–62. (In Russian)

    Google Scholar 

  146. Simonova AV, Mikhailova II, Orlova VA. An innovative interdisciplinary approach to the management of patients with psychoemotional disorders. Norwegian J development of the International Science. 2020;49:15–8. (In Russian)

    Google Scholar 

  147. Dickerson F, Severance E, Yolken R. The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav Immun. 2017;62:46–52. https://doi.org/10.1016/j.bbi.2016.12.010.

    Article  CAS  PubMed  Google Scholar 

  148. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, Zhang M, Hu S, Liang Y. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res. 2018;197:470–7. https://doi.org/10.1016/j.schres.2018.01.002.

    Article  PubMed  Google Scholar 

  149. Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV. Overview and Systematic Review of Studies of Microbiome in Schizophrenia and Bipolar Disorder. J Psychiatr Res. 2018;99:50–61. https://doi.org/10.1016/j.jpsychires.2018.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zheng P, Zeng B, Liu M, Chen J, Pan J, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances. 2019;5(2):8317. https://doi.org/10.1126/sciadv.aau8317.

    Article  CAS  Google Scholar 

  151. Zhu F, Ju Y, Wang W, Wang Q, Guo R, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat Commun. 2020;11(1):1612. https://doi.org/10.1038/s41467-020-15457-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nguyen TT, Kosciolek T, Maldonado Y, Daly RE, Martin AS, Mc Donald D, Knight R, Jeste DV. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res. 2019;204:23–9. https://doi.org/10.1016/j.schres.2018.09.014.

    Article  PubMed  Google Scholar 

  153. Ma X, Asif H, Dai L, He Y, Zheng W, Wang D, Ren H, Tang J, Li C, Jin K, Li Z, Chen X. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J Psychiatr Res. 2020;123:136–44. https://doi.org/10.1016/j.jpsychires.2020.02.005.

    Article  PubMed  Google Scholar 

  154. Macedo E, Cordeiro T, Zhang X, Graubics K, Colwell R, Teixeira AL. Microbiome and Schizophrenia: current evidence and future challenges. Curr Behav Neurosci Rep. 2020;7:51–61. https://doi.org/10.1007/s40473-020-00206-5.

    Article  Google Scholar 

  155. Uranova NA, Kolomeets NS, Vikhreva OV, Zimina IS, Rakhmanova VI, Orlovskaya DD. Ultrastructural changes in myelin fibers in the brain with continuous and paroxysmal paranoid schizophrenia. J Neurol Psychiat S.S. Korsakov. 2017;117(2):104–9. https://doi.org/10.17116/jnevro201711721104-109. (In Russian)

    Article  CAS  Google Scholar 

  156. Yushchuk N. D., Dekonenko E. P., Fedoseenko G. I., Klimova E. A. Herpetic neuroinfections. Ministry of Health of the Russian Federation, State Educational Institution All-Russian Educational-Scientific-Mertodic Center for Continuing Medical and Pharmaceutical Education. M., 2003; 31 p. (In Russian).

    Google Scholar 

  157. Kolomeets NS, Uranova NA. Modern ideas about the reactivity of astrocytes in schizophrenia. J. Neuropathol Psychiatr. 2014;114(5):92–9. (In Russian)

    CAS  Google Scholar 

  158. Kolomeets NS, Uranova NA. Ultrastructural abnormalities of astrocytes in the hippocampus in schizophrenia and duration of illness: a postmortem morphometric study. World J Biol Psychiatry. 2010;11:282–92.

    Article  PubMed  Google Scholar 

  159. Vostrikov V, Orlovskaya D, Uranova N. Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia. The World Journal of Biological Psychiatry. 2008;9(1):34–42. https://doi.org/10.3109/15622970903414188.

    Article  PubMed  Google Scholar 

  160. Uranova NA, Zimina IS, Vikhreva OV, Krukov NO, Rachmanova VI, Orlovskaya DD. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J Biol Psychiatry. 2010;11:567–78.

    Article  PubMed  Google Scholar 

  161. Vostrikov VM., Oifa A. I. Paramyxoviruses in the brain in febrile schizophrenia viruses, immunity, and mental disorders: 157–160.

    Google Scholar 

  162. Gordon L, McQuaid S, Cosby SL. Detection of herpes simplex virus (types 1 and 2) and human herpesvirus 6 DNA in human brain tissue by polymerase chain reaction. Clin Diagn Virol. 1996;6:33–40.

    Article  CAS  PubMed  Google Scholar 

  163. Moises HW, Ruger R, Reynolds GP, Fleckenstein B. Human cytomegalovirus DNA in the temporal cortex of a schizophrenic patient. Eur Arch Psychiatry Neurol Sci. 1988;238:110–3.

    Article  CAS  PubMed  Google Scholar 

  164. Tomasik J, Smits SL, Leweke FV, Eljasz PE, Pas S, Kahn RS, Osterhaus ADME, Sabine BS, Witte LD. Virus discovery analyses on post-mortem brain tissue and cerebrospinal fluid of schizophrenia patients. Schizophr Res. 2018;197:605–6. https://doi.org/10.1016/j.schres.2018.02.012.

    Article  PubMed  Google Scholar 

  165. Weis S, Llenos IC, Sabunciyan S, Dulay JR, Isler L, Yolken R, Perron H. Reduced expression of human endogenous retrovirus (HERV)-W GAG protein in the cingulate gyrus and hippocampus in schizophrenia, bipolar disorder, and depression. J Neural Transm (Vienna). 2007;114(5):645–55. https://doi.org/10.1007/s00702-006-0599-y.

    Article  CAS  Google Scholar 

  166. Li F, Sarven S, Robert HY, Doheon L, Kim S, Hakan K. Transcription of human endogenous retroviruses in human brain by RNA-seq analysis. 2019;3, 14(1):e0207353. https://doi.org/10.1371/journal.pone.0207353. eCollection 2019

  167. Dickerson FB, Boronow JJ, Stallings CR, Origoni AE, Yolken RH. Reduction of symptoms by valacyclovir in cytomegalovirus-seropositive individuals with schizophrenia. Am J Psychiatry. 2003;160:2234–6. https://doi.org/10.1176/appi.ajp.160.12.2234.

    Article  PubMed  Google Scholar 

  168. Fond GB, Lagier JC, Honore S, Lancon C, Korchia T, Verville PS, Llorca PM, Auquier P, Guedj E, Boyer L. Microbiota-orientated treatments for major depression and schizophrenia. Nutrients. 2020;12(4):1024. https://doi.org/10.3390/nu12041024.

    Article  CAS  PubMed Central  Google Scholar 

  169. Osipov G. Invisible organ—human microflora. Russian medical server. (In Russian). http://www.rusmedserv.com/microbdiag/invisibleorgan.htm

  170. Poletaev A. Autoantibodies: serum content or profiles? In: Poletaev AB, editor. Physiologic autoimmunity and preventive medicine. Sharjah, Oak Park, Bussum: Bentham Science Publishers; 2013. p. 199–207.

    Chapter  Google Scholar 

  171. Torrey EF, Yolken RH. Schizophrenia as a pseudogenetic disease: a call for more gene-тenvironmental studies. Psychiatry Res. 2019;278:146–50. https://doi.org/10.1016/j.psychres.2019.06.006.

    Article  PubMed  Google Scholar 

  172. Levkovitz Y, Mendlovich S, Riwkes S, et al. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in ealy-phase schizophrenia. Journal of Clinical Psychiatry. 2010;71:138–49.

    Article  CAS  PubMed  Google Scholar 

  173. Miyaoka T, Yasukawa R, Yasuda H, et al. Minocycline as adjunctive therapy for schizophrenia: an open-label study. Clinical Neuropharmacology. 2008;31:287–92.

    Article  CAS  PubMed  Google Scholar 

  174. World failing to address dementia challenge. https://www.who.int/news/item/02-09-2021-world-failing-to-address-dementia-challenge.

  175. Gauthier S., Rosa-Neto P., Morais J. A., Webster C. World Alzheimer Report 2021 Journey through the diagnosis of dementia. London: Alzheimer’s Disease International, 2021. 314. https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf

  176. Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention and care. The Lancet. 2017;390(10113):2673–734.

    Article  Google Scholar 

  177. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement. 2013;9:63–75.

    Article  PubMed  Google Scholar 

  178. Danysz W, Parsons CG, Quack G. NMDA channel blockers: memantine and amino–alkylcyclohexanes—in vitro characterisation. Amino Acids. 2000;19:167–72. https://pubmed.ncbi.nlm.nih.gov/11026485/

    Article  CAS  PubMed  Google Scholar 

  179. Preobrazhenskaya IS. Diagnosis and treatment of Alzheimer's disease. Neurology, neuropsychiatry, psychosomatics. 2012;4(2S):5–10. https://doi.org/10.14412/2074-2711-2012-2502. (In Russian)

    Article  Google Scholar 

  180. Akshulakov SK, Takenov ZT, Karibai SD. Alzheimer's disease, pathomorphology, clinical manifestations and modern treatment. J Neurosurg Neurol Kazakhstan. 2015;2(39):26–33. (In Russian)

    Google Scholar 

  181. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 2007;3(3):186–91. https://doi.org/10.1016/j.jalz.2007.04.381.

    Article  PubMed  Google Scholar 

  182. WHO reveals leading causes of death and disability worldwide: 2000-2019. https://www.who.int/ru/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019

  183. The top 10 causes of death. https://www.who.int/ru/news-room/fact-sheets/detail/the-top-10-causes-of-death.

  184. Zhang XX, Tian Y, Wang ZT, et al. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimers Dis. 2021;8:313–21. https://doi.org/10.14283/jpad.2021.15.

    Article  PubMed  Google Scholar 

  185. Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord. 1995;2:23–8. https://doi.org/10.1097/00002093-199501002-00005.

    Article  Google Scholar 

  186. Braak H, Braak E. Evolution of the neuropathology of Alzheimer's disease. Acta Neurol Scand. 1996;S165:3–12. https://doi.org/10.1111/j.1600-0404.1996.tb05866.x.

    Article  Google Scholar 

  187. Yanagisawa K, Ihara Y, Miyatake T. Secretory pathway of beta/A4 amyloid protein precursor in familial Alzheimer's disease with Val717 to Ile mutation. Neurosci Lett. 1992;144(1-2):43–5. https://doi.org/10.1016/0304-3940(92)90711-f.

    Article  CAS  PubMed  Google Scholar 

  188. Morley JE, Armbrecht HJ, Farr SA, Kumar VB. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochim Biophys Acta. 2012;1822(5):650–6. https://doi.org/10.1016/j.bbadis.2011.11.015.

    Article  CAS  PubMed  Google Scholar 

  189. Iqbal K, Alonso-Adel C, Chen S, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta. 2005;1739(2-3):198–210. https://doi.org/10.1016/j.bbadis.2004.09.008.

    Article  CAS  PubMed  Google Scholar 

  190. Johnson GV, Bailey CD. Tau, where are we now? J Alzheimers Dis. 2002;4:375–98.

    Article  CAS  PubMed  Google Scholar 

  191. Alvarez XA, Ruether E, Moessler H. Efficacy of cerebrolysin in moderate to moderately severe Alzheimer’s disease. In: Research and practice in Alzheimer’s disease, vol. 5. Paris: Serdi Publishing; 2009. p. 179–86. Springer Publishing Company (NY); https://pubmed.ncbi.nlm.nih.gov/20500802/.

    Google Scholar 

  192. Chun W, Johnson GV. The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci. 2007;12:733–56.

    Article  CAS  PubMed  Google Scholar 

  193. Maltsev AV, Dovidchenko NV, Uteshev VK, et al. Intensive protein synthesis in neurons and phosphorylation of beta-amyloid precursor protein and tau protein are triggering factors of neuronal amyloidosis and Alzheimer's disease. Biomed Chem. 2013;59(2):144–70. (In Russian)

    CAS  Google Scholar 

  194. Dolev I, Michaelson DM. A nontransgenic mouse model shows inducible amyloid–b (Ab) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade. Neuroscience. 2004;10(38):13909–14. https://pubmed.ncbi.nlm.nih.gov/15365176/.

    Google Scholar 

  195. Lyketsos CG, Breitner JC. Mental and behavioral disturbances in dementia: findeigs from the cache county study on memory in aging. In: Research and practice in Alzheimer’s disease, vol. 5. Paris: Serdi Publishing. Springer Publishing Company (NY); 2001. p. 144–50. https://pubmed.ncbi.nlm.nih.gov/10784462/.

    Google Scholar 

  196. Lannfelt L, Basun H, Vigo-Pelfrey C, et al. Amyloid β-peptide in cerebrospinal fluid in individuals with the Swedish Alzheimer amyloid precursor protein mutation. Neurosci Lett. 1999;199(3):203–6. https://doi.org/10.1016/0304-3940(95)12059-D.

    Article  Google Scholar 

  197. Lannfelt L, Basun H, Wahlund LO, et al. Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer's disease. Nat Med. 1995;1(8):829–32.

    Article  CAS  PubMed  Google Scholar 

  198. Lehtimaki T, Pirttila T, Mehta PD, et al. Apolipoprotein E (apoE) polymorphism and its influence on ApoE concentrations in the cerebrospinal fluid in Finnish patients with Alzheimer’s disease. Hum Genet. 1995;5(1):39–42.

    Google Scholar 

  199. Williams KR, Pye V, Saunders AM, et al. Apolipoprotein E uptake and low–density lipoprotein receptor–related protein expression by the NTera2/ D1 cell line: a cell culture model of relevance for late–onset Alzheimer’s disease. Neurobiol Dis. 1997;4(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  200. Masse I, Bordet R, Deplanque D, et al. Lipid lowering agents are associated with a slower cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2005;76:1624–9. https://pubmed.ncbi.nlm.nih.gov/16291883/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Southwick PC, Yamagata SK, Echols CL, et al. Assessment of amyloid β-protein in cerebrospinal fluid as an aid in the diagnosis of Alzheimer’s disease. J Neurochem. 1996;66(1):259–65. https://doi.org/10.1046/j.1471-4159.1996.66010259.x.

    Article  CAS  PubMed  Google Scholar 

  202. Yamada M, Sodeyama N, Itoh Y, et al. Association of neprilysin polymorphism with cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry. 2003;74:749–51. https://jnnp.bmj.com/content/74/6/749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yue X, Lu M, Lancaster T, et al. Brain estrogen deficiency accelerates A plaque formation in an Alzheimer’s disease animal model. Neuroscience. 2005;102(52):19198–203. https://pubmed.ncbi.nlm.nih.gov/16365303/

    CAS  Google Scholar 

  204. Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimerrs Disease. Neurobiol Aging. 2000;21(3):383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer's disease. Curr Neuropharmacol. 2017;15:996–1009. https://pubmed.ncbi.nlm.nih.gov/28294067/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Vainshenker YI, Nuralova IV, Onishchenko LS. Chlamydia of the central nervous system. Laboratory diagnostics and clinical and morphological features. Pathol Archive. 2014;76(1):57–62.

    Google Scholar 

  207. Balin BJ, Appelt DM. The role of infection in Alzheimer's disease. J Am Osteopathic Assoc. 2001;101(12, S1):S1–6.

    CAS  Google Scholar 

  208. Hammond CJ, Hallock LR, Howanski RJ, et al. Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain. BMC Neurosci. 2010;11:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Balin BJ, Gérard HC, Arking EJ, et al. Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol. 1998;187(1):23–42.

    Article  CAS  PubMed  Google Scholar 

  210. Gérard HC, Dreses-Werringloer U, Wildt KS, et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol. 2006;48(3):355–66.

    Article  CAS  PubMed  Google Scholar 

  211. Dreses-Werringloer U, Bhuiyan M, Zhao Y, et al. Initial characterization of Chlamydophila (Chlamydia) pneumoniae cultured from the late-onset Alzheimer brain. Int J Med Microbiol. 2009;299(3):187–201.

    Article  CAS  PubMed  Google Scholar 

  212. Little CS, Hammond CJ, MacIntyre A, et al. Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging. 2004;25(4):419–29.

    Article  CAS  PubMed  Google Scholar 

  213. Loeb MB, Molloy DW, Smieja M, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc. 2004;52(3):381–7.

    Article  PubMed  Google Scholar 

  214. Itzhaki RF. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer's Disease. Front Aging Neurosci. 2018;10:324. https://doi.org/10.3389/fnagi.2018.00324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Cairns DM, Rouleau N, Parker RN, et al. A 3D human brain-like tissue model of herpes-induced Alzheimer's disease. Sci Adv. 2020;6(19):8828. https://doi.org/10.1126/sciadv.aay8828.

    Article  CAS  Google Scholar 

  216. Belodurina AD, Muginova RF. The infectious and inflammatory nature of Alzheimer's Disease. Bulletin of the Council of Young Scientists and Specialists of the Chelyabinsk region. 2019;3(26):70–4. (In Russian)

    Google Scholar 

  217. Al-Obaidi M, Desa M. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol. 2018;38:1349–68. https://pubmed.ncbi.nlm.nih.gov/30117097/

    Article  CAS  PubMed  Google Scholar 

  218. Cao W, Zheng H. Peripheral immune system in aging and Alzheimer's disease. Mol Neurodegener. 2018;13:51. https://pubmed.ncbi.nlm.nih.gov/30285785/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. White MR, Kandel R, Tripathi S, et al. Alzheimer’s associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PLoS One. 2014;9(7):e101364. https://doi.org/10.1371/journal.pone.0101364.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Khavkina DA, Ruzhentsova TA, Chukhliaev PV. The role of infectious agents in the genesis of atherosclerosis. Academy of Medicine and Sports. 2020;1(1):22–6. https://doi.org/10.15829/2712-7567-2020-1-22-26.

    Article  Google Scholar 

  221. Lurain NS, Hanson BA, Martinson J, et al. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis. 2013;208(4):564–72. https://doi.org/10.1093/infdis/jit210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Barnes LL, Capuano AW, Aiello AE, et al. Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. J Infect Dis. 2015;211:230–7.

    Article  CAS  PubMed  Google Scholar 

  223. Katan M, Moon YP, Paik MC, et al. Infectious burden and cognitive function: The Northern Manhattan Study. Neurology. 2013;80:1209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Aiello AE, Haan M, Blythe L, et al. The influence of latent viral infection on rate of cognitive decline over 4 years. J Am Geriatr Soc. 2006;54:1046–54.

    Article  PubMed  Google Scholar 

  225. Carbone I, Lazzarotto T, Ianni M, et al. Herpes virus in Alzheimer’s disease: relation to progression of the disease. Neurobiol Aging. 2014;35:122–9.

    Article  PubMed  Google Scholar 

  226. Lin WR, Wozniak MA, Cooper RJ, et al. Herpesviruses in brain and Alzheimer’s disease. J Pathol. 2002;197:395–402.

    Article  CAS  PubMed  Google Scholar 

  227. Agostini S, Mancuso R, Baglio F, et al. Lack of evidence for a role of HHV-6 in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis. 2015;49:229–35.

    Article  CAS  Google Scholar 

  228. Beydoun MA, Beydoun HA, Shroff MR, et al. Helicobacter pylori seropositivity and cognitive performance among US adults: evidence from a large national survey. Psychosom Med. 2013;75:486–96.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Bu XL, Yao XQ, Jiao SS, et al. A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol. 2015;22:1519–22.

    Article  PubMed  Google Scholar 

  230. Roubaud-Baudron C, Krolak-Salmon P, Quadrio I, et al. Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol Aging. 2012;33(1009):11–9.

    Google Scholar 

  231. Wang XL, Zeng J, Yang Y, et al. Helicobacter pylori filtrate induces Alzheimer-like tau hyperphosphorylation by activating glycogen synthase kinase-3β. J Alzheimers Dis. 2015;43:153–65.

    Article  CAS  PubMed  Google Scholar 

  232. Boziki M, Polyzos SA, Deretzi G, et al. A potential impact of Helicobacter pylori-related galectin-3 in neurodegeneration. Neurochem Int. 2017;113:137–51.

    Article  CAS  PubMed  Google Scholar 

  233. Deller T, Frotscher M, Nitsch R. Sprouting of crossed entorhinodentate fibers after a unilateral entorhinal lesion: anterograde tracing of fiber reorganization with phaseolus vulgaris-leucoagglutinin (PHAL). J Comp Neurol. 1996;365(1):42–55. https://doi.org/10.1002/(SICI)1096-9861(19960129)365:1<42::AID-CNE4>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  234. Bertoni-Freddari C, Fattoretti P, Paoloni R, et al. Cerebrovascular pathology in Alzheimer's disease. Ann NY Acad Sci. 1997;826:479–82.

    Article  CAS  PubMed  Google Scholar 

  235. Jorm AF. Depression as a risk factor for dementia. In: Research and practice in Alzheimer’s disease, vol. 5. Paris: Serdi Publishing. Springer Publishing Company (NY); 2001. p. 139–43. https://pubmed.ncbi.nlm.nih.gov/23906002/.

    Google Scholar 

  236. Koberskaya NN, Kovalchuk NA. Alzheimer's disease with early onset. Medical Advice. 2019;1:10–6. https://doi.org/10.21518/2079-701X-2019-1-10-16. (In Russian)

    Article  Google Scholar 

  237. Maat-Schieman ML, Rozemuller AJ, van Duinen SG, et al. Microglia in diffuse plaques in hereditary cerebral hemorrhage with amyloidosis. An immunohistochemical study. J Neuropathol Exp Neurol. 1994;53(5):483–91. https://pubmed.ncbi.nlm.nih.gov/7521904/ (In Dutch)

    Article  CAS  PubMed  Google Scholar 

  238. Naumenko AA, Gromova DO, Trofimova NV, Preobrazhenskaya IS. Diagnosis and treatment of Alzheimer's disease. Neurol Neuropsychiatry Psychosom. 2016;8(4):91–7. (In Russian)

    Article  Google Scholar 

  239. Scahill RI, Schott JM, Stevens JM, et al. Mapping the evolution of regional atrophy in Alzheimer's disease: Unbiased analysis of fluidregistered serial MRI. Proc Natl Acad Sci USA. 2002;99(7):4703–7. https://pubmed.ncbi.nlm.nih.gov/11930016/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Chan D, Fox NC, Scahill RI, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol. 2001;49(4):433–42. https://pubmed.ncbi.nlm.nih.gov/11310620/

    Article  CAS  PubMed  Google Scholar 

  241. Dickerson BC, Goncharova II, Sullivan MP, et al. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol Aging. 2001;22(5):747–54. https://pubmed.ncbi.nlm.nih.gov/11705634/

    Article  CAS  PubMed  Google Scholar 

  242. Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9(1):119–28. https://pubmed.ncbi.nlm.nih.gov/20083042/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ksiezak-Reding H, Tracz E, Yang LS, et al. Ultrastructural instability of paired helical filaments from corticobasal degeneration as examined by scanning transmission electron microscopy. Am J Pathol. 2001;149(2):639–51. https://pubmed.ncbi.nlm.nih.gov/8702002/

    Google Scholar 

  244. Wilkinson D. Drugs for treatment of Alzheimer’s disease. Int J Clin Pract. 2008;55(2):129–34.

    Google Scholar 

  245. Jones MW, McClean M, Parsons CG, et al. The in vivo relevance of the varied channel–blocking properties of uncompetitive NMDA antagonists: tests on spinal neurones. Neuropharmacology. 2008;41(1):50–61. https://www.semanticscholar.org/paper/The-in-vivo-relevance-of-the-varied-properties-of-Jones-McClean/7639d0c060d136ca6dc53d760b11e4dfeda5a8f5

    Article  Google Scholar 

  246. Love S. Contribution of cerebral amyloid angiopathy to Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2004;75:1–4. https://jnnp.bmj.com/content/75/1/1.2

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Grossberg GT, Manes F, Allegri RF, et al. The safety, tolerability, and efficacy of once-daily memantine (28 mg): a multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer's disease taking cholinesterase inhibitors. CNS Drugs. 2013;27(6):469–78. https://doi.org/10.1007/s40263-013-0077-7. https://pubmed.ncbi.nlm.nih.gov/23733403/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Bassil N, Thaipisuttikul P, Grossberg GT, Memantine ER. A once-daily formulation for the treatment of Alzheimer's disease. Expert Opin Pharmacother. 2010;11(10):1765–71. https://doi.org/10.1517/14656566.2010.493874. https://pubmed.ncbi.nlm.nih.gov/23733403/

    Article  CAS  PubMed  Google Scholar 

  249. Shao ZQ. Comparison of the efficacy of four cholinesterase inhibitors in combination with memantine for the treatment of Alzheimer's disease. Int J Clin Exp Med. 2015;8(2):2944–8. https://pubmed.ncbi.nlm.nih.gov/25932260/

    PubMed  PubMed Central  Google Scholar 

  250. Eckel RH, Jakicic JM, Ard JD, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology. American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2960–84.

    Article  PubMed  Google Scholar 

  251. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8:845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Grose C. Biological plausibility of a link between arterial ischemic stroke and infection with Varicella-Zoster virus or Herpes Simplex virus. Circulation. 2016;133(8):695–7. https://doi.org/10.1161/circulationaha.116.021459.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Gozd-Barszczewska A, Koziol-Montewka M, Barszczewski P, et al. Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med. 2017;24:416–22.

    Article  CAS  PubMed  Google Scholar 

  254. Zinserling WD. Untersuchungen über Atherosklerose. Über die Aorta Verfettung bei Kindern Virchow’s Archiv. 1924. S: 678–705.

    Google Scholar 

  255. Alieva SZ, Maksudova MH. Modern ideas about etiopathogenetic mechanisms of myocardial infarction in young people. Avicenna. 2019;40:19–24. (In Russian)

    Google Scholar 

  256. Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:2064–89.

    Article  PubMed  Google Scholar 

  257. Montanaro VV, Freitas DD, Ruiz MC, et al. Ischemic stroke in young adults: Profile of SARAH Hospital Brasília from 2008 to 2012. Neurologist. 2017;22(2):61–3. https://doi.org/10.1097/NRL.0000000000000110.

    Article  PubMed  Google Scholar 

  258. Nikitskaya EA, Maryukhnich EV, Savvinova PP, et al. Human herpes viruses and atherosclerosis. A modern look. Creat Cardiol. 2015;2:54–61. (In Russian)

    Google Scholar 

  259. Evsevyeva ME, Eremin MV, Italiceva EV, et al. Foci of chronic infection and vascular rigidity in persons of military age. Bull Russian Military Med Acad. 2018;1(61):149–53. (In Russian)

    Article  Google Scholar 

  260. Alekseeva Ya V, Rebenkova MS, Gombozhapova AE, et al. Detection of cardiotropic viral antigens in atherosclerotic plaques of coronary arteries in patients with fatal myocardial infarction. Cardiology. 2019;59(7):38–43. (In Russian)

    CAS  PubMed  Google Scholar 

  261. Nagarajan UM, Sikes JD, Burris RL, et al. Genital Chlamydia infection in hyperlipidemic mouse models exacerbates atherosclerosis. Atherosclerosis. 2019;290:103–10. https://doi.org/10.1016/j.atherosclerosis.2019.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Liu Z, Li J, Liu H, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis. 2019;284:121–8. https://doi.org/10.1016/j.atherosclerosis.2018.11.038.

    Article  CAS  PubMed  Google Scholar 

  263. Tuomisto S, Huhtala H, Martiskainen M, et al. Age-dependent association of gut bacteria with coronary atherosclerosis: Tampere Sudden Death Study. PLoS One. 2019;14(8):e0221345. https://doi.org/10.1371/journal.pone.0221345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article  Google Scholar 

  265. Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z. Migraine remains second among the world’s causes of disability, and first among young women: findings from GBD 2019. The Journal of Headache and Pain. 2020. Published online 2020 Dec 2;21:137. https://doi.org/10.1186/s10194-020-01208-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ryvlin P, Skorobogatykh K, Negro A, Sanchez-De La Rosa R, Israel-Willner H, Sundal C, Mac Gregor EA, Guerrero AL. Current clinical practice in disabling and chronic migraine in the primary care setting: results from the European My-LIFE anamnesis. BMC Neurol. 2021;21(1):1. https://doi.org/10.1186/s12883-020-02014-6.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Hemert S, Breedveld AC, Rovers JMP, Vermeiden JPV, Witteman BJM, Marcel GS, Nicole M. Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. Front Neurol. 2014; https://doi.org/10.3389/fneur.2014.00241.

  268. Mehle ME. Sinus headache, migraine, and the otolaryngologist a comprehensive clinical guide; 2017. Chapter 1, pages 3-5. Springer International Publishing AG 2017. Doi https://doi.org/10.1007/978-3-319-50376-9_1

  269. Patel ZM, Kennedy DW, Setzen M, Poetker DM, John MDG. “Sinus headache”: rhinogenic headache or migraine? An evidence-based guide to diagnosis and treatment 05 November; 2012

    Google Scholar 

  270. Proctor DM, Relman DA. The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe. 2017;21(4):421–32. https://doi.org/10.1016/j.chom.2017.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Oiconomidi T, Vikelis M, Artemiadis A, Chrousos GP, Darviri C. Reliability and validity of the Greek Migraine Disability Assessment (MIDAS). Questionnaire PharmacoEconomics. 2018;2:77–85.

    Article  Google Scholar 

  272. Osipov GA. Determination of the composition and number of microorganisms of the intestinal wall by chromatography-mass spectrometry of cellular fatty acids. Bull Russian Acad Med Sci. 1999;16(7):25–31. Exp and klin gastroenterology No. 4 pp. 59-67; 2003. (In Russian)

    Google Scholar 

  273. Osipov GA. Method for determining the generic (species) composition of the association of microorganisms. //Russian Patent No. 2086642. C12N 1/00, 1/20, C12Q 1/4. Priority from 24 Dec. 1993. (In Russian).

    Google Scholar 

  274. Osipov GA, Shabanova EA, Nedorezova TP, Istratov VG, Sergeeva TI. Method of diagnosis of clostridial anaerobic gas infection. Patent of the Russian Federation No. 2021608 cl. G01N 33/50. - Registered in the state register on 15.10.94. - Byul. No19. (In Russian).

    Google Scholar 

  275. Osipov G.A., Beloborodova N. V. Patent for invention No. 2146368 "Method for detecting the causative agent of an infectious process in sterile biological environments of a macroorganism", The patent was registered in the State Register of Inventions of the Russian Federation on 10.03.2000. (In Russian).

    Google Scholar 

  276. R: The main R command: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL Address https://www.R-project.org/); 2021.

  277. Arberas C, Ruggieri V. Autism. Genetic and biological aspects. Medicina (B Aires). 2019;79(S1):16–21.

    PubMed  Google Scholar 

  278. Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism spectrum disorder: complex interplay of genetic, epigenetic, and environmental factors. Adv Neurobiol. 2020;24:97–141.

    Article  PubMed  Google Scholar 

  279. Sealey LA, Hughes BW, Sriskanda AN, et al. Environmental factors in the development of autism spectrum disorders. Review. Environ Int. 2016;88:288–98.

    Article  CAS  PubMed  Google Scholar 

  280. Blagonravova AS, Zhilyaeva TV, Kvashnina DV. Gut microbiota disorders in autism spectrum disorders: new horizons in the search for pathogenetic approaches to therapy. Part 1. Features of the gut microbiota in autism spectrum disorders. J Microbiol Epidemiol Immunobiol. 2021;98:1. https://doi.org/10.36233/0372-9311-62. (In Russian)

    Article  Google Scholar 

  281. Langley JN. Connessions of the enteric nerve cells. J Physiol (London). 1922;56:39.

    Google Scholar 

  282. Gershon M. The enteric nervous system: a second brain. Hosp Pract (Minneap). 1999;34(7):31–2. 35–38, 41–42

    Article  CAS  Google Scholar 

  283. Damasio A. The feeling of what happens: body and emotion in the making of consciousness. New York: Harcourt Brace; 1999. p. 365. https://doi.org/10.5860/choice.37-6553.

    Book  Google Scholar 

  284. Niesler B, Kuerten S, Demir IE, et al. Disorders of the enteric nervous system—a holistic view. Nat Rev Gastroenterol Hepatol. 2021;18:393–410. https://doi.org/10.1038/s41575-020-00385-2.

    Article  PubMed  Google Scholar 

  285. Lyte M, Varcoe JJ, Bailey MT. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav. 1998;65(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  286. Gaykema RP, Goehler LE, Lyte M. Brain response to cecal infection with Campylobacter jejuni: analysis with fos immunohistochemistry. Brain Behav Immun. 2004;18(3):238–45.

    Article  CAS  PubMed  Google Scholar 

  287. Goehler LE, Gaykema RP, Opitz N, et al. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005;19(4):334–44.

    Article  PubMed  Google Scholar 

  288. Bercík P, De Giorgio R, Blennerhassett P, et al. Immunemediated neural dysfunction in a murine model of chronic Helico—bacter pylori infection. Gastroenterology. 2002;123(4):1.205–15.

    Article  CAS  Google Scholar 

  289. Bercik P, Verdú EF, Foster JA, et al. Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of Helicobacter pylori infection. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R587–94.

    Article  CAS  PubMed  Google Scholar 

  290. Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108(7):3.047-3.052.

    Article  Google Scholar 

  291. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64.

    Article  CAS  PubMed  Google Scholar 

  292. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Hooper LV, Wong MH, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291(5505):881–4.

    Article  CAS  PubMed  Google Scholar 

  294. Maksimova AA. Influence of pathological changes in intestinal microbiocenosis on the appearance or intensification of negative behavior in children with ASD. Int Res J. 2020;9(99):114–25. Part 1. - P. (In Russian)

    Google Scholar 

  295. Zatevalov AM, Selkova EP, Afanasyev SS, Aleshkin AV, Mironov AY, Gusarova MP, Gudova NV. Assessment of the degree of microbiological disorders of the microflora of the oropharynx and intestines using mathematical modeling methods. Clin Lab Diagn. 2016;61(2):117–21. (In Russian)

    CAS  Google Scholar 

  296. Zatevalov AM, Alyoshkin VA, Selkova EP, Grenkova TA. Determination of the concentration of butyric acid in feces, critical for the functional activity of normal intestinal and oropharyngeal microflora, of the concentration of butyric acid in the feces of patients of the intensive care unit and intensive care who are on tube feeding. Fundam Clin Med. 2017;2(1):14–22. (In Russian)

    Article  Google Scholar 

  297. Kondrakova OA, Mazankova LN, Zatevalov AM, Begiashvili LV, Babin VN, Dubinin AV. Disorders of intestinal microbiocenosis in young children with secondary lactase deficiency. Russian Bull Perinatol Pediatr. 2008;53(2):74–81.

    Google Scholar 

  298. Kondrakova OA, Novikova TA, Eroshkina TD, Khachaturova EA, Zatevalov AM, Blinova OV, Musin II, Veresov KV, Balabashin AN. Correction of metabolic disorders in the early postoperative period in severe forms of ulcerative colitis and Crohn's disease. Russian J Gastroenterol Hepatol Coloproctol. 2003;4:63. (In Russian)

    Google Scholar 

  299. Chistyakova NV, Savostyanov KV. The hypothalamic-pituitary-adrenal axis and genetic variants affecting its activity. Genetics. 2011;47(8):1–13. (In Russian)

    Google Scholar 

  300. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, Jousson O, Leoncini S, Renzi D, Calabrò A, De Filippo C. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5(1):24. https://doi.org/10.1186/s40168-017-0242-1. PMID: 28222761; PMCID: PMC5320696

    Article  PubMed  PubMed Central  Google Scholar 

  301. Qiao Y, Wu M, Feng Y, Zhou Z, Chen L, Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci Rep. 2018;8(1):1597. https://doi.org/10.1038/s41598-018-19982-y. PMID: 29371629; PMCID: PMC5785483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Ragusa M, Santagati M, Mirabella F, Lauretta G, Cirnigliaro M, Brex D, Barbagallo C, Domini CN, Gulisano M, Barone R, Trovato L. Potential Associations Among Alteration of Salivary miRNAs, saliva microbiome structure, and cognitive impairments in autistic children. Int J Mol Sci. 2020. 27 августа;21(17):6203. https://doi.org/10.3390/ijms21176203.

    Article  CAS  PubMed Central  Google Scholar 

  303. Simonova AV, Antonova IA, Pchelyakova VV. An interdisciplinary approach to the management of children with speech disorders. In the book: Innovative methods of prevention and correction of developmental disorders in children and adolescents. Collection of materials of the I international interdisciplinary scientific conference on April 17-18, 2019. Ed. HE. Usanova. M: Cogito-center, 2019. S: 240–242.

    Google Scholar 

  304. Nollace L, Cravero C, Abbou A, et al. Autism and COVID-19: a case series in a neurodevelopmental unit. J Clin Med. 2020;9(9):2937.

    Article  CAS  PubMed Central  Google Scholar 

  305. Xie M, Chen Q. Review Insight into 2019 novel coronavirus—An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 2020;94:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Choi SH, Kim HW, Kang JM. Epidemiology and clinical features of coronavirus disease 2019 in children. Clin Exp Pediatr. 2020;63(4):125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Christensen J, Grønborg TK, Sorensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Parikshak NN, Luo R, Zhang A, et al. Integrative functional genomic analyzes implicate specific molecular pathways and circuits in autism. Cell. 2013;155(5):1008–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Edlow AG, Li JZ, Collier AY, et al. Assessment of maternal and neonatal SARS-CoV-2 viral load, transplacental antibody transfer, and placental pathology in pregnancies during the COVID-19 pandemic. JAMA Netw Open. 2020;3(12):e2030455.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Obregon D, Parker-Athill EC, Tan J, Murphy T. Psychotropic effects of antimicrobials and immune modulation by psychotropics: implications for neuroimmune disorders. Neuropsychiatry (London). 2012;2(4):331–43. https://doi.org/10.2217/npy.12.41.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Patterson PH. Maternal infection and immune involvement in autism. Trends Mol Med. 2011;17(7):389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Brown AS, Derkits EJ. Review Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Sciara AN, Beasley B, Crawford JD, et al. Neuroinflammatory gene expression alterations in anterior cingulate cortical white and gray matter of males with autism spectrum disorder. Autism Res. 2020;13(6):870–84.

    Article  PubMed  PubMed Central  Google Scholar 

  315. Almehmadi KA, Tsilioni I, Theoharides TC. Increased expression of miR-155p5 in Amygdala of children with autism spectrum disorder. Autism Res. 2020;13(1):18–23.

    Article  PubMed  Google Scholar 

  316. Gumusoglu SB, Fine RS, Murray SJ, Bittle JL, Stevens HE. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun. 2017;65:274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Atladóttir HO, Thorsen P, Ostergaard L, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40:1423–30.

    Article  PubMed  Google Scholar 

  318. Musa SS, Bello UM, Zhao S, Abdullahi ZU, Lawan MA, He D. Vertical transmission of SARS-CoV-2: a systematic review of systematic reviews. Viruses. 2021;13(9):1877. Published 2021 Sep 20. https://doi.org/10.3390/v13091877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006;17(5-6):431–9. https://doi.org/10.1097/00008877-200609000-00009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Bercik P, Verdu EF, Foster JA, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139(6):2102–12.

    Article  CAS  PubMed  Google Scholar 

  321. Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Desbonnet L, Garrett L, Clarke G, et al. The probiotic Bifido - bacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164–74.

    Article  PubMed  Google Scholar 

  323. Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–88.

    Article  CAS  PubMed  Google Scholar 

  324. Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 2011;108(38):16050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zinserling, V. (2022). Some Noncommunicable Diseases of the Central Nervous System with a Possible Infectious Etiology (in Collaboration with V.A. Orlova, I.I. Mikhailova, A.A. Garbuzov, D.A. Khavkina, P.V. Chukhliaev, T.A. Ruzhentsova I. L. Naidenova, A. B. Danilov, A.V. Simonova, E.G. Filatova, I.A. Pavlovsky, O.V. Bystrova, A.M. Zatevalov, S.L. Bezrodny, T.Sh. Sadekov) . In: Infectious Lesions of the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-030-96260-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96260-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96259-3

  • Online ISBN: 978-3-030-96260-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics