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Abstract. This article describes a new implementation of MST-based encryption
for generalized Suzuki 2-groups. The well-known MST cryptosystem based on
Suzuki groups is built on a logarithmic signature at the center of the group, result-
ing in a large array of logarithmic signatures. An encryption scheme based on
multiparameter non-commutative groups is proposed. The multiparameter gener-
alized 2 - Suzuki group was chosen as one of the group constructions. In this case,
a logarithmic signature is established for the entire group. The main difference
from the known one is the use of homomorphic encryption to construct coverings
of logarithmic signatures for all group parameters. This design improves a secrecy
of the cryptosystem is ensured at the level of a brute-force attack.
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1 Introduction

Recent advances in quantum computing for solving complex problems formulate new
trends for building secure public-key cryptosystems. The main directions in this area
are the solution of the problem of finding the conjugate element in the theory of non-
commutative groups and the word problem in groups and semigroups. The word com-
plexity problem was proposed by Wagner and Magyarik [1] and implemented in several
cryptosystems. One of the best known and most studied is a cryptosystem based on fac-
torization in finite groups of permutations, called the logarithmic signature [2]. In 2009,
Lempken et al. described an MST3 public-key cryptosystem based on a logarithmic
signature and a Suzuki 2-group [2]. In 2008 Magliveras et al. [4] presented a compre-
hensive analysis of the MST3 cryptosystem identifying limitations for the logarithmic
signature and stated that the transitive logarithmic signature is not suitable for the MST3
cryptosystem. In 2010, Swaba et al. [5] analyzed all known attacks on MST cryptog-
raphy and built a more secure eMST3 cryptosystem by adding a secret homomorphic
coverage. In 2018, T. van Trung [7] proposed a general method for constructing strong
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aperiodic logarithmic signatures for Abelian p-groups, which is a further contribution
to the practical application of MST cryptosystems.

The construction of MST cryptosystems based on multiparameter non-commutative
groups was proposed in [7–9]. MST cryptosystems based on multi-parameter groups
allow optimizing the costs of cryptosystem parameters and secrecy.

Generalized Suzuki 2-groups are multivariable and have the highest group order
compared to other multivariable groups. The first implementation of the cryptosystem
on the generalized Suzuki 2-group is presented in [8] and does not provide protection
against brute force attacks with sequential brute force key recovery. Analysis of MST
cryptosystems by group shows their vulnerability to highlighted text attacks. The design
feature of all knownMST implementations is the presence of known texts and, as a con-
sequence, the possibility of such cryptanalysis. A secure encryption scheme is proposed
based on the generic Suzuki 2-group with homomorphic encryption.

2 Proposal

The generalizations of Suzuki 2-groups is defined over a finite field, Fq, q = 2n, n > 0
for a positive integer l and a1, a2, ..., al ∈ F for some automorphism θ of F as [10]:

Al(n, θ) = {
S(a1, a2, ..., al)|ai ∈ Fq

}

Each element of Al(n, θ) can be expressed uniquely and it follows that |Al(n, θ)| =
2nl and Al(n, θ) define a group of order 2nl . If l = 2, this group is isomorphic to a Suzuki
2-group A(n, θ).

Group operation is defined as a product:

S(a1, a2, ..., al)S(b1, b2, ..., bl) = S(a1 + b1, a2 + (a1θ)b1
+b2, a3 + (a2θ)b1 + (a1θ

2)b2 + b3,
..., al + (al−1θ)b1 + ... + (a1θ l−1)bl−1 + bl).

with the Identity element being S(01, 0, ..., 0).
The inverse element is given by:

S(a1, a2, a3, ..., al)
−1 = S(a1, a2 + a1θa1, a3 + a2θa1

+a1θ
2(a2 + a1θa1), ..., al + al−1θa1 + ...).

The group G is nonabelian group and has nontrivial center:

Z(G) = {
S(0, 0, ..., c)

∣∣c ∈ Fq
}
.

Assume that θ is the Frobenius automorphism of F, θ : x → x2. For the fixed finite
field, the group Al(n, θ) order is greater than the classical Suzuki 2 - group.

In the new implementation of the cryptosystem, we have changed the encryption
algorithm and suggest using homomorphic encryption for random covers. In this case,
the complexity of the key recovery attack will be determined by exhaustive search over
the entire group.
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2.1 Description of the Scheme

Our proposal is to create a logarithmic signature for the whole generalized Suzuki 2-
group and homomorphic encryption of random covers in the logarithmic signature.

Let’s take a look at the basic steps of encryption.
Key Generation.
We fix a large group Al(n, θ) = {

S(a1, a2, ..., al)|ai ∈ Fq
}
, q = 2n.

Let’s build a tame logarithmic signatures βk = [
B1(k), ...,Bs(k)

] = (
bij

)
k =

S
(
0, .., 0, bij(k), 0, ..., 0

)
of type:

(
r1(k), ..., rs(k)

)
, i = 0, s(k), j = 1, ri(k), bij(k) ∈ Fq,

k = 1, l.
Let’s set a random cover:

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), . . . , a

(l)
ij(k)

)

of the same type as βk , where aij ∈ Al(n, θ), a(v)
ij(k) ∈ Fq\{0}, i = 1, s, j = 1, ri(k),

k = 1, l.
Select the random covers:
w(k) = [

W1(k), . . . ,Ws(k)
] = (

wij
)
(k) = S

(
w(1)
ij(k),w

(2)
ij(k), . . . ,w

(l)
ij(k)

)
of the same

types as β(k), where wij ∈ Al(n, θ), wij(k) ∈ Fq\{0}, i = 0, s(k), j = 1, ri(k), k = 1, l.
Let’s generate random t0(k), ..., ts(k) ∈ Al(n, θ)\Z , ti(k) = S(ti1(k), ..., til(k)), tij(k) ∈

F×, i = 0, s(k), k = 1, l. Choose

τ0(k), . . . , τs(k) ∈ Al(n, θ)\Z, τi(k)

= S(τi1(k), . . . , τil(k)), τij(k) ∈ F×, i = 0, s(k), k = 1, l.

Let’s take ts(k−1) = t0(k), τs(k−1) = τ0(k), k = 1, l.
Let’s define an additional group operation:

S(a1, a2, ..., al) ◦(k) S(b1, b2, ..., bl) =
S(a1 + b1, a2 + b2, ..., ak + bk , ak+1 + a2kb1 + ... + a2

k

1 bk
+bk+1, ..., al + a2l−1b1 + ... + a2

l−1

1 bl−1 + bl).

The inverse element S−(k) for the group operation ◦(k) is

S−(k)(a1, a2, ..., al) = S(a1, a2, ..., ak , αk+1, ..., αl)

where

αk+1 = ak+1 + a2ka1 + . . . + a2
k−1

2 ak−1 + a2
k

1 ak ,

αk+2 = ak+2 + a2k+1a1 + . . . + a2
k−1

3 ak−1 + a2
k

2 ak + a2
k+1

1 αk+1,

. . .

αl = al + a2l−1a1 + . . . + a2
k

l−kak + a2
k+1

l−k−1αk+1+, . . . ,+a2
l−1

l αl−1

The application of additional group operation ◦(k) leads to homomorphic rep-

resentation of group elements S(a1, a2, ..., al)
◦(k)−→ S(a1, a2, ..., ak , αk+1, ..., αl) =

S(k).
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We apply inverse homomorphic transformation for the inverse and direct elements
S−(k)
1 , S(k)

2 of the group for the calculation in group with left inverse element S−(n)◦
1 .

S3 = S−(k)◦
1 · S(k)◦

2 For S−(k)
1 we have:

S−(k)◦ = S◦(a1, a2, ..., ak , αk+1, ..., αl) = S(α1, ..., αk , αk+1, ..., αl), where

α1 = a1, α2 = a2 + a21a1, ...αk = ak + a2k−1a1 + ..., a2
k−1

l ak−1.

and for S(k)
2 respectively to S3 = S−(k)◦

1 · S(k)◦
2 we get

S(k)◦ = S◦(b1, b2, ..., bk , βk+1, ..., βl) = S(β1, ..., βk , βk+1, ..., βl)

β1 = b1, β2 = b2 + a21(b1 + a1), ...

βk = bk + a2k−1(b1 + a1) + ..., a2
k−1

l (bk−1 + ak−1).

Homomorphic transformations for S−(k)◦, S(k)◦ are needed to for not breaking the
group operation when calculating the elements of the group Al(n, θ).

Let f (e) be a homomorphic cryptographic transformation with respect to addition
f (a + b) = f (a) + f (b), e, a, b ∈ Fq and the corresponding inverse transformation

f̂ (e) = e. We calculate the covering of the logarithmic signatures:

h(k) = [
h1(k), ..., hs(k)

] = t−(k)
(i−1)(k) ◦(k) (

wij
)
(k) ◦(k) (

bij
)
(k) ◦(k) ti(k)

and coverings of the homomorphic cryptographic transformation:
g(k) = [

g1(k), ..., gs(k)
] = τ

−(k)
(i−1)(k) ◦(k) f

(
wij

)
(k) ◦(k) τi(k), where

f (w(k)) = f
(
wij

)
(k) = S

(
f (wij(k)1), f (wij(k)2), ..., f (wij(k)l )

)
,

i = 1, s(k), j = 1, ri(k), k = 1, l.

An output public key is (ak , hk , gk), and a
private key

[
f , β(k),

(
t0(k), . . . , ts(k)

)
,
(
τ0(k), . . . , τs(k)

)]
, k = 1, l respectively.

Encryption
Let the message to be x = S(x1, ..., xl) and the public key (ak , hk , gk), k = 1, l

respectively. Choose a random R = (R1, ...,Rl), R1, ...,Rl ∈ Z|Fq|.
Compute the ciphertext y1, y2, y3 as:

y1 = α(R) · x = α1(R1) · α2(R2) . . . αl(Rl) · x

= S(

l∑

k=1

s(k)∑

i=1,j=Ri(k)

a(1)
ij(k) + x1,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

a(2)
ij(k) + x2 + ∗,

. . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

a(l)
ij(k) + xl + ∗, ),
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y2 = h(R) = h1(R1)◦(1)

(
h2(R2) ◦(2) . . .

(
hl−1(Rl−1) ◦(l−2)

(
hl−1(Rl−1) ◦(l−1) hl(Rl)

)))

= S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(1)
ij(k) +

s(1)∑

i=1,j=Ri(1)

βij(1),

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(2)
ij(k)

+
s(2)∑

i=1,j=Ri(2)

βij(2) + ∗, . . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(l)
ij(k) +

s(l)∑

i=1,j=Ri(l)

βij(l) + ∗
⎞

⎠

Here, the (∗) components are determined by cross-calculations in the group operation
of the product of t0(k), ..., ts(k) and the product of w(k)(Rk) + β(k)(Rk).

y3 = g(R) = g1(R1)◦(1)

(
g2(R2) ◦(2) . . .

(
gl−1(Rl−1) ◦(l−2)

(
gl−1(Rl−1) ◦(l−1) gl(Rl)

)))

= S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(1)
ij(k)

)
+,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(2)
ij(k)

)
+∗, . . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(l)
ij(k)

)
+ ∗

⎞

⎠

Here, the (∗) components are determined by cross-calculations in the group operation
of the product of τ0(k), . . . , τs(k) and the product of f

(
w(k)(Rk)

)
.

Output: a ciphertext (y1, y2, y3) of the message x.
Decryption Input: a ciphertext (y1, y2, y3) and a private key

[
f , β(k), ti(k), τi(k)

]
,

i = 0, s(k), k = 1, l.
To decrypt a message x, we need to restore random numbers R = (R1,R2, ...,Rl).
Compute

D(1)(R) = D(1)(R1,R2, . . . ,Rl) = t0(1) ◦(1) y2 ◦(l) t−(l)
s(l)

= S(

s(1)∑

i=1,j=Ri(1)

w(1)
ij(1) + β1(R1), ∗, . . . , ∗ ),

G(1)(R) = G(1)(R1,R2, . . . ,Rl) = τ0(1) ◦(1) y3 ◦(l) τ
−(l)
s(l)

= S(

s(1)∑

i=1,j=Ri(1)

f
(
w(1)
ij(1)

)
, ∗, . . . , ∗ ),

D(1)(R)′ = D(1)(R) ◦(1) f̂ (G(1)(R))−(1) = S(
s(1)∑

i=1,j=Ri(1)

βij(1), ∗, ∗) Restore R1 with

β(1)(R1) =
s(1)∑

i=1,j=Ri(1)

βij(1) using β(1)(R1)
−1, because β1 is simple.
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For the further calculation, it is necessary to remove the component h1(R1) from y2
and g1(R1) from y3. Compute

y(1)
2 = h1(R1)

−(1)◦ · y◦
2, y

(1)
3 = g1(R1)

−(1)◦ · y◦
3, D(R)(2) = t0(2) ◦(2) y(1)

2 ◦(l) t−(l)
s(l) ,

G(R)(2) = τ0(2) ◦(2) y(1)
3 ◦(l) τ

−(l)
s(l) ,

D(2)(R)′ = D(2)(R) ◦(2) f̂ (G(2)(R))−(2) = S(0,
s(2)∑

i=1,j=Ri(2)

βij(2)c , ∗).

and restore R2 with β(2)(R2) =
s(2)∑

i=1,j=Ri(2)

βij(2) using β(2)(R2)
−1, because β2 is

simple. We continue the calculations iteratively until the last value Rl is restored. We
have the following recurrent relations for n = 1, l − 1:

y(n)
2 = hn(Rn)

−(n)◦ · y(n−1)◦
2 , y(n)

3 = gn(Rn)
−(n)◦ · y(n−1)◦

3 ,

D(n+1)(R) = t0(n+1) ◦(n+1) y(n)
2 ◦(l) t−(l)

s(l) , G
(n+1)(R) = τ0(n+1) ◦(n+1) y(n)

3 ◦(l) τ
−(l)
s(l) ,

D(n+1)(R)′ = D(n+1)(R) ◦(n+1) f̂ (G(n+1)(R))−(n+1) =
S(0, 0, ..., 0,

s(n+1)∑

i=1,j=Ri(n+1)

βij(n+1), ∗)

Restore Rn+1 with β(n+1)(Rn+1) =
s(n+1)∑

i=1,j=Ri(n+1)

βij(n+1) using β(n+1)(Rn+1)
−1.

Recovery of the message x = a(R1,R2, ...,Rl)
−1 · y1.

Example
We will show the correctness of the obtained expressions in the following simple

example.
Let’s fix the four-parameter generalized Suzuki group G = A4(n, θ) over the finite

field Fq, q = 25, g(x) = x5 + x3 + 1 . Assume that θ is the Frobenius automorphism of
Fq, θ : α → α2. Group operation is defined as:

S(a1, a2, a3, a4)S(b1, b2, b3, b4) = S(a1 + b1, a2 + a21b1 + b2,

a3 + a22b1 + a41b2 + b3, a4 + a23b1 + a42b2 + a81b3 + b4).

The inverse element is determined as:

S(a1, a2, a3, a4)
−1 = S(a1, a2 + a31, a3 + a22a1 + a41a

′
2, a4 + a23a1 + a42a

′
2 + a81a

′
3)

where a′
2 = a2 + a31, a

′
3 = a3 + a22a1 + a41a

′
2.

Let’s consider the basic steps of our calculations.
Generation of public and private keys
First stage is to generate a tame logarithmic signature with the dimension of corre-

sponding selected type
(
r1(k), ..., rs(k)

)
and finite field Fq. The construction of arrays of

logarithmic signatures is presented in [11]. For our example, we use the construction of
simple logarithmic signatures without analyzing the details of their secrecy. Let’s β(k)
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for k = 1, 3 have the types of
(
22, 23

)
,
(
2, 22, 22

)
,
(
22, 2, 22

)
,
(
22, 22, 2

)
. They are

represented as a strings and elements of the group over the field Fq in the table provided
below (Table 1).

Table 1. Logarithmic signature generation

βk = [
B1(k),B2(k),B3(k),B4(k)

] = (
bij

)
(k),

(
bij

)
(k) ∈ Al=4(n, θ)

B1(1) B1(2) B1(3) B1(4)

00000 0, 0, 0, 0 00000 0, 0, 0, 0 00000 0, 0, 0, 0 00000 0, 0, 0, 0

10000 α0, 0, 0, 0 10000 0, α0, 0, 0 10000 0, 0, α0, 0 10000 0, 0, 0, α0

01000 α1, 0, 0, 0 01000 0, α1, 0, 0 B2(3) 01000 0, 0, 0, α1

11000 α14, 0, 0, 0 11000 0, α14, 0, 0 00000 0, 0, 0,0 11000 0, 0, 0, α14

B2(1) B2(2) 11000 0, 0, α14, 0 B2(4)

01000 α1, 0, 0, 0 11000 0, α14, 0, 0 10100 0, 0, α28, 0 00000 0, 0, 0, 0

10100 α28, 0, 0, 0 11100 0, α22, 0, 0 01100 0, 0, α15, 0 00100 0, 0, 0, α2

11010 α26, 0, 0, 0 10010 0, α5, 0, 0 B3(3) B3(4)

00110 α16, 0, 0, 0 00110 0, α16, 0, 0 01000 0, 0, α1, 0 01000 0, 0, 0, α1

10001 α25, 0, 0, 0 B3(2) 10010 0, 0, α5, 0 00110 0, 0, 0, α16

11101 α21, 0, 0, 0 10000 0, α0, 0, 0 01101 0, 0, α27, 0 00001 0, 0, 0, α4

10011 α18, 0, 0, 0 10011 0, α18, 0, 0 10111 0, 0, α9, 0 11011 0, 0, 0, α19

11111 α20, 0, 0, 0

Construct random covers αk , for the same type as β(k)

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), a

(3)
ij(k), a

(4)
ij(k)

)

where aij ∈ Al=4(n, θ), a(v)
ij(k) ∈ Fq\{0}, i = 1, s, j = 1, ri(k), k = 1, 4.

In the field representation αk has the following form (Table 2)

Table 2. Random covers construction

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), a

(3)
ij(k), a

(4)
ij(k)

)

k = 1 k = 2 k = 3 k = 4

A1(1) A1(2) A1(3) A1(4)

α6, α11, α17, α27 α17, α5, α26, α28 α0, α2, α14, α20 α20, α14, α30, α13

α11, α5, α7, α5 α20, α14, α19, α24 α17, α27, α16, α10 α4, α2, α13, α17

α21, α18, 0, α16 α30, α21, α6, α3 A2(3) α19, α13, α26, α22

(continued)
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Table 2. (continued)

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), a

(3)
ij(k), a

(4)
ij(k)

)

k = 1 k = 2 k = 3 k = 4

α5, α29, α12, α16 α6, α9, α13, α22 α28, α29, 0, α25 α6, α28, α12, α4

A2(1) A2(2) α10, α12, α22, α30 A2(4)

α4, α7, α4, α2 α30, α14, α27, α30 α13, α23, α19, α19 α18, α1, α1, α24

α12, α11, α3, α1 α1, α18, 0, α13 α0, α10, α1, α20 α26, α28, α15, α0

α18, α15, α14, α30 α1, α18, α28, α30 A3(3) A3(4)

α3, α19, α26, α2 α25, α5, α0, α13 α11, α27, α29, α18 α16, α17, α29, α17

α11, α18, α21, α28 A3(2) α5, α1, α12, α22 α18, α0, α1, α15

α16, α18, α10, α24 α3, α29, α25, 0 α30, α18, α6, α11 α4, α9, α23, α19

α17, α16, 0, α27 α25, α19, α23, α2 0, 0, α17, α23 α19,α20, α30, α10

α25, α17, α8, α12

Choose random Al(n, θ) t0(k), t1(k), ..., ts(k) ∈ Al(n, θ), s(k), k = 1, 4 and t2(1) =
t0(2), t3(2) = t0(3), t3(3) = t0(4) (Table 3)

Table 3. Random t vectors

t0(k), t1(k), . . . , ts(k) ∈ Al=4(n, θ), s(k), k = 1, 4

k = 1 k = 2 k = 3 k = 4

α1, α5, α17, α16

α25, α17, α23, α27

α13, α0, α28, α10

α13, α0, α28, α10

α30, α2, α17, α2
α6, α7, α30, α18

α9, α4, α9, α20

α9, α4, α9, α20

α14, α28, α17, α22

α26, α5, α16, α30

α12, α15, α17, α6

α12, α15, α17, α6

α22, α30, α22, α16

α24, α29, α15, α30

α3, 0, α14, α9

The inverse elements t−(k)
0(k) , t−(k)

1(k) , ..., t−(k)
s(k) of the groupA4(n, θ)were computed with

reference below (Table 4):

Table 4. Computing of inverse elements t−(k)
0(k) , t−(k)

1(k) , . . . , t−(k)
s(k)

τ
−(k)
0(k) , τ

−(k)
1(k) , . . . , τ

−(k)
s(k)

k = 1 k = 2 k = 3 k = 4

α1, α0, α22, α21

α25, α7, α3, α15

α13, α19, α7, α24

α13, α0, α7, α24

α30, α2, α15, α21

α6, α7, α28, α24

α9, α4, α8, α25

α9, α4, α9, α25

α14, α28, α17, α21

α26, α5, α16, α13

α12, α15, α17, α30

α12, α15, α17, α6

α22, α30, α22, α16

α24, α29, α15, α30

α3, 0, α14, α9
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Similarly, we choose random τ0(k), τ1(k), ..., τs(k) ∈ Al(n, θ), s(k), k = 1, 4 and
t2(1) = t0(2), t3(2) = t0(3), t3(3) = t0(4):

and the inverse elements τ
−(k)
0(k) , τ

−(k)
1(k) , ..., τ

−(k)
s(k) (Table 5):

Table 5. Computing of random τ vectors τ0(k), τ1(k), ..., τs(k) ∈ A(P∞)\Z

τ0(k), τ1(k), . . . , τs(k) ∈ A(P∞)\Z, s(k), k = 1, 4

k = 1 k = 2 k = 3 k = 4

α4, α22, α7, α12

α8, 0, α13, α16

α29, α21, α30, α13

α29, α21, α30, α13

α24, α20, α17, α25

α4, α7, α16, α30

α2, α17, α22, α2

α2, α17, α22, α2

0, α22, α16, α24

α6, α21, α25, α18

α20, 0, α3, α0

α20, 0, α3, α0

α21, α16, α12, α16

α16, α28, α19, α16

α28, α17, α26, α4

Table 6. Computing of inverse elements τ
−(k)
0(k) , τ

−(k)
1(k) , . . . , τ

−(k)
s(k)

τ
−(k)
0(k) , τ

−(k)
1(k) , . . . , τ

−(k)
s(k)

k = 1 k = 2 k = 3 k = 4

α4, α18, α9, α0

α8, α24, α2, α30

α29, α15, α2, α5

α29, α21, α2, α5

α24, α20, α22, α29

α4, α7, α12, α28

α2, α17, α24, α11

α2, α17, α22, α11

0, α22, α16, α2

α6, α21, α25, α3

α20, 0, α3, α22

α20, 0, α3, α0

α21, α16, α12, α16

α16, α28, α19, α16

α28, α17, α26, α4

Construct random covers wk , for the same type as β(k)

w(k) = [
W1(k), . . . ,Ws(k)

] = (
wij

)
(k) = S

(
w(1)
ij(k),w

(2)
ij(k), . . . ,w

(l)
ij(k)

)
, where wij ∈

Al=4(n, θ), w(v)
ij(k) ∈ Fq, i = 0, s(k), j = 1, ri(k), k = 1, 4 (Table 6 and 7).

Table 7. Construct random covers wk

w(k) = [
W1(k), . . . ,Ws(k)

] = (
wij

)
(k) = S

(
w(1)
ij(k), . . . ,w

(4)
ij(k)

)

k = 1 k = 2 k = 3 k = 4

W1(1) W1(2) W1(3) W1(4)

α20, α20, α12, α4 α9, α28, α27, α2 α3, α2, α10, 0 α30, α14, α1, α28

α7, α9, α17, α20 α16, α13, α6, α21 α5, α10, α19, α16 α6, α28, α30, α20

α25, α6, α23, α27 α25, 0, α4, α27 W2(3) α13, α19, α26, α11

α3, α0, α23, α29 α1, α0, α17, α17 α12, α20, α14, α3 α16, α27, α9, α21

(continued)
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Table 7. (continued)

w(k) = [
W1(k), . . . ,Ws(k)

] = (
wij

)
(k) = S

(
w(1)
ij(k), . . . ,w

(4)
ij(k)

)

W2(1) W2(2) α23, α12, α5, α27 W2(4)

α7, α21, α6, α21 α21, α14, α14, α0 α2, α3, α24, α16 α2, α21, α8, α29

α18, α21, α22, α6 α19, α29, α19, α13 α12, α5, α21, α14 α4, α2, α1, α23

α18, α19, α12, α15 α25, α26, α12, α17 W3(3) W3(4)

α16, α12, α14, α6 α10, α19, α23, α4 α14, α6, α0, α17 0, α0, α25, α3

α23, α4, α1, α30 W3(2) α17, α13, α7, α4 α3, α19, α17, α24

α5, α26, α6, α19 α28, α0, α13, α17 α25, α24, α27, α8 α28, α28, α14, α26

α22, α17, α13, α21 α14, α0, α3, α3 α13, 0, α21, α7 α24, α18, α27, α13

α28, α27, α9, α24

The next step is to calculate the arrays hk . Within the condition of the example, we
obtain:

h(k) = [
h1(k), ..., hs(k)

] = t−(k)
(i−1)(k) ◦(k)

(
wij

)
(k) ◦(k)

(
bij

)
(k) ◦(k) ti(k)

i = 1, s(k), j = 1, ri(k), k = 1, 4.
Let’s a homomorphic cryptographic transformation for a field element e ⇒ ρie

where ρi is a secret parameter. The transformation is chosen to be the simplest. You
can also use more complex homomorphic transformations with respect to the addition
operation. We define homomorphic cryptographic transformation for a group element S
as

f (S(e1, e2, e3, e4)) = S(ρ1e1, ρ2e2, ρ3e3, ρ4e4),

and let’s ρ = (ρ1, ρ2, ρ3, ρ4) = (
α4, α5, α6, α7

)
.

Let’s a homomorphic cryptographic transformation for a field element e ⇒ ρie
where ρi is a secret parameter. The transformation is chosen to be the simplest (Table
8).

You can also use more complex homomorphic transformations with respect to the
addition operation. We define homomorphic cryptographic transformation for a group
element S as

f (S(e1, e2, e3, e4)) = S(ρ1e1, ρ2e2, ρ3e3, ρ4e4),

and let’s ρ = (ρ1, ρ2, ρ3, ρ4) = (
α4, α5, α6, α7

)
.

Next, we compute the arrays gk via the homomorphic transformation

g(k) = [
g1(k), ..., gs(k)

] = τ
−(k)
(i−1)(k) ◦(k) f

(
wij

)
(k) ◦(k) τi(k)

i = 1, s(k), j = 1, ri(k), k = 1, 4. See the Table 9 for the results.
An output public key (ak , hk , gk), and a private key[

f , β(k),
(
t0(k), . . . , ts(k)

)
,
(
τ0(k), . . . , τs(k)

)]
, k = 1, 4.
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Table 8. Construct arrays hk

hk = S(h(1)
ij(k), h

(2)
ij(k), h

(3)
ij(k), h

(4)
ij(k))

k = 1 k = 2 k = 3 k = 4

h1(1) h1(2) h1(3) h1(4)
α16, α20, α22, α30 α24, 0, α16, 0 α27, α25, α27, α30 α7, α25, α9, α19

α20, α7, α21, α15 α7, α25, α21, α3 α21, α15, α20, α14 α26, α21, α26, 0

0, α27, α26, α13 α4, α22, 0, α21 h2(3) α16, α5, α30, α10

α17, α16, α28, α26 α14, α22, α3, α5 α27, α10, α21, α23 α13, α2, α1, α29

h2(1) h2(2) α15, α6, α12, α9 h2(4)
α26, 0, α29, α11 α25, α5, α3, α26 α16, α2, α7, α17 α20, α5, α19, α6

α17, α7, α26, α29 α9, α2, α12, α14 α27, α28, α28, α11 α26, α8, α14, α6

α27, α11, α28, α16 α21, α26, α25, α21 h3(3) h3(4)
α2, α3, α11, α4 α13, α12, α22, α7 α27, α9, α21, α15 α30, α26, α30, α14

α19, α16, α25, α5 h3(2) α7, α8, α4, α4 α24, α25, α9, α18

α8, α8, α19, α19 α29, α9, α1, α12 α2, α10, α30, α24 α25, α11, α15, α6

α8, α10, α1, α30 α16, α28, α1, α3 0, α11, α12, α21 α3, α10, α10, α22

α12, α27, α0, α21

Table 9. Construct arrays gk

gk = S(g(1)
ij(k), g

(2)
ij(k), g

(3)
ij(k), g

(4)
ij(k))

k = 1 k = 2 k = 3 k = 4

g1(1) g1(2) g1(3) g1(4)
α27, α21, α17, α13 α14, α16, α7, α18 α5, α6, α22, α30 0, α21, α19, α9

α28, α18, α2, α1 α5, α25, α18, 0 α18, α18, α8, α7 α19, α3, α20, α19

0, α17, α1, α13 α24, α3, α1, α13 g2(3) α4, α4, α30, α30

α22, α9, α29, α26 α20, α0, 0, α23 α12, α0, α1, α0 α21, α23, α4, α3

g2(1) g2(2) α2, α3, α6, 0 g2(4)
α20, α29, α17, α13 α9, α5, α25, α30 0, α29, α5, α11 α5, α1, α15, α5

α21, α0, α25, α28 α1, α8, α7, α17 α12, α14, α26, α23 α0, α2, α3, α30

α21, α27, α21, α21 α15, α10, α13, α9 g3(3) g3(4)
α11, α30, α22, α5 α11, α23, α29, α18 α30, α17, α26, α2 α5, α30, α25, α11

α15, α24, α17, α24 g3(2) α8, α23, α16, α9 α2, α0, α12, α9

α7, α30, α20, α24 α27, α24, α6, α9 α22, α9, α9, α10 α26, α18, α11, α17

α19, α19, α3, α2 α7, α24, α25, α26 α13, α21, α11, α26 α16, α10, α30, α14

α6, α10, α17, α17
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Encryption
Input: a message m ∈ Al(n, θ), m = S(m1,m2,m3,m4), mi ∈ Fq and the public key[

fk , (ak , hk , gk)
]
, k = 1, 4.

Let m = (
α1, α2, α3, α4

) = S
(
α1, α2, α3, α4

)
.

Choose a random R = (R1,R2,R3,R4) = (10, 20, 30, 14).
We obtain the following Ri expansions for given types of

(
r1(k), ..., rs(k)

)
, k = 1, 4

R1 = (
R1(1),R2(1)

) = (2, 2) = 10,

R2 = (
R1(2),R2(2),R3(2)

) = (0, 1, 1) = 20,

R3 = (
R1(3),R2(3),R3(3)

) = (0, 3, 3) = 30.

R4 = (
R1(4),R2(4),R3(4)

) = (2, 1, 1) = 14

Compute the cipher text:

y1 = a′(R) · m = a′
1(R1) · a′

2(R2) · a′
3(R3) · a′

4(R4) · m =
S
(
α7, α6, α22, α11

)

where:

a′
1(R1) = a1(10) = a1(1)(2)a2(1)(2) = S

(
α23, α13, α20, α20

)
,

a′
2(R2) = a2(20) = a1(2)(0)a2(2)(1)a3(2)(1) = S

(
α26, α3, α5, α29

)
,

a′
3(R3) = a3(30) = a1(3)(0)a2(3)(3)a3(3)(3) = S

(
0, α27, α8, α4

)
,

a′
4(R4) = a4(14) = a1(4)(2)a2(4)(1)a3(4)(1) = S

(
α5, α12, α21, α16

)
.

Calculate

y2 = h1(R1) ◦(1)
(
h2(R2) ◦(2)

(
h3(R3) ◦(3) h4(R4)

))
= S

(
0, α8, α16, α17

)

The components h′
k(Rk) are calculated similarly to a′

k(Rk) components, but using
the appropriate multiplication operation. Compute the component y3:

y3 = g1(R1) ◦(1)
(
g2(R2) ◦(2)

(
g3(R3) ◦(3) g4(R4)

))
= S

(
α16, α14, α1, α4

)
.

We obtained output y1 = (
α7, α6, α22, α11

)
, y2 = (

0, α8, α16, α17
)
, y3 =(

α16, α14, α1, α4
)
.

Decryption
Input: a ciphertext (y1, y2, y3) and private key

[
f , β(k), ti(k), τi(k)

]
, i = 0, s(k), k =

1, 4.
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Output: the message m ∈ A(P∞) corresponding to ciphertext (y1, y2, y3).
To decrypt a message m, we need to restore random numbers R = (R1,R2,R3).
Compute

D(1)(R) = t0(1) ◦(1) y2 ◦(4) t−(4)
s(4) = S(α29, α8, α24, α28),

G(1)(R) = τ0(1) ◦(1) y3 ◦(4) τ
−(4)
s(4) = S(α18, α5, α7, α30),

D(1)(R)′ = D(1)(R) ◦(1) f̂ (G(1)(R))−(1) = S(α5, α22, α21, α0).

Restore R1 with β(1)(R1) =
s(1)∑

i=1,j=Ri(1)

βij(1) using β(1)(R1)
−1, because β1 is simple.

We get β1(R1) = α5 = (10010). Perform inverse calculations β(1)(R1)
−1.

10|010 R1 = (*, 2)
11|010 row 1 from B4(1)
10|010−11|010 = 01|000 R1 = (2, 2)
We get β1(R1)

−1 = (2, 2) = 10
For further calculation, it is necessary to remove the component h′

1(R1) from y2 and
g′
1(R1) from y3.

Compute

y(1)
2 = h1(R1)

−(1)◦ · y◦
2 = S(α26, α16, α17, α19),

y(1)
3 = g1(R1)

−(1)◦ · y◦
3 = S(α19, α18, α12, α19),

D(2)(R) = t0(2) ◦(2) y(1)
2 ◦(4) t−(4)

s(4) = S(α26, α18, α16, α2),

G(2)(R) = τ0(2) ◦(2) y(1)
3 ◦(4) τ

−(4)
s(4) = S(α30, α27, α0, α11),

D(2)(R)′ = D(2)(R) ◦(2) f̂ (G(2)(R))−(2) = S(0, α12, α4, α30)

and restore R2 with β(2)(R2) =
s(2)∑

i=1,j=Ri(2)

βij(2) using β(2)(R2)
−1, because β2 is

simple. We get β2(R2) = α12 = (01111). Restore R2 with β2(R2). We use the same
calculations as in the example for β2(R2)

−1, and we get:
01|11|1 R2 = (*, *, 1)
10|01|1 row 1 from B3(2)
01|11|1−10|01|1 = 11|10|0 R2 = (*, 1, 1)
11|10|0 row 0 from B3(2)
11|10|0−11|10|0 = 00|00|0 R2 = (0, 1, 1)
We get β2(R2)

−1 = (0, 1, 1) = 20.
Remove the component h′

2(R2) from y(1)
2 and g′

2(R2) from y(1)
3 . We get

y(2)
2 = h3(R3)

−(2)◦ · y(1)◦
2 = S(α19, α18, α22, α15),
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y(2)
3 = g3(R3)

−(2)◦ · y(1)◦
3 = S(α21, α10, α0, α19),

D(3)(R) = t0(3) ◦(3) y(2)
2 ◦(4) t−(4)

s(4) = S(α23, α5, α18, α21),

G(3)(R) = τ0(3) ◦(3) y(2)
3 ◦(4) τ

−(4)
s(4) = S(α21, α10, α7, α13),

D(3)(R)′ = D(3)(R) ◦(3) f̂ (G(3)(R))−(3) = S(0, 0, α19, α6)

We get β3(R3) = α19 = (11011).
Perform inverse calculations β3(R3)

−1.
1|10|11 R3 = (*, *, 3)
1|01|11 row 3 from B3(3)
1|10|11−1|01|11 = 0|11|00 R3= *, 3, 3)
0|11|00 row 3 from B2(3)
0|11|00−0|11|00 = 0|00|00 R3 = (0, 3, 3)
We get β3(R3)

−1 = (0, 3, 3) = 30.
Remove the component h′

3(R3) from y(2)
2 and g′

3(R3) from y(2)
3 .

As a result, we get:

y(3)
2 = h3(R3)

−(3)◦ · y(2)◦
2 = S(α19, α1, α29, α17),

y(3)
3 = g3(R3)

−(3)◦ · y(2)◦
3 = S(α13, α13, α0, α16),

D(4)(R) = t0(4) ◦(4) y(3)
2 ◦(4) t−(4)

s(4) = S(α7, α2, α25, α21),

G(4)(R) = τ0(4) ◦(3) y(3)
3 ◦(4) τ

−(4)
s(4) = S(α11, α7, α0, α16),

D(3)(R)′ = D(4)(R) ◦(4) f̂ (G(4)(R))−(4) = S(0, 0, 0, α29)

01010
We get β4(R4) = α29 = (01010). Perform inverse calculations β4(R4)

−1.
01|0|10 R3 = (*, *, 1)
00|1|10 row 1 from B3(4)
01|0|10−00|1|10 = 01|1|00 R3 = (*, 1, 1)
00|1|00 row 1 from B2(4)
01|1|00−00|1|00 = 01|0|00 R3 = (2, 1, 1)
We get β4(R4)

−1 = (2, 1, 1) = 14.
Receive a message m = a′(R)−1y1 = S

(
α1, α2, α3, α4

)
.



Encryption Scheme Based on the Generalized Suzuki 2-groups 73

3 Security Parameters Analysis and Cost Estimation

Consider a brute force attack of key recovery. There are three possible schemes for such
an attack.

Brute force attack on cipher text. By selecting R = (R1,R2, ...,Rl) try to decipher
the text y′

1 = α′(R′) · m = α′
1

(
R′
1

) · α′
2

(
R′
2

)
. . . α′

l

(
R′
l

) · m. The covers αk = (
aij

)
k =

S
(
a(1)
ij(k), a

(2)
ij(k), ..., a

(l)
ij(k)

)
are selected randomly and the value is determined by multipli-

cation in a group with no coordinate constraints. The resulting vector α′(R′) depends on
all componentsα′

i

(
R′
i

)
. Enumeration of key valuesR = (R1,R2, ...,Rl) has an estimation

of complexity. For a practical attack, the messagem is also unknown and has uncertainty
to choose from ql . This makes a brute-force attack on a key infeasible. If we take an
attack model with a known text, then the attack complexity still remains the same and
equal to ql .

Brute force attack on the cyphertext y2. Select R = (R1,R2, ...,Rl) to match y2. The
vector y2 has a following definition over the components α′

i(Ri)

y2 = S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(1)
ij(k) +

s(1)∑

i=1,j=Ri(1)

βij(1),

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(2)
ij(k)+

s(2)∑

i=1,j=Ri(2)

βij(2) + ∗, . . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(l)
ij(k) +

s(l)∑

i=1,j=Ri(l)

βij(l) + ∗
⎞

⎠

The values of the coordinates y2 are defined by calculations over the vectors
w′
1(R1),w′

2(R2), ...,w′
l(Rl). The keys R = (R1,R2, ...,Rl) are bound and changes in

any of them leads to change y2. The brute force attack on key R has a complexity equal
to ql .

Brute force attack on the ciphertext y3. Select R = (R1,R2, ...,Rl) to match y3. The
vector y3 has a following definition over the components ρiw′

i(Ri)

y3 = S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(1)
ij(k)

)
+,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(2)
ij(k)

)
+∗,

. . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(l)
ij(k)

)
+ ∗

⎞

⎠.

The values of the coordinates y3 are defined by calculations over the vectors
w′
1(R1),w′

2(R2), ...,w′
l(Rl). The keys R1,R2, ...,Rl are bound and changes in any of

them leads to change y3. The brute force attack on key R has a complexity equal to ql .
Brute force attack on the vectors

(
t0(k), . . . , ts(k)

)
and

(
τ0(k), τ1(k), . . . , τs(k)

)
. The

brute force attack on
(
t0(k), . . . , ts(k)

)
is a general for the MST cryptosystems and for

the calculation in the field Fq over the group center Z(G) has an optimistic complexity
estimation equal to q. For the proposed algorithm all calculations are executed on whole
group |Al(n, θ)| = ql and is a such case the complexity of the brute force attack on(
t0(k), . . . , ts(k)

)
and

(
τ0(k), τ1(k), . . . , τs(k)

)
will be equal to ql .
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Attack on the Algorithm. The attack on the implementation algorithm of the MST
cryptosystem based on the generalized Suzuki 2-group is multifaceted. Practical attacks
look at the features of logarithmic signatures and random coverings known to a cryptan-
alyst. One solution is to use aperiodic logarithmic signatures. In the new cryptosystem
with homomorphic encryption, random covers are a secret for the cryptanalyst. In this
case, the known attacks based on the weakness of logarithmic signatures are impossible.

Let’s estimate security and keys parameters for generalized Suzuki-2 group cryp-
tosystem. We fix a generalized Suzuki 2-group Al(n, θ) = {

S(a1, a2, . . . , al)|ai ∈ Fq
}
,

which is defined over the field Fq, q = 2n. Then for l-parametric group we achieve
K = nl bit cryptography. Logarithmic signature array and random covers are known
parameters that are used in encryption as follows

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), . . . , a

(l)
ij(k)

)
,

h(k) = [
h1(k), . . . , hs(k)

] = S
(
h(1)
ij(k), h

(2)
ij(k), . . . , h

(l)
ij(k)

)

Also, we know random cover with homomorphic encryption

g(k) = [
g1(k), . . . , gs(k)

] = S
(
g(1)
ij(k), g

(2)
ij(k), . . . , g

(l)
ij(k)

)

for k = 1, l.
The number of vectors in arrays αk , h(k), g(k) is defined by the type of logarithmic

signature.
(
r1(k), . . . , rs(k)

)
and equals to N =

l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

)

Since arrays αk , g(k) are random and can be constructed by random bits deterministic
generator from some initial vector V , then we can define αk , g(k) over the vector V . Let’s
fix the vector length V to be equal to nl bits.

The array size g(k) equals to: Ng = l
l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

)
n-bits words.

The secret parameters of the cryptosystem include vectors t, τ , ρ:

t0(k), . . . , ts(k) ∈ Al(n, θ)\Z, ti(k) = S(ti1(k), . . . , til(k)),

τ0(k), . . . , τs(k) ∈ Al(n, θ)\Z, τi(k) = S(τi1(k), . . . , τil(k)), ρ = (ρ1, ρ2, . . . , ρl), k = 1, l.

The number of vectors ti(k), τi(k) equals to:Nt = Nτ = l
l∑

k=1
s(k) n-bits words.

The length of the vector ρ equal to nl bits.
Obviously, that Ng , Nt , Nτ depends on type of

(
r1(k), . . . , rs(k)

)
.

Let the secrecy of cryptographic transformations be determined byK bits.
Let’s define a type of

(
r1(k), . . . , rs(k)

) = (2, . . . , 2), then s(k) = n over the field
F(2n). We get the following values

Ng = nl
l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

) = 2n2l2 = 2K2 bit
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Nt = Nτ = nl
l∑

k=1
s(k) = n2l2 = K2 bit

The length of vectors V , ρ equals to NV = Nρ = nl = K bit. Let’s define a type of(
r1(k), . . . , rs(k)

) = (
28, . . . , 28

)
, s(k) = n/8 over field F(2n). We achieve

Ng = nl
l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

) = 25n2l2 = 25K2 bit

Nt = Nτ = nl
l∑

k=1
s(k) = n2l2/8 = 2−3K2 bit

Estimated implementation costs are presented in the table below.
Memory costs for arrays of shared and secret parameters do not depend on the field

F(2n) and the number of parameters of the generalized Suzuki group. Selection of field
Fq and parameters of the Suzuki group will define the speed of calculations on the group
and depends on the software implementation (Table 10).

Table 10. Estimated implementation costs

K = 256,
(
r1(k), . . . , rs(k)

) = (2, . . . , 2)

F(2n) Ng Kbyte Nt(Nτ ), Kbyte NV (Nρ ), bit

F(28), . . . ,F(2256) 4 2 256

K = 256,
(
r1(k), . . . , rs(k)

) =
(
28, . . . , 28

)

F(28), . . . ,F(2256) 64 0.25 256

K = 512,
(
r1(k), ..., rs(k)

) =
(
28, . . . , 28

)

F(28), . . . ,F(2512) 64 32 512

K = 512,
(
r1(k), . . . , rs(k)

) =
(
28, . . . , 28

)

F(28), . . . ,F(2512) 1024 8 512

4 Conclusions

GeneralizedSuzuki 2-groups aremultiparameter groups andmayhave an arbitrarily large
order. MST cryptosystems based on generalized Suzuki 2-group have an advantage over
other schemes implementations in secrecy and realization. We can build a highly secure
cryptosystem with group computation in a small finite field. Applying homomorphic
encryption to random coverings in a logarithmic signature provides protection against
known attacks on logarithmic signature implementations. To build a cryptosystem, you
can use secure logarithmic signatures of a simple design, which leads to low costs for the
general parameters of the cryptosystem. The proposed cryptosystem with homomorphic
encryption is a good candidate for post-quantum cryptography.
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