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Preface

Multivariate statistical analysis often proves to be a challenging subject for students. The
difficulty arises in part from the reliance on several types of symbols such as subscripts,
superscripts, bars, tildes, bold-face characters, lower- and uppercase Roman and Greek
letters, and so on. However, resorting to such notations is necessary in order to refer to
the various quantities involved such as scalars and matrices either in the real or complex
domain. When the first author began to teach courses in advanced mathematical statistics
and multivariate analysis at McGill University, Canada, and other academic institutions
around the world, he was seeking means of making the study of multivariate analysis
more accessible and enjoyable. He determined that the subject could be made simpler
by treating mathematical and random variables alike, thus avoiding the distinct notation
that is generally utilized to represent random and non-random quantities. Accordingly, all
scalar variables, whether mathematical or random, are denoted by lowercase letters and
all vector/matrix variables are denoted by capital letters, with vectors and matrices being
identically denoted since vectors can be viewed as matrices having a single row or column.
As well, variables belonging to the complex domain are readily identified as such by plac-
ing a tilde over the corresponding lowercase and capital letters. Moreover, he noticed that
numerous formulas expressed in terms of summations, subscripts, and superscripts could
be more efficiently represented by appealing to matrix methods. He further observed that
the study of multivariate analysis could be simplified by initially delivering a few lec-
tures on Jacobians of matrix transformations and elementary special functions of matrix
argument, and by subsequently deriving the statistical density functions as special cases of
these elementary functions as is done for instance in the present book for the real and com-
plex matrix-variate gamma and beta density functions. Basic notes in these directions were
prepared and utilized by the first author for his lectures over the past decades. The second
and third authors then joined him and added their contributions to flesh out this material
to full-fledged book form. Many of the notable features that distinguish this monograph
from other books on the subject are listed next.
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Special Features

1. As the title of the book suggests, its most distinctive feature is its development of a
parallel theory of multivariate analysis in the complex domain side by side with the cor-
responding treatment of the real cases. Various quantities involving complex random vari-
ables such as Hermitian forms are widely used in many areas of applications such as light
scattering, quantum physics, and communication theory, to name a few. A wide reader-
ship is expected as, to our knowledge, this is the first book in the area that systematically
combines in a single source the real results and their complex counterparts. Students will
be able to better grasp the results that are holding in the complex field by relating them to
those existing in the real field.

2. In order to avoid resorting to an excessive number of symbols to denote scalar, vector,
and matrix variables in the real and complex domains, the following consistent notations
are employed throughout the book: All real scalar variables, whether mathematical or ran-
dom, are denoted by lowercase letters and all real vector/matrix variables are denoted by
capital letters, a tilde being placed on the corresponding variables in the complex domain.

3. Mathematical variables and random variables are treated the same way and denoted
by the same type of letters in order to avoid the double notation often utilized to rep-
resent random and mathematical variables as well as the potentially resulting confusion.
If probabilities are to be attached to every value that a variable takes, then mathematical
variables can be construed as degenerate random variables. This simplified notation will
enable students from mathematics, physics, and other disciplines to easily understand the
subject matter without being perplexed. Although statistics students may initially find this
notation somewhat unsettling, the adjustment ought to prove rapid.

4. Matrix methods are utilized throughout the book so as to limit the number of summa-
tions, subscripts, superscripts, and so on. This makes the representations of the various
results simpler and elegant.

5. A connection is established between statistical distribution theory of scalar, vector, and
matrix variables in the real and complex domains and fractional calculus. This should
foster further growth in both of these fields, which may borrow results and techniques
from each other.

6. Connections of concepts encountered in multivariate analysis to concepts occurring in
geometrical probabilities are pointed out so that each area can be enriched by further work
in the other one. Geometrical probability problems of random lengths, random areas, and
random volumes in the complex domain may not have been developed yet. They may now
be tackled by making use of the results presented in this book.



Preface vii

7. Classroom lecture style is employed as this book’s writing style so that the reader has
the impression of listening to a lecture upon reading the material.

8. The central concepts and major results are followed by illustrative worked examples so
that students may easily comprehend the meaning and significance of the stated results.
Additional problems are provided as exercises for the students to work out so that the
remaining questions they still may have can be clarified.

9. Throughout the book, the majority of the derivations of known or original results are
innovative and rather straightforward as they rest on simple applications of results from
matrix algebra, vector/matrix derivatives, and elementary special functions.

10. Useful results on vector/matrix differential operators are included in the mathematical
preliminaries for the real case, and the corresponding operators in the complex domain are
developed in Chap. 3. They are utilized to derive maximum likelihood estimators of vec-
tor/matrix parameters in the real and complex domains in a more straightforward manner
than is otherwise the case with the usual lengthy procedures. The vector/matrix differential
operators in the complex domain may actually be new whereas their counterparts, the real,
case may be found in Mathai (1997) [see Chapter 1, reference list].

11. The simplified and consistent notation of dX is used to denote the wedge product
of the differentials of all functionally independent real scalar variables in X, whether X

is a scalar, a vector, or a square or rectangular matrix, with dX̃ being utilized for the
corresponding wedge product of differentials in the complex domain.

12. Equation numbering is done sequentially chapter/section-wise; for example, (3.5.4)
indicates the fourth equation appearing in Sect. 5 of Chap. 3. To make the numbering
scheme more concise and descriptive, the section titles, lemmas, theorems, exercises, and
equations pertaining to the complex domain will be identified by appending the letter ‘a’
to the respective section numbers such as (3.5a.4). The notation (i), (ii), . . . , is employed
for neighboring equation numbers related to a given derivation.

13. References to the previous materials or equation numbers as well as references to sub-
sequent results appearing in the book are kept a minimum. In order to enhance readability,
the main notations utilized in each chapter are repeated at the beginning of each one of
them. As well, the reader may notice certain redundancies in the statements. These are
intentional and meant to make the material easier to follow.

14. Due to the presence of numerous parameters, students generally find the subject of
factor analysis quite difficult to grasp and apply effectively. Their understanding of the
topic should be significantly enhanced by the explicit derivations that are provided, which
incidentally are believed to be original.
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15. Only the basic material in each topic is covered. The subject matter is clearly dis-
cussed and several worked examples are provided so that the students can acquire a clear
understanding of this primary material. Only the materials used in each chapter are given
as reference—mostly the authors’ own works. Additional reading materials are listed at
the very end of the book. After acquainting themselves with the introductory material pre-
sented in each chapter, the readers ought to be capable of mastering more advanced related
topics on their own.

Multivariate analysis encompasses a vast array of topics. Even if the very primary ma-
terials pertaining to most of these topics were included in a basic book such as the present
one, the length of the resulting monograph would be excessive. Hence, certain topics had
to be chosen in order to produce a manuscript of a manageable size. The selection of the
topics to be included or excluded is authors’ own choice, and it is by no means claimed
that those included in the book are the most important ones or that those being omitted
are not relevant. Certain pertinent topics, such as confidence regions, multiple confidence
intervals, multivariate scaling, tests based on arbitrary statistics, and logistic and ridge re-
gressions, are omitted so as to limit the size of the book. For instance, only some likelihood
ratio statistics or λ-criteria based tests on normal populations are treated in Chap. 6 on tests
of hypotheses, whereas the authors could have discussed various tests of hypotheses on pa-
rameters associated with the exponential, multinomial, or other populations, as they also
have worked on such problems. As well, since results related to elliptically contoured dis-
tributions including the spherically symmetric case might be of somewhat limited interest,
this topic is not pursued further subsequently to its introduction in Chap. 3. Nevertheless,
standard applications such as principal component analysis, canonical correlation analysis,
factor analysis, classification problems, multivariate analysis of variance, profile analysis,
growth curves, cluster analysis, and correspondence analysis are properly covered.

Tables of percentage points are provided for the normal, chisquare, Student-t , and F

distributions as well as for the null distributions of the statistics for testing the indepen-
dence and for testing the equality of the diagonal elements given that the population co-
variance matrix is diagonal, as they are frequently required in applied areas. Numerical
tables for other relevant tests encountered in multivariate analysis are readily available in
the literature.

This work may be used as a reference book or as a textbook for a full course on mul-
tivariate analysis. Potential readership includes mathematicians, statisticians, physicists,
engineers, as well as researchers and graduate students in related fields. Chapters 1–8 or
sections thereof could be covered in a one- to two-semester course on mathematical statis-
tics or multivariate analysis, while a full course on applied multivariate analysis might
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focus on Chaps. 9–15. Readers with little interest in complex analysis may omit the sec-
tions whose numbers are followed by an ‘a’ without any loss of continuity. With this book
and its numerous new derivations, those who are already familiar with multivariate anal-
ysis in the real domain will have an opportunity to further their knowledge of the subject
and to delve into the complex counterparts of the results.

The authors wish to thank the following former students of the Centre for Mathemat-
ical and Statistical Sciences, India, for making use of a preliminary draft of portions of
the book for their courses and communicating their comments: Dr. T. Princy, Cochin Uni-
versity of Science and Technology, Kochi, Kerala, India; Dr. Nicy Sebastian, St. Thomas
College, Calicut University, Thrissur, Kerala, India; and Dr. Dilip Kumar, Kerala Univer-
sity, Trivandrum, India. The authors also wish to express their thanks to Dr. C. Satheesh
Kumar, Professor of Statistics, University of Kerala, and Dr. Joby K. Jose, Professor of
Statistics, Kannur University, for their pertinent comments on the second drafts of the
chapters. The authors have no conflict of interest to declare. The second author would like
to acknowledge the financial support of the Natural Sciences and Engineering Research
Council of Canada.

Montreal, ON, Canada Arak M. Mathai
London, ON, Canada Serge B. Provost
Vienna, Austria Hans J. Haubold
July 1, 2022
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Chapter 1

Mathematical Preliminaries

1.1. Introduction

It is assumed that the reader has had adequate exposure to basic concepts in Probability,
Statistics, Calculus and Linear Algebra. This chapter provides a brief review of the results
that will be needed in the remainder of this book. No detailed discussion of these topics
will be attempted. For essential materials in these areas, the reader is, for instance, referred
to Mathai and Haubold (2017a, 2017b). Some properties of vectors, matrices, determi-
nants, Jacobians and wedge product of differentials to be utilized later on, are included in
the present chapter. For the sake of completeness, we initially provide some elementary
definitions. First, the concepts of vectors, matrices and determinants are introduced.

Consider the consumption profile of a family in terms of the quantities of certain food
items consumed every week. The following table gives this family’s consumption profile
for three weeks:

Table 1.1: Consumption profile

Rice Lentils Carrot Beans
Week 1 2.00 0.50 1.00 2.00
Week 2 1.50 0.50 0.75 1.50
Week 3 2.00 0.50 0.50 1.25

All the numbers appearing in this table are in kilograms (kg). In Week 1 the family
consumed 2 kg of rice, 0.5 kg of lentils, 1 kg of carrots and 2 kg of beans. Looking at
the consumption over three weeks, we have an arrangement of 12 numbers into 3 rows
and 4 columns. If this consumption profile is expressed in symbols, we have the following
representation:

© The Author(s) 2022, corrected publication 2022
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A = (aij ) =
⎡

⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤

⎦ =
⎡

⎣
2.00 0.50 1.00 2.00
1.50 0.50 0.75 1.50
2.00 0.50 0.50 1.25

⎤

⎦

where, for example, a11 = 2.00, a13 = 1.00, a22 = 0.50, a23 = 0.75, a32 = 0.50, a34 =
1.25.

Definition 1.1.1. A matrix An arrangement of mn items into m rows and n columns is
called an m by n (written as m × n) matrix.

Accordingly, the above consumption profile matrix is 3 × 4 (3 by 4), that is, it has
3 rows and 4 columns. The standard notation consists in enclosing the mn items within
round ( ) or square [ ] brackets as in the above representation. The above 3 × 4 matrix is
represented in different ways as A, (aij ) and items enclosed by square brackets. The mn

items in the m × n matrix are called elements of the matrix. Then, in the above matrix
A, aij = the i-th row, j -th column element or the (i,j)-th element. In the above illustration,
i = 1, 2, 3 (3 rows) and j = 1, 2, 3, 4 (4 columns). A general m × n matrix A can be
written as follows:

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤

⎥
⎥
⎥
⎦

. (1.1.1)

The elements are separated by spaces in order to avoid any confusion. Should there be
any possibility of confusion, then the elements will be separated by commas. Note that the
plural of “matrix” is “matrices”. Observe that the position of each element in Table 1.1 has
a meaning. The elements cannot be permuted as rearranged elements will give different
matrices. In other words, two m × n matrices A = (aij ) and B = (bij ) are equal if and
only if aij = bij for all i and j , that is, they must be element-wise equal.

In Table 1.1, the first row, which is also a 1 × 4 matrix, represents this family’s first
week’s consumption. The fourth column represents the consumption of beans over the
three weeks’ period. Thus, each row and each column in an m × n matrix has a meaning
and represents different aspects. In Eq. (1.1.1), all rows are 1 ×n matrices and all columns
are m × 1 matrices. A 1 × n matrix is called a row vector and an m × 1 matrix is called a
column vector. For example, in Table 1.1, there are 3 row vectors and 4 column vectors. If
the row vectors are denoted by R1, R2, R3 and the column vectors by C1, C2, C3, C4, then
we have

R1 = [2.00 0.50 1.00 2.00], R2 = [1.50 0.50 0.75 1.50], R3 = [2.00 0.50 0.50 1.25]
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and

C1 =
⎡

⎣
2.00
1.50
2.00

⎤

⎦ , C2 =
⎡

⎣
0.50
0.50
0.50

⎤

⎦ , C3 =
⎡

⎣
1.00
0.75
0.50

⎤

⎦ , C4 =
⎡

⎣
2.00
1.50
1.25

⎤

⎦ .

If the total consumption in Week 1 and Week 2 is needed, it is obtained by adding the row
vectors element-wise:

R1 +R2 = [2.00+1.50 0.50+0.50 1.00+0.75 2.00+1.50] = [3.50 1.00 1.75 3.50].
We will define the addition of two matrices in the same fashion as in the above illustration.
For the addition to hold, both matrices must be of the same order m × n. Let A = (aij )

and B = (bij ) be two m × n matrices. Then the sum, denoted by A + B, is defined as

A + B = (aij + bij )

or equivalently as the matrix obtained by adding the corresponding elements. For example,

C1 + C3 =
⎡

⎣
2.00
1.50
2.00

⎤

⎦+
⎡

⎣
1.00
0.75
0.50

⎤

⎦ =
⎡

⎣
3.00
2.25
2.50

⎤

⎦ .

Repeating the addition, we have

C1 + C3 + C4 = (C1 + C3) +
⎡

⎣
2.00
1.50
1.25

⎤

⎦ =
⎡

⎣
3.00
2.25
2.50

⎤

⎦+
⎡

⎣
2.00
1.50
1.25

⎤

⎦ =
⎡

⎣
5.00
3.75
3.75

⎤

⎦ .

In general, if A = (aij ), B = (bij ), C = (cij ), D = (dij ) are m × n matrices, then
A + B + C + D = (aij + bij + cij + dij ), that is, it is the matrix obtained by adding the
corresponding elements.

Suppose that in Table 1.1, we wish to express the elements in terms of grams instead
of kilograms; then, each and every element therein must be multiplied by 1000. Thus, if A

is the matrix corresponding to Table 1.1 and B is the matrix in terms of grams, we have

A =
⎡

⎣
2.00 0.50 1.00 2.00
1.50 0.50 0.75 1.50
2.00 0.50 0.50 1.25

⎤

⎦ ,

B =
⎡

⎣
1000 × 2.00 1000 × 0.50 1000 × 1.00 1000 × 2.00
1000 × 1.50 1000 × 0.50 1000 × 0.75 1000 × 1.50
1000 × 2.00 1000 × 0.50 1000 × 0.50 1000 × 1.25

⎤

⎦ .
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We may write this symbolically as B = 1000 × A = 1000 A. Note that 1000 is a 1 × 1
matrix or a scalar quantity. Any 1 × 1 matrix is called a scalar quantity. Then we may
define scalar multiplication of a matrix A by the scalar quantity c as c A or A = (aij ) ⇒
c A = (c aij ) or it is obtained by multiplying each and every element of A by the scalar
quantity c. As a convention, c is written on the left of A as c A and not as A c. Then, if
c = −1, then c A = (−1)A = −A and A + (−1)A = A − A = O where the capital O
denotes a matrix whose elements are all equal to zero. A general m × n matrix wherein
every element is zero is referred to as a null matrix and it is written as O (not zero). We
may also note that if A, B, C are m × n matrices, then A + (B + C) = (A + B) + C.
Moreover, A + O = O + A = A. If m = n, in which case the number of rows is equal
to the number of columns, the resulting matrix is referred to as a square matrix because it
is a square arrangement of elements; otherwise the matrix is called a rectangular matrix.
Some special cases of square matrices are the following: For an n × n matrix or a square
matrix of order n, suppose that aij = 0 for all i 
= j (that is, all non-diagonal elements are
zeros; here “diagonal” means the diagonal going from top left to bottom right) and if there
is at least one nonzero diagonal element, then such a matrix is called a diagonal matrix
and it is usually written as diag(d1, . . . , dn) where d1, . . . , dn are the diagonal elements.
Here are some examples of 3 × 3 diagonal matrices:

D1 =
⎡

⎣
5 0 0
0 −2 0
0 0 7

⎤

⎦ , D2 =
⎡

⎣
4 0 0
0 1 0
0 0 0

⎤

⎦ , D3 =
⎡

⎣
a 0 0
0 a 0
0 0 a

⎤

⎦ , a 
= 0.

If in D3, a = 1 so that all the diagonal elements are unities, the resulting matrix is called
an identity matrix and a diagonal matrix whose diagonal elements are all equal to some
number a that is not equal to 0 or 1, is referred to as a scalar matrix. A square non-null
matrix A = (aij ) that contains at least one nonzero element below its leading diagonal
and whose elements above the leading diagonal are all equal to zero, that is, aij = 0 for
all i < j , is called �a lower triangular matrix. Some examples of 2 × 2 lower triangular
matrices are the following:

T1 =
[

5 0
2 1

]

, T2 =
[

3 0
1 0

]

, T3 =
[

0 0
−3 0

]

.

If, in a square non-null matrix, all elements below the leading diagonal are zeros and there
is at least one nonzero element above the leading diagonal, then such a square matrix is
referred to as an upper triangular matrix. Here are some examples:
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T1 =
⎡

⎣
1 2 −1
0 3 1
0 0 5

⎤

⎦ , T2 =
⎡

⎣
1 0 0
0 0 4
0 0 0

⎤

⎦ , T3 =
⎡

⎣
0 0 7
0 0 0
0 0 0

⎤

⎦ .

Multiplication of Matrices Once again, consider Table 1.1. Suppose that by consuming
1 kg of rice, the family is getting 700 g (where g represents grams) of starch, 2 g protein
and 1 g fat; that by eating 1 kg of lentils, the family is getting 200 g of starch, 100 g of
protein and 100 g of fat; that by consuming 1 kg of carrots, the family is getting 100 g
of starch, 200 g of protein and 150 g of fat; and that by eating 1 kg of beans, the family
is getting 50 g of starch, 100 g of protein and 200 g of fat, respectively. Then the starch-
protein-fat matrix, denoted by B, is the following where the rows correspond to rice, lentil,
carrots and beans, respectively:

B =

⎡

⎢
⎢
⎣

700 2 1
200 100 100
100 200 150
50 100 200

⎤

⎥
⎥
⎦ .

Let B1, B2, B3 be the columns of B. Then, the first column B1 of B represents the starch
intake per kg of rice, lentil, carrots and beans respectively. Similarly, the second column
B2 represents the protein intake per kg and the third column B3 represents the fat intake,
that is,

B1 =

⎡

⎢
⎢
⎣

700
200
100
50

⎤

⎥
⎥
⎦ , B2 =

⎡

⎢
⎢
⎣

2
100
200
100

⎤

⎥
⎥
⎦ , B3 =

⎡

⎢
⎢
⎣

1
100
150
200

⎤

⎥
⎥
⎦ .

Let the rows of the matrix A in Table 1.1 be denoted by A1, A2 and A3, respectively, so
that

A1 = [2.00 0.50 1.00 2.00], A2 = [1.50 0.50 0.75 1.50], A3 = [2.00 0.50 0.50 1.25].

Then, the total intake of starch by the family in Week 1 is available from

2.00 × 700 + 0.50 × 200 + 1.00 × 100 + 2.00 × 50 = 1700g.

This is the sum of the element-wise products of A1 with B1. We will denote this by A1 ·B1

(A1 dot B1). The total intake of protein by the family in Week 1 is determined as follows:

A1.B2 = 2.00 × 2 + 0.50 × 100 + 1.00 × 200 + 2.00 × 100 = 454 g
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and the total intake of fat in Week 1 is given by

A1.B3 = 2.00 × 1 + 0.50 × 100 + 1.00 × 150 + 2.00 × 200 = 602 g.

Thus, the dot product of A1 with B1, B2, B3 provides the intake of starch, protein and fat
in Week 1. Similarly, the dot product of A2 with B1, B2, B3 gives the intake of starch,
protein and fat in Week 2. Thus, the configuration of starch, protein and fat intake over the
three weeks is

AB =
⎡

⎣
A1 · B1 A1 · B2 A1 · B3

A2 · B1 A2 · B2 A2 · B3

A3 · B1 A3 · B2 A3 · B3

⎤

⎦ .

A matrix having one column and m rows is an m× 1 matrix that is referred to as a column
vector of m elements or a column vector of order m. A matrix having one row and n

column is a 1 × n matrix called a row vector of n components or a row vector of order n.
Let A be a row or column vector of order n, which consist of n elements or components.
Let the elements comprising A be denoted by a1, . . . , an. Let B be a row or column vector
of order n consisting of the elements b1, . . . , bn. Then, the dot product of A and B, denoted
by A·B = B ·A is defined as A·B = a1b1+a2b2+· · ·+anbn so that or the corresponding
elements of A and B are multiplied and added up. Let A be an m×n matrix whose m rows
are written as A1, . . . , Am. Let B be another n × r matrix whose r columns are written as
B1, . . . , Br . Note that the number of columns of A is equal to the number of rows of B,
which in this case is n. When the number of columns of A is equal to the number of rows
of B, the product AB is defined and equal to

AB =

⎡

⎢
⎢
⎢
⎣

A1 · B1 A1 · B2 . . . A1 · Br

A2 · B1 A2 · B2 . . . A2 · Br
...

...
. . .

...

Am · B1 Am · B2 . . . Am · Br

⎤

⎥
⎥
⎥
⎦

with A =

⎡

⎢
⎢
⎢
⎣

A1

A2
...

Am

⎤

⎥
⎥
⎥
⎦

, B = [B1 B2 · · · Br ],

the resulting matrix AB being of order m × r . When AB is defined, BA need not be
defined. However, if r = m, then BA is also defined, otherwise not. In other words, if
A = (aij ) is m × n and if B = (bij ) is n × r and if C = (cij ) = AB, then cij = Ai · Bj

where Ai is the i-th row of A and Bj is the j -th column of B or cij =∑n
k=1 aik bkj for all

i and j . For example,

A =
[

1 −1 0
2 3 5

]

, B =
⎡

⎣
2 −2
3 2
1 0

⎤

⎦⇒

AB =
[
(1)(2) + (−1)(3) + (0)(1) (1)(−2) + (−1)(2) + (0)(0)

(2)(2) + (3)(3) + (5)(1) 2(−2) + 3(2) + (5)(0)

]

=
[−1 −4

18 2

]

.
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Note that, in this case, BA is defined and equal to

BA =
⎡

⎣
2 −2
3 2
1 0

⎤

⎦
[

1 −1 0
2 3 5

]

=
⎡

⎣
(2)(1) + (−2)(2) (2)(−1) + (−2)(3) (2)(0) + (−2)(5)

(3)(1) + (2)(2) (3)(−1) + (2)(3) (3)(0) + (2)(5)

(1)(1) + (0)(2) (1)(−1) + (0)(3) (1)(0) + (0)(5)

⎤

⎦

=
⎡

⎣
−2 −8 −10

7 3 10
1 −1 0

⎤

⎦ .

As another example, let

A =
⎡

⎣
1

−1
2

⎤

⎦ , B = [2 3 5] ⇒ AB =
⎡

⎣
1

−1
2

⎤

⎦ [2 3 5] =
⎡

⎣
2 3 5

−2 −3 −5
4 6 10

⎤

⎦

which is 3 × 3, whereas BA is 1 × 1:

BA = [2 3 5]
⎡

⎣
1

−1
2

⎤

⎦ = 9.

As yet another example, let

A =
⎡

⎣
2 0 0

−1 1 0
1 1 1

⎤

⎦ , B =
⎡

⎣
1 0 0
0 2 0
1 −1 0

⎤

⎦ .

Note that here both A and B are lower triangular matrices. The products AB and BA are
defined since both A and B are 3 × 3 matrices. For instance,

AB =
⎡

⎣
(2)(1) + (0)(0) + (0)(1) (2)(0) + (0)(2) + (0)(−1) (2)(0) + (0)(0) + (0)(0)

(−1)(1) + (1)(0) + (0)(1) (−1)(0) + (1)(2) + (0)(−1) (−1)(0) + (1)(0) + (0)(0)

(1)(1) + (1)(0) + (1)(1) (1)(0) + (1)(2) + (1)(−1) (1)(0) + (1)(0) + (1)(0)

⎤

⎦

=
⎡

⎣
2 0 0

−1 2 0
2 1 0

⎤

⎦ .
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Observe that since A and B are lower triangular, AB is also lower triangular. Here are some
general properties of products of matrices: When the product of the matrices is defined, in
which case we say that they are conformable for multiplication,

(1): the product of two lower triangular matrices is lower triangular;

(2): the product of two upper triangular matrices is upper triangular;

(3): the product of two diagonal matrices is diagonal;

(4): if A is m × n, IA = A where I = Im is an identity matrix, and A In = A;

(5): OA = O whenever OA is defined, and A O = O whenever A O is defined.

Transpose of a Matrix A matrix whose rows are the corresponding columns of A or, equiv-
alently, a matrix whose columns are the corresponding rows of A is called the transpose
of A denoted as A′ (A prime). For example,

A1 = [1 2 − 1] ⇒ A′
1 =

⎡

⎣
1
2

−1

⎤

⎦ , A2 =
[

1 0
1 1

]

⇒ A′
2 =

[
1 1
0 1

]

;

A3 =
[

1 3
3 7

]

⇒ A′
3 =

[
1 3
3 7

]

= A3; A4 =
[

0 5
−5 0

]

⇒ A′
4 =

[
0 −5
5 0

]

= −A4.

Observe that A2 is lower triangular and A′
2 is upper triangular, that A′

3 = A3, and that
A′

4 = −A4. Note that if A is m × n, then A′ is n × m. If A is 1 × 1 then A′ is the same
scalar (1 × 1) quantity. If A is a square matrix and A′ = A, then A is called a symmetric
matrix. If B is a square matrix and B ′ = −B, then B is called a skew symmetric matrix.
Within a skew symmetric matrix B = (bij ), a diagonal element must satisfy the equation
b′

jj = −bjj , which necessitates that bjj = 0, whether B be real or complex. Here are some
properties of the transpose: The transpose of a lower triangular matrix is upper triangular;
the transpose of an upper triangular matrix is lower triangular; the transpose of a diagonal
matrix is diagonal; the transpose of an m × n null matrix is an n × m null matrix;

(A′)′ = A; (AB)′ = B ′A′; (A1 A2 · · · Ak)
′ = A′

k · · · A′
2 A′

1 ; (A + B)′ = A′ + B ′

whenever AB, A + B, and A1 A2 · · · Ak are defined.

Trace of a Square Matrix The trace is defined only for square matrices. Let A = (aij )

be an n × n matrix whose leading diagonal elements are a11, a22, . . . , ann; then the trace
of A, denoted by tr(A) is defined as tr(A) = a11 + a22 + · · · + ann, that is, the sum of
the elements comprising the leading diagonal. The following properties can directly be
deduced from the definition. Whenever AB and BA are defined, tr(AB) = tr(BA) where
AB need not be equal to BA. If A is m × n and B is n × m, then AB is m × m whereas
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BA is n × n; however, the traces are equal, that is, tr(AB) = tr(BA), which implies that
tr(ABC) = tr(BCA) = tr(CAB).

Length of a Vector Let V be a n × 1 real column vector or a 1 × n real row vector then V

can be represented as a point in n-dimensional Euclidean space when the elements are real
numbers. Consider a 2-dimensional vector (or 2-vector) with the elements (1, 2). Then,
this vector corresponds to the point depicted in Fig. 1.1.

y

x

P

O 1

2

Figure 1.1 The point P = (1, 2) in the plane

Let O be the origin and P be the point. Then, the length of the resulting vector is the Eu-
clidean distance between O and P , that is, +√(1)2 + (2)2 = +√

5. Let U = (u1, . . . , un)

be a real n-vector, either written as a row or a column. Then the length of U , denoted by
‖U‖ is defined as follows:

‖U‖ = +
√

u2
1 + · · · + u2

n

whenever the elements u1, . . . , un are real. If u1, . . . , un are complex numbers then
‖U‖ = √|u1|2 + · · · + |un|2 where |uj | denotes the absolute value or modulus of uj . If

uj = aj +ibj , with i = √
(−1) and aj , bj real, then |uj | = +

√
(a2

j + b2
j ). If the length of

a vector is unity, that vector is called a unit vector. For example, e1 = (1, 0, . . . , 0), e2 =
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(0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) are all unit vectors. As well, V1 = ( 1√
2
, 1√

2
) and

V2 = ( 1√
6
, −2√

6
, 1√

6
) are unit vectors. If two n-vectors, U1 and U2, are such that U1 ·U2 = 0,

that is, their dot product is zero, then the two vectors are said to be orthogonal to each
other. For example, if U1 = (1, 1) and U2 = (1, −1), then U1 · U2 = 0 and U1 and
U2 are orthogonal to each other; similarly, if U1 = (1, 1, 1) and U2 = (1, −2, 1), then
U1 · U2 = 0 and U1 and U2 are orthogonal to each other. If U1, . . . , Uk are k vectors,
each of order n, all being either row vectors or column vectors, and if Ui · Uj = 0 for all
i 
= j , that is, all distinct vectors are orthogonal to each other, then we say that U1, . . . , Uk

forms an orthogonal system of vectors. In addition, if the length of each vector is unity,
‖Uj‖ = 1, j = 1, . . . , k, then we say that U1, . . . , Uk is an orthonormal system of vectors.
If a matrix A is real and its rows and its columns form an orthonormal system, then A is
called an orthonormal matrix. In this case, AA′ = In and A′A = In; accordingly, any
square matrix A of real elements such that AA′ = In and A′A = In is referred to as an
orthonormal matrix. If only one equation holds, that is, B is a real matrix such that either
BB ′ = I, B ′B 
= I or B ′B = I, BB ′ 
= I , then B is called a semiorthonormal matrix.
For example, consider the matrix

A =
[

1√
2

1√
2

1√
2

− 1√
2

]

; then AA′ = I2, A′A = I2,

and A is an orthonormal matrix. As well,

A =
⎡

⎢
⎣

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

1√
6

− 2√
6

1√
6

⎤

⎥
⎦⇒ AA′ = I3, A′A = I3,

and A here is orthonormal. However,

B =
[

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

]

⇒ BB ′ = I2, B ′B 
= I

so that B is semiorthonormal. On deleting some rows from an orthonormal matrix, we
obtain a semiorthonormal matrix such that BB ′ = I and B ′B 
= I . Similarly, if we delete
some of the columns, we end up with a semiorthonormal matrix such that B ′B = I and
BB ′ 
= I .

Linear Independence of Vectors Consider the vectors U1 = (1, 1, 1), U2 = (1, −2, 1),

U3 = (3, 0, 3). Then, we can easily see that U3 = 2U1 + U2 = 2(1, 1, 1) + (1, −2, 1) =
(3, 0, 3) or U3−2U1−U2 = O (a null vector). In this case, one of the vectors can be written
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as a linear function of the others. Let V1 = (1, 1, 1), V2 = (1, 0, −1), V3 = (1, −2, 1).
Can any one of these be written as a linear function of others? If that were possible, then
there would exist a linear function of V1, V2, V3 that is equal to is a null vector. Let us
consider the equation a1V1 +a2V2 +a3V3 = (0, 0, 0) where a1, a2, a3 are scalars where at
least one of them is nonzero. Note that a1 = 0, a2 = 0 and a3 = 0 will always satisfy the
above equation. Thus, our question is whether a1 = 0, a2 = 0, a3 = 0 is the only solution.

a1V1 + a2V2 + a3V3 = O ⇒ a1(1, 1, 1) + a2(1, 0, −1) + a3(1, −2, 1) = (0, 0, 0)

⇒ a1 + a2 + a3 = 0 (i); a1 − 2a3 = 0 (ii); a1 − a2 + a3 = 0. (iii)

From (ii), a1 = 2a3. Then, from (iii), 3a3 − a2 = 0 ⇒ a2 = 3a3; then from (i), 2a3 +
3a3 + a3 = 0 or 6a3 = 0 or a3 = 0. Thus, a2 = 0, a1 = 0 and there is no nonzero a1

or a2 or a3 satisfying the equation and hence V1, V2, V3 cannot be linearly dependent; so,
they are linearly independent. Hence, we have the following definition: Let U1, . . . , Uk be
k vectors, each of order n, all being either row vectors or column vectors, so that addition
and linear functions are defined. Let a1, . . . , ak be scalar quantities. Consider the equation

a1U1 + a2U2 + · · · + akUk = O (a null vector). (iv)

If a1 = 0, a2 = 0, . . . , ak = 0 is the only solution to (iv), then U1, . . . , Uk are linearly
independent, otherwise they are linearly dependent. If they are linearly dependent, then
at least one of the vectors can be expressed as a linear function of others. The following
properties can be established from the definition: Let U1, . . . , Uk be n-vectors, k ≤ n.

(1) If U1, . . . , Uk are mutually orthogonal, then they are linearly independent, that is, if
Ui · Uj = 0, for all i 
= j, then U1, . . . , Uk are linearly independent;

(2) There cannot be more than n mutually orthogonal n-vectors;

(3) There cannot be more than n linearly independent n-vectors.

Rank of a Matrix The maximum number of linearly independent row vectors of a m × n

matrix is called the row rank of the matrix; the maximum number of linearly independent
column vectors is called the column rank of the matrix. It can be shown that the row rank
of any matrix is equal to its column rank, and this common rank is called the rank of the
matrix. If r is the rank of a m × n matrix, then r ≤ m and r ≤ n. If m ≤ n and the rank
is m or if n ≤ m and the rank is n, then the matrix is called a full rank matrix. A square
matrix of full rank is called a nonsingular matrix. When the rank of an n × n matrix is
r < n, this matrix is referred to as a singular matrix. Singularity is defined only for square
matrices. The following properties clearly hold:



12 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

(1) A diagonal matrix with at least one zero diagonal element is singular or a diagonal
matrix with all nonzero diagonal elements is nonsingular;

(2) A triangular matrix (upper or lower) with at least one zero diagonal element is singular
or a triangular matrix with all diagonal elements nonzero is nonsingular;

(3) A square matrix containing at least one null row vector or at least one null column
vector is singular;

(4) Linear independence or dependence in a collection of vectors of the same order and
category (either all are row vectors or all are column vectors) is not altered by multiplying
any of the vectors by a nonzero scalar;

(5) Linear independence or dependence in a collection of vectors of the same order and
category is not altered by adding any vector of the set to any other vector in the same set;

(6) Linear independence or dependence in a collection of vectors of the same order and
category is not altered by adding a linear combination of vectors from the same set to any
other vector in the same set;

(7) If a collection of vectors of the same order and category is a linearly dependent system,
then at least one of the vectors can be made null by the operations of scalar multiplication
and addition.

Note: We have defined “vectors” as an ordered set of items such as an ordered set of
numbers. One can also give a general definition of a vector as an element in a set S which
is closed under the operations of scalar multiplication and addition (these operations are
to be defined on S), that is, letting S be a set of items, if V1 ∈ S and V2 ∈ S, then cV1 ∈ S

and V1 + V2 ∈ S for all scalar c and for all V1 and V2, that is, if V1 is an element in S,
then cV1 is also an element in S and if V1 and V2 are in S, then V1 + V2 is also in S,
where operations c V1 and V1 + V2 are to be properly defined. One can impose additional
conditions on S. However, for our discussion, the notion of vectors as ordered set of items
will be sufficient.

1.2. Determinants

Determinants are defined only for square matrices. They are certain scalar func-
tions of the elements of the square matrix under consideration. We will motivate this
particular function by means of an example that will also prove useful in other ar-
eas. Consider two 2-vectors, either both row vectors or both column vectors. Let
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U = OP and V = OQ be the two vectors as shown in Fig. 1.2. If the vectors are sepa-
rated by a nonzero angle θ then one can create the parallelogram OPSQ with these two
vectors as shown in Fig. 1.2.

y

x
O

Q

P

S

θ2 R
θ

Figure 1.2 Parallelogram generated from two vectors

The area of the parallelogram is twice the area of the triangle OPQ. If the perpendic-
ular from P to OQ is PR, then the area of the triangle is 1

2PR × OQ or the area of the
parallelogram OPSQ is PR × ‖V ‖ where PR is OP × sin θ = ‖U‖ × sin θ . Therefore
the area is ‖U‖ ‖V ‖ sin θ or the area, denoted by ν is

ν = ‖U‖ ‖V ‖
√

(1 − cos2 θ).

If θ1 is the angle U makes with the x-axis and θ2, the angle V makes with the x-axis, then
if U and V are as depicted in Fig. 1.2, then θ = θ1 − θ2. It follows that

cos θ = cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2 = U · V

‖U‖ ‖V ‖ ,

as can be seen from Fig. 1.2. In this case,

ν = ‖U‖ ‖V ‖
√

1 −
( (U · V )

‖U‖ ‖V ‖
)2 =

√
(‖U‖)2 (‖V ‖)2 − (U · V )2 (1.2.1)
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and
ν2 = (‖U‖)2(‖V ‖)2 − (U · V )2. (1.2.2)

This can be written in a more convenient way. Letting X =
(

U

V

)

,

XX′ =
(

U

V

)
(
U ′ V ′) =

[
UU ′ UV ′
V U ′ V V ′

]

=
[
U · U U · V

V · U V · V

]

. (1.2.3)

On comparing (1.2.2) and (1.2.3), we note that (1.2.2) is available from (1.2.3) by taking
a scalar function of the following type. Consider a matrix

C =
[
a b

c d

]

; then (1.2.2) is available by taking ad − bc

where a, b, c, d are scalar quantities. A scalar function of this type is the determinant of
the matrix C.

A general result can be deduced from the above procedure: If U and V are n-vectors
and if θ is the angle between them, then

cos θ = U · V

‖U‖ ‖V ‖
or the dot product of U and V divided by the product of their lengths when θ 
= 0, and the
numerator is equal to the denominator when θ = 2nπ, n = 0, 1, 2, . . . . We now provide
a formal definition of the determinant of a square matrix.

Definition 1.2.1. The Determinant of a Square Matrix Let A = (aij ) be a n×n matrix
whose rows (columns) are denoted by α1, . . . , αn. For example, if αi is the i-th row vector,
then

αi = (ai1 ai2 . . . ain).

The determinant of A will be denoted by |A| or det(A) when A is real or complex and
the absolute value of the determinant of A will be denoted by |det(A)| when A is in the
complex domain. Then, |A| will be a function of α1, . . . , αn, written as

|A| = det(A) = f (α1, . . . , αi, . . . , αj , . . . , αn),

which will be defined by the following four axioms (postulates or assumptions): (this
definition also holds if the elements of the matrix are in the complex domain)

(1) f (α1, . . . , c αi, . . . , αn) = cf (α1, . . . , αi, . . . , αn),
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which is equivalent to saying that if any row (column) is multiplied by a scalar quantity c

(including zero), then the whole determinant is multiplied by c;

(2) f (α1, ...αi, . . . , αi + αj , . . . , αn) = f (α1, . . . , αi, . . . , αj , . . . , αn),

which is equivalent to saying that if any row (column) is added to any other row (column),
then the value of the determinant remains the same;

(3) f (α1, . . . , γi + δi, . . . , αn) = f (α1, . . . , γi, . . . , αn) + f (α1, . . . , δi, . . . , αn),

which is equivalent to saying that if any row (column), say the i-th row (column) is written
as a sum of two vectors, αi = γi + δi then the determinant becomes the sum of two
determinants such that γi appears at the position of αi in the first one and δi appears at the
position of αi in the second one;

(4) f (e1, . . . , en) = 1

where e1, . . . , en are the basic unit vectors as previously defined; this axiom states that the
determinant of an identity matrix is 1.

Let us consider some corollaries resulting from Axioms (1) to (4). On combining Ax-
ioms (1) and (2), we have that the value of a determinant remains unchanged if a linear
function of any number of rows (columns) is added to any other row (column). As well,
the following results are direct consequences of the axioms.

(i): The determinant of a diagonal matrix is the product of the diagonal elements [which
can be established by repeated applications of Axiom (1)];

(ii): If any diagonal element in a diagonal matrix is zero, then the determinant is zero,
and thereby the corresponding matrix is singular; if none of the diagonal elements of a
diagonal matrix is equal to zero, then the matrix is nonsingular.

(iii): If any row (column) of a matrix is null, then the determinant is zero or the matrix is
singular [Axiom (1)];

(iv): If any row (column) is a linear function of other rows (columns), then the determinant
is zero [By Axioms (1) and (2), we can reduce that row (column) to a null vector]. Thus,
the determinant of a singular matrix is zero or if the row (column) vectors form a linearly
dependent system, then the determinant is zero.

By using Axioms (1) and (2), we can reduce a triangular matrix to a diagonal form
when evaluating its determinant. For this purpose we shall use the following standard
notation: “c (i) + (j) ⇒” means “c times the i-th row is added to the j -th row which
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results in the following:” Let us consider a simple example. Consider a triangular matrix
and its determinant. Evaluate the determinant of the following matrix:

T =
⎡

⎣
2 1 5
0 3 4
0 0 −4

⎤

⎦ .

It is an upper triangular matrix. We take out −4 from the third row by using Axiom (1).
Then,

|T | = −4

∣
∣
∣
∣
∣
∣

2 1 5
0 3 4
0 0 1

∣
∣
∣
∣
∣
∣
.

Now, add (−4) times the third row to the second row and (−5) times the third row to the
first row. This in symbols is “−4(3) + (2), −5(3) + (1) ⇒”. The net result is that the
elements 5 and 4 in the last column are eliminated without affecting the other elements, so
that

|T | = −4

∣
∣
∣
∣
∣
∣

2 1 0
0 3 0
0 0 1

∣
∣
∣
∣
∣
∣
.

Now take out 3 from the second row and then use the second row to eliminate 1 in the first
row. After taking out 3 from the second row, the operation is “−1(2)+ (1) ⇒”. The result
is the following:

|T | = (−4)(3)

∣
∣
∣
∣
∣
∣

2 0 0
0 1 0
0 0 1

∣
∣
∣
∣
∣
∣
.

Now, take out 2 from the first row, then by Axiom (4) the determinant of the resulting
identity matrix is 1, and hence |T | is nothing but the product of the diagonal elements.
Thus, we have the following result:

(v): The determinant of a triangular matrix (upper or lower) is the product of its diagonal
elements; accordingly, if any diagonal element in a triangular matrix is zero, then the
determinant is zero and the matrix is singular. For a triangular matrix to be nonsingular,
all its diagonal elements must be non-zeros.

The following result follows directly from Axioms (1) and (2). The proof is given in
symbols.

(vi): If any two rows (columns) are interchanged (this means one transposition), then the
resulting determinant is multiplied by −1 or every transposition brings in −1 outside that
determinant as a multiple. If an odd number of transpositions are done, then the whole
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determinant is multiplied by −1, and for even number of transpositions, the multiplicative
factor is +1 or no change in the determinant. An outline of the proof follows:

|A| = f (α1, . . . , αi, . . . , αj , . . . , αn)

= f (α1, . . . , αi, . . . , αi + αj , . . . , αn) [Axiom (2)]
= −f (α1, . . . , αi, . . . , −αi − αj , . . . , αn) [Axiom (1)]
= −f (α1, . . . , −αj , . . . , −αi − αj , . . . , αn) [Axiom (2)]
= f (α1, . . . , αj , . . . , −αi − αj , . . . , αn) [Axiom (1)]
= f (α1, . . . , αj , . . . , −αi, . . . , αn) [Axiom (2)]
= −f (α1, . . . , αj , . . . , αi, . . . , αn) [Axiom (1)].

Now, note that the i-th and j -th rows (columns) are interchanged and the result is that the
determinant is multiplied by −1.

With the above six basic properties, we are in a position to evaluate most of the deter-
minants.

Example 1.2.1. Evaluate the determinant of the matrix

A =

⎡

⎢
⎢
⎣

2 0 0 0
1 5 0 0
2 −1 1 0
3 0 1 4

⎤

⎥
⎥
⎦ .

Solution 1.2.1. Since, this is a triangular matrix, its determinant will be product of its
diagonal elements. Proceeding step by step, take out 2 from the first row by using Axiom
(1). Then −1(1) + (2), −2(1) + (3), −3(1) + (3) ⇒. The result of these operations is the
following:

|A| = 2

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 5 0 0
0 −1 1 0
0 0 1 4

∣
∣
∣
∣
∣
∣
∣
∣

.

Now, take out 5 from the second row so that 1(2) + (3) ⇒, the result being the following:

|A| = (2)(5)

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 4

∣
∣
∣
∣
∣
∣
∣
∣
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The diagonal element in the third row is 1 and there is nothing to be taken out. Now
−1(3) + (4) ⇒ and then, after having taken out 4 from the fourth row, the result is

|A| = (2)(5)(1)(4)

∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣

.

Now, by Axiom (4) the determinant of the remaining identity matrix is 1. Therefore, the
final solution is |A| = (2)(5)(1)(4) = 40.

Example 1.2.2. Evaluate the determinant of the following matrix:

A =

⎡

⎢
⎢
⎣

1 2 4 1
0 3 2 1
2 1 −1 0
5 2 1 3

⎤

⎥
⎥
⎦ .

Solution 1.2.2. Since the first row, first column element is a convenient number 1 we
start operating with the first row. Otherwise, we bring a convenient number to the (1, 1)-th
position by interchanges of rows and columns (with each interchange the determinant is to
be multiplied by (−1). Our aim will be to reduce the matrix to a triangular form so that the
determinant is the product of the diagonal elements. By using the first row let us wipe out
the elements in the first column. The operations are −2(1) + (3), −5(1) + (4) ⇒. Then

|A| =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4 1
0 3 2 1
2 1 −1 0
5 2 1 3

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4 1
0 3 2 1
0 −3 −9 −2
0 −8 −19 −2

∣
∣
∣
∣
∣
∣
∣
∣

.

Now, by using the second row we want to wipe out the elements below the diagonal in the
second column. But the first number is 3. One element in the third row can be wiped out
by simply adding 1(2) + (3) ⇒. This brings the following:

|A| =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4 1
0 3 2 1
0 0 −7 −1
0 −8 −19 −2

∣
∣
∣
∣
∣
∣
∣
∣

.

If we take out 3 from the second row then it will bring in fractions. We will avoid fractions
by multiplying the second row by 8 and the fourth row by 3. In order preserve the value,
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we keep 1
(8)(3)

outside. Then, we add the second row to the fourth row or (2)+ (4) ⇒. The
result of these operations is the following:

|A| = 1

(8)(3)

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4 1
0 24 16 8
0 0 −7 −1
0 −24 −57 −6

∣
∣
∣
∣
∣
∣
∣
∣

= 1

(8)(3)

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4 1
0 24 16 8
0 0 −7 −1
0 0 −41 2

∣
∣
∣
∣
∣
∣
∣
∣

.

Now, multiply the third row by 41 and fourth row by 7 and then add−1(3) + (4) ⇒. The
result is the following:

|A| = 1

(8)(3)(7)(41)

∣
∣
∣
∣
∣
∣
∣
∣

1 2 4 1
0 24 16 8
0 0 −287 −41
0 0 0 55

∣
∣
∣
∣
∣
∣
∣
∣

.

Now, take the product of the diagonal elements. Then

|A| = (1)(24)(−287)(55)

(8)(3)(7)(41)
= −55.

Observe that we did not have to repeat the 4 × 4 determinant each time. After wiping
out the first column elements, we could have expressed the determinant as follows because
only the elements in the second row and second column onward would then have mattered.
That is,

|A| = (1)

∣
∣
∣
∣
∣
∣

3 2 1
0 −7 −1

−8 −19 −2

∣
∣
∣
∣
∣
∣
.

Similarly, after wiping out the second column elements, we could have written the result-
ing determinant as

|A| = (1)(24)

(8)(3)

∣
∣
∣
∣
−7 −1
−41 2

∣
∣
∣
∣ ,

and so on.

Example 1.2.3. Evaluate the determinant of a 2 × 2 general matrix.
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Solution 1.2.3. A general 2 × 2 determinant can be opened up by using Axiom (3), that
is,

|A| =
∣
∣
∣
∣
a11 a12

a21 a22

∣
∣
∣
∣ =

∣
∣
∣
∣
a11 0
a21 a22

∣
∣
∣
∣+
∣
∣
∣
∣

0 a12

a21 a22

∣
∣
∣
∣ [Axiom (3)]

= a11

∣
∣
∣
∣

1 0
a21 a22

∣
∣
∣
∣+ a12

∣
∣
∣
∣

0 1
a21 a22

∣
∣
∣
∣ [Axiom (1)].

If any of a11 or a12 is zero, then the corresponding determinant is zero. In the second
determinant on the right, interchange the second and first columns, which will bring a
minus sign outside the determinant. That is,

|A| = a11

∣
∣
∣
∣

1 0
a21 a22

∣
∣
∣
∣− a12

∣
∣
∣
∣

1 0
a22 a21

∣
∣
∣
∣ = a11a22 − a12a21.

The last step is done by using the property that the determinant of a triangular matrix is the
product of the diagonal elements. We can also evaluate the determinant by using a number
of different procedures. Taking out a11 if a11 
= 0,

|A| = a11

∣
∣
∣
∣

1 a12
a11

a21 a22

∣
∣
∣
∣ .

Now, perform the operation −a21(1) + (2) or −a21 times the first row is added to the
second row. Then,

|A| = a11

∣
∣
∣
∣
1 a12

a11

0 a22 − a12a21
a11

∣
∣
∣
∣ .

Now, expanding by using a property of triangular matrices, we have

|A| = a11(1)
[
a22 − a12a21

a11

] = a11a22 − a12a21. (1.2.4)

Consider a general 3 × 3 determinant evaluated by using Axiom (3) first.

|A| =
∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣

= a11

∣
∣
∣
∣
∣
∣

1 0 0
a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣
+ a12

∣
∣
∣
∣
∣
∣

0 1 0
a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣
+ a13

∣
∣
∣
∣
∣
∣

0 0 1
a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣

= a11

∣
∣
∣
∣
∣
∣

1 0 0
0 a22 a23

0 a32 a33

∣
∣
∣
∣
∣
∣
+ a12

∣
∣
∣
∣
∣
∣

0 1 0
a21 0 a23

a31 0 a33

∣
∣
∣
∣
∣
∣
+ a13

∣
∣
∣
∣
∣
∣

0 0 1
a21 a22 0
a31 a32 0

∣
∣
∣
∣
∣
∣
.
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The first step consists in opening up the first row by making use of Axiom (3). Then,
eliminate the elements in rows 2 and 3 within the column headed by 1. The next step is
to bring the columns whose first element is 1 to the first column position by transposi-
tions. The first matrix on the right-hand side is already in this format. One transposition is
needed in the second matrix and two are required in the third matrix. After completing the
transpositions, the next step consists in opening up each determinant along their second
row and observing that the resulting matrices are lower triangular or can be made so after
transposing their last two columns. The final result is then obtained. The last two steps are
executed below:

|A| = a11

∣
∣
∣
∣
∣
∣

1 0 0
0 a22 a23

0 a32 a33

∣
∣
∣
∣
∣
∣
− a12

∣
∣
∣
∣
∣
∣

1 0 0
0 a21 a23

0 a31 a33

∣
∣
∣
∣
∣
∣
+ a13

∣
∣
∣
∣
∣
∣

1 0 0
0 a21 a22

0 a31 a32

∣
∣
∣
∣
∣
∣

= a11[a22a33 − a23a32] − a12[a21a33 − a23a31] + a13[a21a32 − a22a31]
= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

(1.2.5)

A few observations are in order. Once 1 is brought to the first row first column position
in every matrix and the remaining elements in this first column are eliminated, one can
delete the first row and first column and take the determinant of the remaining submatrix
because only those elements will enter into the remaining operations involving opening
up the second and successive rows by making use of Axiom (3). Hence, we could have
written

|A| = a11

∣
∣
∣
∣
a22 a23

a32 a33

∣
∣
∣
∣− a12

∣
∣
∣
∣
a21 a23

a31 a33

∣
∣
∣
∣+ a13

∣
∣
∣
∣
a21 a22

a31 a32

∣
∣
∣
∣ .

This step is also called the cofactor expansion of the matrix. In a general matrix A = (aij ),
the cofactor of the element aij is equal to (−1)i+jMij where Mij is the minor of aij .
This minor is obtained by deleting the i-th row and j -the column and then taking the
determinant of the remaining elements. The second item to be noted from (1.2.5) is that,
in the final expression for |A|, each term has one and only one element from each row
and each column of A. Some elements have plus signs in front of them and others have
minus signs. For each term, write the first subscript in the natural order 1, 2, 3 for the
3 × 3 case and in the general n × n case, write the first subscripts in the natural order
1, 2, . . . , n. Now, examine the second subscripts. Let the number of transpositions needed
to bring the second subscripts into the natural order 1, 2, . . . , n be ρ. Then, that term is
multiplied by (−1)ρ so that an even number of transpositions produces a plus sign and
an odd number of transpositions brings a minus sign, or equivalently if ρ is even, the
coefficient is plus 1 and if ρ is odd, the coefficient is −1. This also enables us to open up
a general determinant. This will be considered after pointing out one more property for
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a 3 × 3 case. The final representation in the 3 × 3 case in (1.2.5) can also be written up
by using the following mechanical procedure. Write all elements in the matrix A in the
natural order. Then, augment this arrangement with the first two columns. This yields the
following format:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32 .

Now take the products of the elements along the diagonals going from the top left to the
bottom right. These are the elements with the plus sign. Take the products of the elements
in the second diagonals or the diagonals going from the bottom left to the top right. These
are the elements with minus sign. As a result, |A| is as follows:

|A| = [a11a22a33 + a12a23a31 + a13a21a32]
− [a13a22a31 + a11a23a32 + a12a21a33].

This mechanical procedure applies only in the 3 × 3 case. The general expansion is the
following:

|A| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∑

i1

· · ·
∑

in

(−1)ρ(i1,...,in)a1i1a2i2 · · · anin (1.2.6)

where ρ(i1, . . . , in) is the number of transpositions needed to bring the second subscripts
i1, . . . , in into the natural order 1, 2, . . . , n.

The cofactor expansion of a general matrix is obtained as follows: Suppose that we
open up a n × n determinant A along the i-th row using Axiom (3). Then, after taking out
ai1, ai2, . . . , ain, we obtain n determinants where, in the first determinant, 1 occupies the
(i, 1)-th position, in the second one, 1 is at the (i, 2)-th position and so on so that, in the j -
th determinant, 1 occupies the (i, j)-th position. Given that i-th row, we can now eliminate
all the elements in the columns corresponding to the remaining 1. We now bring this 1 into
the first row first column position by transpositions in each determinant. The number of
transpositions needed to bring this 1 from the j -th position in the i-th row to the first
position in the i-th row, is j −1. Then, to bring that 1 to the first row first column position,
another i − 1 transpositions are required, so that the total number of transpositions needed
is (i − 1)+ (j − 1) = i + j − 2. Hence, the multiplicative factor is (−1)i+j−2 = (−1)i+j ,
and the expansion is as follows:

|A| = (−1)i+1ai1Mi1 + (−1)i+2ai2Mi2 + · · · + (−1)i+nainMin

= ai1Ci1 + ai2Ci2 + · · · + ainCin (1.2.7)
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where Cij = (−1)i+jMij , Cij is the cofactor of aij and Mij is the minor of aij , the minor
being obtained by taking the determinant of the remaining elements after deleting the i-th
row and j -th column of A. Moreover, if we expand along a certain row (column) and the
cofactors of some other row (column), then the result will be zero. That is,

0 = ai1Cj1 + ai2Cj2 + · · · + ainCjn, for all i 
= j. (1.2.8)

Inverse of a Matrix Regular inverses exist only for square matrices that are nonsingular.
The standard notation for a regular inverse of a matrix A is A−1. It is defined as AA−1 = In

and A−1A = In. The following properties can be deduced from the definition. First, we
note that AA−1 = A0 = I = A−1A. When A and B are n × n nonsingular matrices,
then (AB)−1 = B−1A−1, which can be established by pre- or post-multiplying the right-
hand side side by AB. Accordingly, with Am = A × A × · · · × A, A−m = A−1 × · · · ×
A−1 = (Am)−1, m = 1, 2, . . . , and when A1, . . . , Ak are n × n nonsingular matrices,
(A1A2 · · · Ak)

−1 = A−1
k A−1

k−1 · · · A−1
2 A−1

1 . We can also obtain a formula for the inverse
of a nonsingular matrix A in terms of cofactors. Assuming that A−1 exist and letting
Cof(A) = (Cij ) be the matrix of cofactors of A, that is, if A = (aij ) and if Cij is the
cofactor of aij then Cof(A) = (Cij ). It follows from (1.2.7) and (1.2.8) that

A−1 = 1

|A|(Cof(A))′ = 1

|A|

⎡

⎢
⎣

C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

⎤

⎥
⎦

′

, (1.2.9)

that is, the transpose of the cofactor matrix divided by the determinant of A. What about
A

1
2 ? For a scalar quantity a, we have the definition that if b exists such that b × b = a,

then b is a square root of a. Consider the following 2 × 2 matrices:

I2 =
[

1 0
0 1

]

, B1 =
[−1 0

0 1

]

, B2 =
[

1 0
0 −1

]

,

B3 =
[−1 0

0 −1

]

, B4 =
[

0 1
1 0

]

, I 2
2 = I2, B2

j = I2, j = 1, 2, 3, 4.

Thus, if we use the definition B2 = A and claim that B is the square root of A, there are
several candidates for B; this means that, in general, the square root of a matrix cannot
be uniquely determined. However, if we restrict ourselves to the class of positive definite
matrices, then a square root can be uniquely defined. The definiteness of matrices will be
considered later.
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1.2.1. Inverses by row operations or elementary operations

Basic elementary matrices are of two types. Let us call them the E-type and the F -
type. An elementary matrix of the E-type is obtained by taking an identity matrix and
multiplying any row (column) by a nonzero scalar. For example,

I3 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , E1 =
⎡

⎣
1 0 0
0 −2 0
0 0 1

⎤

⎦ , E2 =
⎡

⎣
5 0 0
0 1 0
0 0 1

⎤

⎦ , E3 =
⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦ ,

where E1, E2, E3 are elementary matrices of the E-type obtained from the identity matrix
I3. If we pre-multiply an arbitrary matrix A with an elementary matrix of the E-type,
then the same effect will be observed on the rows of the arbitrary matrix A. For example,
consider a 3 × 3 matrix A = (aij ). Then, for example,

E1A =
⎡

⎣
1 0 0
0 −2 0
0 0 1

⎤

⎦

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ =
⎡

⎣
a11 a12 a13

−2a21 −2a22 −2a23

a31 a32 a33

⎤

⎦ .

Thus, the same effect applies to the rows, that is, the second row is multiplied by (−2).
Observe that E-type elementary matrices are always nonsingular and so, their regular in-
verses exist. For instance,

E−1
1 =

⎡

⎣
1 0 0
0 −1

2 0
0 0 1

⎤

⎦ , E1E
−1
1 = I3 = E−1

1 E1; E−1
2 =

⎡

⎣

1
5 0 0
0 1 0
0 0 1

⎤

⎦ , E2E
−1
2 = I3.

Observe that post-multiplication of an arbitrary matrix by an E-type elementary matrix
will have the same effect on the columns of the arbitrary matrix. For example, AE1 will
have the same effect on the columns of A, that is, the second column of A is multiplied by
−2; AE2 will result in the first column of A being multiplied by 5, and so on. The F -type
elementary matrix is created by adding any particular row of an identity matrix to another
one of its rows. For example, consider a 3 × 3 identity matrix I3 and let

F1 =
⎡

⎣
1 0 0
1 1 0
0 0 1

⎤

⎦ , F2 =
⎡

⎣
1 0 0
0 1 0
1 0 1

⎤

⎦ , F3 =
⎡

⎣
1 0 0
0 1 0
0 1 1

⎤

⎦ ,
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where F1 is obtained by adding the first row to the second row of I3; F2 is obtained by
adding the first row to the third row of I3; and F3 is obtained by adding the second row of
I3 to the third row. As well, F -type elementary matrices are nonsingular, and for instance,

F−1
1 =

⎡

⎣
1 0 0

−1 1 0
0 0 1

⎤

⎦ , F−1
2 =

⎡

⎣
1 0 0
0 1 0

−1 0 1

⎤

⎦ , R−1
3 =

⎡

⎣
1 0 0
0 1 0
0 −1 1

⎤

⎦ ,

where F1F
−1
1 = I3, F

−1
2 F2 = I3 and F−1

3 F3 = I3. If we pre-multiply an arbitrary matrix
A by an F -type elementary matrix, then the same effect will be observed on the rows of
A. For example,

F1A =
⎡

⎣
1 0 0
1 1 0
0 0 1

⎤

⎦

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ =
⎡

⎣
a11 a12 a13

a21 + a11 a22 + a12 a23 + a13

a31 a32 a33

⎤

⎦ .

Thus, the same effect applies to the rows, namely, the first row is added to the second
row in A (as F1 was obtained by adding the first row of I3 to the second row of I3). The
reader may verify that F2A has the effect of the first row being added to the third row and
F3A will have the effect of the second row being added to the third row. By combining E-
and F -type elementary matrices, we end up with a G-type matrix wherein a multiple of
any particular row of an identity matrix is added to another one of its rows. For example,
letting

G1 =
⎡

⎣
1 0 0
5 1 0
0 0 1

⎤

⎦ and G2 =
⎡

⎣
1 0 0
0 1 0

−2 0 1

⎤

⎦ ,

it is seen that G1 is obtained by adding 5 times the first row to the second row in I3, and
G2 is obtained by adding −2 times the first row to the third row in I3. Pre-multiplication
of an arbitrary matrix A by G1, that is, G1A, will have the effect that 5 times the first row
of A will be added to its second row. Similarly, G2 will have the effect that −2 times the
first row of A will be added to its third row. Being product of E- and F -type elementary
matrices, G-type matrices are also nonsingular. We also have the result that if A, B, C are
n × n matrices and B = C, then AB = AC as long as A is nonsingular. In general, if
A1, . . . , Ak are n × n nonsingular matrices, we have

B = C ⇒ AkAk−1 · · · A2A1B = AkAk−1 · · · A2A1C;
⇒ A1A2B = A1(A2B) = (A1A2)B = (A1A2)C = A1(A2C).
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We will evaluate the inverse of a nonsingular square matrix by making use of elementary
matrices. The procedure will also verify whether a regular inverse exists for a given matrix.
If a regular inverse for a square matrix A exists, then AA−1 = I . We can pre- or post-
multiply A by elementary matrices. For example,

AA−1 = I ⇒ EkFr · · · E1F1AA−1 = EkFr · · · E1F1I

⇒ (Ek · · · F1A)A−1 = (Ek · · · F1).

Thus, if the operations Ek · · · F1 on A reduced A to an identity matrix, then A−1 is
Ek · · · F1. If an inconsistency has occurred during the process, we can conclude that there
is no inverse for A. Hence, our aim in performing our elementary operations on the left of
A is to reduce it to an identity matrix, in which case the product of the elementary matrices
on the right-hand side of the last equation will produce the inverse of A.

Example 1.2.4. Evaluate A−1 if it exists, where

A =

⎡

⎢
⎢
⎣

1 1 1 1
−1 0 1 0

2 1 1 2
1 1 −1 1

⎤

⎥
⎥
⎦ .

Solution 1.2.4. If A−1 exists then AA−1 = I which means
⎡

⎢
⎢
⎣

1 1 1 1
−1 0 1 0

2 1 1 2
1 1 −1 1

⎤

⎥
⎥
⎦A−1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

This is our starting equation. Only the configuration of the elements matters. The matrix
notations and the symbol A−1 can be disregarded. Hence, we consider only the configu-
ration of the numbers of the matrix A on the left and the numbers in the identity matrix
on the right. Then we pre-multiply A and pre-multiply the identity matrix by only making
use of elementary matrices. In the first set of steps, our aim consists in reducing every
element in the first column of A to zeros, except the first one, by only using the first row.
For each elementary operation on A, the same elementary operation is done on the identity
matrix also. Now, utilizing the second row of the resulting A, we reduce all the elements in
the second column of A to zeros except the second one and continue in this manner until
all the elements in the last columns except the last one are reduced to zeros by making
use of the last row, thus reducing A to an identity matrix, provided of course that A is
nonsingular. In our example, the elements in the first column can be made equal to zeros



Mathematical Preliminaries 27

by applying the following operations. We will employ the following standard notation:
a(i) + (j) ⇒ meaning a times the i-th row is added to the j -th row, giving the result.
Consider (1) + (2); −2(1) + (3); −1(1) + (4) ⇒ (that is, the first row is added to the
second row; and then −2 times the first row is added to the third row; then −1 times the
first row is added to the fourth row), (for each elementary operation on A we do the same
operation on the identity matrix also) the net result being

1 1 1 1
0 1 2 1
0 −1 −1 0
0 0 −2 0

⇔
1 0 0 0
1 1 0 0

−2 0 1 0
−1 0 0 1

.

Now, start with the second row of the resulting A and the resulting identity matrix and try
to eliminate all the other elements in the second column of the resulting A. This can be
achieved by performing the following operations: (2) + (3); −1(2) + (1) ⇒

1 0 −1 0
0 1 2 1
0 0 1 1
0 0 −2 0

⇔
0 −1 0 0
1 1 0 0

−1 1 1 0
−1 0 0 1

Now, start with the third row and eliminate all other elements in the third column. This
can be achieved by the following operations. Writing the row used in the operations (the
third one in this case) within the first set of parentheses for each operation, we have 2(3)+
(4); −2(3) + (2); (3) + (1) ⇒

1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 2

⇔
−1 0 1 0

3 −1 −2 0
−1 1 1 0
−3 2 2 1

Divide the 4th row by 2 and then perform the following operations: 1
2(4); −1(4) +

(3); (4) + (2); −1(4) + (1) ⇒

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⇔
1
2 −1 0 −1

2
3
2 0 −1 1

2
1
2 0 0 −1

2−3
2 1 1 1

2

.
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Thus,

A−1 =

⎡

⎢
⎢
⎣

1
2 −1 0 −1

2
3
2 0 −1 1

2
1
2 0 0 −1

2−3
2 1 1 1

2

⎤

⎥
⎥
⎦ .

This result should be verified to ensure that it is free of computational errors. Since

AA−1 =

⎡

⎢
⎢
⎣

1 1 1 1
−1 0 1 0

2 1 1 2
1 1 −1 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
2 −1 0 −1

2
3
2 0 −1 1

2
1
2 0 0 −1

2−3
2 1 1 1

2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

the result is indeed correct.

Example 1.2.5. Evaluate A−1 if it exists where

A =
⎡

⎣
1 1 1
1 −1 1
2 0 2

⎤

⎦ .

Solution 1.2.5. If A−1 exists, then AA−1 = I3. Write
⎡

⎣
1 1 1
1 −1 1
2 0 2

⎤

⎦A−1 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

Starting with the first row, eliminate all other elements in the first column with the follow-
ing operations: −1(1) + (2); −2(1) + (3) ⇒

1 1 1
0 −2 0
0 −2 0

⇔
1 0 0

−1 1 0
−2 0 1

The second and third rows on the left side being identical, the left-hand side matrix is
singular, which means that A is singular. Thus, the inverse of A does not exist in this case.

1.3. Determinants of Partitioned Matrices

Consider a matrix A written in the following format:

A =
[
A11 A12

A21 A22

]

where A11, A12, A21, A22 are submatrices.
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For example,

A =
⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ =
[
A11 A12

A21 A22

]

, A11 = [a11], A12 = [a12 a13], A21 =
[
a21

a31

]

and A22 =
[
a22 a23

a32 a33

]

. The above is a 2 × 2 partitioning or a partitioning into two sub-

matrices by two sub-matrices. But a 2×2 partitioning is not unique. We may also consider

A11 =
[
a11 a12

a21 a22

]

, A22 = [a33], A12 =
[
a13

a23

]

, A21 = [a31 a32],

which is another 2×2 partitioning of A. We can also have a 1×2 or 2×1 partitioning into
sub-matrices. We may observe one interesting property. Consider a block diagonal matrix.
Let

A =
[
A11 O

O A22

]

⇒ |A| =
∣
∣
∣
∣
A11 O

O A22

∣
∣
∣
∣ ,

where A11 is r × r , A22 is s × s, r + s = n and O indicates a null matrix. Observe
that when we evaluate the determinant, all the operations on the first r rows will produce
the determinant of A11 as a coefficient, without affecting A22, leaving an r × r identity
matrix in the place of A11. Similarly, all the operations on the last s rows will produce the
determinant of A22 as a coefficient, leaving an s × s identity matrix in place of A22. In
other words, for a diagonal block matrix whose diagonal blocks are A11 and A22,

|A| = |A11| × |A22|. (1.3.1)

Given a triangular block matrix, be it lower or upper triangular, then its determinant is also
the product of the determinants of the diagonal blocks. For example, consider

A =
[
A11 A12

O A22

]

⇒ |A| =
∣
∣
∣
∣
A11 A12

O A22

∣
∣
∣
∣ .

By using A22, we can eliminate A12 without affecting A11 and hence, we can reduce the
matrix of the determinant to a diagonal block form without affecting the value of the
determinant. Accordingly, the determinant of an upper or lower triangular block matrix
whose diagonal blocks are A11 and A22, is

|A| = |A11| |A22|. (1.3.2)

Partitioning is done to accommodate further operations such as matrix multiplication.
Let A and B be two matrices whose product AB is defined. Suppose that we consider a
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2 × 2 partitioning of A and B into sub-matrices; if the multiplication is performed treating
the sub-matrices as if they were scalar quantities, the following format is obtained:

AB =
[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

=
[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

.

If all the products of sub-matrices on the right-hand side are defined, then we say that A

and B are conformably partitioned for the product AB. Let A be a n × n matrix whose
determinant is defined. Let us consider the 2 × 2 partitioning

A =
[
A11 A12

A21 A22

]

where A11 is r × r, A22 is s × s, r + s = n.

Then, A12 is r × s and A21 is s × r . In this case, the first row block is [A11 A12] and
the second row block is [A21 A22]. When evaluating a determinant, we can add linear
functions of rows to any other row or linear functions of rows to other blocks of rows
without affecting the value of the determinant. What sort of a linear function of the first
row block could be added to the second row block so that a null matrix O appears in the
position of A21? It is −A21A

−1
11 times the first row block. Then, we have

|A| =
∣
∣
∣
∣
A11 A12

A21 A22

∣
∣
∣
∣ =

∣
∣
∣
∣
A11 A12

O A22 − A21A
−1
11 A12

∣
∣
∣
∣ .

This is a triangular block matrix and hence its determinant is the product of the determi-
nants of the diagonal blocks. That is,

|A| = |A11| |A22 − A21A
−1
11 A12|, |A11| 
= 0.

From symmetry, it follows that

|A| = |A22| |A11 − A12A
−1
22 A21|, |A22| 
= 0. (1.3.3)

Let us now examine the inverses of partitioned matrices. Let A and A−1 be conformably
partitioned for the product AA−1. Consider a 2 × 2 partitioning of both A and A−1. Let

A =
[
A11 A12

A21 A22

]

and A−1 =
[
A11 A12

A21 A22

]
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where A11 and A11 are r × r and A22 and A22 are s × s with r + s = n, A is n × n and
nonsingular. AA−1 = I gives the following:

[
A11 A12

A21 A22

] [
A11 A12

A21 A22

]

=
[
Ir O

O Is

]

.

That is,

A11A
11 + A12A

21 = Ir (i)

A11A
12 + A12A

22 = O (ii)

A21A
11 + A22A

21 = O (iii)

A21A
12 + A22A

22 = Is. (iv)

From (ii), A12 = −A−1
11 A12A

22. Substituting in (iv),

A21[−A−1
11 A12A

22] + A22A
22 = Is ⇒ [A22 − A21A

−1
11 A12]A22 = Is.

That is,
A22 = (A22 − A21A

−1
11 A12)

−1, |A11| 
= 0, (1.3.4)

and, from symmetry, it follows that

A11 = (A11 − A12A
−1
22 A21)

−1, |A22| 
= 0 (1.3.5)

A11 = (A11 − A12(A22)−1A21)−1, |A22| 
= 0 (1.3.6)

A22 = (A22 − A21(A11)−1A12)−1, |A11| 
= 0. (1.3.7)

The rectangular components A12, A21, A
12, A21 can also be evaluated in terms of the sub-

matrices by making use of Eqs. (i)–(iv).

1.4. Eigenvalues and Eigenvectors

Let A be n × n matrix, X be an n × 1 vector, and λ be a scalar quantity. Consider the
equation

AX = λX ⇒ (A − λI)X = O.

Observe that X = O is always a solution. If this equation has a non-null vector X as a
solution, then the determinant of the coefficient matrix must be zero because this matrix
must be singular. If the matrix (A − λI) were nonsingular, its inverse (A − λI)−1 would
exist and then, on pre-multiplying (A− I )X = O by (A−λI)−1, we would have X = O,
which is inadmissible since X 
= O. That is,

|A − λI | = 0, λ being a scalar quantity. (1.4.1)
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Since the matrix A is n × n, equation (1.4.1) has n roots, which will be denoted by
λ1, . . . , λn. Then

|A − λI | = (λ1 − λ)(λ2 − λ) · · · (λn − λ), AXj = λjXj .

Then, λ1, . . . , λn are called the eigenvalues of A and Xj 
= O, an eigenvector corre-
sponding to the eigenvalue λj .

Example 1.4.1. Compute the eigenvalues and eigenvectors of the matrix A =
[

1 1
1 2

]

.

Solution 1.4.1. Consider the equation

|A − λI | = 0 ⇒
∣
∣
∣
∣

[
1 1
1 2

]

− λ

[
1 0
0 1

]∣
∣
∣
∣ = 0 ⇒

∣
∣
∣
∣
1 − λ 1

1 2 − λ

∣
∣
∣
∣ = 0 ⇒ (1 − λ)(2 − λ) − 1 = 0 ⇒ λ2 − 3λ + 1 = 0 ⇒

λ = 3 ± √
(9 − 4)

2
⇒ λ1 = 3

2
+

√
5

2
, λ2 = 3

2
−

√
5

2
.

An eigenvector X1 corresponding to λ1 = 3
2 +

√
5

2 is given by AX1 = λ1X1 or (A −
λ1I )X1 = O. That is,

[
1 − (3

2 +
√

5
2 ) 1

1 2 − (3
2 +

√
5

2 )

][
x1

x2

]

=
[

0
0

]

⇒
(
− 1

2
−

√
5

2

)
x1 + x2 = 0 , (i)

x1 +
(1

2
−

√
5

2

)
x2 = 0. (ii)

Since A − λ1I is singular, both (i) and (ii) must give the same solution. Letting x2 = 1 in

(ii), x1 = −1
2 +

√
5

2 . Thus, one solution X1 is

X1 =
[
−1

2 +
√

5
2

1

]

.

Any nonzero constant multiple of X1 is also a solution to (A − λ1I )X1 = O. An eigen-
vector X2 corresponding to the eigenvalue λ2 is given by (A − λ2I )X2 = O. That is,

(
− 1

2
+

√
5

2

)
x1 + x2 = 0, (iii)

x1 +
(1

2
+

√
5

2

)
x2 = 0. (iv)
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Hence, one solution is

X2 =
[
−1

2 −
√

5
2

1

]

.

Any nonzero constant multiple of X2 is also an eigenvector corresponding to λ2.

Even if all elements of a matrix A are real, its eigenvalues can be real, positive,
negative, zero, irrational or complex. Complex and irrational roots appear in pairs. If
a + ib, i = √

(−1), and a, b real, is an eigenvalue, then a − ib is also an eigenvalue
of the same matrix. The following properties can be deduced from the definition:

(1): The eigenvalues of a diagonal matrix are its diagonal elements;

(2): The eigenvalues of a triangular (lower or upper) matrix are its diagonal elements;

(3): If any eigenvalue is zero, then the matrix is singular and its determinant is zero;

(4): If λ is an eigenvalue of A and if A is nonsingular, then 1
λ
is an eigenvalue of A−1;

(5): If λ is an eigenvalue of A, then λk is an eigenvalue of Ak, k = 1, 2, . . ., their associ-
ated eigenvector being the same;

(7): The eigenvalues of an identity matrix are unities; however, the converse need not be
true;

(8): The eigenvalues of a scalar matrix with diagonal elements a, a, . . . , a are a repeated
n times when the order of A is n; however, the converse need not be true;

(9): The eigenvalues of an orthonormal matrix, AA′ = I, A′A = I , are ±1; however, the
converse need not be true;

(10): The eigenvalues of an idempotent matrix, A = A2, are ones and zeros; however, the
converse need not be true. The only nonsingular idempotent matrix is the identity matrix;

(11): At least one of the eigenvalues of a nilpotent matrix of order r , that is, A 
=
O, . . . , Ar−1 
= O, Ar = O, is null;

(12): For an n × n matrix, both A and A′ have the same eigenvalues;
(13): The eigenvalues of a symmetric matrix are real;

(14): The eigenvalues of a skew symmetric matrix can only be zeros and purely imaginary
numbers;

(15): The determinant of A is the product of its eigenvalues: |A| = λ1λ2 · · · λn ;

(16): The trace of a square matrix is equal to the sum of its eigenvalues;

(17): If A = A′ (symmetric), then the eigenvectors corresponding to distinct eigenvalues
are orthogonal;

(18): If A = A′ and A is n × n, then there exists a full set of n eigenvectors which are
linearly independent, even if some eigenvalues are repeated.
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Result (16) requires some explanation. We have already derived the following two
results:

|A| =
∑

i1

· · ·
∑

in

(−1)ρa1i1a2i2 · · · anin (v)

and
|A − λI | = (λ1 − λ)(λ2 − λ) · · · (λn − λ). (vi)

Equation (vi) yields a polynomial of degree n in λ where λ is a variable. When λ = 0,
we have |A| = λ1λ2 · · · λn, the product of the eigenvalues. The term containing (−1)nλn,
when writing |A − λI | in the format of equation (v), can only come from the term (a11 −
λ)(a22 − λ) · · · (ann − λ) (refer to the explicit form for the 3 × 3 case discussed earlier).
Two factors containing λ will be missing in the next term with the highest power of λ.
Hence, (−1)nλn and (−1)n−1λn−1 can only come from the term (a11 −λ) · · · (ann −λ), as
can be seen from the expansion in the 3 × 3 case discussed in detail earlier. From (v) the
coefficient of (−1)n−1λn−1 is a11 + a22 + · · · + ann = tr(A) and from (vi), the coefficient
of (−1)n−1λn−1 is λ1 + · · · + λn. Hence tr(A) = λ1 + · + λn = sum of the eigenvalues of
A. This does not mean that λ1 = a11, λ2 = a22, . . . , λn = ann, only that the sums will be
equal.

Matrices in the Complex Domain When the elements in A = (aij ) can also be complex
quantities, then a typical element in A will be of the form a + ib, i = √

(−1), and a, b

real. The complex conjugate of A will be denoted by Ā and the conjugate transpose will
be denoted by A∗. Then, for example,

A =
⎡

⎣
1 + i 2i 3 − i

4i 5 1 + i

2 − i i 3 + i

⎤

⎦⇒ Ā =
⎡

⎣
1 − i −2i 3 + i

−4i 5 1 − i

2 + i −i 3 − i

⎤

⎦ , A∗ =
⎡

⎣
1 − i −4i 2 + i

−2i 5 −i

3 + i 1 − i 3 − i

⎤

⎦ .

Thus, we can also write A∗ = (Ā)′ = ¯(A′). When a matrix A is in the complex domain,
we may write it as A = A1 + iA2 where A1 and A2 are real matrices. Then Ā = A1 − iA2

and A∗ = A′
1 − iA′

2. In the above example,

A =
⎡

⎣
1 0 3
0 5 1
2 0 3

⎤

⎦+ i

⎡

⎣
1 2 −1
4 0 1

−1 1 1

⎤

⎦⇒

A1 =
⎡

⎣
1 0 3
0 5 1
2 0 3

⎤

⎦ , A2 =
⎡

⎣
1 2 −1
4 0 1

−1 1 1

⎤

⎦ .

A Hermitian Matrix If A = A∗, then A is called a Hermitian matrix. In the representation
A = A1 + iA2, if A = A∗, then A1 = A′

1 or A1 is real symmetric, and A2 = −A′
2 or A2

is real skew symmetric. Note that when X is an n × 1 vector, X∗X is real. Let



Mathematical Preliminaries 35

X =
⎡

⎣
2

3 + i

2i

⎤

⎦⇒ X̄ =
⎡

⎣
2

3 − i

−2i

⎤

⎦ , X∗ = [2 3 − i − 2i],

X∗X = [2 3 − i − 2i]
⎡

⎣
2

3 + i

2i

⎤

⎦ = (22 + 02) + (32 + 12) + (02 + (−2)2) = 18.

Consider the eigenvalues of a Hermitian matrix A, which are the solutions of |A−λI | = 0.
As in the real case, λ may be real, positive, negative, zero, irrational or complex. Then, for
X 
= O,

AX = λX ⇒ (i)

X∗A∗ = λ̄X∗ (ii)

by taking the conjugate transpose. Since λ is scalar, its conjugate transpose is λ̄. Pre-
multiply (i) by X∗ and post-multiply (ii) by X. Then for X 
= O, we have

X∗AX = λX∗X (iii)

X∗A∗X = λ̄X∗X. (iv)

When A is Hermitian, A = A∗, and so, the left-hand sides of (iii) and (iv) are the same.
On subtracting (iv) from (iii), we have 0 = (λ − λ̄)X∗X where X∗X is real and positive,
and hence λ− λ̄ = 0, which means that the imaginary part is zero or λ is real. If A is skew
Hermitian, then we end up with λ + λ̄ = 0 ⇒ λ is zero or purely imaginary. The above
procedure also holds for matrices in the real domain. Thus, in addition to properties (13)
and (14), we have the following properties:

(19) The eigenvalues of a Hermitian matrix are real; however, the converse need not be
true;
(20) The eigenvalues of a skew Hermitian matrix are zero or purely imaginary; however,
the converse need not be true.

1.5. Definiteness of Matrices, Quadratic and Hermitian Forms

Let X be an n × 1 vector of real scalar variables x1, . . . , xn so that X′ = (x1, . . . , xn).
Let A = (aij ) be a real n × n matrix. Then, all the elements of the quadratic form,
u = X′AX, are of degree 2. One can always write A as an equivalent symmetric matrix
when A is the matrix in a quadratic form. Hence, without any loss of generality, we may
assume A = A′ (symmetric) when A appears in a quadratic form u = X′AX.
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Definiteness of a quadratic form and definiteness of a matrix are only defined for A = A′
(symmetric) in the real domain and for A = A∗ (Hermitian) in the complex domain.
Hence, the basic starting condition is that either A = A′ or A = A∗. If for all non-null
X, that is, X 
= O, X′AX > 0, A = A′, then A is said to be a positive definite
matrix and X′AX > 0 is called a positive definite quadratic form. If for all non-null X,
X∗AX > 0, A = A∗, then A is referred to as a Hermitian positive definite matrix and the
corresponding Hermitian form X∗AX > 0, as Hermitian positive definite. Similarly, if
for all non-null X, X′AX ≥ 0, X∗AX ≥ 0, then A is positive semi-definite or Hermitian
positive semi-definite. If for all non-null X, X′AX < 0, X∗AX < 0, then A is negative
definite and if X′AX ≤ 0, X∗AX ≤ 0, then A is negative semi-definite. The standard
notations being utilized are as follows:

A > O (A and X′AX > 0 are real positive definite; (O is a capital o and not zero)
A ≥ O (A and X′AX ≥ 0 are positive semi-definite)
A < O (A and X′AX < 0 are negative definite)
A ≤ O (A and X′AX ≤ 0 are negative semi-definite).

All other matrices, which do no belong to any of those four categories, are called indefinite
matrices. That is, for example, A is such that for some X, X′AX > 0, and for some other
X, X′AX < 0, then A is an indefinite matrix. The corresponding Hermitian cases are:

A > O, X∗AX > 0 (Hermitian positive definite)

A ≥ O, X∗AX ≥ 0 (Hermitian positive semi-definite)

A < O, X∗AX < 0 (Hermitian negative definite)

A ≤ O, X∗AX ≤ 0 (Hermitian negative semi-definite). (1.5.1)

In all other cases, the matrix A and the Hermitian form X∗AX are indefinite. Certain
conditions for the definiteness of A = A′ or A = A∗ are the following:
(1) All the eigenvalues of A are positive ⇔ A > O; all eigenvalues are greater than or
equal to zero ⇔ A ≥ O; all eigenvalues are negative ⇔ A < O; all eigenvalues are ≤ 0
⇔ A ≤ O; all other matrices A = A′ or A = A∗ for which some eigenvalues are positive
and some others are negative are indefinite.
(2) A = A′ or A = A∗ and all the leading minors of A are positive (leading minors are
determinants of the leading sub-matrices, the r-th leading sub-matrix being obtained by
deleting all rows and columns from the (r + 1)-th onward), then A > O; if the leading
minors are ≥ 0, then A ≥ O; if all the odd order minors are negative and all the even
order minors are positive, then A < O; if the odd order minors are ≤ 0 and the even order
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minors are ≥ 0, then A ≤ O; all other matrices are indefinite. If A 
= A′ or A 
= A∗, then
no definiteness can be defined in terms of the eigenvalues or leading minors. Let

A =
[

2 0
0 5

]

.

Note that A is real symmetric as well as Hermitian. Since X′AX = 2x2
1 + 5x2

2 > 0 for
all real x1 and x2 as long as both x1 and x2 are not both equal to zero, A > O (positive

definite). X∗AX = 2|x1|2 + 5|x2|2 = 2[
√

(x2
11 + x2

12)]2 + 5[
√

(x2
21 + x2

22)]2 > 0 for all
x11, x12, x21, x22, as long as all are not simultaneously equal to zero, where x1 = x11 +
ix12, x2 = x21 + ix22 with x11, x12, x21, x22 being real and i = √

(−1). Consider

B =
[−1 0

0 −4

]

, C =
[

2 0
0 −6

]

.

Then, B < O and C is indefinite. Consider the following symmetric matrices:

A1 =
[

5 2
2 4

]

, A2 =
[

2 2
2 1

]

, A3 =
[−2 1

1 −5

]

.

The leading minors of A1 are 5 > 0,

∣
∣
∣
∣
5 2
2 4

∣
∣
∣
∣ = 16 > 0. The leading minors of A2 are

2 > 0,

∣
∣
∣
∣
2 2
2 1

∣
∣
∣
∣ = −2 < 0. The leading minors of A3 are −2 < 0,

∣
∣
∣
∣
−2 1

1 −5

∣
∣
∣
∣ = 9 > 0.

Hence A1 > O, A3 < O and A2 is indefinite. The following results will be useful when
reducing a quadratic form or Hermitian form to its canonical form.
(3) For every real A = A′ (symmetric), there exists an orthonormal matrix Q, QQ′ =
I, Q′Q = I such that Q′AQ = diag(λ1, . . . , λn) where λ1, . . . , λn are the eigenvalues of
the n × n matrix A and diag(. . .) denotes a diagonal matrix. In this case, a real quadratic
form will reduce to the following linear combination:

X′AX = Y ′Q′AQY = Y ′diag(λ1, . . . , λn)Y = λ1y
2
1 + · · · + λny

2
n, Y = Q′X. (1.5.2)

(4): For every Hermitian matrix A = A∗, there exists a unitary matrix U , U∗U =
I, UU∗ = I such that

X∗AX = Y ∗diag(λ1, . . . , λn)Y = λ1|y1|2 + · · · + λn|yn|2, Y = U∗X. (1.5.3)

When A > O (real positive definite or Hermitian positive definite) then all the λj ’s are
real and positive. Then, X′AX and X∗AX are strictly positive.
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Let A and B be n × n matrices. If AB = BA, in which case we say that A and B

commute, then both A and B can be simultaneously reduced to their canonical forms (di-
agonal forms with the diagonal elements being the eigenvalues) with the same orthonormal
or unitary matrix P , PP ′ = I, P ′P = I if P is real and PP ∗ = I, P ∗P = I if complex,
such that P ′AP = diag(λ1, . . . , λn) and P ′BP = diag(μ1, . . . , μn) where λ1, . . . , λn

are the eigenvalues of A and μ1, . . . , μn are the eigenvalues of B. In the complex case,
P ∗AP = diag(λ1, . . . , λn) and P ∗BP = diag(μ1, . . . , μn). Observe that the eigenvalues
of Hermitian matrices are real.

1.5.1. Singular value decomposition

For an n × n symmetric matrix A = A′, we have stated that there exists an n × n

orthonormal matrix P , PP ′ = In, P ′P = In such that P ′AP = D = diag(λ1, . . . , λn),
where λ1, . . . , λn are the eigenvalues of A. If a square matrix A is not symmetric, there
exists a nonsingular matrix Q such that Q−1AQ = D = diag(λ1, . . . , λn) when the rank
of A is n. If the rank is less than n, then we may be able to obtain a nonsingular Q such
that the above representation holds; however, this is not always possible. If A is a p × q

rectangular matrix for p 
= q or if p = q and A 
= A′, then can we find two orthonormal

matrices U and V such that A = U

[
Λ O

O O

]

V ′ where Λ = diag(λ1, . . . , λk), UU ′ =
Ip, U ′U = Ip, V V ′ = Iq, V ′V = Iq and k is the rank of A. This representation is
equivalent to the following:

A = U

[
Λ O

O O

]

V ′ = U(1)ΛV ′
(1) (i)

where U(1) = [U1, . . . , Uk], V(1) = [V1, . . . , Vk], Uj being the normalized eigenvector
of AA′ corresponding to the eigenvalue λ2

j and Vj , the normalized eigenvector of A′A
corresponding to the eigenvalue λ2

j . The representation given in (i) is known as the singular
value decomposition of A and λ1 > 0, . . . , λk > 0 are called the singular values of A.
Then, we have

AA′ = U

[
Λ2 O

O O

]

U ′ = U(1)Λ
2U ′

(1), A′A = V

[
Λ2 O

O O

]

V ′ = V(1)Λ
2V ′

(1). (ii)

Thus, the procedure is the following: If p ≤ q, compute the nonzero eigenvalues of AA′,
otherwise compute the nonzero eigenvalues of A′A. Denote them by λ2

1, . . . , λ
2
k where k is

the rank of A. Construct the following normalized eigenvectors U1, . . . , Uk from AA′. This
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gives U(1) = [U1, . . . , Uk]. Then, by using the same eigenvalues λ2
j , j = 1, . . . , k, deter-

mine the normalized eigenvectors, V1, . . . , Vk, from A′A, and let V(1) = [V1, . . . , Vk]. Let
us verify the above statements with the help of an example. Let

A =
[

1 −1 1
1 1 0

]

.

Then,

AA′ =
[

3 0
0 2

]

, A′A =
⎡

⎣
2 0 1
0 2 −1
1 −1 1

⎤

⎦ .

The eigenvalues of AA′ are λ2
1 = 3 and λ2

2 = 2. The corresponding normalized eigenvec-
tors of AA′ are U1 and U2, where

U1 =
[

1
0

]

, U2 =
[

0
1

]

, so that U(1) = [U1, U2] =
[

1 0
0 1

]

.

Now, by using λ2
1 = 3 and λ2

2 = 2, compute the normalized eigenvectors from A′A. They
are:

V1 = 1√
3

⎡

⎣
1

−1
1

⎤

⎦ , V2 = 1√
2

⎡

⎣
1
1
0

⎤

⎦ , so that V ′
(1) =

[
1√
3

− 1√
3

1√
3

1√
2

1√
2

0

]

.

Then Λ = diag(
√

3,
√

2). Also,

U(1)ΛV ′
(1) =

[
1 0
0 1

] [√
3 0

0
√

2

][ 1√
3

− 1√
3

1√
3

1√
2

1√
2

0

]

=
[

1 −1 1
1 1 0

]

= A.

This establishes the result. Observe that

AA′ = [U(1)ΛV ′
(1)][U(1)ΛV ′

(1)]′ = U(1)Λ
2U ′

(1)

A′A = [U(1)ΛV ′
(1)]′[U(1)ΛV ′

(1)] = V(1)Λ
2V ′

(1)

Λ2 = diag(λ2
1, λ

2
2).

1.6. Wedge Product of Differentials and Jacobians

If y = f (x) is an explicit function of x, where x and y are real scalar variables, then
we refer to x as the independent variable and to y as the dependent variable. In the present
context, “independent” means that values for x are preassigned and the corresponding
values of y are evaluated from the formula y = f (x). The standard notations for small
increment in x and the corresponding increment in y are Δx and Δy, respectively. By
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convention, Δx > 0 and Δy can be positive, negative or zero depending upon the function
f . If Δx goes to zero, then the limit is zero. However, if Δx goes to zero in the presence
of the ratio Δy

Δx
, then we have a different situation. Consider the identity

Δy ≡
(Δy

Δx

)
Δx ⇒ dy = A dx, A = dy

dx
. (1.6.1)

This identity can always be written due to our convention Δx > 0. Consider Δx → 0. If
Δy
Δx

attains a limit at some stage as Δx → 0, let us denote it by A = limΔx→0
Δy
Δx

, then the
value of Δx at that stage is the differential of x, namely dx, and the corresponding Δy is
dy and A is the ratio of the differentials A = dy

dx
. If x1, . . . , xk are independent variables

and if y = f (x1, . . . , xk), then by convention Δx1 > 0, . . . , Δxk > 0. Thus, in light of
(1.6.1), we have

dy = ∂f

∂x1
dx1 + · · · + ∂f

∂xk

dxk (1.6.2)

where ∂f
∂xj

is the partial derivative of f with respect to xj or the derivative of f with respect
to xj , keeping all other variables fixed.

Wedge Product of Differentials Let dx and dy be differentials of the real scalar variables
x and y. Then the wedge product or skew symmetric product of dx and dy is denoted by
dx ∧ dy and is defined as

dx ∧ dy = −dy ∧ dx ⇒ dx ∧ dx = 0 and dy ∧ dy = 0. (1.6.3)

This definition indicates that higher order wedge products involving the same differential
are equal to zero. Letting

y1 = f1(x1, x2) and y2 = f2(x1, x2),

it follows from the basic definitions that

dy1 = ∂f1

∂x1
dx1 + ∂f1

∂x2
dx2 and dy2 = ∂f2

∂x1
dx1 + ∂f2

∂x2
dx2.

By taking the wedge product and using the properties specified in (1.6.3), that is, dx1 ∧
dx1 = 0, dx2 ∧ dx2 = 0, dx2 ∧ dx1 = −dx1 ∧ dx2, we have

dy1 ∧ dy2 =
[ ∂f1

∂x1

∂f2

∂x2
− ∂f1

∂x2

∂f2

∂x1

]
dx1 ∧ dx2

=
∣
∣
∣
∣
∣

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

∣
∣
∣
∣
∣
dx1 ∧ dx2 .
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In the general case we have the following corresponding result:

dy1 ∧ . . . ∧ dyk =

∣
∣
∣
∣
∣
∣
∣

∂f1
∂x1

. . .
∂f1
∂xk

...
. . .

...
∂fk

∂x1
. . .

∂fk

∂xk

∣
∣
∣
∣
∣
∣
∣
dx1 ∧ . . . ∧ dxk (1.6.4)

dY = J dX ⇒ dX = 1

J
dY if J 
= 0

where dX = dx1 ∧ . . . ∧ dxk, dY = dy1 ∧ . . . ∧ dyk and J = |( ∂fi

∂xj
)| = the determinant of

the matrix of partial derivatives where the (i, j)-th element is the partial derivative of fi

with respect to xj . In dX and dY, the individual real scalar variables can be taken in any
order to start with. However, for each interchange of variables, the result is to be multiplied
by −1.

Example 1.6.1. Consider the transformation x1 = r cos2 θ, x2 = r sin2 θ, 0 ≤ r <

∞, 0 ≤ θ ≤ π
2 , x1 ≥ 0, x2 ≥ 0. Determine the relationship between dx1 ∧ dx2 and

dr ∧ dθ .

Solution 1.6.1. Taking partial derivatives, we have

∂x1

∂r
= cos2 θ,

∂x1

∂θ
= −2r cos θ sin θ,

∂x2

∂r
= sin2 θ,

∂x2

∂θ
= 2r cos θ sin θ.

Then, the determinant of the matrix of partial derivatives is given by
∣
∣
∣
∣

∂x1
∂r

∂x1
∂θ

∂x2
∂r

∂x2
∂θ

∣
∣
∣
∣ =

∣
∣
∣
∣
cos2 θ −2r cos θ sin θ

sin2 θ 2r cos θ sin θ

∣
∣
∣
∣ = 2r cos θ sin θ

since cos2 θ + sin2 θ = 1. Hence,

dx1 ∧ dx2 = 2r cos θ sin θ dr ∧ dθ, J = 2r cos θ sin θ.

We may also establish this result by direct evaluation.

dx1 = ∂x1

∂r
dr + ∂x1

∂θ
dθ = cos2 θ dr − 2r cos θ sin θ dθ,

dx2 = ∂x2

∂r
dr + ∂x2

∂θ
dθ = sin2 θ dr + 2r cos θ sin θ dθ,
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dx1 ∧ dx2 = cos2 θ sin2 θ dr ∧ dr + cos2 θ(2r cos θ sin θ) dr ∧ dθ

− sin2 θ(2r cos θ sin θ) dθ ∧ dr − (2r cos θ sin θ)2dθ ∧ dθ

= 2r cos θ sin θ [cos2 θ dr ∧ dθ − sin2 θ dθ ∧ dr], [dr ∧ dr = 0, dθ ∧ dθ = 0]
= 2r cos θ sin θ [cos2 θ + sin2 θ] dr ∧ dθ, [dθ ∧ dr = −dr ∧ dθ]
= 2r cos θ sin θ dr ∧ dθ.

Linear Transformation Consider the linear transformation Y = AX where

Y =
⎡

⎢
⎣

y1
...

yp

⎤

⎥
⎦ , X =

⎡

⎢
⎣

x1
...

xp

⎤

⎥
⎦ , A =

⎡

⎢
⎣

a11 . . . a1p
...

. . .
...

ap1 . . . app

⎤

⎥
⎦ .

Then, ∂yi

∂xj
= aij ⇒ (

∂yi

∂xj
) = (aij ) = A. Then dY = |A| dX or J = |A|. Hence, the

following result:

Theorem 1.6.1. Let X and Y be p × 1 vectors of distinct real variables and A = (aij )

be a constant nonsingular matrix. Then, the transformation Y = AX is one to one and

Y = AX, |A| 
= 0 ⇒ dY = |A| dX. (1.6.5)

Let us consider the complex case. Let X̃ = X1 + iX2 where a tilde indicates that the
matrix is in the complex domain, X1 and X2 are real p × 1 vectors if X̃ is p × 1, and
i = √

(−1). Then, the wedge product dX̃ is defined as dX̃ = dX1 ∧ dX2. This is the
general definition in the complex case whatever be the order of the matrix. If Z̃ is m × n

and if Z̃ = Z1 + iZ2 where Z1 and Z2 are m × n and real, then dZ̃ = dZ1 ∧ dZ2. Letting
the constant p × p matrix A = A1 + iA2 where A1 and A2 are real and p × p, and letting
Ỹ = Y1 + iY2 be p × 1 where Y1 and Y2 are real and p × 1, we have

Ỹ = AX̃ ⇒ Y1 + iY2 = [A1 + iA2][X1 + iX2]
= [A1X1 − A2X2] + i[A1X2 + A2X1] ⇒

Y1 = A1X1 − A2X2, Y2 = A1X2 + A2X1 ⇒
[
Y1

Y2

]

=
[
A1 −A2

A2 A1

] [
X1

X2

]

. (i)

Now, applying Result 1.6.1 on (i), it follows that

dY1 ∧ dY2 = det

[
A1 −A2

A2 A1

]

dX1 ∧ dX2. (ii)
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That is,

dỸ = det

[
A1 −A2

A2 A1

]

dX̃ ⇒ dỸ = J dX̃ (iii)

where the Jacobian can be shown to be the absolute value of the determinant of A. If
the determinant of A is denoted by det(A) and its absolute value, by |det(A)|, and if
det(A) = a + ib with a, b real and i = √

(−1) then the absolute value of the determinant
is +√

(a + ib)(a − ib) = +√(a2 + b2) = +√[det(A)][det(A∗)] = +√[det(AA∗)]. It
can be easily seen that the above Jacobian is given by

J = det

[
A1 −A2

A2 A1

]

= det

[
A1 −iA2

−iA2 A1

]

(multiplying the second row block by −i and second column block by i)

= det

[
A1 − iA2 A1 − iA2

−iA2 A1

]

(adding the second row block to the first row block)

= det(A1 − iA2) det

[
I I

−iA2 A1

]

= det(A1 − iA2)det(A1 + iA2)

(adding (−1) times the first p columns to the last p columns)

= [det(A)] [det(A∗)] = [det(AA∗)] = |det(A)|2.

Then, we have the following companion result of Theorem 1.6.1.

Theorem 1.6a.1. Let X̃ and Ỹ be p × 1 vectors in the complex domain, and let A be a
p × p nonsingular constant matrix that may or may not be in the complex domain. If C is
a constant p × 1 vector, then

Ỹ = AX̃ + C, det(A) 
= 0 ⇒ dỸ = |det(A)|2dX̃ = |det(AA∗)| dX̃. (1.6a.1)

For the results that follow, the complex case can be handled in a similar way and hence,
only the final results will be stated. For details, the reader may refer to Mathai (1997). A
more general result is the following:

Theorem 1.6.2. Let X and Y be real m × n matrices with distinct real variables as
elements. Let A be a m × m nonsingular constant matrix and C be a m × n constant
matrix. Then

Y = AX + C, det(A) 
= 0 ⇒ dY = |A|ndX. (1.6.6)

The companion result is stated in the next theorem.
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Theorem 1.6a.2. Let X̃ and Ỹ be m × n matrices in the complex domain. Let A be a
constant m×m nonsingular matrix that may or may not be in the complex domain, and C

be a m × n constant matrix. Then

Ỹ = AX̃ + C, det(A) 
= 0 ⇒ dỸ = |det(AA∗)|ndX̃. (1.6a.2)

For proving the Theorems 1.6.2 and 1.6a.2, consider the columns of Y and X. Then apply
Theorems 1.6.1 and 1.6a.1 to establish the results. If X, X̃, Y, Ỹ are as defined in Theo-
rems 1.6.2 and 1.6a.2 and if B is a n × n nonsingular constant matrix, then we have the
following results:

Theorems 1.6.3 and 1.6a.3. Let X, X̃, Y, Ỹ and C be m × n matrices with distinct
elements as previously defined, C be a constant matrix and B be a n × n nonsingular
constant matrix. Then

Y = XB + C, det(B) 
= 0 ⇒ dY = |B|mdX (1.6.7)

and
Ỹ = X̃B + C, det(B) 
= 0 ⇒ dỸ = |det(BB∗)|mdX̃. (1.6a.3)

For proving these results, consider the rows of Y, Ỹ , X, X̃ and then apply Theo-
rems 1.6.1,1.6a.1 to establish the results. Combining Theorems 1.6.2 and 1.6.3, as well
as Theorems 1.6a.2 and 1.6a.3, we have the following results:

Theorems 1.6.4 and 1.6a.4. Let X, X̃, Y, Ỹ be m × n matrices as previously defined,
and let A be m × m and B be n × n nonsingular constant matrices. Then

Y = AXB, det(A) 
= 0, det(B) 
= 0 ⇒ dY = |A|n|B|mdX (1.6.8)

and

Ỹ = AX̃B, det(A) 
= 0, det(B) 
= 0 ⇒ dỸ = |det(AA∗)|n|det(BB∗)|mdX̃. (1.6a.4)

We now consider the case of linear transformations involving symmetric and Hermitian
matrices.

Theorems 1.6.5 and 1.6a.5. Let X = X′, Y = Y ′ be real symmetric p×p matrices and
let X̃ = X̃∗, Ỹ = Ỹ ∗ be p × p Hermitian matrices. If A is a p × p nonsingular constant
matrix, then

Y = AXA′, Y = Y ′, X = X′, det(A) 
= 0 ⇒ dY = |A|p+1dX (1.6.9)

and
Ỹ = AX̃A∗, det(A) 
= 0 ⇒ dỸ = |det(AA∗)|pdX̃ (1.6a.5)

for X̃ = X̃∗ or X̃ = −X̃∗.
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The proof involves some properties of elementary matrices and elementary transforma-
tions. Elementary matrices were introduced in Sect. 1.2.1. There are two types of basic
elementary matrices, the E and F types where the E type is obtained by multiplying any
row (column) of an identity matrix by a nonzero scalar and the F type is obtained by
adding any row to any other row of an identity matrix. A combination of E and F type
matrices results in a G type matrix where a constant multiple of one row of an identity
matrix is added to any other row. The G type is not a basic elementary matrix. By per-
forming successive pre-multiplication with E, F and G type matrices, one can reduce a
nonsingular matrix to a product of the basic elementary matrices of the E and F types, ob-
serving that the E and F type elementary matrices are nonsingular. This result is needed
to establish Theorems 1.6.5 and 1.6a.5. Let A = E1E2F1 · · · ErFs for some E1, . . . , Er

and F1, . . . , Fs . Then

AXA′ = E1E2F1 · · · ErFsXF ′
sE

′
r · · · E′

2E
′
1.

Let Y1 = FsXF ′
s in which case the connection between dX and dY1 can be determined

from Fs . Now, letting Y2 = ErY1E
′
r , the connection between dY2 and dY1 can be similarly

determined from Er . Continuing in this manner, we finally obtain the connection between
dY and dX, which will give the Jacobian as |A|p+1 for the real case. In the complex case,
the procedure is parallel.

We now consider two basic nonlinear transformations. In the first case, X is a p × p

nonsingular matrix going to its inverse, that is, Y = X−1.

Theorems 1.6.6 and 1.6a.6. Let X and X̃ be p × p real and complex nonsingular ma-
trices, respectively. Let the regular inverses be denoted by Y = X−1 and Ỹ = X̃−1,

respectively. Then, ignoring the sign,

Y = X−1 ⇒ dY =

⎧
⎪⎨

⎪⎩

|X|−2pdX for a general X

|X|−(p+1)dX for X = X′

|X|−(p−1)dX for X = −X′
(1.6.10)

and

Ỹ = X̃−1 ⇒ dỸ =
{

|det(X̃X̃∗)|−2p for a generalX̃

|det(X̃X̃∗)|−p for X̃ = X̃∗ or X̃ = −X̃∗.
(1.6a.6)

The proof is based on the following observations: In the real case XX−1 = Ip ⇒
(dX)X−1 + X(dX−1) = O where (dX) represents the matrix of differentials in X. This
means that

(dX−1) = −X−1(dX)X−1.
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The differentials are appearing only in the matrices of differentials. Hence this situation
is equivalent to the general linear transformation considered in Theorems 1.6.4 and 1.6.5
where X and X−1 act as constants. The result is obtained upon taking the wedge product
of differentials. The complex case is parallel.

The next results involve real positive definite matrices or Hermitian positive definite
matrices that are expressible in terms of triangular matrices and the corresponding con-
nection between the wedge product of differentials. Let X and X̃ be complex p × p real
positive definite and Hermitian positive definite matrices, respectively. Let T = (tij ) be a
real lower triangular matrix with tij = 0, i < j, tjj > 0, j = 1, . . . , p, and the tij ’s,
i ≥ j, be distinct real variables. Let T̃ = (t̃ij ) be a lower triangular matrix with t̃ij = 0, for
i < j , the t̃ij ’s, i > j, be distinct complex variables, and t̃jj , j = 1, . . . , p, be positive
real variables. Then, the transformations X = T T ′ in the real case and X̃ = T̃ T̃ ∗ in the
complex case can be shown to be one-to-one, which enables us to write dX in terms of dT

and vice versa, uniquely, and dX̃ in terms of dT̃ , uniquely. We first consider the real case.
When p = 2,

[
x11 x12

x12 x22

]

, x11 > 0, x22 > 0, x21 = x12, x11x22 − x2
12 > 0

due to positive definiteness of X, and

X = T T ′ =
[
t11 0
t21 t22

] [
t11 t21

0 t22

]

=
[

t2
11 t21t11

t21t11 t2
21 + t2

22

]

⇒
∂x11

∂t11
= 2t11,

∂x11

∂t21
= 0,

∂x11

∂t22
= 0

∂x22

∂t11
= 0,

∂x22

∂t21
= 2t21,

∂x22

∂t22
= 2t22

∂x12

∂t11
= t21,

∂x12

∂t21
= t11,

∂x12

∂t22
= 0.

Taking the xij ’s in the order x11, x12, x22 and the tij ’s in the order t11, t21, t22, we form the
following matrix of partial derivatives:

t11 t12 t22

x11 2t11 0 0
x21 ∗ t11 0
x22 ∗ ∗ 2t22

where an asterisk indicates that an element may be present in that position; however, its
value is irrelevant since the matrix is triangular and its determinant will simply be the
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product of its diagonal elements. It can be observed from this pattern that for a general p,

a diagonal element will be multiplied by 2 whenever xjj is differentiated with respect to
tjj , j = 1, . . . , p. Then t11 will appear p times, t22 will appear p−1 times, and so on, and
tpp will appear once along the diagonal. Hence the product of the diagonal elements will

be 2p t
p

11 t
p−1
22 · · · tpp = 2p{∏p

j=1 t
p+1−j

jj }. A parallel procedure will yield the Jacobian in
the complex case. Hence, the following results:

Theorems 1.6.7 and 1.6a.7. Let X, X̃, T and T̃ be p × p matrices where X is real pos-
itive definite, X̃ is Hermitian positive definite, and T and T̃ are lower triangular matrices
whose diagonal elements are real and positive as described above. Then the transforma-
tions X = T T ′ and X̃ = T̃ T̃ ∗ are one-to-one, and

dX = 2p{
p∏

j=1

t
p+1−j

jj } dT (1.6.11)

and

dX̃ = 2p{
p∏

j=1

t
2(p−j)+1
jj } dT̃ . (1.6a.7)

Given these introductory materials, we will explore multivariate statistical analysis
from the perspective of Special Functions. As far as possible, the material in this chapter
is self-contained. A few more Jacobians will be required when tackling transformations
involving rectangular matrices or eigenvalue problems. These will be discussed in the
respective chapters later on.

Example 1.6.2. Evaluate the following integrals: (1):
∫
X

e−X′AXdX where A > O (real
positive definite) is 3 × 3 and X is a 3 × 1 vector of distinct real scalar variables; (2):∫
X

e−tr(AXBX′)dX where X is a 2 × 3 matrix of distinct real scalar variables, A > O

(real positive definite), is 2 × 2 and B > O (real positive definite) is 3 × 3, A and B being
constant matrices; (3):

∫
X>O

e−tr(X)dX where X = X′ > O is a 2×2 real positive definite
matrix of distinct real scalar variables.

Solution 1.6.2.
(1) Let X′ = (x1, x2, x3), A > O. Since A > O, we can uniquely define A

1
2 = (A

1
2 )′.

Then, write X′AX = X′A 1
2 A

1
2 X = Y ′Y, Y = A

1
2 X. It follows from Theorem 1.6.1 that

dX = |A|− 1
2 dY , and letting Y ′ = (y1, y2, y3), we have
∫

X

e−X′AXdX = |A|− 1
2

∫

Y

e−(Y ′Y )dY

= |A|− 1
2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−(y2

1+y2
2+y2

3 )dy1 ∧ dy2 ∧ dy3.
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Since ∫ ∞

−∞
e−y2

j dyj = √
π, j = 1, 2, 3,

∫

X

e−X′AXdX = |A|− 1
2 (

√
π)3.

(2) Since A is a 2 × 2 positive definite matrix, there exists a 2 × 2 matrix A
1
2 that is

symmetric and positive definite. Similarly, there exists a 3×3 matrix B
1
2 that is symmetric

and positive definite. Let Y = A
1
2 XB

1
2 ⇒ dY = |A| 3

2 |B| 2
2 dX or dX = |A|− 3

2 |B|−1dY

by Theorem 1.6.4. Moreover, given two matrices A1 and A2, tr(A1A2) = tr(A2A1) even
if A1A2 
= A2A1, as long as the products are defined. By making use of this property, we
may write

tr(AXBX′) = tr(A
1
2 A

1
2 XB

1
2 B

1
2 X′) = tr(A

1
2 XB

1
2 B

1
2 X′A

1
2 )

= tr[(A 1
2 XB

1
2 )(A

1
2 XB

1
2 )′] = tr(YY ′)

where Y = A
1
2 XB

1
2 and dY is given above. However, for any real matrix Y , whether

square or rectangular, tr(YY ′) = tr(Y ′Y ) = the sum of the squares of all the elements of
Y . Thus, we have

∫

X

e−tr(AXBX′)dX = |A|− 3
2 |B|−1

∫

Y

e−tr(YY ′)dY.

Observe that since tr(YY ′) is the sum of squares of 6 real scalar variables, the integral
over Y reduces to a multiple integral involving six integrals where each variable is over
the entire real line. Hence,

∫

Y

e−tr(YY ′)dY =
6∏

j=1

∫ ∞

−∞
e−y2

j dyj =
6∏

j=1

(
√

π) = (
√

π)6.

Note that we have denoted the sum of the six y2
ij as y2

1 + · · · + y2
6 for convenience. Thus,

∫

X

e−tr(AXBX′)dX = |A|− 3
2 |B|−1(

√
π)6.

(3) In this case, X is a 2 × 2 real positive definite matrix. Let X = T T ′ where T is lower
triangular with positive diagonal elements. Then,

T =
[
t11 0
t21 t22

]

, t11 > 0, t22 > 0, T T ′ =
[
t11 0
t21 t22

] [
t11 t21

0 t22

]

=
[

t2
11 t11t21

t11t21 t2
21 + t2

22

]

,
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and tr(T T ′) = t2
11 + (t2

21 + t2
22), t11 > 0, t22 > 0, −∞ < t21 < ∞. From Theorem 1.6.7,

the Jacobian is

dX = 2p{
p∏

j=1

t
p+1−j

jj }dT = 22(t2
11t22) dt11 ∧ dt21 ∧ dt22.

Therefore
∫

X>O

e−tr(X)dX =
∫

T

e−tr(T T ′)[22(t2
11t22)]dT

=
( ∫ ∞

−∞
e−t2

21dt21

)( ∫ ∞

0
2t2

11e−t2
11dt11

)( ∫ ∞

0
2t22e−t2

22dt22

)

= [√π ] [Γ (
3

2
))] [Γ (1)] = π

2
.

Example 1.6.3. Let A = A∗ > O be a constant 2×2 Hermitian positive definite matrix.
Let X̃ be a 2 × 1 vector in the complex domain and X̃2 > O be a 2 × 2 Hermitian
positive definite matrix. Then, evaluate the following integrals: (1):

∫
X̃

e−(X̃∗AX̃)dX̃; (2):
∫
X̃2>O

e−tr(X̃2)dX̃2.

Solution 1.6.3.
(1): Since A = A∗ > O, there exists a unique Hermitian positive definite square root A

1
2 .

Then,

X̃∗AX̃ = X̃∗A
1
2 A

1
2 X̃ = Ỹ ∗Ỹ ,

Ỹ = A
1
2 X̃ ⇒ dX̃ = |det(A)|−1dỸ

by Theorem 1.6a.1. But Ỹ ∗Ỹ = |ỹ1|2 +|ỹ2|2 since Ỹ ∗ = (ỹ∗
1 , ỹ∗

2 ). Since the ỹj ’s are scalar
in this case, an asterisk means only the complex conjugate, the transpose being itself.
However,

∫

ỹj

e−|ỹj |2dỹj =
∫ ∞

−∞

∫ ∞

−∞
e−(y2

j1+y2
j2)dyj1 ∧ dyj2 = (

√
π)2 = π

where ỹj = yj1 + iyj2, i = √
(−1), yj1 and yj2 being real. Hence

∫

X̃

e−(X̃∗AX̃)dX̃ = |det(A)|−1
∫

Ỹ

e−(|ỹ1|2+|ỹ2|2)dỹ1 ∧ dỹ2

= |det(A)|−1
( 2∏

j=1

∫

Ỹj

e−|ỹj |2dỹj

)
= |det(A)|−1

2∏

j=1

π

= |det(A)|−1π2.
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(2): Make the transformation X̃2 = T̃ T̃ ∗ where T̃ is lower triangular with its diagonal
elements being real and positive. That is,

T̃ =
[
t11 0
t̃21 t22

]

, T̃ T̃ ∗ =
[

t2
11 t11 t̃21

t11 t̃21 |t̃21|2 + t2
22

]

and the Jacobian is dX̃2 = 2p{∏p

j=1 t
2(p−j)+1
jj }dT̃ = 22t3

11t22 dT̃ by Theorem 1.6a.7.
Hence,

∫

X̃2>O

e−tr(X̃2)dX̃2 =
∫

T̃

22t3
11t22e−(t2

11+t2
22+|t̃21|2)dt11 ∧ dt22 ∧ dt̃21.

But

2
∫

t11>0
t3
11e−t2

11 dt11 =
∫ ∞

u=0
u e−udu = 1,

2
∫

t22>0
t22e−t2

22dt22 =
∫ ∞

v=0
e−vdv = 1,

∫

t̃21

e−|t̃21|2dt̃21 =
∫ ∞

−∞

∫ ∞

−∞
e−(t2

211+t2
212)dt211 ∧ dt212

=
( ∫ ∞

−∞
e−t2

211dt211

)( ∫ ∞

−∞
e−t2

212dt212

)

= √
π

√
π = π,

where t̃21 = t211 + it212, i = √
(−1) and t211, t212 real. Thus

∫

X̃2>O

e−tr(X̃2)dX̃2 = π.

1.7. Differential Operators

Let

X =
⎡

⎢
⎣

x1
...

xp

⎤

⎥
⎦ ,

∂

∂X
=
⎡

⎢
⎣

∂
∂x1
...
∂

∂xp

⎤

⎥
⎦ ,

∂

∂X′ =
[ ∂

∂x1
, . . . ,

∂

∂xp

]
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where x1, . . . , xp are distinct real scalar variables, ∂
∂X

is the partial differential operator
and ∂

∂X′ is the transpose operator. Then, ∂
∂X

∂
∂X′ is the configuration of all second order

partial differential operators given by

∂

∂X

∂

∂X′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2

∂x2
1

∂2

∂x1∂x2
· · · ∂2

∂x1∂xp

∂2

∂x2∂x1

∂2

∂x2
2

· · · ∂2

∂x2∂xp

...
...

. . .
...

∂2

∂xp∂x1

∂2

∂xp∂x2
· · · ∂2

∂x2
p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let f (X) be a real-valued scalar function of X. Then, this operator, operating on f will
be defined as

∂

∂X
f =

⎡

⎢
⎢
⎣

∂f
∂x1
...

∂f
∂xp

⎤

⎥
⎥
⎦ .

For example, if f = x2
1 + x1x2 + x3

2 , then ∂f
∂x1

= 2x1 + x2,
∂f
∂x2

= x1 + 3x2
2 , and

∂f

∂X
=
[

2x1 + x2

x1 + 3x2
2

]

.

Let f = a1x1 +a2x2 +· · ·+apxp = A′X = X′A, A′ = (a1, . . . , ap), X′ = (x1, . . . , xp)

where a1, . . . , ap are real constants and x1, . . . , xp are distinct real scalar variables. Then
∂f
∂xj

= aj and we have the following result:

Theorem 1.7.1. Let A, X and f be as defined above where f = a1x1 + · + apxp is a
linear function of X, then

∂

∂X
f = A.

Letting f = X′X = x2
1 + · · · + x2

p, ∂f
∂xj

= 2xj , and we have the following result.

Theorem 1.7.2. Let X be a p × 1 vector of real scalar variables so that X′X = x2
1 +

· · · + x2
p. Then

∂f

∂X
= 2X.
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Now, let us consider a general quadratic form f = X′AX, A = A′, where X is a
p × 1 vector whose components are real scalar variables and A is a constant matrix. Then
∂f
∂xj

= (aj1x1 + · · · + ajpxp) + (a1j x1 + a2j x2 + · · · + apjxp) for j = 1, . . . , p. Hence
we have the following result:

Theorem 1.7.3. Let f = X′AX be a real quadratic form where X is a p × 1 real vector
whose components are distinct real scalar variables and A is a constant matrix. Then

∂f

∂X
=
{

(A + A′)X for a general A

2AX when A = A′ .

1.7.1. Some basic applications of the vector differential operator

Let X be a p × 1 vector with real scalar elements x1, . . . , xp. Let A = (aij ) = A′ be a
constant matrix. Consider the problem of optimizing the real quadratic form u = X′AX.
There is no unrestricted maximum or minimum. If A = A′ > O (positive definite), u can
tend to +∞ and similarly, if A = A′ < O, u can go to −∞. However, if we confine
ourselves to the surface of a unit hypersphere or equivalently require that X′X = 1, then
we can have a finite maximum and a finite minimum. Let u1 = X′AX−λ(X′X−1) so that
we have added zero to u and hence u1 is the same as u, where λ is an arbitrary constant
or a Lagrangian multiplier. Then, differentiating u1 with respect to x1, . . . , xp, equating
the resulting expressions to zero, and thereafter solving for critical points, is equivalent to
solving the equation ∂u1

∂X
= O (null) and solving this single equation. That is,

∂u1

∂X
= O ⇒ 2AX − 2λX = O ⇒ (A − λI)X = O. (i)

For (i) to have a non-null solution for X, the coefficient matrix A − λI has to be singular
or its determinant must be zero. That is, |A−λI | = 0 and AX = λX or λ is an eigenvalue
of A and X is the corresponding eigenvector. But

AX = λX ⇒ X′AX = λX′X = λ since X′X = 1. (ii)

Hence the maximum value of X′AX corresponds to the largest eigenvalue of A and the
minimum value of X′AX, to the smallest eigenvalue of A. Observe that when A = A′ the
eigenvalues are real. Hence we have the following result:

Theorem 1.7.4. Let u = X′AX, A = A′, X be a p × 1 vector of real scalar variables
as its elements. Letting X′X = 1, then

max
X′X=1

[X′AX] = λ1 = the largest eigenvalue of A

min
X′X=1

[X′AX] = λp = the smallest eigenvalue of A.
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Principal Component Analysis where it is assumed that A > O relies on this result.
This will be elaborated upon in later chapters. Now, we consider the optimization of u =
X′AX, A = A′ subject to the condition X′BX = 1, B = B ′. Take λ as the Lagrangian
multiplier and consider u1 = X′AX − λ(X′BX − 1). Then

∂u1

∂X
= O ⇒ AX = λBX ⇒ |A − λB| = 0. (iii)

Note that X′AX = λX′BX = λ from (i). Hence, the maximum of X′AX is the largest
value of λ satisfying (i) and the minimum of X′AX is the smallest value of λ satisfying
(i). Note that when B is nonsingular, |A − λB| = 0 ⇒ |AB−1 − λI | = 0 or λ is an
eigenvalue of AB−1. Thus, this case can also be treated as an eigenvalue problem. Hence,
the following result:

Theorem 1.7.5. Let u = X′AX, A = A′ where the elements ofX are distinct real scalar
variables. Consider the problem of optimizing X′AX subject to the condition X′BX =
1, B = B ′, where A and B are constant matrices, then

max
X′BX=1

[X′AX] = λ1 = largest eigenvalue of AB−1, |B| 
= 0

= the largest root of |A − λB| = 0;
min

X′BX=1
[X′AX] = λp = smallest eigenvalue of AB−1, |B| 
= 0

= the smallest root of |A − λB| = 0.

Now, consider the optimization of a real quadratic form subject to a linear constraint.
Let u = X′AX, A = A′ be a quadratic form where X is p × 1. Let B ′X = X′B = 1
be a constraint where B ′ = (b1, . . . , bp), X′ = (x1, . . . , xp) with b1, . . . , bp being real
constants and x1, . . . , xp being real distinct scalar variables. Take 2λ as the Lagrangian
multiplier and consider u1 = X′AX − 2λ(X′B − 1). The critical points are available from
the following equation

∂

∂X
u1 = O ⇒ 2AX − 2λB = O ⇒ X = λA−1B, for |A| 
= 0

⇒ B ′X = λB ′A−1B ⇒ λ = 1

B ′A−1B
.

In this problem, observe that the quadratic form is unbounded even under the restriction
B ′X = 1 and hence there is no maximum. The only critical point corresponds to a min-
imum. From AX = λB, we have X′AX = λX′B = λ. Hence the minimum value is
λ = [B ′A−1B]−1 where it is assumed that A is nonsingular. Thus following result:
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Theorem 1.7.6. Let u = X′AX, A = A′, |A| 
= 0. Let B ′X = 1 where B ′ =
(b1, . . . , bp) be a constant vector and X is p × 1 vector of real distinct scalar variables.
Then, the minimum of the quadratic form u, under the restriction B ′X = 1 where B is a
constant vector, is given by

min
B ′X=1

[X′AX] = 1

B ′A−1B
.

Such problems arise for instance in regression analysis and model building situations.
We could have eliminated one of the variables with the linear constraint; however, the op-
timization would still involve all other variables, and thus not much simplification would
be achieved by eliminating one variable. Hence, operating with the vector differential op-
erator is the most convenient procedure in this case.

We will now consider the mathematical part of a general problem in prediction analysis
where some variables are predicted from another set of variables. This topic is related to
Canonical Correlation Analysis. We will consider the optimization part of the problem in
this section. The problem consists in optimizing a bilinear form subject to quadratic con-
straints. Let X be a p×1 vector of real scalar variables x1, . . . , xp, and Y be a q ×1 vector
of real scalar variables y1, . . . , yq, where q need not be equal to p. Consider the bilinear
form u = X′AY where A is a p×q rectangular constant matrix. We would like to optimize
this bilinear form subject to the quadratic constraints X′BX = 1, Y ′CY = 1, B = B ′ and
C = C′ where B and C are constant matrices. In Canonical Correlation Analysis, B and
C are constant real positive definite matrices. Take λ1 and λ2 as Lagrangian multipliers
and let u1 = X′AY − λ1

2 (X′BX − 1) − λ2
2 (Y ′CY − 1). Then

∂

∂X
u1 = O ⇒ AY − λ1BX = O ⇒ AY = λ1BX

⇒ X′AY = λ1X
′BX = λ1; (i)

∂

∂Y
u1 = O ⇒ A′X − λ2CY = O ⇒ A′X = λ2CY

⇒ Y ′A′X = λ2Y
′CY = λ2. (ii)

It follows from (i) and (ii) that λ1 = λ2 = λ, say. Observe that X′AY is 1 × 1 so that
X′AY = Y ′A′X. After substituting λ to λ1 and λ2, we can combine equations (i) and (ii)
in a single matrix equation as follows:

[−λB A

A′ −λC

] [
X

Y

]

= O ⇒
∣
∣
∣
∣
−λB A

A′ −λC

∣
∣
∣
∣ = 0. (iii)
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Opening up the determinant by making use of a result on partitioned matrices from
Sect. 1.3, we have

| − λB| | − λC − A′(−λB)−1A| = 0, |B| 
= 0 ⇒
|A′B−1A − λ2C| = 0. (iv)

Then ν = λ2 is a root obtained from Eq. (iv). We can also obtain a parallel result by
opening up the determinant in (iii) as

| − λC| | − λB − A(−λC)−1A′| = 0 ⇒ |AC−1A′ − λ2B| = 0, |C| 
= 0. (v)

Hence we have the following result.

Theorem 1.7.7. Let X and Y be respectively p × 1 and q × 1 real vectors whose com-
ponents are distinct scalar variables. Consider the bilinear form X′AY and the quadratic
forms X′BX and Y ′CY where B = B ′, C = C′, and B and C are nonsingular constant
matrices. Then,

max
X′BX=1,Y ′CY=1

[X′AY ] = |λ1|
min

X′BX=1,Y ′CY=1
[X′AY ] = |λp|

where λ2
1 is the largest root resulting from equation (iv) or (v) and λ2

p is the smallest root
resulting from equation (iv) or (v).

Observe that if p < q, we may utilize equation (v) to solve for λ2 and if q < p,
then we may use equation (iv) to solve for λ2, and both will lead to the same solution. In
the above derivation, we assumed that B and C are nonsingular. In Canonical Correlation
Analysis, both B and C are real positive definite matrices corresponding to the variances
X′BX and Y ′CY of the linear forms and then, X′AY corresponds to covariance between
these linear forms.

Note 1.7.1. We have confined ourselves to results in the real domain in this subsection
since only real cases are discussed in connection with the applications that are consid-
ered in later chapters, such as Principal Component Analysis and Canonical Correlation
Analysis. The corresponding complex cases do not appear to have practical applications.
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Accordingly, optimizations of Hermitian forms will not be discussed. However, parallel
results to Theorems 1.7.1–1.7.7 could similarly be worked out in the complex domain.
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Chapter 2
The Univariate Gaussian and Related Distributions

2.1. Introduction

It is assumed that the reader has had adequate exposure to basic concepts in Proba-
bility, Statistics, Calculus and Linear Algebra. This chapter will serve as a review of the
basic ideas about the univariate Gaussian, or normal, distribution as well as related dis-
tributions. We will begin with a discussion of the univariate Gaussian density. We will
adopt the following notation: real scalar mathematical or random variables will be de-
noted by lower-case letters such as x, y, z, whereas vector or matrix-variate mathematical
or random variables will be denoted by capital letters such as X, Y, Z, . . . . Statisticians
usually employ the double notation X and x where it is claimed that x is a realization of
X. Since x can vary, it is a variable in the mathematical sense. Treating mathematical and
random variables the same way will simplify the notation and possibly reduce the con-
fusion. Complex variables will be written with a tilde such as x̃, ỹ, X̃, Ỹ , etc. Constant
scalars and matrices will be written without a tilde unless for stressing that the constant
matrix is in the complex domain. In such a case, a tilde will be also be utilized for the
constant. Constant matrices will be denoted by A, B, C, . . . .

The numbering will first indicate the chapter and then the section. For example,
Eq. (2.1.9) will be the ninth equation in Sect. 2.1 of this chapter. Local numbering for
sub-sections will be indicated as (i), (ii), and so on.

Let x1 be a real univariate Gaussian, or normal, random variable whose parameters are
μ1 and σ 2

1 ; this will be written as x1 ∼ N1(μ1, σ
2
1 ), the associated density being given by

f (x1) = 1

σ1
√

2π
e
− 1

2σ2
1

(x1−μ1)
2

, −∞ < x1 < ∞, −∞ < μ1 < ∞, σ1 > 0.

In this instance, the subscript 1 in N1(·) refers to the univariate case. Incidentally, a density
is a real-valued scalar function of x such that f (x) ≥ 0 for all x and

∫
x
f (x)dx = 1.

The moment generating function (mgf) of this Gaussian random variable x1, with t1 as
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its parameter, is given by the following expected value, where E[·] denotes the expected
value of [·]:

E[et1x1] =
∫ ∞

−∞
et1x1f (x1)dx1 = et1μ1+ 1

2 t2
1 σ 2

1 . (2.1.1)

2.1a. The Complex Scalar Gaussian Variable

Let x̃ = x1 + ix2, i = √
(−1), x1, x2 real scalar variables. Let E[x1] = μ1, E[x2] =

μ2, Var(x1) = σ 2
1 , Var(x2) = σ 2

2 , Cov(x1, x2) = σ12. By definition, the variance of the
complex random variable x̃ is defined as

Var(x̃) = E[x̃ − E(x̃)][x̃ − E(x̃)]∗

where * indicates a conjugate transpose in general; in this case, it simply means the conju-
gate since x̃ is a scalar. Since x̃ − E(x̃) = x1 + ix2 − μ1 − iμ2 = (x1 − μ1) + i(x2 − μ2)

and [x̃ − E(x̃)]∗ = (x1 − μ1) − i(x2 − μ2),

Var(x̃) =E[x̃ − E(x̃)][x̃ − E(x̃)]∗
=E[(x1 − μ1)+i(x2 − μ2)][(x1 − μ1)−i(x2 − μ2)]=E[(x1−μ1)

2+(x2−μ2)
2]

=σ 2
1 + σ 2

2 ≡ σ 2. (i)

Observe that Cov(x1, x2) does not appear in the scalar case. However, the covariance will
be present in the vector/matrix case as will be explained in the coming chapters. The
complex Gaussian density is given by

f (x̃) = 1

πσ 2
e− 1

σ2 (x̃−μ̃)∗(x̃−μ̃) (ii)

for x̃ = x1 + ix2, μ̃ = μ1 + iμ2, −∞ < xj < ∞, −∞ < μj < ∞, σ 2 > 0, j = 1, 2.
We will write this as x̃ ∼ Ñ1(μ̃, σ 2). It can be shown that the two parameters appearing in
the density in (ii) are the mean value of x̃ and the variance of x̃. We now establish that the
density in (ii) is equivalent to a real bivariate Gaussian density with σ 2

1 = 1
2σ 2, σ 2

2 = 1
2σ 2

and zero correlation. In the real bivariate normal density, the exponent is the following,
with Σ as given below:

−1

2
[(x1 − μ1), (x2 − μ2)]Σ−1

[
x1 − μ1

x2 − μ2

]

, Σ =
[1

2σ 2 0
0 1

2σ 2

]

= − 1

σ 2
{(x1 − μ1)

2 + (x2 − μ2)
2} = − 1

σ 2
(x̃ − μ̃)∗(x̃ − μ̃).
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This exponent agrees with that appearing in the complex case. Now, consider the constant
part in the real bivariate case:

(2π)|Σ | 1
2 = (2π)

∣
∣
∣
∣

1
2σ 2 0
0 1

2σ 2

∣
∣
∣
∣

1
2

= πσ 2,

which also coincides with that of the complex Gaussian. Hence, a complex scalar Gaussian
is equivalent to a real bivariate Gaussian case whose parameters are as described above.

Let us consider the mgf of the complex Gaussian scalar case. Let t̃ = t1 + it2, i =√
(−1), with t1 and t2 being real parameters, so that t̃∗ = ¯̃t = t1 − it2 is the conjugate of

t̃ . Then t̃∗x̃ = t1x1 + t2x2 + i(t1x2 − t2x1). Note that t1x1 + t2x2 contains the necessary
number of parameters (that is, 2) and hence, to be consistent with the definition of the
mgf in a real bivariate case, the imaginary part should not be taken into account; thus, we
should define the mgf as E[e�(t̃∗x̃)], where �(·) denotes the real part of (·). Accordingly,
in the complex case, the mgf is obtained as follows:

Mx̃(t̃) = E[e�(t̃∗x̃)]
= 1

πσ 2

∫

x̃

e�(t̃∗x̃)− 1
σ2 (x̃−μ̃)∗(x̃−μ̃)dx̃

= e�(t̃∗μ̃)

πσ 2

∫

x̃

e�(t̃∗(x̃−μ̃))− 1
σ2 (x̃−μ̃)∗(x̃−μ̃)dx̃.

Let us simplify the exponent:

�(t̃∗(x̃ − μ̃)) − 1

σ 2
(x̃ − μ̃)∗(x̃ − μ̃)

= −{ 1

σ 2
(x1 − μ1)

2 + 1

σ 2
(x2 − μ2)

2 − t1(x1 − μ1) − t2(x2 − μ2)}

= σ 2

4
(t2

1 + t2
2 ) − {(y1 − σ

2
t1)

2 + (y2 − σ

2
t2)

2}

where y1 = x1−μ1
σ

, y2 = x2−μ2
σ

, dyj = 1
σ

dxj , j = 1, 2. But

1√
π

∫ ∞

−∞
e−(yj− σ

2 tj )
2
dyj = 1, j = 1, 2.

Hence,

Mx̃(t̃) = e�(t̃∗μ̃)+ σ2
4 t̃∗ t̃ = et1μ1+t2μ2+ σ2

4 (t2
1 +t2

2 ), (2.1a.1)

which is the mgf of the equivalent real bivariate Gaussian distribution.
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Note 2.1.1. A statistical density is invariably a real-valued scalar function of the variables
involved, be they scalar, vector or matrix variables, real or complex.

2.1.1. Linear functions of Gaussian variables in the real domain

If x1, . . . , xk are statistically independently distributed real scalar Gaussian variables
with parameters (μj , σ

2
j ), j = 1, . . . , k and if a1, . . . , ak are real scalar constants then the

mgf of a linear function u = a1x1 + · · · + akxk is given by

Mu(t) = E[etu] = E[eta1x1+···+takxk ] = Mx1(a1t) · · · Mxk
(akt), as Max(t) = Mx(at),

= e(ta1μ1+···+takμk)+ 1
2 t2(a2

1σ 2
1 +···+a2

kσ 2
k )

= et (
∑k

j=1 ajμj )+ 1
2 t2(

∑k
j=1 a2

j σ 2
j )

,

which is the mgf of a real normal random variable whose parameters are (
∑k

j=1 ajμj ,
∑k

j=1 a2
j σ

2
j ). Hence, the following result:

Theorem 2.1.1. Let the real scalar random variable xj have a real univariate normal
(Gaussian) distribution, that is, xj ∼ N1(μj , σ

2
j ), j = 1, . . . , k and let x1, . . . , xk be sta-

tistically independently distributed. Then, any linear function u = a1x1+· · ·+akxk, where
a1, . . . , ak are real constants, has a real normal distribution with mean value

∑k
j=1 ajμj

and variance
∑k

j=1 a2
j σ

2
j , that is, u ∼ N1(

∑k
j=1 ajμj ,

∑k
j=1 a2

j σ
2
j ).

Vector/matrix notation enables one to express this result in a more convenient form.
Let

L =
⎡

⎢
⎣

a1
...

ak

⎤

⎥
⎦ , μ =

⎡

⎢
⎣

μ1
...

μk

⎤

⎥
⎦ , X =

⎡

⎢
⎣

x1
...

xk

⎤

⎥
⎦ , Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
k

⎤

⎥
⎥
⎥
⎦

.

Then denoting the transposes by primes, u = L′X = X′L, E(u) = L′μ = μ′L, and

Var(u) = E[(u − E(u))(u − E(u))′] = L′E[(X − E(X))(X − E(X))′]L
= L′Cov(X)L = L′ΣL

where, in this case, Σ is the diagonal matrix diag(σ 2
1 , . . . , σ 2

k ). If x1, . . . , xk is a simple
random sample from x1, that is, from the normal population specified by the density of x1

or, equivalently, if x1, . . . , xk are iid (independently and identically distributed) random
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variables having as a common distribution that of x1, then E(u) = μ1L
′J = μ1J

′L
and Var(u) = σ 2

1 L′L where u is the linear function defined in Theorem 2.1.1 and J ′ =
(1, 1, . . . , 1) is a vector of unities.

Example 2.1.1. Let x1 ∼ N1(−1, 1) and x2 ∼ N1(2, 2) be independently distributed
real normal variables. Determine the density of the linear function u = 5x1 − 2x2 + 7.

Solution 2.1.1. Since u is a linear function of independently distributed real scalar nor-
mal variables, it is real scalar normal whose parameters E(u) and Var(u) are

E(u) = 5E(x1) − 2E(x2) + 7 = 5(−1) − 2(2) + 7 = −2

Var(u) = 25Var(x1) + 4Var(x2) + 0 = 25(1) + 4(2) = 33,

the covariance being zero since x1 and x2 are independently distributed. Thus, u ∼
N1(−2, 33).

2.1a.1. Linear functions in the complex domain

We can also look into the distribution of linear functions of independently distributed
complex Gaussian variables. Let a be a constant and x̃ a complex random variable, where
a may be real or complex. Then, from the definition of the variance in the complex domain,
one has

Var(ax̃) = E[(ax̃ − E(ax̃))(ax̃ − E(ax̃))∗] = aE[(x̃ − E(x̃))(x̃ − E(x̃))∗]a∗

= aVar(x̃)a∗ = aa∗Var(x̃) = |a|2Var(x̃) = |a|2σ 2

when the variance of x̃ is σ 2, where |a| denotes the absolute value of a. As well, E[ax̃] =
aE[x̃] = aμ̃. Then, a companion to Theorem 2.1.1 is obtained.

Theorem 2.1a.1. Let x̃1, . . . , x̃k be independently distributed scalar complex Gaussian
variables, x̃j ∼ Ñ1(μ̃j , σ

2
j ), j = 1, . . . , k. Let a1, . . . , ak be real or complex constants

and ũ = a1x̃1+· · ·+akx̃k be a linear function. Then, ũ has a univariate complex Gaussian
distribution given by ũ ∼ Ñ1(

∑k
j=1 aj μ̃j ,

∑k
j=1 |aj |2Var(x̃j )).

Example 2.1a.1. Let x̃1, x̃2, x̃3 be independently distributed complex Gaussian univari-
ate random variables with expected values μ̃1 = −1 + 2i, μ̃2 = i, μ̃3 = −1 − i respec-
tively. Let x̃j = x1j + ix2j , j = 1, 2, 3. Let [Var(x1j ), Var(x2j )] = [(1, 1), (1, 2), (2, 3)],
respectively. Let a1 = 1 + i, a2 = 2 − 3i, a3 = 2 + i, a4 = 3 + 2i. Determine the density
of the linear function ũ = a1x̃1 + a2x̃2 + a3x̃3 + a4.
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Solution 2.1a.1.

E(ũ) = a1E(x̃1) + a2E(x̃2) + a3E(x̃3) + a4

= (1 + i)(−1 + 2i) + (2 − 3i)(i) + (2 + i)(−1 − i) + (3 + 2i)

= (−3 + i) + (3 + 2i) + (−1 − 3i) + (3 + 2i) = 2 + 2i;
Var(ũ) = |a1|2Var(x̃1) + |a2|2Var(x̃2) + |a3|2Var(x̃3)

and the covariances are equal to zero since the variables are independently distributed.
Note that x̃1 = x11 + ix21 and hence, for example,

Var(x̃1) = E[(x̃1 − E(x̃1))(x̃1 − E(x̃1))
∗]

= E{[(x11 − E(x11)) + i(x21 − E(x21))][(x11 − E(x11)) − i(x21 − E(x21))]}
= E[(x11 − E(x11))

2] − (i)2E[(x21 − E(x21))
2]

= Var(x11) + Var(x21) = 1 + 1 = 2.

Similarly, Var(x̃2) = 1 + 2 = 3, Var(x̃3) = 2 + 3 = 5. Moreover, |a1|2 = (1)2 + (1)2 =
2, |a2|2 = (2)2 + (3)2 = 13, |a3|2 = (2)2 + (1)2 = 5. Accordingly, Var(ũ) = 2(2) +
(13)(3) + (5)(5) = 68. Thus, ũ ∼ Ñ1(2 + 2i, 68). Note that the constant a4 only affects
the mean value. Had a4 been absent from ũ, its mean value would have been real and equal
to −1.

2.1.2. The chisquare distribution in the real domain

Suppose that x1 follows a real standard normal distribution, that is, x1 ∼ N1(0, 1),
whose mean value is zero and variance, 1. What is then the density of x2

1 , the square of
a real standard normal variable? Let the distribution function or cumulative distribution
function of x1 be Fx1(t) = Pr{x1 ≤ t} and that of y1 = x2

1 be Fy1(t) = Pr{y1 ≤ t}. Note
that since y1 > 0, t must be positive. Then,

Fy1(t) = Pr{y1 ≤ t} = Pr{x2
1 ≤ t} = Pr{|x1| ≤ √

t} = Pr{−√
t ≤ x1 ≤ √

t}
= Pr{x1 ≤ √

t} − Pr{x1 ≤ −√
t} = Fx1(

√
t) − Fx1(−

√
t). (i)

Denoting the density of y1 by g(y1), this density at y1 = t is available by differentiating
the distribution function Fy1(t) with respect to t . As for the density of x1, which is the
standard normal density, it can be obtained by differentiating Fx1(

√
t) with respect to

√
t .

Thus, differentiating (i) throughout with respect to t , we have
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g(t)|t=y1 =
[ d

dt
Fx1(

√
t) − d

dt
Fx1(−

√
t)
]∣
∣
∣
t=y1

=
[ d

d
√

t
Fx1(

√
t)

d
√

t

dt
− d

d
√

t
Fx1(−

√
t)

d(−√
t)

dt

]∣
∣
∣
t=y1

= 1

2
t

1
2 −1 1√

(2π)
e− 1

2 t
∣
∣
∣
t=y1

+ 1

2
t

1
2 −1 1√

(2π)
e− 1

2 t
∣
∣
∣
t=y1

= 1

2
1
2 Γ (1/2)

y
1
2 −1
1 e− 1

2 y1, 0 ≤ y1 < ∞, with Γ (1/2) = √
π. (ii)

Accordingly, the density of y1 = x2
1 or the square of a real standard normal variable, is a

two-parameter real gamma with α = 1
2 and β = 2 or a real chisquare with one degree of

freedom. A two-parameter real gamma density with the parameters (α, β) is given by

f1(y1) = 1

βαΓ (α)
yα−1

1 e− y1
β , 0 ≤ y1 < ∞, α > 0, β > 0, (2.1.2)

and f1(y1) = 0 elsewhere. When α = n
2 and β = 2, we have a real chisquare density with

n degrees of freedom. Hence, the following result:

Theorem 2.1.2. The square of a real scalar standard normal random variable is a real
chisquare variable with one degree of freedom. A real chisquare with n degrees of freedom
has the density given in (2.1.2) with α = n

2 and β = 2.

A real scalar chisquare random variable with m degrees of freedom is denoted as χ2
m.

From (2.1.2), by computing the mgf we can see that the mgf of a real scalar gamma random
variable y is My(t) = (1 − βt)−α for 1 − βt > 0. Hence, a real chisquare with m

degrees of freedom has the mgf Mχ2
m
(t) = (1 − 2t)−m

2 for 1 − 2t > 0. The condition
1−βt > 0 is required for the convergence of the integral when evaluating the mgf of a real
gamma random variable. If yj ∼ χ2

mj
, j = 1, . . . , k and if y1, . . . , yk are independently

distributed, then the sum y = y1+· · ·+yk ∼ χ2
m1+···+mk

, a real chisquare with m1+· · ·+mk

degrees of freedom, with mgf My(t) = (1 − 2t)− 1
2 (m1+···+mk) for 1 − 2t > 0.

Example 2.1.2. Let x1 ∼ N1(−1, 4), x2 ∼ N1(2, 2) be independently distributed. Let
u = x2

1 + 2x2
2 + 2x1 − 8x2 + 5. Compute the density of u.

Solution 2.1.2.

u = x2
1 + 2x2

2 + 2x1 − 8x2 + 5 = (x1 + 1)2 + 2(x2 − 2)2 − 4

= 4
[(x1 + 1)2

4
+ (x2 − 2)2

2

]
− 4.
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Since x1 ∼ N1(−1, 4) and x2 ∼ N1(2, 2) are independently distributed, so are (x1+1)2

4 ∼
χ2

1 and (x2−2)2

2 ∼ χ2
1 , and hence the sum is a real χ2

2 random variable. Then, u = 4y − 4
with y = χ2

2 . But the density of y, denoted by fy(y), is

fy(y) = 1

2
e− y

2 , 0 ≤ y < ∞,

and fy(y) = 0 elsewhere. Then, z = 4y has the density

fz(z) = 1

8
e− z

8 , 0 ≤ z < ∞,

and fz(z) = 0 elsewhere. However, since u = z − 4, its density is

fu(u) = 1

8
e− (u+4)

8 , −4 ≤ u < ∞,

and zero elsewhere.

2.1a.2. The chisquare distribution in the complex domain

Let us consider the distribution of z̃1z̃
∗
1 of a scalar standard complex normal variable

z̃1. The density of z̃1 is given by

fz̃1(z̃1) = 1

π
e−z̃∗

1 z̃1, z̃1 = z11 + iz12, −∞ < z1j < ∞, j = 1, 2.

Let ũ1 = z̃∗
1z̃1. Note that z̃∗

1z̃1 is real and hence we may associate a real parameter t to
the mgf. Note that z̃1z̃

∗
1 in the scalar complex case corresponds to z2 in the real scalar case

where z ∼ N1(0, 1). Then, the mgf of ũ1 is given by

Mũ1(t) = E[e�(t̃ ũ1)] = 1

π

∫

z̃1

e−�[(1−t)z̃∗
1 z̃1]dz̃1.

However, z̃∗
1z̃1 = z2

11 + z2
12 as z̃1 = z11 + iz12, i = √

(−1), where z11 and z12 are

real. Thus, the above integral gives (1 − t)− 1
2 (1 − t)− 1

2 = (1 − t)−1 for 1 − t > 0,
which is the mgf of a real scalar gamma variable with parameters α = 1 and β = 1.
Let z̃j ∼ Ñ1(μ̃j , σ

2), j = 1, . . . , k, be scalar complex normal random variables that are
independently distributed. Letting

ũ =
k∑

j=1

( z̃j − μ̃j

σj

)∗( z̃j − μ̃j

σj

)
∼ real scalar gamma with parameters α = k, β = 1,
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whose density is

fũ(u) = 1

Γ (k)
uk−1e−u, 0 ≤ u < ∞, k = 1, 2, . . . , (2.1a.2)

ũ is referred to as a scalar chisquare in the complex domain having k degrees of freedom,
which is denoted ũ ∼ χ̃2

k . Hence, the following result:

Theorem 2.1a.2. Let z̃j ∼ Ñ1(μ̃j , σ
2
j ), j = 1, . . . , k, be independently distributed

and ũ = ∑k
j=1(

z̃j−μ̃j

σj
)∗( z̃j−μ̃j

σj
). Then ũ is called a scalar chisquare having k degrees of

freedom in the complex domain whose density as given in (2.1a.2) is that of a real scalar
gamma random variable with parameters α = k and β = 1.

Example 2.1a.2. Let x̃1 ∼ Ñ1(i, 2), x̃2 ∼ Ñ1(1 − i, 1) be independently distributed
complex Gaussian univariate random variables. Let ũ = x̃∗

1 x̃1 + 2x̃∗
2 x̃2 − 2x̃∗

2 − 2x̃2 +
i(x̃1 + 2x̃∗

2 ) − i(x̃∗
1 + 2x̃2) + 5. Evaluate the density of ũ.

Solution 2.1a.2. Let us simplify ũ, keeping in mind the parameters in the densities of
x̃1 and x̃2. Since terms of the type x̃∗

1 x̃1 and x̃∗
2 x̃2 are present in ũ, we may simplify into

factors involving x̃∗
j and x̃j for j = 1, 2. From the density of x̃1 we have

(x̃1 − i)∗(x̃1 − i)

2
∼ χ̃2

1

where
(x̃1 − i)∗(x̃1 − i) = (x̃∗

1 + i)(x̃1 − i) = x̃∗
1 x̃1 + ix̃1 − ix̃∗

1 + 1. (i)

After removing the elements in (i) from ũ, the remainder is

2x̃∗
2 x̃2 − 2x̃∗

2 − 2x̃2 + 2ix̃∗
2 − 2ix̃2 + 4

= 2[(x̃2 − 1)∗(x̃2 − 1) − ix̃2 + ix̃∗
2 + 1]

= 2[(x̃2 − 1 + i)∗(x̃2 − 1 + i)].
Accordingly,

ũ = 2
[(x̃1 − i)∗(x̃1 − i)

2
+ (x̃2 − 1 + i)∗(x̃2 − 1 + i)

]

= 2[χ̃2
1 + χ̃2

1 ] = 2χ̃2
2

where χ̃2
2 is a scalar chisquare of degree 2 in the complex domain or, equivalently, a real

scalar gamma with parameters (α = 2, β = 1). Letting y = χ̃2
2 , the density of y, denoted

by fy(y), is
fy(y) = y e−y, 0 ≤ y < ∞,
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and fy(y) = 0 elsewhere. Then, the density of u = 2y, denoted by fu(u), which is
given by

fu(u) = u

2
e− u

2 , 0 ≤ u < ∞,

and fu(u) = 0 elsewhere, is that of a real scalar gamma with the parameters (α = 2,

β = 2).

2.1.3. The type-2 beta and F distributions in the real domain

What about the distribution of the ratio of two independently distributed real scalar
chisquare random variables? Let y1 ∼ χ2

m and y2 ∼ χ2
n , that is, y1 and y2 are real chisquare

random variables with m and n degrees of freedom respectively, and assume that y1 and
y2 are independently distributed. Let us determine the density of u = y1/y2. Let v = y2

and consider the transformation (y1, y2) onto (u, v). Noting that

∂u

∂y1
= 1

y2
,

∂v

∂y2
= 1,

∂v

∂y1
= 0,

one has

du ∧ dv =
∣
∣
∣
∣
∣

∂u
∂y1

∂u
∂y2

∂v
∂y1

∂v
∂y2

∣
∣
∣
∣
∣
dy1 ∧ dy2 =

∣
∣
∣
∣

1
y2

∗
0 1

∣
∣
∣
∣ dy1 ∧ dy2

= 1

y2
dy1 ∧ dy2 ⇒ dy1 ∧ dy2 = v du ∧ dv

where the asterisk indicates the presence of some element in which we are not interested
owing to the triangular pattern for the Jacobian matrix. Letting the joint density of y1 and
y2 be denoted by f12(y1, y2), one has

f12(y1, y2) = 1

2
m+n

2 Γ (m
2 )Γ (n

2 )
y

m
2 −1

1 y
n
2 −1
2 e− y1+y2

2

for 0 ≤ y1 < ∞, 0 ≤ y2 < ∞, m, n = 1, 2, . . ., and f12(y1, y2) = 0 elsewhere. Let the
joint density of u and v be denoted by g12(u, v) and the marginal density of u be denoted
by g1(u). Then,
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g12(u, v) = c v(uv)
m
2 −1v

n
2 −1e− 1

2 (uv+v), c = 1

2
m+n

2 Γ (m
2 )Γ (n

2 )
,

g1(u) = c u
m
2 −1

∫ ∞

v=0
v

m+n
2 −1e−v

(1+u)
2 dv

= c u
m
2 −1Γ

(m + n

2

)(1 + u

2

)−m+n
2

= Γ (m+n
2 )

Γ (m
2 )Γ (n

2 )
u

m
2 −1(1 + u)−

m+n
2 (2.1.3)

for m, n = 1, 2, . . . , 0 ≤ u < ∞ and g1(u) = 0 elsewhere. Note that g1(u) is a type-2
real scalar beta density. Hence, we have the following result:

Theorem 2.1.3. Let the real scalar y1 ∼ χ2
m and y2 ∼ χ2

n be independently distributed,
then the ratio u = y1

y2
is a type-2 real scalar beta random variable with the parameters m

2
and n

2 where m, n = 1, 2, . . ., whose density is provided in (2.1.3).

This result also holds for general real scalar gamma random variables x1 > 0 and
x2 > 0 with parameters (α1, β) and (α2, β), respectively, where β is a common scale
parameter and it is assumed that x1 and x2 are independently distributed. Then, u = x1

x2
is

a type-2 beta with parameters α1 and α2.

If u as defined in Theorem 2.1.3 is replaced by m
n
Fm,n or F = Fm,n = χ2

m/m

χ2
n/n

= n
m

u

is known as the F -random variable with m and n degrees of freedom, where the degrees
of freedom indicate those of the numerator and denominator chisquare random variables
which are independently distributed. Denoting the density of F by fF (F ) we have the
following result:

Theorem 2.1.4. Letting F = Fm,n = χ2
m/m

χ2
n/n

where the two real scalar chisquares are

independently distributed, the real scalar F-density is given by

fF (F ) = Γ (m+n
2 )

Γ (m
2 )Γ (n

2 )

(m

n

)m
2 F

m
2 −1

(1 + m
n
F)

m+n
2

(2.1.4)

for 0 ≤ F < ∞, m, n = 1, 2, . . . , and fF (F ) = 0 elsewhere.

Example 2.1.3. Let x1 and x2 be independently distributed real scalar gamma random
variables with parameters (α1, β) and (α2, β), respectively, β being a common parameter,
whose densities are as specified in (2.1.2). Let u1 = x1

x1+x2
, u2 = x1

x2
, u3 = x1 + x2.
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Show that (1): u3 has a real scalar gamma density as given in (2.1.2) with the parameters
(α1 + α2, β); (2): u1 and u3 as well as u2 and u3 are independently distributed; (3): u2 is a
real scalar type-2 beta with parameters (α1, α2) whose density is specified in (2.1.3); (4):
u1 has a real scalar type-1 beta density given as

f1(u1) = Γ (α1 + α2)

Γ (α1)Γ (α2)
u

α1−1
1 (1 − u1)

α2−1, 0 ≤ u1 ≤ 1, (2.1.5)

for �(α1) > 0, �(α2) > 0 and zero elsewhere. [In a statistical density, the parameters are
usually real; however, since the integrals exist for complex parameters, the conditions are
given for complex parameters as the real parts of α1 and α2, which must be positive. When
they are real, the conditions will be simply α1 > 0 and α2 > 0.]

Solution 2.1.3. Since x1 and x2 are independently distributed, their joint density is the
product of the marginal densities, which is given by

f12(x1, x2) = c x
α1−1
1 x

α2−1
2 e− 1

β
(x1+x2), 0 ≤ xj < ∞, j = 1, 2, (i)

for �(αj ) > 0, �(β) > 0, j = 1, 2 and zero elsewhere, where

c = 1

βα1+α2Γ (α1)Γ (α2)
.

Since the sum x1 + x2 is present in the exponent and both x1 and x2 are positive, a conve-
nient transformation is x1 = r cos2 θ, x2 = r sin2 θ, 0 ≤ r < ∞, 0 ≤ θ ≤ π

2 . Then,
the Jacobian is available from the detailed derivation of Jacobian given in the beginning of
Sect. 2.1.3 or from Example 1.6.1. That is,

dx1 ∧ dx2 = 2r sin θ cos θ dr ∧ dθ. (ii)

Then from (i) and (ii), the joint density of r and θ , denoted by fr,θ (r, θ), is the following:

fr,θ (r, θ) = c (cos2 θ)α1−1(sin2 θ)α2−12 cos θ sin θ rα1+α2−1e− 1
β
r (iii)

and zero elsewhere. As fr,θ (r, θ) is a product of positive integrable functions involving
solely r and θ , r and θ are independently distributed. Since u3 = x1 + x2 = r cos2 θ +
r sin2 θ = r is solely a function of r and u1 = x1

x1+x2
= cos2 θ and u2 = cos2 θ

sin2 θ
are solely

functions of θ , it follows that u1 and u3 as well as u2 and u3 are independently distributed.
From (iii), upon multiplying and dividing by Γ (α1 + α2), we obtain the density of u3 as

f1(u3) = 1

βα1+α2Γ (α1 + α2)
u

α1+α2−1
3 e− u3

β , 0 ≤ u3 < ∞, (iv)
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and zero elsewhere, which is a real scalar gamma density with parameters (α1 + α2, β).
From (iii), the density of θ , denoted by f2(θ), is

f2(θ) = c (cos2 θ)α1−1(sin2 θ)α2−1, 0 ≤ θ ≤ π

2
(v)

and zero elsewhere, for �(αj ) > 0, j = 1, 2,. From this result, we can obtain the density
of u1 = cos2 θ . Then, du1 = −2 cos θ sin θ dθ . Moreover, when θ → 0, u1 → 1 and when
θ → π

2 , u1 → 0. Hence, the minus sign in the Jacobian is needed to obtain the limits in
the natural order, 0 ≤ u1 ≤ 1. Substituting in (v), the density of u1 denoted by f3(u1),
is as given in (2.1.5), u1 being a real scalar type-1 beta random variable with parameters
(α1, α2). Now, observe that

u2 = cos2 θ

sin2 θ
= cos2 θ

1 − cos2 θ
= u1

1 − u1
. (vi)

Given the density of u1 as specified in (2.1.5), we can obtain the density of u2 as follows.
As u2 = u1

1−u1
, we have u1 = u2

1+u2
⇒ du1 = 1

(1+u2)2 du2; then substituting these values in
the density of u1, we have the following density for u2:

f3(u2) = Γ (α1 + α2)

Γ (α1)Γ (α2)
u

α1−1
2 (1 + u2)

−(α1+α2), 0 ≤ u2 < ∞, (2.1.6)

and zero elsewhere, for �(αj ) > 0, j = 1, 2, which is a real scalar type-2 beta density
with parameters (α1, α2). The results associated with the densities (2.1.5) and (2.1.6) are
now stated as a theorem.

Theorem 2.1.5. Let x1 and x2 be independently distributed real scalar gamma random
variables with the parameters (α1, β), (α2, β), respectively, β being a common scale pa-
rameter. [If x1 ∼ χ2

m and x2 ∼ χ2
n , then α1 = m

2 , α2 = n
2 and β = 2.] Then u1 = x1

x1+x2
is a real scalar type-1 beta whose density is as specified in (2.1.5) with the parameters
(α1, α2), and u2 = x1

x2
is a real scalar type-2 beta whose density is as given in (2.1.6) with

the parameters (α1, α2).

2.1a.3. The type-2 beta and F distributions in the complex domain

It follows that in the complex domain, if χ̃2
m and χ̃2

n are independently distributed, then
the sum is a chisquare with m + n degrees of freedom, that is, χ̃2

m + χ̃2
n = χ̃2

m+n. We now
look into type-2 beta variables and F -variables and their connection to chisquare variables
in the complex domain. Since, in the complex domain, the chisquares are actually real
variables, the density of the ratio of two independently distributed chisquares with m and
n degrees of freedom in the complex domain, remains the same as the density given in
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(2.1.3) with m
2 and n

2 replaced by m and n, respectively. Thus, letting ũ = χ̃2
m/χ̃2

n where
the two chisquares in the complex domain are independently distributed, the density of ũ,
denoted by g̃1(u), is

g̃1(u) = Γ (m + n)

Γ (m)Γ (n)
um−1(1 + u)−(m+n) (2.1a.3)

for 0 ≤ u < ∞, m, n = 1, 2, . . . , and g̃1(u) = 0 elsewhere.

Theorem 2.1a.3. Let ỹ1 ∼ χ̃2
m and ỹ2 ∼ χ̃2

n be independently distributed where ỹ1 and

ỹ2 are in the complex domain; then, ũ = ỹ1
ỹ2

is a real type-2 beta whose density is given in
(2.1a.3).

If the F random variable in the complex domain is defined as F̃m,n = χ̃2
m/m

χ̃2
n/n

where the

two chisquares in the complex domain are independently distributed, then the density of F̃

is that of the real F -density with m and n replaced by 2m and 2n in (2.1.4), respectively.

Theorem 2.1a.4. Let F̃ = F̃m,n = χ̃2
m/m

χ̃2
n/n

where the two chisquares in the complex do-

main are independently distributed; then, F̃ is referred to as an F random variable in the
complex domain and it has a real F -density with the parameters m and n, which is given
by

g̃2(F ) = Γ (m + n)

Γ (m)Γ (n)

(m

n

)m

Fm−1(1 + m

n
F)−(m+n) (2.1a.4)

for 0 ≤ F < ∞, m, n = 1, 2, . . . , and g̃2(F ) = 0 elsewhere.

A type-1 beta representation in the complex domain can similarly be obtained from
Theorem 2.1a.3. This will be stated as a theorem.

Theorem 2.1a.5. Let x̃1 ∼ χ̃2
m and x̃2 ∼ χ̃2

n be independently distributed scalar
chisquare variables in the complex domain with m and n degrees of freedom, respectively.
Let ũ1 = x̃1

x̃1+x̃2
, which is a real variable that we will call u1. Then, ũ1 is a scalar type-1

beta random variable in the complex domain with the parameters m, n, whose real scalar
density is

f̃1(ũ1) = Γ (m + n)

Γ (m)Γ (n)
um−1

1 (1 − u1)
n−1, 0 ≤ u1 ≤ 1, (2.1a.5)

and zero elsewhere, for m, n = 1, 2, . . . .
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2.1.4. Power transformation of type-1 and type-2 beta random variables

Let us make a power transformation of the type u1 = ayδ, a > 0, δ > 0. Then,
du1 = aδyδ−1dy. For convenience, let the parameters in (2.1.5) be α1 = α and α2 = β.
Then, the density given in (2.1.5) becomes

f11(y) = Γ (α + β)

Γ (α)Γ (β)
δaαyαδ−1(1 − ayδ)β−1, 0 ≤ y ≤ 1

a
1
δ

, (2.1.7)

and zero elsewhere, for a > 0, δ > 0, �(α) > 0, �(β) > 0. We can extend the support
to −a− 1

δ ≤ y ≤ a− 1
δ by replacing y by |y| and multiplying the normalizing constant by 1

2 .
Such power transformed models are useful in practical applications. Observe that a power
transformation has the following effect: for y < 1, the density is reduced if δ > 1 or raised
if δ < 1, whereas for y > 1, the density increases if δ > 1 or diminishes if δ < 1. For
instance, the particular case α = 1 is highly useful in reliability theory and stress-strength
analysis. Thus, letting α = 1 in the original real scalar type-1 beta density (2.1.7) and
denoting the resulting density by f12(y), one has

f12(y) = aδβyδ−1(1 − ayδ)β−1, 0 ≤ y ≤ a− 1
δ , (2.1.8)

for a > 0, δ > 0, �(β) > 0, and zero elsewhere. In the model in (2.1.8), the reliability,
that is, Pr{y ≥ t}, for some t , can be easily determined. As well, the hazard function
f12(y=t)
P r{y≥t} is readily available. Actually, the reliability or survival function is

Pr{y ≥ t} = (1 − atδ)β, a > 0, δ > 0, t > 0, β > 0, (i)

and the hazard function is
f12(y = t)

P r{y ≥ t} = aδβtδ−1

1 − atδ
. (ii)

Observe that the free parameters a, δ and β allow for much versatility in model building
situations. If β = 1 in the real scalar type-1 beta model in (2.1.7), then the density reduces
to αyα−1, 0 ≤ y ≤ 1, α > 0, which is a simple power function. The most popular
power function model in the statistical literature is the Weibull model, which is a power
transformed exponential density. Consider the real scalar exponential density

g(x) = θe−θx, θ > 0, x ≥ 0, (iii)

and zero elsewhere, and let x = yδ, δ > 0. Then the model in (iii) becomes the real scalar
Weibull density, denoted by g1(y):

g1(y) = θδyδ−1e−θyδ

, θ > 0, δ > 0, y ≥ 0, (iv)

and zero elsewhere.
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Now, let us consider power transformations in a real scalar type-2 beta density given
in (2.1.6). For convenience let α1 = α and α2 = β. Letting y2 = ayδ, a > 0, δ > 0, the
model specified by (2.1.6) then becomes

f21(y) = aαδ
Γ (α + β)

Γ (α)Γ (β)
yαδ−1(1 + ayδ)−(α+β) (v)

for a > 0, δ > 0, �(α) > 0, �(β) > 0, and zero elsewhere. As in the type-1 beta case,
the most interesting special case occurs when α = 1. Denoting the resulting density by
f22(y), we have

f22(y) = aδβyδ−1(1 + ayδ)−(β+1), 0 ≤ y < ∞, (2.1.9)

for a > 0, δ > 0, �(β) > 0, α = 1, and zero elsewhere. In this case as well, the
reliability and hazard functions can easily be determined:

Reliability function = Pr{y ≥ t} = (1 + atδ)−β, (vi)

Hazard function = f22(y = t)

P r{y ≥ t} = aδβtδ−1

1 + atδ
. (vii)

Again, for application purposes, the forms in (vi) and (vii) are seen to be very versatile due
to the presence of the free parameters a, δ and β.

2.1.5. Exponentiation of real scalar type-1 and type-2 beta variables

Let us consider the real scalar type-1 beta model in (2.1.5) where, for convenience, we
let α1 = α and α2 = β. Letting u1 = ae−by , we denote the resulting density by f13(y)

where

f13(y) = aαb
Γ (α + β)

Γ (α)Γ (β)
e−b α y(1 − ae−b y)β−1, y ≥ ln a

1
b , (2.1.10)

for a > 0, b > 0, �(α) > 0, �(β) > 0, and zero elsewhere. Again, for practical
application the special case α = 1 is the most useful one. Let the density corresponding to
this special case be denoted by f14(y). Then,

f14(y) = abβe−b y(1 − ae−b y)β−1, y ≥ ln a
1
b , (i)

for a > 0, b > 0, β > 0, and zero elsewhere. In this case,

Reliability function = Pr{y ≥ t} = (1 − ae−bt )β, (ii)

Hazard function = f14(y = t)

P r{y ≥ t} = abβe−bt

[1 − ae−bt )
. (iii)
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Now, consider exponentiating a real scalar type-2 beta random variable whose density
is given in (2.1.6). For convenience, we will let the parameters be (α1 = α and α2 = β).
Letting u2 = e−by in (2.1.6), we obtain the following density:

f21(y) = aαb
Γ (α + β)

Γ (α)Γ (β)
e−bαy(1 + ae−by)−(α+β), −∞ < y < ∞, (2.1.11)

for a > 0, b > 0, �(α) > 0, �(β) > 0, and zero elsewhere. The model in (2.1.11) is
in fact the generalized logistic model introduced by Mathai and Provost (2006). For the
special case α = 1, β = 1, a = 1, b = 1 in (2.1.11), we have the following density:

f22(y) = e−y

(1 + e−y)2
= ey

(1 + ey)2
, −∞ < y < ∞. (iv)

This is the famous logistic model which is utilized in industrial applications.

2.1.6. The Student-t distribution in the real domain

A real Student-t variable with ν degrees of freedom, denoted by tν , is defined as tν =
z√
χ2

ν /ν
where z ∼ N1(0, 1) and χ2

ν is a real scalar chisquare with ν degrees of freedom,

z and χ2
ν being independently distributed. It follows from the definition of a real Fm,n

random variable, that t2
ν = z2

χ2
ν /ν

= F1,ν , an F random variable with 1 and ν degrees of

freedom. Thus, the density of t2
ν is available from that of an F1,ν . On substituting the values

m = 1, n = ν in the F -density appearing in (2.1.4), we obtain the density of t2 = w,
denoted by fw(w), as

fw(w) = Γ (ν+1
2 )√

πΓ (ν
2 )

(1

ν

) 1
2 w

1
2 −1

(1 + w
ν
)

ν+1
2

, 0 ≤ w < ∞, (2.1.12)

for w = t2, ν = 1, 2, . . . and fw(w) = 0 elsewhere. Since w = t2, then the part of the
density for t > 0 is available from (2.1.12) by observing that 1

2w
1
2 −1dw = dt for t > 0.

Hence for t > 0 that part of the Student-t density is available from (2.1.12) as

f1t (t) = 2
Γ (ν+1

2 )√
πνΓ (ν

2 )
(1 + t2

ν
)−( ν+1

2 ), 0 ≤ t < ∞, (2.1.13)

and zero elsewhere. Since (2.1.13) is symmetric, we extend it over (−∞, ∞) and so,
obtain the real Student-t density, denoted by ft(t). This is stated in the next theorem.
Theorem 2.1.6. Consider a real scalar standard normal variable z, which is divided
by the square root of a real chisquare variable with ν degrees of freedom divided by its
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number of degrees of freedom ν, that is, t = z√
χ2

nu/ν
, where z and χ2

ν are independently

distributed; then t is known as the real scalar Student-t variable and its density is given
by

ft(t) = Γ (ν+1
2 )√

πνΓ (ν
2 )

(
1 + t2

ν

)−( ν+1
2 )

, −∞ < t < ∞, (2.1.14)

for ν = 1, 2, . . ..

2.1a.4. The Student-t distribution in the complex domain

Let z̃ ∼ Ñ1(0, 1) and ỹ ∼ χ̃2
ν in the complex domain or equivalently ỹ is distributed

as a real gamma with the parameters (α = ν, β = 1), and let these random variables be
independently distributed. Then, we will define Student-t with ν degrees of freedom in the
complex domain as follows:

t̃ = t̃ν = |z̃|
√

χ̃2
ν /ν

, |z̃| = (z2
1 + z2

2)
1
2 , z̃ = z1 + iz2

with z1, z2 real and i = √
(−1). What is then the density of t̃ν? The joint density of z̃ and

ỹ, denoted by f̃ (ỹ, z̃), is

f̃ (z̃, ỹ)dỹ ∧ dz̃ = 1

πΓ (ν)
yν−1e−y−|z̃|2dỹ ∧ dz̃.

Let z̃ = z1 + iz2, i = √
(−1), where z1 = r cos θ and z2 = r sin θ, 0 ≤ r < ∞, 0 ≤ θ ≤

2π . Then, dz1 ∧ dz2 = r dr ∧ dθ , and the joint density of r and ỹ, denoted by f1(r, y), is
the following after integrating out θ , observing that y has a real gamma density:

f1(r, y)dr ∧ dy = 2

Γ (ν)
yν−1e−y−r2

rdr ∧ dy.

Let u = t2 = νr2

y
and y = w. Then, du∧dw = 2νr

w
dr ∧dy and so, rdr ∧dy = w

2ν
du∧dw.

Letting the joint density of u and w be denoted by f2(u, w), we have

f2(u, w) = 1

νΓ (ν)
wνe−(w+ uw

ν
)

and the marginal density of u, denoted by g(u), is as follows:

g(u) =
∫ ∞

w=0
f2(u, v)dw =

∫ ∞

0

wν

Γ (ν + 1)
e−w(1+ u

ν
)dw =

(
1 + u

ν

)−(ν+1)
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for 0 ≤ u < ∞, ν = 1, 2, . . . , u = t2 and zero elsewhere. Thus the part of the density of
t , for t > 0 denoted by f1t (t) is as follows, observing that du = 2tdt for t > 0:

f1t (t) = 2t
(

1 + t2

ν

)−(ν+1)

, 0 ≤ t < ∞, ν = 1, 2, ... (2.1a.6)

Extending this density over the real line, we obtain the following density of t̃ in the com-
plex case:

f̃ν(t) = |t |
(

1 + t2

ν

)−(ν+1)

, −∞ < t < ∞, ν = 1, .... (2.1a.7)

Thus, the following result:

Theorem 2.1a.6. Let z̃ ∼ Ñ1(0, 1), ỹ ∼ χ̃2
ν , a scalar chisquare in the complex domain

and let z̃ and ỹ in the complex domain be independently distributed. Consider the real
variable t = tν = |z̃|√

ỹ/ν
. Then this t will be called a Student-t with ν degrees of freedom

in the complex domain and its density is given by (2.1a.7).

2.1.7. The Cauchy distribution in the real domain

We have already seen a ratio distribution in Sect. 2.1.3, namely the real type-2 beta
distribution and, as particular cases, the real F-distribution and the real t2 distribution. We
now consider a ratio of two independently distributed real standard normal variables. Let
z1 ∼ N1(0, 1) and z2 ∼ N1(0, 1) be independently distributed. The joint density of z1 and
z2, denoted by f (z1, z2), is given by

f (z1, z2) = 1

2π
e− 1

2 (z2
1+z2

2), −∞ < zj < ∞, j = 1, 2.

Consider the quadrant z1 > 0, z2 > 0 and the transformation u = z1
z2

, v = z2. Then
dz1 ∧dz2 = vdu∧dv, see Sect. 2.1.3. Note that u > 0 covers the quadrants z1 > 0, z2 > 0
and z1 < 0, z2 < 0. The part of the density of u in the quadrant u > 0, v > 0, denoted as
g(u, v), is given by

g(u, v) = v

2π
e− 1

2 v2(1+u2)

and that part of the marginal density of u, denoted by g1(u), is

g1(u) = 1

2π

∫ ∞

0
ve−v2 (1+u2)

2 dv = 1

2π(1 + u2)
.
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The other two quadrants z1 > 0, z2 < 0 and z1 < 0, z2 > 0, which correspond to u < 0,
will yield the same form as above. Accordingly, the density of the ratio u = z1

z2
, known as

the real Cauchy density, is as specified in the next theorem.

Theorem 2.1.7. Consider the independently distributed real standard normal variables
z1 ∼ N1(0, 1) and z2 ∼ N1(0, 1). Then the ratio u = z1

z2
has the real Cauchy distribution

having the following density:

gu(u) = 1

π(1 + u2)
, −∞ < u < ∞. (2.1.15)

By integrating out in each interval (−∞, 0) and (0, ∞), with the help of a type-2 beta
integral, it can be established that (2.1.15) is indeed a density. Since gu(u) is symmetric,
Pr{u ≤ 0} = Pr{u ≥ 0} = 1

2 , and one could posit that the mean value of u may be zero.
However, observe that

∫ ∞

0

u

1 + u2
du = 1

2
ln(1 + u2)

∣
∣∞
0 → ∞.

Thus, E(u), the mean value of a real Cauchy random variable, does not exist, which im-
plies that the higher moments do not exist either.

Exercises 2.1

2.1.1. Consider someone throwing dart at a board to hit a point on the board. Taking this
target point as the origin, consider a rectangular coordinate system. If (x, y) is a point of
hit, then compute the densities of x and y under the following assumptions: (1): There is no
bias in the horizontal and vertical directions or x and y are independently distributed; (2):
The joint density is a function of the distance from the origin

√
x2 + y2. That is, if f1(x)

and f2(y) are the densities of x and y then it is given that f1(x)f2(y) = g(
√

x2 + y2)

where f1, f2, g are unknown functions. Show that f1 and f2 are identical and real normal
densities.

2.1.2. Generalize Exercise 2.1.1 to 3-dimensional Euclidean space or

g(

√

x2 + y2 + z2) = f1(x)f2(y)f3(z).

2.1.3. Generalize Exercise 2.1.2 to k-space, k ≥ 3.

2.1.4. Let f (x) be an arbitrary density. Then Shannon’s measure of entropy or uncertainty
is S = −k

∫
x
f (x) ln f (x)dx where k is a constant. Optimize S, subject to the conditions
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(a):
∫∞
−∞ f (x)dx = 1; (b): Condition in (a) plus

∫∞
−∞ xf (x)dx = given quantity; (c):

The conditions in (b) plus
∫∞
−∞ x2f (x)dx = a given quantity. Show that under (a), f is

a uniform density; under (b), f is an exponential density and under (c), f is a Gaussian
density. Hint: Use Calculus of Variation.

2.1.5. Let the error of measurement ε satisfy the following conditions: (1) ε = ε1 + ε2 +
· · · or it is a sum of infinitely many infinitesimal contributions εj ’s where the εj ’s are
independently distributed. (2): Suppose that εj can only take two values δ with probability
1
2 and −δ with probability 1

2 for all j . (3): Var(ε) = σ 2 < ∞. Then show that this error
density is real Gaussian. Hint: Use mgf. [This is Gauss’ derivation of the normal law and
hence it is called the error curve or Gaussian density also.]

2.1.6. The pathway model of Mathai (2005) has the following form in the case of real
positive scalar variable x:

f1(x) = c1x
γ [1 − a(1 − q)xδ] 1

1−q , q < 1, 0 ≤ x ≤ [a(1 − q)]− 1
δ ,

for δ > 0, a > 0, γ > −1 and f1(x) = 0 elsewhere. Show that this generalized type-1
beta form changes to generalized type-2 beta form for q > 1,

f2(x) = c2x
γ [1 + a(q − 1)xδ]− 1

q−1 , q > 1, x ≥ 0, δ > 0, a > 0

and f2(x) = 0 elsewhere, and for q → 1, the model goes into a generalized gamma form
given by

f3(x) = c3x
γ e−axδ

, a > 0, δ > 0, x ≥ 0

and zero elsewhere. Evaluate the normalizing constants c1, c2, c3. All models are available
either from f1(x) or from f2(x) where q is the pathway parameter.

2.1.7. Make a transformation x = e−t in the generalized gamma model of f3(x) of Exer-
cise 2.1.6. Show that an extreme-value density for t is available.

2.1.8. Consider the type-2 beta model

f (x) = Γ (α + β)

Γ (α)Γ (β)
xα−1(1 + x)−(α+β), x ≥ 0, �(α) > 0, �(β) > 0

and zero elsewhere. Make the transformation x = ey and then show that y has a general-
ized logistic distribution and as a particular case there one gets the logistic density.

2.1.9. Show that for 0 ≤ x < ∞, β > 0, f (x) = c[1 + eα+βx]−1 is a density, which is
known as Fermi-Dirac density. Evaluate the normalizing constant c.
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2.1.10. Let f (x) = c[eα+βx − 1]−1 for 0 ≤ x < ∞, β > 0. Show that f (x) is a density,
known as Bose-Einstein density. Evaluate the normalizing constant c.

2.1.11. Evaluate the incomplete gamma integral γ (α; b) = ∫ b

0 xα−1e−xdx and show that
it can be written in terms of the confluent hypergeometric series

1F1(β; δ; y) =
∞∑

k=0

(β)k

(δ)k

yk

k! ,

(α)k = α(α + 1) · · · (α + k − 1), α 
= 0, (α)0 = 1 is the Pochhammer symbol. Evaluate
the normalizing constant c if f (x) = cxα−1e−x, 0 ≤ x ≤ a, α > 0 and zero elsewhere, is
a density.

2.1.12. Evaluate the incomplete beta integral b(α;β; b) = ∫ b

0 xα−1(1 − x)β−1, α >

0, β > 0, 0 ≤ b ≤ 1. Show that it is available in terms of a Gauss’ hypergeometric series
of the form 2F1(a, b; c; z) =∑∞

k=0
(a)k(b)k

(c)k

zk

k! , |z| < 1.

2.1.13. For the pathway model in Exercise 2.1.6 compute the reliability function Pr{x ≥
t} when γ = 0 for all the cases q < 1, q > 1, q → 1.

2.1.14. Weibull density: In the generalized gamma density f (x) = cxγ−1e−axδ
, x ≥

0, γ > 0, a > 0, δ > 0 and zero elsewhere, if δ = γ then f (x) is called a Weibull density.
For a Weibull density, evaluate the hazard function h(t) = f (t)/P r{x ≥ t}.
2.1.15. Consider a type-1 beta density f (x) = Γ (α+β)

Γ (α)Γ (β)
xα−1(1 −x)β−1, 0 ≤ x ≤ 1, α >

0, β > 0 and zero elsewhere. Let α = 1. Consider a power transformation x = yδ,
δ > 0. Let this model be g(y). Compute the reliability function Pr{y ≥ t} and the hazard
function h(t) = g(t)/P r{y ≥ t}.
2.1.16. Verify that if z is a real standard normal variable, E(et z2

) = (1−2t)−1/2, t < 1/2,

which is the mgf of a chi-square random variable having one degree of freedom. Owing to
the uniqueness of the mgf, this result establishes that z2 ∼ χ2

1 .

2.2. Quadratic Forms, Chisquaredness and Independence in the Real Domain

Let x1, . . . , xp be iid (independently and identically distributed) real scalar random
variables distributed as N1(0, 1) and X be a p×1 vector whose components are x1, . . . , xp,
that is, X′ = (x1, . . . , xp). Consider the real quadratic form u1 = X′AX for some p × p

real constant symmetric matrix A = A′. Then, we have the following result:
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Theorem 2.2.1. The quadratic form u1 = X′AX, A = A′, where the components of X

are iid N1(0, 1), is distributed as a real chisquare with r , r ≤ p, degrees of freedom if and
only if A is idempotent, that is, A = A2, and A of rank r .

Proof: When A = A′ is real, there exists an orthonormal matrix P , PP ′ = I, P ′P = I ,
such that P ′AP = diag(λ1, . . . , λp), where the λj ’s are the eigenvalues of A. Consider
the transformation X = PY or Y = P ′X. Then

X′AX = Y ′P ′APY = λ1y
2
1 + λ2y

2
2 + · · · + λpy2

p (i)

where y1, . . . , yp are the components of Y and λ1, . . . , λp are the eigenvalues of A. We
have already shown in Theorem 2.1.1 that all linear functions of independent real normal
variables are also real normal and hence, all the yj ’s are normally distributed. The ex-
pectation of Y is E[Y ] = E[P ′X] = P ′E(X) = P ′O = O and the covariance matrix
associated with Y is

Cov(Y ) = E[Y − E(Y )][Y − E(Y )]′ = E[YY ′] = P ′Cov(X)P = P ′IP = P ′P = I

which means that the yj ’s are real standard normal variables that are mutually indepen-
dently distributed. Hence, y2

j ∼ χ2
1 or each y2

j is a real chisquare with one degree of

freedom each and the yj ’s are all mutually independently distributed. If A = A2 and
the rank of A is r , then r of the eigenvalues of A are unities and the remaining ones are
equal to zero as the eigenvalues of an idempotent matrix can only be equal to zero or one,
the number of ones being equal to the rank of the idempotent matrix. Then the represen-
tation in (i) becomes sum of r independently distributed real chisquares of one degree
of freedom each and hence the sum is a real chisquare of r degrees of freedom. Hence,
the sufficiency of the result is proved. For the necessity, we assume that X′AX ∼ χ2

r

and we must prove that A = A2 and A is of rank r . Note that it is assumed throughout
that A = A′. If X′AX is a real chisquare having r degrees of freedom, then the mgf of
u1 = X′AX is given by Mu1(t) = (1 − 2t)− r

2 . From the representation given in (i), the

mgf’s are as follows: My2
j
(t) = (1 − 2t)− 1

2 ⇒ Mλjy
2
j
(t) = (1 − 2λj t)

− 1
2 , j = 1, . . . , p,

the yj ’s being independently distributed. Thus, the mgf of the right-hand side of (i) is

Mu1(t) =∏p

j=1(1 − 2λj t)
− 1

2 . Hence, we have

(1 − 2t)−
r
2 =

p∏

j=1

(1 − 2λj t)
− 1

2 , 1 − 2t > 0, 1 − 2λj t > 0, j = 1, . . . , p. (ii)
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Taking the natural logarithm of each side of (ii), expanding the terms and then comparing
the coefficients of (2t)n

n
on both sides for n = 1, 2, . . ., we obtain equations of the type

r =
p∑

j=1

λj =
p∑

j=1

λ2
j =

p∑

j=1

λ3
j = · · · (iii)

The only solution resulting from (iii) is that r of the λj ’s are unities and the remaining
ones are zeros. This result, combined with the property that A = A′ guarantees that A is
idempotent of rank r .

Observe that the eigenvalues of a matrix being ones and zeros need not imply that the
matrix is idempotent; take for instance triangular matrices whose diagonal elements are
unities and zeros. However, this property combined with the symmetry assumption will
guarantee that the matrix is idempotent.

Corollary 2.2.1. If the simple random sample or the iid variables came from a real
N1(0, σ 2) distribution, then the modification needed in Theorem 2.2.1 is that 1

σ 2 X
′AX ∼

χ2
r , A = A′, if and only if A = A2 and A is of rank r .

The above result, Theorem 2.2.1, coupled with another result on the independence
of quadratic forms, are quite useful in the areas of Design of Experiment, Analysis of
Variance and Regression Analysis, as well as in model building and hypotheses testing
situations. This result on the independence of quadratic forms is stated next.

Theorem 2.2.2. Let x1, . . . , xp be iid variables from a real N1(0, 1) population. Con-
sider two real quadratic forms u1 = X′AX, A = A′ and u2 = X′BX, B = B ′, where the
components of the p × 1 vector X are the x1, . . . , xp. Then, u1 and u2 are independently
distributed if and only if AB = O.

Proof: Let us assume that AB = O. Then AB = O = O ′ = (AB)′ = B ′A′ = BA.
When AB = BA, there exists a single orthonormal matrix P, PP ′ = I, P ′P = I , such
that both the quadratic forms are reduced to their canonical forms by the same P . Let

u1 = X′AX = λ1y
2
1 + · · · + λpy2

p (i)

and

u2 = X′BX = ν1y
2
1 + · · · + νpy2

p (ii)
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where λ1, . . . , λp are the eigenvalues of A and ν1, . . . , νp are the eigenvalues of B. Since
A = A′, the eigenvalues λj ’s are all real. Moreover,

AB = O ⇒

P ′ABP = P ′APP ′BP = D1D2 =

⎡

⎢
⎢
⎢
⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λp

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

ν1 0 . . . 0
0 ν2 . . . 0
...

...
. . .

...

0 0 . . . νp

⎤

⎥
⎥
⎥
⎦

= O,

(iii)

which means that λjνj = 0 for all j = 1, . . . , p. Thus, whenever a λj is not zero, the
corresponding νj is zero and vice versa. Accordingly, the λj ’s and νj ’s are separated in
(i) and (ii), that is, the independent components are mathematically separated and hence
u1 and u2 are statistically independently distributed. The converse which can be stated as
follows: if u1 and u2 are independently distributed, A = A′, B = B ′ and the xj ’s are
real iid N1(0, 1), then AB = O, is more difficult to establish. The proof which requires
additional properties of matrices, will not be herein presented. Note that there are several
incorrect or incomplete “proofs” in the literature. A correct derivation may be found in
Mathai and Provost (1992).

When x1, . . . , xp are iid N1(0, σ 2), the above result on the independence of quadratic
forms still holds since the independence is not altered by multiplying the quadratic forms
by 1

σ 2 .

Example 2.2.1. Construct two 3 × 3 matrices A and B such that A = A′, B = B ′ [both
are symmetric], A = A2 [A is idempotent], AB = O [A and B are orthogonal to each
other], and A has rank 2. Then (1): verify Theorem 2.2.1; (2): verify Theorem 2.2.2.

Solution 2.2.1. Consider the following matrices:

A =
⎡

⎣

1
2 0 −1

2
0 1 0

−1
2 0 1

2

⎤

⎦ , B =
⎡

⎣
1 0 1
0 0 0
1 0 1

⎤

⎦ .

Note that both A and B are symmetric, that is, A = A′, B = B ′. Further, the rank of A

is 2 since the first and second row vectors are linearly independent and the third row is a
multiple of the first one. Note that A2 = A and AB = O. Now, consider the quadratic
forms u = X′AX and v = X′BX. Then u = 1

2x2
1 +x2

2 + 1
2x2

3 −x1x3 = x2
2 +[ 1√

2
(x1−x3)]2.

Our initial assumption is that xj ∼ N1(0, 1), j = 1, 2, 3 and the xj ’s are independently
distributed. Let y1 = 1√

2
(x1 − x3). Then, E[y1] = 0, Var(y1) = +1

2[Var(x1)+ Var(x3)] =
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1
2 [1 + 1] = 1. Since y1 is a linear function of normal variables, y1 is normal with the
parameters E[y1] = 0 and Var(y1) = 1, that is, y1 ∼ N1(0, 1), and hence y2

1 ∼ χ2
1 ;

as well, x2
2 ∼ χ2

1 . Thus, u ∼ χ2
2 since x2 and y1 are independently distributed given

that the variables are separated, noting that y1 does not involve x2. This verifies Theo-
rem 2.2.1. Now, having already determined that AB = O, it remains to show that u and
v are independently distributed where v = X′BX = x2

1 + x2
3 + 2x1x3 = (x1 + x3)

2. Let
y2 = 1√

2
(x1 + x3) ⇒ y2 ∼ N1(0, 1) as y2 is a linear function of normal variables and

hence normal with parameters E[y2] = 0 and Var(y2) = 1. On noting that v does not con-
tain x2, we need only consider the parts of u and v containing x1 and x3. Thus, our question
reduces to: are y1 and y2 independently distributed? Since both y1 and y2 are linear func-
tions of normal variables, both y1 and y2 are normal. Since the covariance between y1 and
y2, that is, Cov(y1, y2) = 1

2Cov(x1 −x3, x1 +x3) = 1
2 [Var(x1)−Var(x3)] = 1

2 [1−1] = 0,

the two normal variables are uncorrelated and hence, independently distributed. That is, y1

and y2 are independently distributed, thereby implying that u and v are also independently
distributed, which verifies Theorem 2.2.2.

2.2a. Hermitian Forms, Chisquaredness and Independence in the Complex Domain

Let x̃1, x̃2, . . . , x̃k be independently and identically distributed standard univariate
Gaussian variables in the complex domain and let X̃ be a k × 1 vector whose com-
ponents are x̃1, . . . , x̃k. Consider the Hermitian form X̃∗AX̃, A = A∗ (Hermitian)
where A is a k × k constant Hermitian matrix. Then, there exists a unitary matrix Q,
QQ∗ = I, Q∗Q = I , such that Q∗AQ = diag(λ1, . . . , λk). Note that the λj ’s are real
since A is Hermitian. Consider the transformation X̃ = QỸ . Then,

X̃∗AX̃ = λ1|ỹ1|2 + · · · + λk|ỹk|2
where the ỹj ’s are iid standard normal in the complex domain, ỹj ∼ Ñ1(0, 1), j =
1, . . . , k. Then, ỹ∗

j ỹj = |ỹj |2 ∼ χ̃2
1 , a chisquare having one degree of freedom in the

complex domain or, equivalently, a real gamma random variable with the parameters
(α = 1, β = 1), the |ỹj |2’s being independently distributed for j = 1, . . . , k. Thus,
we can state the following result whose proof parallels that in the real case.

Theorem 2.2a.1. Let x̃1, . . . , x̃k be iid Ñ1(0, 1) variables in the complex domain. Con-
sider the Hermitian form u = X̃∗AX̃, A = A∗ where X̃ is a k × 1 vector whose compo-
nents are x̃1, . . . , x̃k. Then, u is distributed as a chisquare in the complex domain with r

degrees of freedom or a real gamma with the parameters (α = r, β = 1), if and only if A

is of rank r and A = A2.
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Theorem 2.2a.2. Let the x̃j ’s and X̃ be as in Theorem 2.2a.1. Consider two Hermitian
forms u1 = X̃∗AX̃, A = A∗ and u2 = X̃∗BX̃, B = B∗. Then, u1 and u2 are indepen-
dently distributed if and only if AB = O (null matrix).

Example 2.2a.1. Construct two 3 × 3 Hermitian matrices A and B, that is A = A∗, B =
B∗, such that A = A2 [idempotent] and is of rank 2 with AB = O. Then (1): verify
Theorems 2.2a.1, (2): verify Theorem 2.2a.2.

Solution 2.2a.1. Consider the following matrices

A =
⎡

⎢
⎣

1
2 0 − (1+i)√

8
0 1 0

− (1−i)√
8

0 1
2

⎤

⎥
⎦ , B =

⎡

⎢
⎣

1
2 0 (1+i)√

8
0 0 0

(1−i)√
8

0 1
2

⎤

⎥
⎦ .

It can be readily verified that A = A∗, B = B∗, A = A2, AB = O. Further, on multi-
plying the first row of A by −2(1−i)√

8
, we obtain the third row, and since the third row is a

multiple of the first one and the first and second rows are linearly independent, the rank of
A is 2. Our initial assumption is that x̃j ∼ Ñ1(0, 1), j = 1, 2, 3, that is, they are univariate
complex Gaussian, and they are independently distributed. Then, x̃∗

j x̃j ∼ χ̃2
1 , a chisquare

with one degree of freedom in the complex domain or a real gamma random variable with
the parameters (α = 1, β = 1) for each j = 1, 2, 3. Let us consider the Hermitian forms
u = X̃∗AX̃ and v = X̃∗BX̃, X̃′ = (x̃1, x̃2, x̃3). Then

u = 1

2
x̃∗

1 x̃1 − (1 + i)√
8

x̃∗
1 x̃3 − (1 − i)√

8
x̃∗

3 x̃1 + 1

2
x̃∗

3 x̃3 + x̃∗
2 x̃2

= x̃∗
2 x̃2 + 1

2
[x̃∗

1 x̃1 − 4
(1 + i)√

8
x̃∗

1 x̃3 + x̃∗
3 x̃3]

= χ̃2
1 +

[ 1√
2
(ỹ1 − x̃3)]∗[ 1√

2
(ỹ1 − x̃3)

]
(i)

where

ỹ1 = 2
(1 + i)√

8
x̃1 ⇒ E[ỹ1] = 0, Var(ỹ1) =

∣
∣
∣2

(1 + i)√
8

∣
∣
∣
2
Var(x̃1)

Var(ỹ1) = E
{[

2
(1 + i)√

8

]∗[
2
(1 + i)√

8

]
x̃∗

1 x̃1

}
= E{x̃∗

1 x̃1} = Var(x̃1) = 1. (ii)

Since ỹ1 is a linear function of x̃1, it is a univariate normal in the complex domain with
parameters 0 and 1 or ỹ1 ∼ Ñ1(0, 1). The part not containing the χ̃2

1 in (i) can be written
as follows: [ 1√

2
(ỹ1 − x̃3)

]∗[ 1√
2
(ỹ1 − x̃3)

]
∼ χ̃2

1 (iii)
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since ỹ1 − x̃3 ∼ Ñ1(0, 2) as ỹ1 − x̃3 is a linear function of the normal variables ỹ1 and x̃3.
Therefore u = χ̃2

1 + χ̃2
1 = χ̃2

2 , that is, a chisquare having two degrees of freedom in the
complex domain or a real gamma with the parameters (α = 2, β = 1). Observe that the
two chisquares are independently distributed because one of them contains only x̃2 and the
other, x̃1 and x̃3. This establishes (1). In order to verify (2), we first note that the Hermitian
form v can be expressed as follows:

v = 1

2
x̃∗

1 x̃1 + (1 + i)√
8

x̃∗
1 x̃3 + (1 − i)√

8
x̃∗

3 x̃1 + 1

2
x̃∗

3 x̃3

which can be written in the following form by making use of steps similar to those leading
to (iii):

v =
[
2
(1 + i)√

8

x̃1√
2

+ x̃3√
2

]∗[
2
(1 + i)√

8

x̃1√
2

+ x̃3√
2

]
= χ̃2

1 (iv)

or v is a chisquare with one degree of freedom in the complex domain. Observe that x̃2 is
absent in (iv), so that we need only compare the terms containing x̃1 and x̃3 in (iii) and (iv).
These terms are ỹ2 = 2 (1+i)√

8
x̃1 + x̃3 and ỹ3 = 2 (1+i)√

8
x̃1 − x̃3. Noting that the covariance

between ỹ2 and ỹ3 is zero:

Cov(ỹ2, ỹ3) =
∣
∣
∣2

(1 + i)√
8

∣
∣
∣
2
Var(x̃1) − Var(x̃3) = 1 − 1 = 0,

and that ỹ2 and ỹ3 are linear functions of normal variables and hence normal, the fact that
they are uncorrelated implies that they are independently distributed. Thus, u and v are
indeed independently distributed, which establishes (2).

2.2.1. Extensions of the results in the real domain

Let xj ∼ N1(μj , σ
2
j ), j = 1, . . . , k, be independently distributed. Then, xj

σj
∼

N1(
μj

σj
, 1), σj > 0, j = 1, . . . , k. Let

X =
⎡

⎢
⎣

x1
...

xk

⎤

⎥
⎦ , μ =

⎡

⎢
⎣

μ1
...

μk

⎤

⎥
⎦ , Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 ... σ 2
k

⎤

⎥
⎥
⎥
⎦

, Σ
1
2 =

⎡

⎢
⎢
⎢
⎣

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...

0 0 ... σk

⎤

⎥
⎥
⎥
⎦

.

Then, let

Y = Σ− 1
2 X =

⎡

⎢
⎣

y1
...

yk

⎤

⎥
⎦ , E[Y ] = Σ− 1

2 E[X] = Σ− 1
2 μ.
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If μ = O, it has already been shown that Y ′Y ∼ χ2
k . If μ 
= O, then Y ′Y ∼ χ2

k (λ), λ =
1
2μ′Σ−1μ. It is assumed that the noncentral chisquare distribution has already been dis-
cussed in a basic course in Statistics. It is defined for instance in Mathai and Haubold
(2017a, 2017b) and will be briefly discussed in Sect. 2.3.1. If μ = O, then for any k × k

symmetric matrix A = A′, Y ′AY ∼ χ2
r if and only if A = A2 and A is of rank r . This

result has already been established. Now, if μ = O, then X′AX = Y ′Σ 1
2 AΣ

1
2 Y ∼ χ2

k if

and only if Σ
1
2 AΣ

1
2 = Σ

1
2 AΣAΣ

1
2 ⇒ A = AΣA and Σ

1
2 AΣ

1
2 is of rank r or A is of

rank r since Σ > O. Hence, we have the following result:

Theorem 2.2.3. Let the real scalars xj ∼ N1(μj , σ
2
j ), j = 1, . . . , k, be independently

distributed. Let

X =
⎡

⎢
⎣

x1
...

xk

⎤

⎥
⎦ , Y =

⎡

⎢
⎣

y1
...

yk

⎤

⎥
⎦ = Σ− 1

2 X, E(Y ) = Σ− 1
2 μ, μ =

⎡

⎢
⎣

μ1
...

μk

⎤

⎥
⎦ .

Then for any k × k symmetric matrix A = A′,

X′AX = Y ′Σ
1
2 AΣ

1
2 Y ∼

{
χ2

r if μ = O

χ2
k (λ) if μ 
= O, λ = 1

2μ′Σ− 1
2 AΣ− 1

2 μ

if and only if A = AΣA and A is of rank r .

Independence is not altered if the variables are relocated. Consider two quadratic forms
X′AX and X′BX, A = A′, B = B ′. Then, X′AX = Y ′Σ 1

2 AΣ
1
2 Y and X′BX =

Y ′Σ 1
2 BΣ

1
2 Y, and we have the following result:

Theorem 2.2.4. Let xj , X, Y, Σ be as defined in Theorem 2.2.3. Then, the quadratic

forms X′AX = Y ′Σ 1
2 AΣ

1
2 Y and X′BX = Y ′Σ 1

2 BΣ
1
2 Y, A = A′, B = B ′, are indepen-

dently distributed if and only if AΣB = O.

Let X, A and Σ be as defined in Theorem 2.2.3, Z be a standard normal vector whose
components zi, i = 1, . . . , k are iid N1(0, 1), and P be an orthonormal matrix such that
P ′Σ 1

2 AΣ
1
2 P = diag(λ1, . . . , λk); then, a general quadratic form X′AX can be expressed

as follows:

X′AX = (Z′Σ
1
2 + μ′)A(Σ

1
2 Z + μ) = (Z + Σ− 1

2 μ)′PP ′Σ
1
2 AΣ

1
2 PP ′(Z + Σ− 1

2 μ)
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where λ1, . . . , λk are the eigenvalues of Σ
1
2 AΣ

1
2 . Hence, the following decomposition of

the quadratic form:

X′AX = λ1(u1 + b1)
2 + · · · + λk(uk + bk)

2, (2.2.1)

where

⎡

⎢
⎣

b1
...

bk

⎤

⎥
⎦ = P ′Σ− 1

2 μ,

⎡

⎢
⎣

u1
...

uk

⎤

⎥
⎦ = P ′

⎡

⎢
⎣

z1
...

zk

⎤

⎥
⎦, and hence the ui’s are iid N1(0, 1).

Thus, X′AX can be expressed as a linear combination of independently distributed
non-central chisquare random variables, each having one degree of freedom, whose non-
centrality parameters are respectively b2

j /2, j = 1, . . . , k. Of course, the k chisquares will
be central when μ = O.

2.2a.1. Extensions of the results in the complex domain

Let the complex scalar variables x̃j ∼ Ñ1(μ̃j , σ
2
j ), j = 1, . . . , k, be independently

distributed and Σ = diag(σ 2
1 , . . . , σ 2

k ). As well, let

X̃ =
⎡

⎢
⎣

x̃1
...

x̃k

⎤

⎥
⎦ , Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
k

⎤

⎥
⎥
⎥
⎦

, Σ− 1
2 X̃ = Ỹ =

⎡

⎢
⎣

ỹ1
...

ỹk

⎤

⎥
⎦ , μ̃ =

⎡

⎢
⎣

μ̃1
...

μ̃k

⎤

⎥
⎦

where Σ
1
2 is the Hermitian positive definite square root of Σ . In this case, ỹj ∼

Ñ1(
μ̃j

σj
, 1), j = 1, . . . , k and the ỹj ’s are assumed to be independently distributed. Hence,

for any Hermitian form X̃∗AX̃, A = A∗, we have X̃∗AX̃ = Ỹ ∗Σ 1
2 AΣ

1
2 Ỹ . Hence if

μ̃ = O (null vector), then from the previous result on chisquaredness, we have:

Theorem 2.2a.3. Let X̃, Σ, Ỹ , μ̃ be as defined above. Let u = X̃∗AX̃, A = A∗ be a
Hermitian form. Then u ∼ χ̃2

r in the complex domain if and only if A is of rank r , μ̃ = O

and A = AΣA. [A chisquare with r degrees of freedom in the complex domain is a real
gamma with parameters (α = r, β = 1).]

If μ̃ 
= O, then we have a noncentral chisquare in the complex domain. A result on the
independence of Hermitian forms can be obtained as well.

Theorem 2.2a.4. Let X̃, Ỹ , Σ be as defined above. Consider the Hermitian forms u1 =
X̃∗AX̃, A = A∗ and u2 = X̃∗BX̃, B = B∗. Then u1 and u2 are independently distributed
if and only if AΣB = O.
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The proofs of Theorems 2.2a.3 and 2.2a.4 parallel those presented in the real case and
are hence omitted.

Exercises 2.2

2.2.1. Give a proof to the second part of Theorem 2.2.2, namely, given that X′AX, A =
A′ and X′BX, B = B ′ are independently distributed where the components of the p × 1
vector X are mutually independently distributed as real standard normal variables, then
show that AB = O.

2.2.2. Let the real scalar xj ∼ N1(0, σ 2), σ 2 > 0, j = 1, 2, . . . , k and be indepen-
dently distributed. Let X′ = (x1, . . . , xk) or X is the k × 1 vector where the elements are
x1, . . . , xk. Then the joint density of the real scalar variables x1, . . . , xk, denoted by f (X),
is

f (X) = 1

(
√

2π)k
e− 1

2σ2 X′X
, −∞ < xj < ∞, j = 1, . . . , k.

Consider the quadratic form u = X′AX, A = A′ and X is as defined above. (1): Compute
the mgf of u; (2): Compute the density of u if A is of rank r and all eigenvalues of A

are equal to λ > 0; (3): If the eigenvalues are λ > 0 for m of the eigenvalues and the
remaining n of them are λ < 0, m + n = r , compute the density of u.

2.2.3. In Exercise 2.2.2 compute the density of u if (1): r1 of the eigenvalues are λ1 each
and r2 of the eigenvalues are λ2 each, r1 + r2 = r . Consider all situations λ1 > 0, λ2 > 0
etc.

2.2.4. In Exercise 2.2.2 compute the density of u for the general case with no restrictions
on the eigenvalues.

2.2.5. Let xj ∼ N1(0, σ 2), j = 1, 2 and be independently distributed. Let X′ = (x1, x2).
Let u = X′AX where A = A′. Compute the density of u if the eigenvalues of A are (1): 2
and 1, (2): 2 and −1; (3): Construct a real 2 × 2 matrix A = A′ where the eigenvalues are
2 and 1.

2.2.6. Show that the results on chisquaredness and independence in the real or complex
domain need not hold if A 
= A∗, B 
= B∗.

2.2.7. Construct a 2 × 2 Hermitian matrix A = A∗ such that A = A2 and verify The-
orem 2.2a.3. Construct 2 × 2 Hermitian matrices A and B such that AB = O, and then
verify Theorem 2.2a.4.
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2.2.8. Let x̃1, . . . , x̃m be a simple random sample of size m from a complex normal pop-
ulation Ñ1(μ̃1, σ

2
1 ). Let ỹ1, . . . , ỹn be iid Ñ(μ̃2, σ

2
2 ). Let the two complex normal popula-

tions be independent. Let

s2
1 =

m∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x)/σ 2
1 , s2

2 =
n∑

j=1

(ỹj − ¯̃y)∗(ỹj − ¯̃y)/σ 2
2 ,

s2
11 = 1

σ 2
1

m∑

j=1

(x̃j − μ̃1)
∗(x̃j − μ̃1), s

2
21 = 1

σ 2
2

n∑

j=1

(ỹj − μ̃2)
∗(ỹj − μ̃2)

Then, show that
s2

11/m

s2
21/n

∼ F̃m,n,
s2

1/(m − 1)

s2
2/(n − 1)

∼ F̃m−1,n−1

for σ 2
1 = σ 2

2 .

2.2.9. In Exercise 2.2.8 show that
s2

11
s2

21
is a type-2 beta with the parameters m and n, and

s2
1

s2
2

is a type-2 beta with the parameters m − 1 and n − 1 for σ 2
1 = σ 2

2 .

2.2.10. In Exercise 2.2.8 if σ 2
1 = σ 2

2 = σ 2 then show that

1

σ 2

[ m∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x) +
n∑

j=1

(ỹj − ¯̃y)∗(ỹj − ¯̃y)
]

∼ χ̃2
m+n−2.

2.2.11. In Exercise 2.2.10 if ¯̃x and ¯̃y are replaced by μ̃1 and μ̃2 respectively then show
that the degrees of freedom of the chisquare is m + n.

2.2.12. Derive the representation of the general quadratic form X’AX given in (2.2.1).

2.3. Simple Random Samples from Real Populations and Sampling Distributions

For practical applications, an important result is that on the independence of the sam-
ple mean and sample variance when the sample comes from a normal (Gaussian) pop-
ulation. Let x1, . . . , xn be a simple random sample of size n from a real N1(μ1, σ

2
1 ) or,

equivalently, x1, . . . , xn are iid N1(μ1, σ
2
1 ). Recall that we have established that any lin-

ear function L′X = X′L, L′ = (a1, . . . , an), X
′ = (x1, . . . , xn) remains normally dis-

tributed (Theorem 2.1.1). Now, consider two linear forms y1 = L′
1X, y2 = L′

2X, with
L′

1 = (a1, . . . , an), L′
2 = (b1, . . . , bn) where a1, . . . , an, b1, . . . , bn are real scalar con-

stants. Let us examine the conditions that are required for assessing the independence of
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the linear forms y1 and y2. Since x1, . . . , xn are iid, we can determine the joint mgf of
x1, . . . , xn. We take a n× 1 parameter vector T , T ′ = (t1, . . . , tn) where the tj ’s are scalar
parameters. Then, by definition, the joint mgf is given by

E[eT ′X] =
n∏

j=1

Mxj
(tj ) =

n∏

j=1

etjμ1+ 1
2 t2

j σ 2
1 = eμ1T

′J+ σ2
1
2 T ′T (2.3.1)

since the xj ’s are iid, J ′ = (1, . . . , 1). Since every linear function of x1, . . . , xn is a

univariate normal, we have y1 ∼ N1(μ1L
′
1J,

σ 2
1 t2

1
2 L′

1L1) and hence the mgf of y1, taking

t1 as the parameter for the mgf, is My1(t1) = et1μ1L
′
1J+ σ2

1 t21
2 L′

1L1 . Now, let us consider the
joint mgf of y1 and y2 taking t1 and t2 as the respective parameters. Let the joint mgf be
denoted by My1,y2(t1, t2). Then,

My1,y2(t1, t2) = E[et1y1+t2y2] = E[e(t1L
′
1+t2L

′
2)X]

= eμ1(t1L
′
1+t2L

′
2)J+ σ2

1
2 (t1L1+t2L2)

′(t1L1+t2L2)

= eμ1(L
′
1+L′

2)J+ σ2
1
2 (t2

1 L′
1L1+t2

2 L′
2L2+2t1t2L

′
1L2)

= My1(t1)My2(t2)e
σ 2

1 t1t2L
′
1L2 .

Hence, the last factor on the right-hand side has to vanish for y1 and y2 to be independently
distributed, and this can happen if and only if L′

1L2 = L′
2L1 = 0 since t1 and t2 are

arbitrary. Thus, we have the following result:

Theorem 2.3.1. Let x1, . . . , xn be iid N1(μ1, σ
2
1 ). Let y1 = L′

1X and y2 = L′
2X where

X′ = (x1, . . . , xn), L′
1 = (a1, . . . , an) and L′

2 = (b1, . . . , bn), the aj ’s and bj ’s being
scalar constants. Then, y1 and y2 are independently distributed if and only if L′

1L2 =
L′

2L1 = 0.

Example 2.3.1. Let x1, x2, x3, x4 be a simple random sample of size 4 from a real normal
population N1(μ = 1, σ 2 = 2). Consider the following statistics: (1): u1, v1, w1, (2):
u2, v2, w2. Check for independence of various statistics in (1): and (2): where

u1 = x̄ = 1

4
(x1 + x2 + x3 + x4), v1 = 2x1 − 3x2 + x3 + x4, w1 = x1 − x2 + x3 − x4;

u2 = x̄ = 1

4
(x1 + x2 + x3 + x4), v2 = x1 − x2 + x3 − x4, w2 = x1 − x2 − x3 + x4.

Solution 2.3.1. Let X′ = (x1, x2, x3, x4) and let the coefficient vectors in (1) be denoted
by L1, L2, L3 and those in (2) be denoted by M1, M2, M3. Thus they are as follows :
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L1 = 1

4

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦ , L2 =

⎡

⎢
⎢
⎣

2
−3

1
1

⎤

⎥
⎥
⎦ , L3 =

⎡

⎢
⎢
⎣

1
−1

1
−1

⎤

⎥
⎥
⎦⇒ L′

1L2 = 1

4
, L′

1L3 = 0, L′
2L3 = 5.

This means that u1 and w1 are independently distributed and that the other pairs are not
independently distributed. The coefficient vectors in (2) are

M1 = 1

4

⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦ , M2 =

⎡

⎢
⎢
⎣

1
−1

1
−1

⎤

⎥
⎥
⎦ , M3 =

⎡

⎢
⎢
⎣

1
−1
−1

1

⎤

⎥
⎥
⎦⇒ M ′

1M2 = 0, M ′
1M3 = 0, M ′

2M3 = 0.

This means that all the pairs are independently distributed, that is, u2, v2 and w2 are mu-
tually independently distributed.

We can extend Theorem 2.3.1 to sets of linear functions. Let Y1 = AX and Y2 = BX

where A of dimension m1 × n, m1 ≤ n and B of dimension m2 × n, m2 ≤ n are constant
matrices and X′ = (x1, . . . , xn) where the xj ’s are iid N1(μ1, σ

2
1 ). Let the parameter

vectors T1 and T2 be of dimensions m1 × 1 and m2 × 1, respectively. Then, the mgf of Y1

is MY1(T1) = E[eT ′
1Y1] = E[eT ′

1A1X], which can be evaluated by integration over the joint
density of x1, . . . , xn, individually, or over the vector X′ = (x1, . . . , xn) with E[X′] =
[μ1, μ1, . . . , μ1] = μ1[1, 1, . . . , 1] = μ1J

′, J ′ = [1, . . . , 1] ⇒ E[Y1] = μ1A1J . The
mgf of Y1 is then

MY1(T1) = E[eμ1T
′
1A1J+T ′

1A1[X−E(X)]] = E[eμ1T
′
1A1J+T ′

1A1Z], Z = X − E(X), (i)

and the exponent in the expected value, not containing μ1, simplifies to

− 1

2σ 2
1

{Z′Z − 2σ 2
1 T ′

1A1Z} = − 1

2σ 2
1

{(Z′ − σ1T
′

1A1)(Z − σ1A
′
1T1) − σ 2

1 T ′
1A1A

′
1T1}.

Integration over Z or individually over the elements of Z, that is, z1, . . . , zn, yields 1 since
the total probability is 1, which leaves the factor not containing Z. Thus,

MY1(T1) = eμ1T
′
1A1J+ 1

2 T ′
1A1A

′
1T1, (ii)

and similarly,

MY2(T2) = eμ1T
′
2A2J+ 1

2 T ′
2A2A

′
2T2 . (iii)
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The joint mgf of Y1 and Y2 is then

MY1,Y2(T1, T2) = eμ1(T
′
1A1J+T ′

2A2J )+ 1
2 (T ′

1A1+T ′
2A2)(T

′
1A1+T ′

2A2)
′

= MY1(T1)MY2(T2)e
T ′

1A1A
′
2T2 . (iv)

Accordingly, Y1 and Y2 will be independent if and only if A1A
′
2 = O ⇒ A2A

′
1 = O since

T1 and T2 are arbitrary parameter vectors, the two null matrices having different orders.
Then, we have

Theorem 2.3.2. Let Y1 = A1X and Y2 = A2X, with X′ = (x1, . . . , xn), the xj ’s being
iid N1(μ1, σ

2
1 ), j = 1, . . . , n, be two sets of linear forms where A1 is m1 × n and A2

is m2 × n, m1 ≤ n, m2 ≤ n, are constant matrices. Then, Y1 and Y2 are independently
distributed if and only if A1A

′
2 = O or A2A

′
1 = O.

Example 2.3.2. Consider a simple random sample of size 4 from a real scalar normal
population N1(μ1 = 0, σ 2

1 = 4). Let X′ = (x1, x2, x3, x4). Verify whether the sets of
linear functions U = A1X, V = A2X, W = A3X are pairwise independent, where

A1 =
[

1 1 1 1
1 −1 1 −1

]

, A2 =
⎡

⎣
1 2 3 4
2 −1 1 3
1 2 −1 −2

⎤

⎦ , A3 =
[

1 −1 −1 1
−1 −1 1 1

]

.

Solution 2.3.2. Taking the products, we have A1A
′
2 
= O, A1A

′
3 = O, A2A

′
3 
= O.

Hence, the pair U and W are independently distributed and other pairs are not.

We can apply Theorems 2.3.1 and 2.3.2 to prove several results involving sample statis-
tics. For instance, let x1, . . . , xn be iid N1(μ1, σ

2
1 ) or a simple random sample of size n

from a real N1(μ1, σ
2
1 ) and x̄ = 1

n
(x1 + · · · + xn). Consider the vectors

X =

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xn

⎤

⎥
⎥
⎥
⎦

, μ =

⎡

⎢
⎢
⎢
⎣

μ1

μ1
...

μ1

⎤

⎥
⎥
⎥
⎦

, X̄ =

⎡

⎢
⎢
⎢
⎣

x̄

x̄
...

x̄

⎤

⎥
⎥
⎥
⎦

.

Note that when the xj ’s are iid N1(μ1, σ
2
1 ), xj −μ1 ∼ N1(0, σ 2

1 ), and that since X − X̄ =
(X−μ)−(X̄−μ), we may take xj ’s as coming from N1(0, σ 2

1 ) for all operations involving
(X, X̄). Moreover, x̄ = 1

n
J ′X, J ′ = (1, 1, . . . , 1) where J is a n×1 vector of unities. Then,
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X − X̄ =
⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦−

⎡

⎢
⎣

x̄
...

x̄

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

x1 − 1
n
J ′X

x2 − 1
n
J ′X

...

xn − 1
n
J ′X

⎤

⎥
⎥
⎥
⎦

= (I − 1

n
JJ ′)X, (i)

and on letting A = 1
n
JJ ′, we have

A = A2, I − A = (I − A)2, A(I − A) = O. (ii)

Also note that

(X − X̄)′(X − X̄) =
n∑

j=1

(xj − x̄)2 and s2 = 1

n

n∑

j=1

(xj − x̄)2 (iii)

where s2 is the sample variance and 1
n
J ′X = x̄ is the sample mean. Now, observe that in

light of Theorem 2.3.2, Y1 = (I −A)X and Y2 = AX are independently distributed, which
implies that X − X̄ and X̄ are independently distributed. But X̄ contains only x̄ = 1

n
(x1 +

· · ·+xn) and hence X−X̄ and x̄ are independently distributed. We now will make use of the
following result: If w1 and w2 are independently distributed real scalar random variables,
then the pairs (w1, w

2
2), (w2

1, w2), (w2
1, w

2
2) are independently distributed when w1 and

w2 are real scalar random variables; the converses need not be true. For example, w2
1 and

w2
2 being independently distributed need not imply the independence of w1 and w2. If w1

and w2 are real vectors or matrices and if w1 and w2 are independently distributed then
the following pairs are also independently distributed wherever the quantities are defined:
(w1, w2w

′
2), (w1, w

′
2w2), (w1w

′
1, w2), (w′

1w1, w2), (w′
1w1, w

′
2w2). It then follows from

(iii) that x̄ and (X − X̄)′(X − X̄) =∑n
j=1(xj − x̄)2 are independently distributed. Hence,

the following result:

Theorem 2.3.3. Let x1, . . . , xn be iid N1(μ1, σ
2
1 ) or a simple random sample of size n

from a univariate real normal population N1(μ1, σ
2
1 ). Let x̄ = 1

n
(x1 + · · · + xn) be the

sample mean and s2 = 1
n

∑n
j=1(xj − x̄)2 be the sample variance. Then x̄ and s2 are

independently distributed.

This result has several corollaries. When x1, . . . , xn are iid N1(μ1, σ
2
1 ), then the sam-

ple sum of products, which is also referred to as the corrected sample sum of products
(corrected in the sense that x̄ is subtracted), is given by

n∑

j=1

(xj − x̄)2 = X′(I − A)X, A = 1

n

⎡

⎢
⎣

1 1 . . . 1 1
...

...
. . .

...
...

1 1 . . . 1 1

⎤

⎥
⎦
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where both A and I − A are idempotent. In this case, tr(A) = 1
n
(1 + · · · + 1) = 1 and

tr(I − A) = n − 1 and hence, the ranks of A and I − A are 1 and n − 1, respectively.
When a matrix is idempotent, its eigenvalues are either zero or one, the number of ones
corresponding to its rank. As has already been pointed out, when X and X̄ are involved,
it can be equivalently assumed that the sample is coming from a N1(0, σ 2

1 ) population.
Hence

ns2

σ 2
1

= 1

σ 2
1

n∑

j=1

(xj − x̄)2 ∼ χ2
n−1 (2.3.2)

is a real chisquare with n − 1 (the rank of the idempotent matrix of the quadratic form)
degrees of freedom as per Theorem 2.2.1. Observe that when the sample comes from a

real N1(μ1, σ
2
1 ) distribution, we have x̄ ∼ N1(μ1,

σ 2
1
n

) so that z =
√

n(x̄−μ1)

σ1
∼ N1(0, 1) or

z is a real standard normal, and that
(n−1)s2

1
σ 2

1
∼ χ2

n−1 where s2
1 =

∑n
j=1(xj−x̄)2

n−1 . Recall that

x̄ and s2 are independently distributed. Hence, the ratio

z

s1/σ1
∼ tn−1

has a real Student-t distribution with n − 1 degrees of freedom, where z =
√

n(x̄−μ1)

σ1
and

z
s1/σ1

=
√

n(x̄−μ1)

s1
. Hence, we have the following result:

Theorem 2.3.4. Let x1, . . . , xn be iid N1(μ1, σ
2
1 ). Let x̄ = 1

n
(x1 + · · · + xn) and s2

1 =
∑n

j=1(xj−x̄)2

n−1 . Then, √
n(x̄ − μ1)

s1
∼ tn−1 (2.3.3)

where tn−1 is a real Student-t with n − 1 degrees of freedom.

It should also be noted that when x1, . . . , xn are iid N1(μ1, σ
2
1 ), then

∑n
j=1(xj − μ1)

2

σ 2
1

∼ χ2
n,

∑n
j=1(xj − x̄)2

σ 2
1

∼ χ2
n−1,

√
n(x̄ − μ1)

2

σ 2
1

∼ χ2
1 ,

wherefrom the following decomposition is obtained:

1

σ 2
1

n∑

j=1

(xj − μ1)
2 = 1

σ 2
1

[ n∑

j=1

(xj − x̄)2 + n(x̄ − μ1)
2
]

⇒ χ2
n = χ2

n−1 + χ2
1 , (2.3.4)

the two chisquare random variables on the right-hand side of the last equation being inde-
pendently distributed.
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2.3a. Simple Random Samples from a Complex Gaussian Population

The definition of a simple random sample from any population remains the same as
in the real case. A set of complex scalar random variables x̃1, . . . , x̃n, which are iid as
Ñ1(μ̃1, σ

2
1 ) is called a simple random sample from this complex Gaussian population. Let

X̃ be the n×1 vector whose components are these sample variables, ¯̃x = 1
n
(x̃1 +· · ·+ x̃n)

denote the sample average, and ¯̃
X′ = ( ¯̃x, . . . , ¯̃x) be the 1×n vector of sample means; then

X̃,
¯̃
X and the sample sum of products matrix s̃ are respectively,

X̃ =
⎡

⎢
⎣

x̃1
...

x̃n

⎤

⎥
⎦ ,

¯̃
X =

⎡

⎢
⎣

¯̃x
...
¯̃x

⎤

⎥
⎦ and s̃ = (X̃ − ¯̃

X)∗(X̃ − ¯̃
X).

These quantities can be simplified as follows with the help of the vector of unities J ′ =
(1, 1, . . . , 1): ¯̃x = 1

n
J ′X̃, X̃ − ¯̃

X = [I − 1
n
JJ ′]X̃, ¯̃

X = 1
n
JJ ′X̃, s̃ = X̃∗[I − 1

n
JJ ′]X̃.

Consider the Hermitian form

X̃∗[I − 1

n
JJ ′]X̃ =

n∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x) = ns̃2

where s̃2 is the sample variance in the complex scalar case, given a simple random sample
of size n.

Consider the linear forms ũ1 = L∗
1X̃ = ā1x̃1 + · · · + ānx̃n and ũ2 = L∗

2X̃ = b̄1x̃1 +
· · · + b̄nx̃n where the aj ’s and bj ’s are scalar constants that may be real or complex, āj

and b̄j denoting the complex conjugates of aj and bj , respectively.

E[X̃]′ = (μ̃1)[1, 1, . . . , 1] = (μ̃1)J
′, J ′ = [1, . . . , 1],
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since the x̃j ’s are iid Ñ1(μ̃1, σ
2
1 ), j = 1, . . . , n. The mgf of ũ1 and ũ2, denoted by

Mũj
(t̃j ), j = 1, 2 and the joint mgf of ũ1 and ũ2, denoted by Mũ1,ũ2(t̃1, t̃2) are the fol-

lowing, where �(·) denotes the real part of (·):
Mũ1(t̃1) = E[e�(t̃∗1 ũ1)] = E[e�(t̃∗1 L∗

1X̃)]
= e�(μ̃1 t̃

∗
1 L∗

1J )E[e�(t̃∗1 L∗
1(X̃−E(X̃))) = e�(μ̃1 t̃

∗
1 L∗

1J )e
σ2

1
4 t̃∗1 L∗

1L1 t̃1 (i)

Mũ2(t̃2) = e�(μ̃1 t̃
∗
2 L∗

2J )+ σ2
1
4 t̃∗2 L∗

2L2 t̃2 (ii)

Mũ1,ũ2(t̃1, t̃2) = Mũ1(t̃1)Mũ2(t̃2)e
σ2

1
2 t̃∗1 L∗

1L2 t̃2 . (iii)

Consequently, ũ1 and ũ2 are independently distributed if and only if the exponential part
is 1 or equivalently t̃∗1 L∗

1L2t̃2 = 0. Since t̃1 and t̃2 are arbitrary, this means L∗
1L2 = 0 ⇒

L∗
2L1 = 0. Then we have the following result:

Theorem 2.3a.1. Let x̃1, . . . , x̃n be a simple random sample of size n from a univariate
complex Gaussian population Ñ1(μ̃1, σ

2
1 ). Consider the linear forms ũ1 = L∗

1X̃ and ũ2 =
L∗

2X̃ where L1, L2 and X̃ are the previously defined n × 1 vectors, and a star denotes the
conjugate transpose. Then, ũ1 and ũ2 are independently distributed if and only if L∗

1L2 =
0.

Example 2.3a.1. Let x̃j , j = 1, 2, 3, 4 be iid univariate complex normal Ñ1(μ̃1, σ
2
1 ).

Consider the linear forms

ũ1 = L∗
1X̃ = (1 + i)x̃1 + 2ix̃2 − (1 − i)x̃3 + 2x̃4

ũ2 = L∗
2X̃ = (1 + i)x̃1 + (2 + 3i)x̃2 − (1 − i)x̃3 − ix̃4

ũ3 = L∗
3X̃ = −(1 + i)x̃1 + ix̃2 + (1 − i)x̃3 + x̃4.

Verify whether the three linear forms are pairwise independent.

Solution 2.3a.1. With the usual notations, the coefficient vectors are as follows:

L∗
1 = [1 + i, 2i, −1 + i, 2] ⇒ L′

1 = [1 − i, −2i, −1 − i, 2]
L∗

2 = [1 + i, 2 + 3i, 1 − i, −i] ⇒ L′
2 = [1 − i, 2 − 3i, 1 + i, i]

L∗
3 = [−(1 + i), i, 1 − i, 1] ⇒ L′

3 = [−(1 − i), −i, 1 + i, 1].
Taking the products we have L∗

1L2 = 6 + 6i 
= 0, L∗
1L3 = 0, L∗

2L3 = 3 − 3i 
= 0. Hence,
only ũ1 and ũ3 are independently distributed.

We can extend the result stated in Theorem 2.3a.1 to sets of linear forms. Let Ũ1 =
A1X̃ and Ũ2 = A2X̃ where A1 and A2 are constant matrices that may or may not be in



96 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

the complex domain, A1 is m1 × n and A2 is m2 × n, with m1 ≤ n, m2 ≤ n. As was
previously the case, X̃′ = (x̃1, . . . , x̃n), x̃j , j = 1, . . . , n, are iid Ñ1(μ̃1, σ

2
1 ). Let T̃1 and

T̃2 be parameter vectors of orders m1 × 1 and m2 × 1, respectively. Then, on following the
steps leading to (iii), the mgf of Ũ1 and Ũ2 and their joint mgf are obtained as follows:

MŨ1
(T̃1) = E[e�(T̃ ∗

1 A1X̃)] = e�(μ̃1T̃
∗
1 A1J )+ σ2

1
4 T̃ ∗

1 A1A
∗
1T̃1 (iv)

MŨ2
(T̃2) = e�(μ̃1T̃

∗
2 A2J )+ σ2

1
4 T̃ ∗

2 A2A
∗
2T̃2 (v)

MŨ1,Ũ2
(T̃1, T̃2) = MŨ1

(T̃1)MŨ2
(T̃2)e

σ2
1
2 T̃ ∗

1 A1A
∗
2T̃2 . (vi)

Since T̃1 and T̃2 are arbitrary, the exponential part in (vi) is 1 if and only if A1A
∗
2 = O or

A2A
∗
1 = O, the two null matrices having different orders. Then, we have:

Theorem 2.3a.2. Let the x̃j ’s and X̃ be as defined in Theorem 2.3a.1. Let A1 be a m1 ×n

constant matrix and A2 be a m2 × n constant matrix, m1 ≤ n, m2 ≤ n, and the constant
matrices may or may not be in the complex domain. Consider the general linear forms
Ũ1 = A1X̃ and Ũ2 = A2X̃. Then Ũ1 and Ũ2 are independently distributed if and only if
A1A

∗
2 = O or, equivalently, A2A

∗
1 = O.

Example 2.3a.2. Let x̃j , j = 1, 2, 3, 4, be iid univariate complex Gaussian Ñ1(μ̃1, σ
2
1 ).

Consider the following sets of linear forms Ũ1 = A1X̃, Ũ2 = A2X̃, Ũ3 = A3X̃ with
X′ = (x1, x2, x3, x4), where

A1 =
[

2 + 3i 2 + 3i 2 + 3i 2 + 3i

1 + i −(1 + i) −(1 + i) 1 + i

]

A2 =
⎡

⎣
2i −2i 2i −2i

1 − i 1 − i −1 + i −1 + i

−(1 + 2i) 1 + 2i −(1 + 2i) 1 + 2i

⎤

⎦ , A3 =
[

1 + 2i 0 1 − 2i −2
−2 −1 + i −1 + i 2i

]

.

Verify whether the pairs in Ũ1, Ũ2, Ũ3 are independently distributed.

Solution 2.3a.2. Since the products A1A
∗
2 = O, A1A

∗
3 
= O, A2A

∗
3 
= O, only Ũ1 and

Ũ2 are independently distributed.

As a corollary of Theorem 2.3a.2, one has that the sample mean ¯̃x and the sample
sum of products s̃ are also independently distributed in the complex Gaussian case, a
result parallel to the corresponding one in the real case. This can be seen by taking A1 =
1
n
JJ ′ and A2 = I − 1

n
JJ ′. Then, since A1 = A2

1, A2 = A2
2, and A1A2 = O, we have
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1
σ 2

1
X̃∗A1X̃ ∼ χ̃2

1 for μ̃1 = 0 and 1
σ 2

1
X̃∗A2X̃ ∼ χ̃2

n−1, and both of these chisquares in the

complex domain are independently distributed. Then,

1

σ 2
1

ns̃ = 1

σ 2
1

n∑

j=1

(x̃j − ¯̃x)∗(x̃j − ¯̃x) ∼ χ̃2
n−1. (2.3a.1)

The Student-t with n − 1 degrees of freedom can be defined in terms of the standardized
sample mean and sample variance in the complex case.

2.3.1. Noncentral chisquare having n degrees of freedom in the real domain

Let xj ∼ N1(μj , σ
2
j ), j = 1, . . . , n and the xj ’s be independently distributed. Then,

xj−μj

σj
∼ N1(0, 1) and

∑n
j=1

(xj−μj )
2

σ 2
j

∼ χ2
n where χ2

n is a real chisquare with n degrees of

freedom. Then, when at least one of the μj ’s is nonzero,
∑n

j=1
x2
j

σ 2
j

is referred to as a real

non-central chisquare with n degrees of freedom and non-centrality parameter λ, which is
denoted χ2

n(λ), where

λ = 1

2
μ′Σ−1μ, μ =

⎡

⎢
⎣

μ1
...

μn

⎤

⎥
⎦ , and Σ =

⎡

⎢
⎢
⎢
⎣

σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
...

...
. . .

...

0 0 . . . σ 2
n

⎤

⎥
⎥
⎥
⎦

.

Let u =∑n
j=1

x2
j

σ 2
j

. In order to derive the distribution of u, let us determine its mgf. Since u

is a function of the xj ’s where xj ∼ N1(μj , σ
2
j ), j = 1, . . . , n, we can integrate out over

the joint density of the xj ’s. Then, with t as the mgf parameter,

Mu(t) = E[etu]

=
∫ ∞

−∞
...

∫ ∞

−∞
1

(2π)
n
2 |Σ | 1

2

e
t
∑n

j=1

x2
j

σ2
j

− 1
2

∑n
j=1

(xj −μj )2

σ2
j dx1 ∧ ... ∧ dxn.

The exponent, excluding −1
2 can be simplified as follows:

−2t

n∑

j=1

x2
j

σ 2
j

+
n∑

j=1

(xj − μj)
2

σ 2
j

= (1 − 2t)

n∑

j=1

x2
j

σ 2
j

− 2
n∑

j=1

μjxj

σ 2
j

+
n∑

j=1

μ2
j

σ 2
j

.
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Let yj = √
(1 − 2t)xj . Then, (1 − 2t)− n

2 dy1 ∧ . . . ∧ dyn = dx1 ∧ . . . ∧ dxn, and

(1 − 2t)

n∑

j=1

( x2
j

σ 2
j

)
− 2

n∑

j=1

(μjxj

σ 2
j

)
=

n∑

j=1

y2
j

σ 2
j

− 2
n∑

j=1

μjyj

σ 2
j

√
(1 − 2t)

+
n∑

j=1

( μj

σj

√
(1 − 2t)

)2 −
n∑

j=1

μ2
j

σ 2
j (1 − 2t)

=
n∑

j=1

(
(
yj − μj√

(1−2t)

)

σj

)2

−
n∑

j=1

μ2
j

σ 2
j (1 − 2t)

.

But
∫ ∞

−∞
· · ·
∫ ∞

−∞
1

(2π)
n
2 |Σ | 1

2

e
−∑n

j=1
1

2σ2
j

(
yj− μj√

(1−2t)

)2

d y1 ∧ . . . ∧ dyn = 1.

Hence, for λ = 1
2

∑n
j=1

μ2
j

σ 2
j

= 1
2μ′Σ−1μ,

Mu(t) = 1

(1 − 2t)
n
2
[e−λ+ λ

(1−2t) ] (2.3.5)

=
∞∑

k=0

λke−λ

k!
1

(1 − 2t)
n
2 +k

.

However, (1−2t)−( n
2 +k) is the mgf of a real scalar gamma with parameters (α = n

2+k, β =
2) or a real chisquare with n + 2k degrees of freedom or χ2

n+2k. Hence, the density of a
non-central chisquare with n degrees of freedom and non-centrality parameter λ, denoted
by gu,λ(u), is obtained by term by term inversion as follow:

gu,λ(u) =
∞∑

k=0

λke−λ

k!
u

n+2k
2 −1e− u

2

2
n+2k

2 Γ (n
2 + k)

(2.3.6)

= u
n
2 −1e− u

2

2
n
2 Γ (n

2 )

∞∑

k=0

λke−λ

k!
uk

(n
2 )k

(2.3.7)

where (n
2 )k is the Pochhammer symbol given by

(a)k = a(a + 1) · · · (a + k − 1), a 
= 0, (a)0 being equal to 1, (2.3.8)
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and, in general, Γ (α + k) = Γ (α)(α)k for k = 1, 2, . . . , whenever the gamma functions
are defined. Hence, provided (1 − 2t) > 0, (2.3.6) can be looked upon as a weighted sum
of chisquare densities whose weights are Poisson distributed, that is, (2.3.6) is a Poisson
mixture of chisquare densities. As well, we can view (2.3.7) as a chisquare density having
n degrees of freedom appended with a Bessel series. In general, a Bessel series is of the
form

0F1( ; b; x) =
∞∑

k=0

1

(b)k

xk

k! , b 
= 0, −1, −2, . . . , (2.3.9)

which is convergent for all x.

2.3.1.1. Mean value and variance, real central and non-central chisquare

The mgf of a real χ2
ν is (1 − 2t)− ν

2 , 1 − 2t > 0. Thus,

E[χ2
ν ] = d

dt
(1 − 2t)−

ν
2 |t=0 =

(
− ν

2

)
(−2)(1 − 2t)−

ν
2 −1|t=0 = ν

E[χ2
ν ]2 = d2

dt2
(1 − 2t)−

ν
2 |t=0 =

(
− ν

2

)
(−2)

(
− ν

2
− 1
)
(−2) = ν(ν + 2).

That is,
E[χ2

ν ] = ν and Var(χ2
ν ) = ν(ν + 2) − ν2 = 2ν. (2.3.10)

What are then the mean and the variance of a real non-central χ2
ν (λ)? They can be derived

either from the mgf or from the density. Making use of the density, we have

E[χ2
ν (λ)] =

∞∑

k=0

λke−λ

k!
∫ ∞

0
u

u
ν
2 +k−1e− u

2

2
ν
2 +kΓ (ν

2 + k)
du,

the integral part being equal to

Γ (ν
2 + k + 1)

Γ (ν
2 + k)

2
ν
2 +k+1

2
ν
2 +k

= 2
(ν

2
+ k
)

= ν + 2k.

Now, the remaining summation over k can be looked upon as the expected value of ν + 2k

in a Poisson distribution. In this case, we can write the expected values as the expected
value of a conditional expectation: E[u] = E[E(u|k)], u = χ2

ν (λ). Thus,

E[χ2
ν (λ)] = ν + 2

∞∑

k=0

k
λke−λ

k! = ν + 2E[k] = ν + 2λ.
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Moreover,

E[χ2
ν (λ)]2 =

∞∑

k=0

λke−λ

k!
∫ ∞

0
u2 u

ν
2 +k−1

2
ν
2 +kΓ (ν

2 + k)
du,

the integral part being

Γ (ν
2 + k + 2)

Γ (ν
2 + k)

2
ν
2 +k+2

2
ν
2 +k

= 22(
ν

2
+ k + 1)(

ν

2
+ k)

= (ν + 2k + 2)(ν + 2k) = ν2 + 2νk + 2ν(k + 1) + 4k(k + 1).

Since E[k] = λ, E[k2] = λ2 + λ for a Poisson distribution,

E[χ2
ν (λ)]2 = ν2 + 2ν + 4νλ + 4(λ2 + 2λ).

Thus,

Var(χ2
ν (λ)) = E[χ2

ν (λ)]2 − [E(χ2
ν (λ))]2

= ν2 + 2ν + 4νλ + 4(λ2 + 2λ) − (ν + 2λ)2

= 2ν + 8λ.

To summarize,
E[χ2

ν (λ)] = ν + 2λ and Var(χ2
ν (λ)) = 2ν + 8λ. (2.3.11)

Example 2.3.3. Let x1 ∼ N1(−1, 2), x2 ∼ N1(1, 3) and x3 ∼ N1(−2, 2) be indepen-

dently distributed and u = x2
1
2 + x2

2
3 + x2

3
2 . Provide explicit expressions for the density of u,

E[u] and Var(u).

Solution 2.3.3. This u has a noncentral chisquare distribution with non-centrality pa-
rameter λ where

λ = 1

2

[μ2
1

σ 2
1

+ μ2
2

σ 2
2

+ μ2
3

σ 2
3

]
= 1

2

[(−1)2

2
+ (1)2

3
+ (−2)2

2

]
= 17

12
,

and the number of degrees of freedom is n = 3 = ν. Thus, u ∼ χ2
3 (λ) or a real noncentral

chisquare with ν = 3 degrees of freedom and non-centrality parameter 17
12 . Then E[u] =

E[χ2
3 (λ)] = ν+2λ = 3+2(17

12) = 35
6 . Var(u) = Var(χ2

3 (λ)) = 2ν+8λ = (2)(3)+8(17
12) =

52
3 . Let the density of u be denoted by g(u). Then
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g(u) = u
n
2 −1e− u

2

2
n
2 Γ (n

2 )

∞∑

k=0

λke−λ

k!
uk

(n
2 )k

= u
1
2 e− u

2√
2π

∞∑

k=0

(17/12)ke−17/12

k!
uk

(3
2)k

, 0 ≤ u < ∞,

and zero elsewhere.

2.3a.1. Noncentral chisquare having n degrees of freedom in the complex domain

Let us now consider independently Gaussian distributed variables in the complex do-
main. Let the complex scalar variables x̃j ∼ Ñ(μ̃j , σ

2
j ), j = 1, . . . , n, be independently

distributed. Then, we have already established that
∑n

j=1(
x̃j−μ̃j

σj
)∗( x̃j−μ̃j

σj
) ∼ χ̃2

n , which
is a chisquare variable having n degrees of freedom in the complex domain. If we let

ũ = ∑n
j=1

x̃∗
j x̃j

σ 2
j

, then this u will be said to have a noncentral chisquare distribution with

n degrees of freedom and non-centrality parameter λ in the complex domain where x̃∗
j is

only the conjugate since it is a scalar quantity. Since, in this case, ũ is real, we may asso-
ciate the mgf of ũ with a real parameter t . Now, proceeding as in the real case, we obtain
the mgf of ũ, denoted by Mũ(t), as follows:

Mũ(t) = E[et ũ] = (1 − t)−ne−λ+ λ
1−t , 1 − t > 0, λ =

n∑

j=1

μ̃∗
j μ̃j

σ 2
j

= μ̃∗Σ−1μ̃

=
∞∑

k=0

λk

k! e−λ(1 − t)−(n+k). (2.3a.2)

Note that the inverse corresponding to (1 − t)−(n+k) is a chisquare density in the complex
domain with n + k degrees of freedom, and that part of the density, denoted by f1(u), is

f1(u) = 1

Γ (n + k)
un+k−1e−u = 1

Γ (n)(n)k
un−1uke−u.

Thus, the noncentral chisquare density with n degrees of freedom in the complex domain,
that is, u = χ̃2

n(λ), denoted by fu,λ(u), is

fu,λ(u) = un−1

Γ (n)
e−u

∞∑

k=0

λk

k! e−λ uk

(n)k
, (2.3a.3)

which, referring to Eqs. (2.3.5)–(2.3.9) in connection with a non-central chisquare in the
real domain, can also be represented in various ways.
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Example 2.3a.3. Let x̃1 ∼ Ñ1(1 + i, 2), x̃2 ∼ Ñ1(2 + i, 4) and x̃3 ∼ Ñ1(1 − i, 2) be
independently distributed univariate complex Gaussian random variables and

ũ = x̃∗
1 x̃1

σ 2
1

+ x̃∗
2 x̃2

σ 2
2

+ x̃∗
3 x̃3

σ 2
3

= x̃∗
1 x̃1

2
+ x̃∗

2 x̃2

4
+ x̃∗

3 x̃3

2
.

Compute E[ũ] and Var(ũ) and provide an explicit representation of the density of ũ.

Solution 2.3a.3. In this case, ũ has a noncentral chisquare distribution with degrees of
freedom ν = n = 3 and non-centrality parameter λ given by

λ = μ̃∗
1μ̃1

σ 2
1

+ μ̃∗
2μ̃2

σ 2
2

+ μ̃∗
3μ̃3

σ 2
3

= [(1)2 + (1)2]
2

+ [(2)2 + (1)2]
4

+ [(1)2 + (−1)2]
2

= 1 + 5

4
+ 1 = 13

4
.

The density, denoted by g1(ũ), is given in (i). In this case ũ will be a real gamma with the
parameters (α = n, β = 1) to which a Poisson series is appended:

g1(u) =
∞∑

k=0

λk

k! e−λun+k−1e−u

Γ (n + k)
, 0 ≤ u < ∞, (i)

and zero elsewhere. Then, the expected value of u and the variance of u are available from
(i) by direct integration.

E[u] =
∫ ∞

0
ug1(u)du =

∞∑

k=0

λk

k! e−λΓ (n + k + 1)

Γ (n + k)
.

But Γ (n+k+1)
Γ (n+k)

= n + k and the summation over k can be taken as the expected value of

n+k in a Poisson distribution. Thus, E[χ̃2
n(λ)] = n+E[k] = n+λ. Now, in the expected

value of
[χ̃2

n(λ)][χ̃2
n(λ)]∗ = [χ̃2

n(λ)]2 = [u]2,

which is real in this case, the integral part over u gives

Γ (n + k + 2)

Γ (n + k)
= (n + k + 1)(n + k) = n2 + 2nk + k2 + n + k

with expected value n2 + 2nλ + n + λ + (λ2 + λ). Hence,

Var(χ̃2
n(λ)) = E[u−E(u)][u−E(u)]∗ = Var(u) = n2+2nλ+n+λ+(λ2+λ)−(n+λ)2,

which simplifies to n + 2λ. Accordingly,

E[χ̃2
n(λ)] = n + λ and Var(χ̃2

n(λ)) = n + 2λ, (ii)
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so that

E[u] = n + λ = 3 + 13

4
= 25

4
and Var(u) = n + 2λ = 3 + 13

2
= 19

2
. (iii)

The explicit form of the density is then

g1(u) = u2e−u

2

∞∑

k=0

(13/4)ke−13/4

k!
uk

(3)k
, 0 ≤ u < ∞, (iv)

and zero elsewhere.

Exercises 2.3

2.3.1. Let x1, . . . , xn be iid variables with common density a real gamma density with
the parameters α and β or with the mgf (1 − βt)−α, 1 − βt > 0, α > 0, β > 0. Let

u1 = x1 + · · · + xn, u2 = 1
n
(x1 + · · · + xn), u3 = u2 − αβ, u4 =

√
nu3

β
√

α
. Evaluate the mgfs

and thereby the densities of u1, u2, u3, u4. Show that they are all gamma densities for all
finite n, may be relocated. Show that when n → ∞, u4 → N1(0, 1) or u4 goes to a real
standard normal when n goes to infinity.

2.3.2. Let x1, . . . , xn be a simple random sample of size n from a real population with
mean value μ and variance σ 2 < ∞, σ > 0. Then the central limit theorem says that√

n(x̄−μ)

σ
→ N1(0, 1) as n → ∞, where x̄ = 1

n
(x1 +· · ·+ xn). Translate this statement for

(1): binomial probability function f1(x) =
(
n

x

)
px(1−p)n−x, x = 0, 1, . . . , n, 0 < p < 1

and f1(x) = 0 elsewhere; (2): negative binomial probability law f2(x) =
(
x − 1
k − 1

)
pk(1 −

p)x−k, x = k, k + 1, . . . , 0 < p < 1 and zero elsewhere; (3): geometric probability law
f3(x) = p(1 − p)x−1, x = 1, 2, . . . , 0 < p < 1 and f3(x) = 0 elsewhere; (4): Poisson
probability law f4(x) = λx

x! e−λ, x = 0, 1, . . . , λ > 0 and f4(x) = 0 elsewhere.

2.3.3. Repeat Exercise 2.3.2 if the population is (1): g1(x) = c1x
γ−1e−axδ

, x ≥ 0, δ >

0, a > 0, γ > 0 and g1(x) = 0 elsewhere; (2): The real pathway model g2(x) = cqx
γ [1−

a(1−q)xδ] 1
1−q , a > 0, δ > 0, 1−a(1−q)xδ > 0 and for the cases q < 1, q > 1, q → 1,

and g2(x) = 0 elsewhere.

2.3.4. Let x ∼ N1(μ1, σ
2
1 ), y ∼ N1(μ2, σ

2
2 ) be real Gaussian and be independently dis-

tributed. Let x1, . . . , xn1, y1, . . . , yn2 be simple random samples from x and y respectively.
Let u1 =∑n1

j=1(xj − μ1)
2, u2 =∑n2

j=1(yj − μ2)
2, u3 = 2x1 − 3x2 + y1 − y2 + 2y3,
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u4 =
∑n1

j=1(xj − μ1)
2/σ 2

1
∑n2

j=1(yj − μ2)2/σ 2
2

, u5 =
∑n1

j=1(xj − x̄)2/σ 2
1

∑n2
j=1(yj − ȳ)2/σ 2

2

.

Compute the densities of u1, u2, u3, u4, u5.

2.3.5. In Exercise 2.3.4 if σ 2
1 = σ 2

2 = σ 2 compute the densities of u3, u4, u5 there, and
u6 =∑n1

j=1(xj − x̄)2 +∑n2
j=1(yj − ȳ)2 if (1): n1 = n2, (2): n1 
= n2.

2.3.6. For the noncentral chisquare in the complex case, discussed in (2.3a.5) evaluate the
mean value and the variance.

2.3.7. For the complex case, starting with the mgf, derive the noncentral chisquare density
and show that it agrees with that given in (2.3a.3).

2.3.8. Give the detailed proofs of the independence of linear forms and sets of linear
forms in the complex Gaussian case.

2.4. Distributions of Products and Ratios and Connection to Fractional Calculus

Distributions of products and ratios of real scalar random variables are connected to
numerous topics including Krätzel integrals and transforms, reaction-rate probability inte-
grals in nuclear reaction-rate theory, the inverse Gaussian distribution, integrals occurring
in fractional calculus, Kobayashi integrals and Bayesian structures. Let x1 > 0 and x2 > 0
be real scalar positive random variables that are independently distributed with density
functions f1(x1) and f2(x2), respectively. We respectively denote the product and ratio of
these variables by u2 = x1x2 and u1 = x2

x1
. What are then the densities of u1 and u2? We

first consider the density of the product. Let u2 = x1x2 and v = x2. Then x1 = u2
v

and
x2 = v, dx1 ∧ dx2 = 1

v
du ∧ dv. Let the joint density of u2 and v be denoted by g(u2, v)

and the marginal density of u2 by g2(u2). Then

g(u2, v) = 1

v
f1

(u2

v

)
f2(v) and g2(u2) =

∫

v

1

v
f2

(u2

v

)
f1(v)dv. (2.4.1)

For example, let f1 and f2 be generalized gamma densities, in which case

fj (xj ) = a

γj
δj

j

Γ (
γj

δj
)
x

γj−1
j e−aj x

δj
j , aj > 0, δj > 0, γj > 0, xj ≥ 0 j = 1, 2,

and fj (xj ) = 0 elsewhere. Then,
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g2(u2) = c

∫ ∞

0

(1

v

)(u2

v

)γ1−1
vγ2−1

× e−a2v
δ2−a1(

u2
v

)δ1 dv, c =
2∏

j=1

a

γj
δj

j

Γ (
γj

δj
)

= c u
γ1−1
2

∫ ∞

0
vγ2−γ1−1e−a2v

δ2−a1(u
δ1
2 /vδ1)dv. (2.4.2)

The integral in (2.4.2) is connected to several topics. For δ1 = 1, δ2 = 1, this integral is the
basic Krätzel integral and Krätzel transform, see Mathai and Haubold (2020). When δ2 =
1, δ1 = 1

2, the integral in (2.4.2) is the basic reaction-rate probability integral in nuclear
reaction-rate theory, see Mathai and Haubold (1988). For δ1 = 1, δ2 = 1, the integrand
in (2.4.2), once normalized, is the inverse Gaussian density for appropriate values of γ2 −
γ1 − 1. Observe that (2.4.2) is also connected to the Bayesian structure of unconditional
densities if the conditional and marginal densities belong to generalized gamma family of
densities. When δ2 = 1, the integral is a mgf of the remaining part with a2 as the mgf
parameter (It is therefore the Laplace transform of the remaining part of the function).

Now, let us consider different f1 and f2. Let f1(x1) be a real type-1 beta density with
the parameters (γ + 1, α), �(α) > 0, �(γ ) > −1 (in statistical problems, the parameters
are real but in this case the results hold as well for complex parameters; accordingly, the
conditions are stated for complex parameters), that is, the density of x1 is

f1(x1) = Γ (γ + 1 + α)

Γ (γ + 1)Γ (α)
x

γ

1 (1 − x1)
α−1, 0 ≤ x1 ≤ 1, α > 0, γ > −1,

and f1(x1) = 0 elsewhere. Let f2(x2) = f (x2) where f is an arbitrary density. Then, the
density of u2 is given by

g2(u2) = c
1

Γ (α)

∫

v

1

v

(u2

v

)γ(
1 − u2

v

)α−1
f (v)dv, c = Γ (γ + 1 + α)

Γ (γ + 1)

= c
u

γ

2

Γ (α)

∫

v≥u2>0
v−γ−α(v − u2)

α−1f (v)dv (2.4.3)

= c K−α
2,u2,γ

f (2.4.4)
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where K−α
2,u2,γ

f is the Erdélyi-Kober fractional integral of order α of the second kind,
with parameter γ in the real scalar variable case. Hence, if f is an arbitrary density, then
K−α

2,u2,γ
f is Γ (γ+1)

Γ (γ+1+α)
g2(u2) or a constant multiple of the density of a product of inde-

pendently distributed real scalar positive random variables where one of them has a real
type-1 beta density and the other has an arbitrary density. When f1 and f2 are densities,
then g2(u2) has the structure

g2(u2) =
∫

v

1

v
f1
(u2

v

)
f2(v)dv. (i)

Whether or not f1 and f2 are densities, the structure in (i) is called the Mellin convolution
of a product in the sense that if we take the Mellin transform of g2, with Mellin parameter
s, then

Mg2(s) = Mf1(s)Mf2(s) (2.4.5)

where Mg2(s) = ∫∞
0 us−1

2 g2(u2)du2,

Mf1(s) =
∫ ∞

0
xs−1

1 f1(x1)dx1 and Mf2(s) =
∫ ∞

0
xs−1

2 f2(x2)dx2,

whenever the Mellin transforms exist. Here (2.4.5) is the Mellin convolution of a prod-
uct property. In statistical terms, when f1 and f2 are densities and when x1 and x2 are
independently distributed, we have

E[us−1
2 ] = E[xs−1

1 ]E[xs−1
2 ] (2.4.6)

whenever the expected values exist. Taking different forms of f1 and f2, where f1 has a

factor (1−x1)
α−1

Γ (α)
for 0 ≤ x1 ≤ 1, �(α) > 0, it can be shown that the structure appearing

in (i) produces all the various fractional integrals of the second kind of order α available
in the literature for the real scalar variable case, such as the Riemann-Liouville fractional
integral, Weyl fractional integral, etc. Connections of distributions of products and ratios
to fractional integrals were established in a series of papers which appeared in Linear
Algebra and its Applications, see Mathai (2013, 2014, 2015).

Now, let us consider the density of a ratio. Again, let x1 > 0, x2 > 0 be independently
distributed real scalar random variables with density functions f1(x1) and f2(x2), respec-
tively. Let u1 = x2

x1
and let v = x2. Then dx1 ∧ dx2 = − v

u2
1
du1 ∧ dv. If we take x1 = v,

the Jacobian will be only v and not − v

u2
1

and the final structure will be different. However,

the first transformation is required in order to establish connections to fractional integral
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of the first kind. If f1 and f2 are generalized gamma densities as described earlier and if
x1 = v, then the marginal density of u1, denoted by g1(u1), will be as follows:

g1(u1) = c

∫

v

vvγ1−1(u1v)γ2−1e−a1v
δ1−a2(u1v)δ2 dv, c =

2∏

j=1

a

γj
δj

j

Γ (
γj

δj
)
,

= c u
γ2−1
1

∫ ∞

v=0
vγ1+γ2−1e−a1v

δ1−a2(u1v)δ2 dv (2.4.7)

= c

δ
Γ
(γ1 + γ2

δ

)
u

γ2−1
1 (a1 + a2u

δ
1)

− γ1+γ2
δ , for δ1 = δ2 = δ. (2.4.8)

On the other hand, if x2 = v, then the Jacobian is − v

u2
1

and the marginal density, again

denoted by g1(u1), will be as follows when f1 and f2 are gamma densities:

g1(u1) = c

∫

v

( v

u2
1

)( v

u1

)γ1−1
vγ2−1e

−a1(
v
u1

)δ1−a2v
δ2

dv

= c u
−γ1−1
1

∫ ∞

v=0
vγ1+γ2−1e

−a2v
δ2−a1(

v
u1

)δ1
dv.

This is one of the representations of the density of a product discussed earlier, which is
also connected to Krátzel integral, reaction-rate probability integral, and so on. Now, let
us consider a type-1 beta density for x1 with the parameters (γ, α) having the following
density:

f1(x1) = Γ (γ + α)

Γ (γ )Γ (α)
x

γ−1
1 (1 − x1)

α−1, 0 ≤ x1 ≤ 1,

for γ > 0, α > 0 and f1(x1) = 0 elsewhere. Let f2(x2) = f (x2) where f is an arbitrary
density. Letting u1 = x2

x1
and x2 = v, the density of u1, again denoted by g1(u1), is

g1(u1) = Γ (γ + α)

Γ (γ )Γ (α)

∫

v

v

u2
1

( v

u1

)γ−1(
1 − v

u1

)α−1
f (v)dv

= Γ (γ + α)

Γ (γ )

u
−γ−α

1

Γ (α)

∫

v≤u1

vγ (u1 − v)α−1f (v)dv (2.4.9)

= Γ (γ + α)

Γ (γ )
K−α

1,u1,γ
f, �(α) > 0, (2.4.10)
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where K−α
1,u1,γ

f is Erdélyi-Kober fractional integral of the first kind of order α and param-
eter γ . If f1 and f2 are densities, this Erdélyi-Kober fractional integral of the first kind is
a constant multiple of the density of a ratio g1(u1). In statistical terms,

u1 = x2

x1
⇒ E[us−1

1 ] = E[xs−1
2 ]E[x−s+1

1 ] with E[x−s+1
1 ] = E[x(2−s)−1

1 ] ⇒
Mg1(s) = Mf1(2 − s)Mf2(s), (2.4.11)

which is the Mellin convolution of a ratio. Whether or not f1 and f2 are densities, (2.4.11)
is taken as the Mellin convolution of a ratio and it cannot be given statistical interpretations

when f1 and f2 are not densities. For example, let f1(x1) = x−α
1

(1−x1)
α−1

Γ (α)
and f2(x2) =

xα
2 f (x2) where f (x2) is an arbitrary function. Then the Mellin convolution of a ratio, as

in (2.4.11), again denoted by g1(u1), is given by

g1(u1) =
∫

v≤u1

(u1 − v)α−1

Γ (α)
f (v)dv, �(α) > 0. (2.4.12)

This is Riemann-Liouville fractional integral of the first kind of order α if v is bounded
below; when v is not bounded below, then it is Weyl fractional integral of the first kind of
order α. An introduction to fractional calculus is presented in Mathai and Haubold (2018).
The densities of u1 and u2 are connected to various problems in different areas for different
functions f1 and f2.

In the p × p matrix case in the complex domain, we will assume that the matrix is
Hermitian positive definite. Note that when p = 1, Hermitian positive definite means a
real positive variable. Hence in the scalar case, we will not discuss ratios and products in
the complex domain since densities must be real-valued functions.

Exercises 2.4

2.4.1. Derive the density of (1): a real non-central F, where the numerator chisquare is
non-central and the denominator chisquare is central, (2): a real doubly non-central F
where both the chisquares are non-central with non-centrality parameters λ1 and λ2 re-
spectively.

2.4.2. Let x1 and x2 be real gamma random variables with parameters (α1, β) and (α2, β)

with the same β respectively and be independently distributed. Let u1 = x1
x1+x2

, u2 =
x1
x2

, u3 = x1 + x2. Compute the densities of u1, u2, u3. Hint: Use the transformation x1 =
r cos2 θ, x2 = r sin2 θ .
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2.4.3. Let x1 and x2 be as defined as in Exercise 2.4.2. Let u = x1x2. Derive the density
of u.

2.4.4. Let xj have a real type-1 beta density with the parameters (αj , βj ), j = 1, 2 and
be independently distributed. Let u1 = x1x2, u2 = x1

x2
. Derive the densities of u1 and u2.

State the conditions under which these densities reduce to simpler known densities.

2.4.5. Evaluate (1): Weyl fractional integral of the second kind of order α if the arbitrary
function is f (v) = e−v; (ii) Riemann-Liouville fractional integral of the first kind of order
α if the lower limit is 0 and the arbitrary function is f (v) = vδ.

2.4.6. In Exercise 2.4.2 show that (1): u1 and u3 are independently distributed; (2): u2

and u3 are independently distributed.

2.4.7. In Exercise 2.4.2 show that for arbitrary h, E
[

x1
x1+x2

]h = E(xh
1 )

E(x1+x2)h
and state the

conditions for the existence of the moments. [Observe that, in general, E(
y1
y2

)h 
= E(yh
1 )

E(yh
2 )

even if y1 and y2 are independently distributed.]

2.4.8. Derive the corresponding densities in Exercise 2.4.1 for the complex domain by
taking the chisquares in the complex domain.

2.4.9. Extend the results in Exercise 2.4.2 to the complex domain by taking chisquare
variables in the complex domain instead of gamma variables.

2.5. General Structures

2.5.1. Product of real scalar gamma variables

Let x1, . . . , xk be independently distributed real scalar gamma random variables with

xj having the density fj (xj ) = cjx
αj−1
j e

− xj
βj , 0 ≤ xj < ∞, αj > 0, βj > 0 and

fj (xj ) = 0 elsewhere. Consider the product u = x1x2 · · · xk. Such structures appear
in many situations such as geometrical probability problems when we consider gamma
distributed random points, see Mathai (1999). How can we determine the density of such
a general structure? The transformation of variables technique is not a feasible procedure
in this case. Since the xj ’s are positive, we may determine the Mellin transforms of the
xj ’s with parameter s. Then, when fj (xj ) is a density, the Mellin transform Mfj

(s), once
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expressed in terms of an expected value, is Mfj
(s) = E[xs−1

j ] whenever the expected
value exists:

Mfj
(s) = E[xs−1

j ] = 1

β
αj

j Γ (βj )

∫ ∞

0
xs−1

j x
αj−1
j e

− xj
βj dxj

= Γ (αj + s − 1)

Γ (αj )
βs−1

j , �(αj + s − 1) > 0.

Hence,

E[us−1] =
k∏

j=1

E[xs−1
j ] =

k∏

j=1

Γ (αj + s − 1)

Γ (αj )
βs−1

j , �(αj + s − 1) > 0, j = 1, . . . , k,

and the density of u is available from the inverse Mellin transform. If g(u) is the density
of u, then

g(u) = 1

2πi

∫ c+i∞

c−i∞

{ k∏

j=1

Γ (αj + s − 1)

Γ (αj )
βs−1

j

}
u−sdx, i = √(−1). (2.5.1)

This is a contour integral where c is any real number such that c > −�(αj − 1), j =
1, . . . , k. The integral in (2.5.1) is available in terms of a known special function, namely
Meijer’s G-function. The G-function can be defined as follows:

G(z) = Gm,n
p,q (z) = Gm,n

p,q

[
z
∣
∣a1,...,ap

b1,...,bq

]

= 1

2πi

∫

L

{∏m
j=1 Γ (bj + s)}{∏n

j=1 Γ (1 − aj − s)}
{∏q

j=m+1 Γ (1 − bj − s)}{∏p

j=n+1 Γ (aj + s)}z
−sds, i = √(−1).

(2.5.2)

The existence conditions, different possible contours L, as well as properties and appli-
cations are discussed in Mathai (1993), Mathai and Saxena (1973, 1978), and Mathai et
al. (2010). With the help of (2.5.2), we may now express (2.5.1) as follows in terms of a
G-function:

g(u) =
{ k∏

j=1

1

βjΓ (αj )

}
G

k,0
0,k

[
u

β1 · · · βk

∣
∣
αj−1,j=1,...,k

]

(2.5.3)

for 0 ≤ u < ∞. Series and computable forms of a general G-function are provided
in Mathai (1993). They are built-in functions in the symbolic computational packages
Mathematica and MAPLE.
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2.5.2. Product of real scalar type-1 beta variables

Let y1, . . . , yk be independently distributed real scalar type-1 beta random variables
with the parameters (αj , βj ), αj > 0, βj > 0, j = 1, . . . , k. Consider the product u1 =
y1 · · · yk. Such a structure occurs in several contexts. It appears for instance in geometrical
probability problems in connection with type-1 beta distributed random points. As well,
when testing certain hypotheses on the parameters of one or more multivariate normal
populations, the resulting likelihood ratio criteria, also known as λ-criteria, or one- to-one
functions thereof, have the structure of a product of independently distributed real type-1
beta variables under the null hypothesis. The density of u1 can be obtained by proceeding
as in the previous section. Since the moment of u1 of order s − 1 is

E[us−1
1 ] =

k∏

j=1

E[ys−1
j ]

=
k∏

j=1

Γ (αj + s − 1)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + s − 1)
(2.5.4)

for �(αj + s − 1) > 0, j = 1, . . . , k, Then, the density of u1, denoted by g1(u1), is given
by

g1(u1) = 1

2πi

∫ c+i∞

c−i∞
[E(us−1

1 )]u−s
1 ds

=
{ k∏

j=1

Γ (αj + βj )

Γ (αj )

} 1

2πi

∫ c+i∞

c−i∞

{ k∏

j=1

Γ (αj + s − 1)

Γ (αj + βj + s − 1)

}
u−s

1 ds

=
{ k∏

j=1

Γ (αj + βj )

Γ (αj )

}
G

k,0
k,k

[
u1
∣
∣αj+βj−1, j=1,...,k

αj−1, j=1,...,k

]
(2.5.5)

for 0 ≤ u1 ≤ 1, �(αj + s − 1) > 0, j = 1, . . . , k.

2.5.3. Product of real scalar type-2 beta variables

Let u2 = z1z2 · · · zk where the zj ’s are independently distributed real scalar type-2
beta random variables with the parameters (αj , βj ), αj > 0, βj > 0, j = 1, . . . , k. Such
products are encountered in several situations, including certain problems in geometrical
probability that are discussed in Mathai (1999). Then,
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E[zs−1
j ] = Γ (αj + s − 1)

Γ (αj )

Γ (βj − s + 1)

Γ (βj )
, −�(αj − 1) < �(s) < �(βj + 1),

and

E[us−1
2 ] =

k∏

j=1

E[zs−1
j ] = {

k∏

j=1

[Γ (αj )Γ (βj )]−1}{
k∏

j=1

Γ (αj + s − 1)Γ (βj − s + 1)
}
.

(2.5.6)

Hence, the density of u2, denoted by g2(u2), is given by

g2(u2) = {
k∏

j=1

[Γ (αj )Γ (βj )]−1} 1

2πi

∫ c+i∞

c−i∞
{ k∏

j=1

Γ (αj + s − 1)Γ (βj − s + 1)
}
u−s

2 ds

= {
k∏

j=1

[Γ (αj )Γ (βj )]−1}G
k,k
k,k

[
u2
∣
∣−βj , j=1,...,k

αj−1, j=1,...,k

]
, u2 ≥ 0. (2.5.7)

2.5.4. General products and ratios

Let us consider a structure of the following form:

u3 = t1 · · · tr
tr+1 · · · tk,

where the tj ’s are independently distributed real positive variables, such as real type-1
beta, real type-2 beta, and real gamma variables, where the expected values E[t s−1

j ] for
j = 1, . . . , k, will produce various types of gamma products, some containing +s and
others, −s, both in the numerator and in the denominator. Accordingly, we obtain a general
structure such as that appearing in (2.5.2), and the density of u3, denoted by g3(u3), will
then be proportional to a general G-function.

2.5.5. The H-function

Let u = v1v2 · · · vk where the vj ’s are independently distributed generalized real
gamma variables with densities

hj (vj ) = a

γj
δj

j

Γ (
γj

δj
)
v

γj−1
j e−aj v

δj
j , vj ≥ 0,
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for aj > 0, δj > 0, γj > 0, and hj (vj ) = 0 elsewhere for j = 1, . . . , k. Then,

E[vs−1
j ] =

Γ (
γj+s−1

δj
)

Γ (
γj

δj
)

1

a

s−1
δj

j

,

for �(γj + s − 1) > 0, vj ≥ 0, δj > 0, aj > 0, γj > 0, j = 1, . . . , k, and

E[us−1] =
{ k∏

j=1

a

1
δj

j

Γ (
γj

δj
)

}{ k∏

j=1

Γ (
γj − 1

δj

+ s

δj

) a
− s

δj

j

}
. (2.5.8)

Thus, the density of u, denoted by g3(u), is given by

g3(u) =
{ k∏

j=1

a

1
δj

j

Γ (
γj

δj
)

} 1

2πi

∫

L

{ k∏

j=1

Γ (
γj − 1

δj

+ s

δj

) a
− s

δj

j

}
u−sds

=
{ k∏

j=1

a

1
δj

j

Γ (
γj

δj
)

}
H

k,0
0,k

⎡

⎣
{ k∏

j=1

a

1
δj

j

}
u

∣
∣
∣
(
γj −1

δj
, 1
δj

), j=1,...,k

⎤

⎦ (2.5.9)

for u ≥ 0, �(γj +s−1) > 0, j = 1, . . . , k, where L is a suitable contour and the general
H-function is defined as follows:

H(z) = Hm,n
p,q (z) = Hm,n

p,q

[
z
∣
∣(a1,α1),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

= 1

2πi

∫

L

{∏m
j=1 Γ (bj + βjs)}{∏n

j=1 Γ (1 − aj − αjs)}
{∏q

j=m+1 Γ (1 − bj − βjs)}{∏p

j=n+1 Γ (aj + αjs)}z
−sds (2.5.10)

where αj > 0, j = 1, . . . , p; βj > 0, j = 1, . . . , q are real and positive, bj ’s and aj ’s
are complex numbers, the contour L separates the poles of Γ (bj + βjs), j = 1, . . . , m,

lying on one side of it and the poles of Γ (1 − aj − αjs), j = 1, . . . , n, which must
lie on the other side. The existence conditions and the various types of possible contours
are discussed in Mathai and Saxena (1978) and Mathai et al. (2010). Observe that we
can consider arbitrary powers of the variables present in u, u1, u2 and u3 as introduced in
Sects. 2.5.1–2.5.5; however, in this case, the densities of these various structures will be
expressible in terms of H-functions rather than G-functions. In the G-function format as
defined in (2.5.2), the complex variable s has ±1 as its coefficients, whereas the coeffi-
cients of s in the H-function, that is, ±αj , αj > 0 and ±βj , βj > 0, are not restricted to
unities.
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We will give a simple illustrative example that requires the evaluation of an inverse
Mellin transform. Let f (x) = e−x, x > 0. Then, the Mellin transform is

Mf (s) =
∫ ∞

0
xs−1e−xdx = Γ (s), �(s) > 0,

and it follows from the inversion formula that

f (x) = 1

2πi

∫ c+i∞

c−i∞
Γ (s)x−sds, �(s) > 0, i = √(−1). (2.5.11)

If f (x) is unknown and we are told that the Mellin transform of a certain function is Γ (s),
then are we going to retrieve f (x) as e−x from the inversion formula? Let us explore this
problem. The poles of Γ (s) occur at s = 0, −1, −2, . . .. Thus, if we take c in the contour
of integration as c > 0, this contour will enclose all the poles of Γ (s). We may now apply
Cauchy’s residue theorem. By definition, the residue at s = −ν, denoted by Rν , is

Rν = lim
s→−ν

(s + ν)Γ (s)x−s .

We cannot substitute s = −ν to obtain the limit in this case. However, noting that

(s + ν)Γ (s) x−s = (s + ν)(s + ν − 1) · · · s Γ (s)x−s

(s + ν − 1) · · · s = Γ (s + ν + 1)x−s

(s + ν − 1) · · · s ,

which follows from the recursive relationship, αΓ (α) = Γ (α + 1), the limit can be taken:

lim
s→−ν

(s + ν)Γ (s) x−s = lim
s→−ν

Γ (s + ν + 1)x−s

(s + ν − 1) · · · s
= Γ (1)xν

(−1)(−2) · · · (−ν)
= (−1)νxν

ν! . (2.5.12)

Hence, the sum of the residues is

∞∑

ν=0

Rν =
∞∑

ν=0

(−1)νxν

ν! = e−x,

and the function is recovered.

Note 2.5.1. Distributions of products and ratios of random variables in the complex do-
main could as well be worked out. However, since they may not necessarily have practical
applications, they will not be discussed herein. Certain product and ratio distributions for
variables in the complex domain which reduce to real variables, such as a chisquare in the
complex domain, have already been previously discussed.



The Univariate Gaussian Density and Related Distributions 115

Exercises 2.5

2.5.1. Evaluate the density of u = x1x2 where the xj ’s are independently distributed real
type-1 beta random variables with the parameters (αj , βj ), αj > 0, βj > 0, j = 1, 2
by using Mellin and inverse Mellin transform technique. Evaluate the density for the case
α1 − α2 
= ±ν, ν = 0, 1, ... so that the poles are simple.

2.5.2. Repeat Exercise 2.5.1 if xj ’s are (1): real type-2 beta random variables with param-
eters (αj , βj ), αj > 0, βj > 0 and (2): real gamma random variables with the parameters
(αj , βj ), αj > 0, βj > 0, j = 1, 2.

2.5.3. Let u = u1
u2

where u1 and u2 are real positive random variables. Then the h-th

moment, for arbitrary h, is E[u1
u2

]h 
= E[uh
1]

E[uh
2] in general. Give two examples where E[u1

u2
]h =

E[uh
1 ]

E[uh
2 ] .

2.5.4. E[ 1
u
]h = E[u−h] 
= 1

E[uh] in general. Give two examples where E[ 1
u
] = 1

E[u] .

2.5.5. Let u = x1x2
x3x4

where the xj ’s are independently distributed. Let x1, x3 be type-1
beta random variables, x2 be a type-2 beta random variable, and x4 be a gamma random
variable with parameters (αj , βj ), αj > 0, βj > 0, j = 1, 2, 3, 4. Determine the density
of u.

2.6. A Collection of Random Variables

Let x1, . . . , xn be iid (independently and identically distributed) real scalar random
variables with a common density denoted by f (x), that is, assume that the sample comes
from the population that is specified by f (x). Let the common mean value be μ and the
common variance be σ 2 < ∞, that is, E(xj ) = μ and Var(xj ) = σ 2, j = 1, . . . , n, where
E denotes the expected value. Denoting the sample average by x̄ = 1

n
(x1 +· · ·+xn), what

can be said about x̄ when n → ∞? This is the type of questions that will be investigated
in this section.

2.6.1. Chebyshev’s inequality

For some k > 0, let us examine the probability content of |x − μ| where μ = E(x)

and the variance of x is σ 2 < ∞. Consider the probability that the random variable x lies
outside the interval μ − kσ < x < μ + kσ , that is k times the standard deviation σ away
from the mean value μ. From the definition of the variance σ 2 for a real scalar random
variable x,
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σ 2 =
∫ ∞

−∞
(x − μ)2f (x)dx

=
∫ μ−kσ

−∞
(x − μ)2f (x)dx +

∫ μ+kσ

μ−kσ

(x − μ)2f (x)dx +
∫ ∞

μ+kσ

(x − μ)2f (x)dx

≥
∫ μ−kσ

−∞
(x − μ)2f (x)dx +

∫ ∞

μ+kσ

(x − μ)2f (x)dx

since the probability content over the interval μ − kσ < x < μ + kσ is omitted. Over this
interval, the probability is either positive or zero, and hence the inequality. However, the
intervals (−∞, μ−kσ ] and [μ+kσ, ∞), that is, −∞ < x ≤ μ−kσ and μ+kσ ≤ x < ∞
or −∞ < x − μ ≤ −kσ and kσ ≤ x − μ < ∞, can thus be described as the intervals
for which |x − μ| ≥ kσ . In these intervals, the smallest value that |x − μ| can take on is
kσ, k > 0 or equivalently, the smallest value that |x − μ|2 can assume is (kσ )2 = k2σ 2.
Accordingly, the above inequality can be further sharpened as follows:

σ 2 ≥
∫

|x−μ|≥kσ

(x − μ)2f (x)dx ≥
∫

|x−μ|≥kσ

(kσ )2f (x)dx ⇒
σ 2

k2σ 2
≥
∫

|x−μ|≥kσ

f (x)dx ⇒
1

k2
≥
∫

|x−μ|≥kσ

f (x)dx = Pr{|x − μ| ≥ kσ, } that is,

1

k2
≥ Pr{|x − μ| ≥ kσ },

which can be written as

Pr{|x − μ| ≥ kσ } ≤ 1

k2
or Pr{|x − μ| < kσ } ≥ 1 − 1

k2
. (2.6.1)

If kσ = k1, k = k1
σ 2 , and the above inequalities can be written as follows:

Pr{|x − μ| ≥ k} ≤ σ 2

k2
or Pr{|x − μ| < k} ≥ 1 − σ 2

k2
. (2.6.2)

The inequalities (2.6.1) and (2.6.2) are known as Chebyshev’s inequalities (also referred
to as Chebycheff’s inequalities). For example, when k = 2, Chebyshev’s inequality states
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that Pr{|x − μ| < 2σ } ≥ 1 − 1
4 = 0.75, which is not a very sharp probability limit. If

x ∼ N1(μ, σ 2), then we know that

Pr{|x − μ| < 1.96σ } ≈ 0.95 and Pr{|x − μ| < 3σ } ≈ 0.99.

Note that the bound 0.75 resulting from Chebyshev’s inequality seriously underestimate
the actual probability for a Gaussian variable x. However, what is astonishing about this
inequality, is that the given probability bound holds for any distribution, whether it be
continuous, discrete or mixed. Sharper bounds can of course be obtained for the probability
content of the interval [μ − kσ, μ + kσ ] when the exact distribution of x is known.

These inequalities can be expressed in terms of generalized moments. Let μ
1
r
r = {E|x−

μ|r} 1
r , r = 1, 2, . . . , which happens to be a measure of scatter in x from the mean value

μ. Given that

μr =
∫ ∞

−∞
|x − μ|rf (x)dx,

consider the probability content of the intervals specified by |x − μ| ≥ kμ
1
r
r for k > 0.

Paralleling the derivations of (2.6.1) and (2.6.2), we have

μr ≥
∫

|x−μ|≥k μ
1
r
r

|x − μ|rf (x)dx ≥
∫

|x−μ|≥k μ
1
r
r

|(kμ
1
r
r )|rf (x)dx ⇒

Pr{|x − μ| ≥ kμ
1
r
r } ≤ 1

kr
or Pr{|x − μ| < kμ

1
r
r } ≥ 1 − 1

kr
, (2.6.3)

which can also be written as

Pr{|x − μ| ≥ k} ≤ μr

kr
or Pr{|x − μ| < k} ≥ 1 − μr

kr
, r = 1, 2, . . . . (2.6.4)

Note that when r = 2, μr = σ 2, and Chebyshev’s inequalities as specified in (2.6.1)
and (2.6.2) are obtained from (2.6.3) and (2.6.4), respectively. If x is a real scalar positive
random variables with f (x) = 0 for x ≤ 0, we can then obtain similar inequalities in
terms of the first moment μ. For k > 0,

μ = E(x) =
∫ ∞

0
xf (x)dx since f (x) = 0 for x ≤ 0

=
∫ k

0
xf (x)dx +

∫ ∞

k

xf (x)dx ≥
∫ ∞

k

xf (x)dx ≥
∫ ∞

k

kf (x)dx ⇒
μ

k
≥
∫ ∞

k

f (x)dx = Pr{x ≥ k}.
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Accordingly, we have the following inequality for any real positive random variable x:

Pr{x ≥ k} ≤ μ

k
for x > 0, k > 0. (2.6.5)

Suppose that our variable is x̄ = 1
n
(x1 + · · · + xn), where x1, . . . , xn are iid variables

with common mean value μ and the common variance σ 2 < ∞. Then, since Var(x̄) = σ 2

n

and E(x̄) = μ, Chebyshev’s inequality states that

Pr{|x̄ − μ| < k} ≥ 1 − σ 2

n
→ 1 as n → ∞ (2.6.6)

or Pr{|x̄ − μ| ≥ k} → 0 as n → ∞. However, since a probability cannot be greater than
1, Pr{|x̄ − μ| < k} → 1 as n → ∞. In other words, x̄ tends to μ with probability 1 as
n → ∞. This is referred to as the Weak Law of Large Numbers.

The Weak Law of Large Numbers

Let x1, . . . , xn be iid with common mean value μ and common variance σ 2 < ∞.
Then, as n → ∞,

P r{x̄ → μ} → 1. (2.6.7)

Another limiting property is known as the Central Limit Theorem. Let x1, . . . , xn be iid
real scalar random variables with common mean value μ and common variance σ 2 < ∞.
Letting x̄ = 1

n
(x1 + · · · + xn) denote the sample mean, the standardized sample mean is

u = x̄ − E(x̄)√
Var(x̄)

=
√

n

σ
(x̄ − μ) = 1

σ
√

n
[(x1 − μ) + · · · + (xn − μ)]. (i)

Consider the characteristic function of x − μ, that is,

φx−μ(t) = E[eit (x−μ)] = 1 + it

1!E(x − μ) + (it)2

2! E(x − μ)2 + · · ·

= 1 + 0 − t2

2!E(x − μ)2 + · · · = 1 + t

1!φ
(1)(0) + t2

2!φ
(2)(0) + · · · (ii)

where φ(r)(0) is the r-th derivative of φ(t) with respect to t , evaluated at t = 0. Let us
consider the characteristic function of our standardized sample mean u.

Making use of the last representation of u in (i), we have φ∑n
j=1(xj −μ)

σ
√

n

(t) =
[φxj−μ( t

σ
√

n
)]n so that φu(t) = [φxj−μ( t

σ
√

n
)]n or ln φu(t) = n ln φxj−μ( t

σ
√

n
). It then
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follows from (ii) that

[φxj−μ(
t

σ
√

n
)] = 1 + 0 − t2

2!
σ 2

nσ 2
− i

t3

3!
E(xj − μ)3

(σ
√

n)3
+ ...

= 1 − t2

2n
+ O

( 1

n
3
2

)
. (iii)

Now noting that ln(1 − y) = −[y + y2

2 + y3

3 + · · · ] whenever |y| < 1, we have

ln φxj −μ(
t

σ
√

n
) = − t2

2n
+ O

( 1

n
3
2

)
⇒ n ln φxj −μ(

t

σ
√

n
) = − t2

2
+ O

( 1

n
1
2

)
→ − t2

2
as n → ∞.

Consequently, as n → ∞,

φu(t) = e− t2
2 ⇒ u → N1(0, 1) as n → ∞.

This is known as the central limit theorem.

The Central Limit Theorem. Let x1, . . . , xn be iid real scalar random variables having
common mean value μ and common variance σ 2 < ∞. Let the sample mean be x̄ =
1
n
(x1 + · · · + xn) and u denote the standardized sample mean. Then

u = x̄ − E(x̄)√
Var(x̄)

=
√

n

σ
(x̄ − μ) → N1(0, 1) as n → ∞. (2.6.8)

Generalizations, extensions and more rigorous statements of this theorem are available
in the literature. We have focussed on the substance of the result, assuming that a simple
random sample is available and that the variance of the population is finite.

Exercises 2.6

2.6.1. For a binomial random variable with the probability function f (x) =
(

n

x

)

px

(1 − p)n−x, 0 < p < 1, x = 0, 1, . . . , n, n = 1, 2, . . . and zero elsewhere, show that the
standardized binomial variable itself, namely x−np√

np(1−p)
goes to the standard normal when

n → ∞.

2.6.2. State the central limit theorem for the following real scalar populations by evaluat-
ing the mean value and variance there, assuming that a simple random sample is available:
(1) Poisson random variable with parameter λ; (2) Geometric random variable with pa-
rameter p; (3) Negative binomial random variable with parameters (p, k); (4) Discrete
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hypergeometric probability law with parameters (a, b, n); (5) Uniform density over [a, b];
(6) Exponential density with parameter θ ; (7) Gamma density with the parameters (α, β);
(8) Type-1 beta random variable with the parameters (α, β); (9) Type-2 beta random vari-
able with the parameters (α, β).

2.6.3. State the central limit theorem for the following probability/density functions: (1):

f (x) =
{

0.5, x = 2

0.5, x = 5

and f (x) = 0 elsewhere; (2): f (x) = 2e−2x, 0 ≤ x < ∞ and zero elsewhere; (3):
f (x) = 1, 0 ≤ x ≤ 1 and zero elsewhere. Assume that a simple random sample is
available from each population.

2.6.4. Consider a real scalar gamma random variable x with the parameters (α, β) and
show that E(x) = αβ and variance of x is αβ2. Assume a simple random sample
x1, . . . , xn from this population. Derive the densities of (1): x1 + · · · + xn; (2): x̄; (3):
x̄ − αβ; (4): Standardized sample mean x̄. Show that the densities in all these cases are
still gamma densities, may be relocated, for all finite values of n however large n may be.

2.6.5. Consider the density f (x) = c
xα , 1 ≤ x < ∞ and zero elsewhere, where c is

the normalizing constant. Evaluate c stating the relevant conditions. State the central limit
theorem for this population, stating the relevant conditions.

2.7. Parameter Estimation: Point Estimation

There exist several methods for estimating the parameters of a given den-
sity/probability function, based on a simple random sample of size n (iid variables from
the population designated by the density/probability function). The most popular methods
of point estimation are the method of maximum likelihood and the method of moments.

2.7.1. The method of moments and the method of maximum likelihood

The likelihood function L(θ) is the joint density/probability function of the sample
values, at an observed sample point, x1, . . . , xn. As a function of θ, L(θ), or a one-to-one
function thereof, is maximized in order to determine the most likely value of θ in terms
of a function of the given sample. This estimation process is referred to as the method of
maximum likelihood.

Let mr =
∑n

j=1 xr
j

n
denote the r-th integer moment of the sample, where x1, . . . , xn is

the observed sample point, the corresponding population r-th moment being E[xr ], where
E denotes the expected value. According to the method of moments, the estimates of the
parameters are obtained by solving mr = E[xr ], r = 1, 2, . . . .
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For example, consider a N1(μ, σ 2) population with density

f (x) = 1√
2πσ

e− 1
2σ2 (x−μ)2

, −∞ < x < ∞, −∞ < μ < ∞, σ > 0, (2.7.1)

where μ and σ 2 are the parameters here. Let x1, . . . , xn be a simple random sam-
ple from this population. Then, the joint density of x1, . . . , xn, denoted by L =
L(x1, . . . , xn;μ, σ 2), is

L = 1

[√2πσ ]n e− 1
2σ2

∑n
j=1(xj−μ)2 = 1

[√2πσ ]n e− 1
2σ2 [∑n

j=1(xj−x̄)2+n(x̄−μ)2] ⇒

ln L = −n ln(
√

2πσ) − 1

2σ 2

[ n∑

j=1

(xj − x̄)2 + n(x̄ − μ)2
]
, x̄ = 1

n
(x1 + · · · + xn).

(2.7.2)

Maximizing L or ln L, since L and ln L are one-to-one functions, with respect to μ and
θ = σ 2, and solving for μ and σ 2 produces the maximum likelihood estimators (MLE’s).
An observed value of the estimator is the corresponding estimate. It follows from a basic
result in Calculus that the extrema of L can be determined by solving the equations

∂

∂μ
ln L = 0 (i)

and

∂

∂θ
ln L = 0, θ = σ 2. (ii)

Equation (i) produces the solution μ = x̄ so that x̄ is the MLE of μ. Note that x̄ is a random
variable and that x̄ evaluated at a sample point or at a set of observations on x1, . . . , xn

produces the corresponding estimate. We will denote both the estimator and estimate of
μ by μ̂. As well, we will utilize the same abbreviation, namely, MLE for the maximum
likelihood estimator and the corresponding estimate. Solving (ii) and substituting μ̂ to μ,
we have θ̂ = σ̂ 2 = 1

n

∑n
j=1(xj − x̄)2 = s2 = the sample variance as an estimate of

θ = σ 2. Does the point (x̄, s2) correspond to a local maximum or a local minimum or
a saddle point? Since the matrix of second order partial derivatives at the point (x̄, s2) is
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negative definite, the critical point (x̄, s2) corresponds to a maximum. Thus, in this case,
μ̂ = x̄ and σ̂ 2 = s2 are the maximum likelihood estimators/estimates of the parameters
μ and σ 2, respectively. If we were to differentiate with respect to σ instead of θ = σ 2

in (ii), we would obtain the same estimators, since for any differentiable function g(t),
d
dt

g(t) = 0 ⇒ d
dφ(t)

g(t) = 0 if d
dt

φ(t) 
= 0. In this instance, φ(σ) = σ 2 and d
dσ

σ 2 
= 0.
For obtaining the moment estimates, we equate the sample integer moments to the

corresponding population moments, that is, we let mr = E[xr ], r = 1, 2, two equations
being required to estimate μ and σ 2. Note that m1 = x̄ and m2 = 1

n

∑n
j=1 x2

j . Then,
consider the equations

x̄ = E[x] = μ and
1

n

n∑

j=1

x2
j = E[x2] ⇒ s2 = σ 2.

Thus, the moment estimators/estimates of μ and σ 2, which are μ̂ = x̄ and σ̂ 2 = s2,
happen to be identical to the MLE’s in this case.

Let us consider the type-1 beta population with parameters (α, β) whose density is

f1(x) = Γ (α + β)

Γ (α)Γ (β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0, (2.7.3)

and zero otherwise. In this case, the likelihood function contains gamma functions and the
derivatives of gamma functions involve psi and zeta functions. Accordingly, the maximum
likelihood approach is not very convenient here. However, we can determine moment esti-
mates without much difficulty from (2.7.3). The first two population integer moments are
obtained directly from a representation of the h-th moment:

E[xh] = Γ (α + h)

Γ (α)

Γ (α + β)

Γ (α + β + h)
, �(α + h) > 0 ⇒

E[x] = Γ (α + 1)

Γ (α)

Γ (α + β)

Γ (α + β + 1)
= α

α + β
(2.7.4)

E[x2] = α(α + 1)

(α + β)(α + β + 1)
= E[x] α + 1

α + β + 1
. (2.7.5)

Equating the sample moments to the corresponding population moments, that is, letting
m1 = E[x] and m2 = E[x2], it follows from (2.7.4) that

x̄ = α

α + β
⇒ β

α
= 1 − x̄

x̄
; (iii)

Then, from (2.7.5), we have
1
n

∑n
j=1 x2

j

x̄
= α + 1

α + β + 1
= 1

1 + β
α+1

⇒ x̄ −∑n
j=1 x2

j /n
∑n

j=1 x2
j /n

= β

α + 1
. (iv)
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The parameter β can be eliminated from (iii) and (iv), which yields an estimate of α; β̂

is then obtained from (iii). Thus, the moment estimates are available from the equations,
mr = E[xr ], r = 1, 2, even though these equations are nonlinear in the parameters α

and β. The method of maximum likelihood or the method of moments can similarly yield
parameters estimates for populations that are otherwise distributed.

2.7.2. Bayes’ estimates

This procedure is more relevant when the parameters in a given statistical den-
sity/probability function have their own distributions. For example, let the real scalar vari-
able x be discrete having a binomial probability law for the fixed (given) parameter p, that

is, let f (x|p) =
(

n

x

)

px(1 − p)n−x, 0 < p < 1, x = 0, 1, . . . , n, n = 1, 2, . . . , and

f (x|p) = 0 elsewhere be the conditional probability function. Let p have a prior type-1
beta density with known parameters α and β, that is, let the prior density of p bec

g(p) = Γ (α + β)

Γ (α)Γ (β)
pα−1(1 − p)β−1, 0 < p < 1, α > 0, β > 0

and g(p) = 0 elsewhere. Then, the joint probability function f (x, p) = f (x|p)g(p) and
the unconditional probability function of x, denoted by f1(x), is as follows:

f1(x) = Γ (α + β)

Γ (α)Γ (β)

(
n

x

)∫ 1

0
pα+x−1(1 − p)β+n−x−1dp

= Γ (α + β)

Γ (α)Γ (β)

(
n

x

)
Γ (α + x)Γ (β + n − x)

Γ (α + β + n)
.

Thus, the posterior density of p, given x, denoted by g1(p|x), is

g1(p|x) = f (x, p)

f1(x)
= Γ (α + β + n)

Γ (α + x)Γ (β + n − x)
pα+x−1(1 − p)β+n−x−1.

Accordingly, the expected value of p in this conditional distribution of p given x, which
is called the posterior density of p, is known as the Bayes estimate of p:
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E[p|x] = Γ (α + β + n)

Γ (α + x)Γ (β + n − x)

∫ 1

0
p pα+x−1(1 − p)β+n−x−1dp

= Γ (α + β + n)

Γ (α + x)Γ (β + n − x)

Γ (α + x + 1)Γ (β + n − x)

Γ (α + β + n + 1)

= Γ (α + x + 1)

Γ (α + x)

Γ (α + β + n)

Γ (α + β + n + 1)
= α + x

α + β + n
.

The prior estimate/estimator of p as obtained from the binomial distribution is x
n

and the
posterior estimate or the Bayes estimate of p is

E[p|x] = α + x

α + β + n
,

so that x
n

is revised to α+x
α+β+n

. In general, if the conditional density/probability function
of x given θ is f (x|θ) and the prior density/probability function of θ is g(θ), then the
posterior density of θ is g1(θ |x) and E[θ |x] or the expected value of θ in the conditional
distribution of θ given x is the Bayes estimate of θ .

2.7.3. Interval estimation

Before concluding this section, the concept of confidence intervals or interval esti-
mation of a parameter will be briefly touched upon. For example, let x1, . . . , xn be iid
N1(μ, σ 2) and let x̄ = 1

n
(x1 + · · · + xn). Then, x̄ ∼ N1(μ, σ 2

n
), (x̄ − μ) ∼ N1(0, σ 2

n
)

and z =
√

n

σ
(x̄ − μ) ∼ N1(0, 1). Since the standard normal density N1(0, 1) is free of

any parameter, one can select two percentiles, say, a and b, from a standard normal table
and make a probability statement such as Pr{a < z < b} = 1 − α for every given α; for
instance, Pr{−1.96 ≤ z ≤ 1.96} ≈ 0.95 for α = 0.05. Let Pr{−zα

2
≤ z ≤ zα

2
} = 1 − α

where zα
2

is such that Pr(z > zα
2
) = α

2 . The following inequalities are mathemati-
cally equivalent and hence the probabilities associated with the corresponding intervals
are equal:

−zα
2

≤ z ≤ zα
2

⇔ −zα
2

≤
√

n

σ
(x̄ − μ) ≤ zα

2

⇔ μ − zα
2

σ√
n

≤ x̄ ≤ μ + zα
2

σ√
n

⇔ x̄ − zα
2

σ√
n

≤ μ ≤ x̄ + zα
2

σ√
n
. (i)

Accordingly,

Pr{μ − zα
2

σ√
n

≤ x̄ ≤ μ + zα
2

σ√
n
} = 1 − α (ii)
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⇔
Pr{x̄ − zα

2

σ√
n

≤ μ ≤ x̄ + zα
2

σ√
n
} = 1 − α. (iii)

Note that (iii) is not a usual probability statement as opposed to (ii), which is a probability
statement on a random variable. In (iii), the interval [x̄ − zα

2

σ√
n
, x̄ + zα

2

σ√
n
] is random and

μ is a constant. This can be given the interpretation that the random interval covers the
parameter μ with probability 1 − α, which means that we are 100(1 − α)% confident that
the random interval will cover the unknown parameter μ or that the random interval is an
interval estimator and an observed value of the interval is the interval estimate of μ. We
could construct such an interval only because the distribution of z is parameter-free, which
enabled us to make a probability statement on μ.

In general, if u = u(x1, . . . , xn, θ) is a function of the sample values and the parameter
θ (which may be a vector of parameters) and if the distribution of u is free of all parameter,
then such a quantity is referred to as a pivotal quantity. Since the distribution of the pivotal
quantity is parameter-free, we can find two numbers a and b such that Pr{a ≤ u ≤ b} =
1 − α for every given α. If it is possible to convert the statement a ≤ u ≤ b into a
mathematically equivalent statement of the type u1 ≤ θ ≤ u2, so that Pr{u1 ≤ θ ≤
u2} = 1 − α for every given α, then [u1, u2] is called a 100(1 − α)% confidence interval
or interval estimate for θ , u1 and u2 being referred to as the lower confidence limit and
the upper confidence limit, and 1 − α being called the confidence coefficient. Additional
results on interval estimation and the construction of confidence intervals are, for instance,
presented in Mathai and Haubold (2017b).

Exercises 2.7

2.7.1. Obtain the method of moments estimators for the parameters (α, β) in a real type-2
beta population. Assume that a simple random sample of size n is available.

2.7.2. Obtain the estimate/estimator of the parameters by the method of moments and the
method of maximum likelihood in the real (1): exponential population with parameter θ ,
(2): Poisson population with parameter λ. Assume that a simple random sample of size n

is available.

2.7.3. Let x1, . . . , xn be a simple random sample of size n from a point Bernoulli popula-
tion f2(x) = px(1 − p)1−x, x = 0, 1, 0 < p < 1 and zero elsewhere. Obtain the MLE as
well as moment estimator for p. [Note: These will be the same estimators for p in all the
populations based on Bernoulli trials, such as binomial population, geometric population,
negative binomial population].
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2.7.4. If possible, obtain moment estimators for the parameters of a real generalized
gamma population, f3(x) = c xα−1e−bxδ

, α > 0, b > 0, δ > 0, x ≥ 0 and zero else-
where, where c is the normalizing constant.

2.7.5. If possible, obtain the MLE of the parameters a, b in the following real uniform
population f4(x) = 1

b−a
, b > a, a ≤ x < b and zero elsewhere. What are the MLE if

a < x < b? What are the moment estimators in these two situations?

2.7.6. Construct the Bayes’ estimate/estimator of the parameter λ in a Poisson probability
law if the prior density for λ is a gamma density with known parameters (α, β).

2.7.7. By selecting the appropriate pivotal quantities, construct a 95% confidence interval
for (1): Poisson parameter λ; (2): Exponential parameter θ ; (3): Normal parameter σ 2; (4):
θ in a uniform density f (x) = 1

θ
, 0 ≤ x ≤ θ and zero elsewhere.

References

A.M. Mathai (1993): A Handbook of Generalized Special Functions for Statistical and
Physical Sciences, Oxford University Press, Oxford, 1993.

A.M.Mathai (1999): Introduction to Geometrical Probability: Distributional Aspects and
Applications, Gordon and Breach, Amsterdam, 1999.

A.M. Mathai (2005): A pathway to matrix-variate gamma and normal densities, Linear
Algebra and its Applications, 410, 198-216.

A.M. Mathai (2013): Fractional integral operators in the complex matrix-variate case,
Linear Algebra and its Applications, 439, 2901-2913.

A.M. Mathai (2014): Fractional integral operators involving many matrix variables, Lin-
ear Algebra and its Applications, 446, 196-215.

A.M. Mathai (2015): Fractional differential operators in the complex matrix-variate case,
Linear Algebra and its Applications, 478, 200-217.

A.M. Mathai and Hans J. Haubold (1988): Modern Problems in Nuclear and Neutrino
Astrophysics, Akademie-Verlag, Berlin.

A.M. Mathai and Hans J. Haubold (2017a): Linear Algebra, A course for Physicists and
Engineers, De Gruyter, Germany, 2017.

A.M. Mathai and Hans J. Haubold (2017b): Probability and Statistics, A course for Physi-
cists and Engineers, De Gruyter, Germany, 2017.



The Univariate Gaussian Density and Related Distributions 127

A.M. Mathai and Hans J. Haubold (2018): Erdélyi-Kober Fractional Calculus from a Sta-
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Chapter 3
The Multivariate Gaussian
and Related Distributions

3.1. Introduction

Real scalar mathematical as well as random variables will be denoted by lower-case
letters such as x, y, z, and vector/matrix variables, whether mathematical or random, will
be denoted by capital letters such as X, Y, Z, in the real case. Complex variables will
be denoted with a tilde: x̃, ỹ, X̃, Ỹ , for instance. Constant matrices will be denoted by
A, B, C, and so on. A tilde will be placed above constant matrices only if one wishes
to stress the point that the matrix is in the complex domain. Equations will be numbered
chapter and section-wise. Local numbering will be done subsection-wise. The determinant
of a square matrix A will be denoted by |A| or det(A) and, in the complex case, the
absolute value of the determinant of A will be denoted as |det(A)|. Observe that in the
complex domain, det(A) = a + ib where a and b are real scalar quantities, and then,
|det(A)|2 = a2 + b2.

Multivariate usually refers to a collection of scalar variables. Vector/matrix variable
situations are also of the multivariate type but, in addition, the positions of the variables
must also be taken into account. In a function involving a matrix, one cannot permute its
elements since each permutation will produce a different matrix. For example,

X =
[
x11 x12

x21 x22

]

, Y =
[
y11 y12 y13

y21 y22 y23

]

, X̃ =
[
x̃11 x̃12

x̃12 x̃22

]

are all multivariate cases but the elements or the individual variables must remain at the
set positions in the matrices.

The definiteness of matrices will be needed in our discussion. Definiteness is defined
and discussed only for symmetric matrices in the real domain and Hermitian matrices in
the complex domain. Let A = A′ be a real p × p matrix and Y be a p × 1 real vector,
Y ′ denoting its transpose. Consider the quadratic form Y ′AY , A = A′, for all possible Y

excluding the null vector, that is, Y 
= O. We say that the real quadratic form Y ′AY as well
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as the real matrix A = A′ are positive definite, which is denoted A > O, if Y ′AY > 0, for
all possible non-null Y . Letting A = A′ be a real p × p matrix, if for all real p × 1 vector
Y 
= O,

Y ′AY > 0, A > O (positive definite)

Y ′AY ≥ 0, A ≥ O (positive semi-definite) (3.1.1)

Y ′AY < 0, A < O (negative definite)

Y ′AY ≤ 0, A ≤ O (negative semi-definite).

All the matrices that do not belong to any one of the above categories are said to be
indefinite matrices, in which case A will have both positive and negative eigenvalues. For
example, for some Y , Y ′AY may be positive and for some other values of Y , Y ′AY may
be negative. The definiteness of Hermitian matrices can be defined in a similar manner. A
square matrix A in the complex domain is called Hermitian if A = A∗ where A∗ means
the conjugate transpose of A. Either the conjugates of all the elements of A are taken and
the matrix is then transposed or the matrix A is first transposed and the conjugate of each
of its elements is then taken. If z̃ = a + ib, i = √

(−1) and a, b real scalar, then the
conjugate of z̃, conjugate being denoted by a bar, is ¯̃z = a − ib, that is, i is replaced by
−i. For instance, since

B =
[

2 1 + i

1 − i 5

]

⇒ B̄ =
[

2 1 − i

1 + i 5

]

⇒ (B̄)′ = B̄ ′ =
[

2 1 + i

1 − i 5

]

= B∗,

B = B∗, and thus the matrix B is Hermitian. In general, if X̃ is a p × p matrix, then,
X̃ can be written as X̃ = X1 + iX2 where X1 and X2 are real matrices and i = √

(−1).
And if X̃ = X∗ then X̃ = X1 + iX2 = X∗ = X′

1 − iX′
2 or X1 is symmetric and X2

is skew symmetric so that all the diagonal elements of a Hermitian matrix are real. The
definiteness of a Hermitian matrix can be defined parallel to that in the real case. Let
A = A∗ be a Hermitian matrix. In the complex domain, definiteness is defined only for
Hermitian matrices. Let Y 
= O be a p × 1 non-null vector and let Y ∗ be its conjugate
transpose. Then, consider the Hermitian form Y ∗AY, A = A∗. If Y ∗AY > 0 for all
possible non-null Y 
= O, the Hermitian form Y ∗AY, A = A∗ as well as the Hermitian
matrix A are said to be positive definite, which is denoted A > O. Letting A = A∗, if for
all non-null Y ,

Y ∗AY > 0, A > O (Hermitian positive definite)

Y ∗AY ≥ 0, A ≥ O (Hermitian positive semi-definite)

Y ∗AY < 0, A < O (Hermitian negative definite) (3.1.2)

Y ∗AY ≤ 0, A ≤ O (Hermitian negative semi-definite),
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and when none of the above cases applies, we have indefinite matrices or indefinite Her-
mitian forms.

We will also make use of properties of the square root of matrices. If we were to define
the square root of A as B such as B2 = A, there would then be several candidates for B.
Since a multiplication of A with A is involved, A has to be a square matrix. Consider the
following matrices

A1 =
[

1 0
0 1

]

, A2 =
[−1 0

0 1

]

, A3 =
[

1 0
0 −1

]

,

A4 =
[−1 0

0 −1

]

, A5 =
[

0 1
1 0

]

,

whose squares are all equal to I2. Thus, there are clearly several candidates for the square
root of this identity matrix. However, if we restrict ourselves to the class of positive def-
inite matrices in the real domain and Hermitian positive definite matrices in the complex
domain, then we can define a unique square root, denoted by A

1
2 > O.

For the various Jacobians used in this chapter, the reader may refer to Chap. 1, further
details being available from Mathai (1997).

3.1a. The Multivariate Gaussian Density in the Complex Domain

Consider the complex scalar random variables x̃1, . . . , x̃p. Let x̃j = xj1 + ixj2 where
xj1, xj2 are real and i = √

(−1). Let E[xj1] = μj1, E[xj2] = μj2 and E[x̃j ] =
μj1 + iμj2 ≡ μ̃j . Let the variances be as follows: Var(xj1) = σ 2

j1, Var(xj2) = σ 2
j2. For a

complex variable, the variance is defined as follows:

Var(x̃j ) = E[x̃j − E(x̃j )][x̃j − E(x̃j )]∗
= E[(xj1 − μj1) + i(xj2 − μj2)][(xj1 − μj1) − i(xj2 − μj2)]
= E[(xj1 − μj1)

2 + (xj2 − μj2)
2] = Var(xj1) + Var(xj2) = σ 2

j1 + σ 2
j2

≡ σ 2
j .

A covariance matrix associated with the p × 1 vector X̃ = (x̃1, . . . , x̃p)′ in the complex
domain is defined as Cov(X̃) = E[X̃ − E(X̃)][X̃ − E(X̃)]∗ ≡ Σ with E(X̃) ≡ μ̃ =
(μ̃1, . . . , μ̃p)′. Then we have

Σ = Cov(X̃) =

⎡

⎢
⎢
⎢
⎣

σ 2
1 σ12 . . . σ1p

σ21 σ 2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ 2
p

⎤

⎥
⎥
⎥
⎦
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where the covariance between x̃r and x̃s , two distinct elements in X̃, requires explanation.
Let x̃r = xr1 + ixr2 and x̃s = xs1 + ixs2 where xr1, xr2, xs1, xs2 are all real. Then, the
covariance between x̃r and x̃s is

Cov(x̃r , x̃s) = E[x̃r − E(x̃r)][x̃s − E(x̃s)]∗ = Cov[(xr1 + ixr2), (xs1 − ixs2)]
= Cov(xr1, xs1) + Cov(xr2, xs2) + i[Cov(xr2, xs1) − Cov(xr1, xs2) = σrs].

Note that none of the individual covariances on the right-hand side need be equal to each
other. Hence, σrs need not be equal to σsr . In terms of vectors, we have the following: Let
X̃ = X1 + iX2 where X1 and X2 are real vectors. The covariance matrix associated with
X̃, which is denoted by Cov(X̃), is

Cov(X̃) = E([X̃ − E(X̃)][X̃ − E(X̃)]∗)
= E([(X1 − E(X1)) + i(X2 − E(X2))][(X′

1 − E(X′
1)) − i(X′

2 − E(X′
2))])

= Cov(X1, X1) + Cov(X2, X2) + i[Cov(X2, X1) − Cov(X1, X2)]
≡ Σ11 + Σ22 + i[Σ21 − Σ12]

where Σ12 need not be equal to Σ21. Hence, in general, Cov(X1, X2) need not be equal to
Cov(X2, X1). We will denote the whole configuration as Cov(X̃) = Σ and assume it to be
Hermitian positive definite. We will define the p-variate Gaussian density in the complex
domain as the following real-valued function:

f (X̃) = 1

πp|det(Σ)|e
−(X̃−μ̃)∗Σ−1(X̃−μ̃) (3.1a.1)

where |det(Σ)| denotes the absolute value of the determinant of Σ . Let us verify that the
normalizing constant is indeed 1

πp|det(Σ)| . Consider the transformation Ỹ = Σ− 1
2 (X̃ − μ̃)

which gives dX̃ = [det(ΣΣ∗)] 1
2 dỸ = |det(Σ)|dỸ in light of (1.6a.1). Then |det(Σ)| is

canceled and the exponent becomes −Ỹ ∗Ỹ = −[|ỹ1|2 + · · · + |ỹp|2]. But

∫

ỹj

e−|ỹj |2dỹj =
∫ ∞

−∞

∫ ∞

−∞
e−(y2

j1+y2
j2)dyj1 ∧ dyj2 = π, ỹj = yj1 + iyj2, (i)

which establishes the normalizing constant. Let us examine the mean value and the covari-
ance matrix of X̃ in the complex case. Let us utilize the same transformation, Σ− 1

2 (X̃−μ̃).
Accordingly,

E[X̃] = μ̃ + E[(X̃ − μ̃)] = μ̃ + Σ
1
2 E[Ỹ ].



The Multivariate Gaussian and Related Distributions 133

However,

E[Ỹ ] = 1

πp

∫

Ỹ

Ỹ e−Ỹ ∗Ỹ dỸ ,

and the integrand has each element in Ỹ producing an odd function whose integral con-
verges, so that the integral over Ỹ is null. Thus, E[X̃] = μ̃, the first parameter appearing
in the exponent of the density (3.1a.1). Now the covariance matrix in X̃ is the following:

Cov(X̃) = E([X̃ − E(X̃)][X̃ − E(X̃)]∗) = Σ
1
2 E[Ỹ Ỹ ∗]Σ 1

2 .

We consider the integrand in E[Ỹ Ỹ ∗] and follow steps parallel to those used in the real
case. It is a p × p matrix where the non-diagonal elements are odd functions whose in-
tegrals converge and hence each of these elements will integrate out to zero. The first
diagonal element in Ỹ Ỹ ∗ is |ỹ1|2. Its associated integral is

∫

. . .

∫

|ỹ1|2e−(|ỹ1|2+···+|ỹp|2)dỹ1 ∧ . . . ∧ dỹp

=
{ p∏

j=2

e−|ỹj |2dỹj

} ∫

ỹ1

|ỹ1|2e−|ỹ1|2dỹ1.

From (i),
∫

ỹ1

|ỹ1|2e−|ỹ1|2dỹ1 = π;
p∏

j=2

∫

ỹj

e−|ỹj |2dỹj = πp−1,

where |ỹ1|2 = y2
11 + y2

12, ỹ1 = y11 + iy12, i = √
(−1), and y11, y12 real. Let y11 =

r cos θ, y12 = r sin θ ⇒ dy11 ∧ dy12 = r dr ∧ dθ and

∫

ỹ1

|ỹ1|2e−|ỹ1|2dỹ1 =
( ∫ ∞

r=0
r(r2)e−r2

dr
)( ∫ 2π

θ=0
dθ
)
, (letting u = r2)

= (2π)
(1

2

∫ ∞

0
ue−udu

)
= (2π)

(1

2

)
= π.

Thus the first diagonal element in Ỹ Ỹ ∗ integrates out to πp and, similarly, each diagonal
element will integrate out to πp, which is canceled by the term πp present in the normal-
izing constant. Hence the integral over Ỹ Ỹ ∗ gives an identity matrix and the covariance
matrix of X̃ is Σ , the other parameter appearing in the density (3.1a.1). Hence the two
parameters therein are the mean value vector and the covariance matrix of X̃.
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Example 3.1a.1. Consider the matrix Σ and the vector X̃ with expected value E[X̃] = μ̃

as follows:

Σ =
[

2 1 + i

1 − i 3

]

, X̃ =
[
x̃1

x̃2

]

, E[X̃] =
[

1 + 2i

2 − i

]

= μ̃.

Show that Σ is Hermitian positive definite so that it can be a covariance matrix of X̃,
that is, Cov(X̃) = Σ . If X̃ has a bivariate Gaussian distribution in the complex domain;
X̃ ∼ Ñ2(μ̃, Σ), Σ > O, then write down (1) the exponent in the density explicitly; (2)
the density explicitly.

Solution 3.1a.1. The transpose and conjugate transpose of Σ are

Σ ′ =
[

2 1 − i

1 + i 3

]

, Σ∗ = Σ̄ ′ =
[

2 1 + i

1 − i 3

]

= Σ

and hence Σ is Hermitian. The eigenvalues of Σ are available from the equation

(2 − λ)(3 − λ) − (1 − i)(1 + i) = 0 ⇒ λ2 − 5λ + 4 = 0

⇒ (λ − 4)(λ − 1) or λ1 = 4, λ2 = 1.

Thus, the eigenvalues are positive [the eigenvalues of a Hermitian matrix will always
be real]. This property of eigenvalues being positive, combined with the property that Σ

is Hermitian proves that Σ is Hermitian positive definite. This can also be established
from the leading minors of Σ . The leading minors are det((2)) = 2 > 0 and det(Σ) =
(2)(3) − (1 − i)(1 + i) = 4 > 0. Since Σ is Hermitian and its leading minors are all
positive, Σ is positive definite. Let us evaluate the inverse by making use of the formula
Σ−1 = 1

det(Σ)
(Cof(Σ))′ where Cof(Σ) represents the matrix of cofactors of the elements

in Σ . [These formulae hold whether the elements in the matrix are real or complex]. That
is,

Σ−1 = 1

4

[
3 −(1 + i)

−(1 − i) 2

]

, Σ−1Σ = I. (ii)

The exponent in a bivariate complex Gaussian density being −(X̃ − μ̃)∗ Σ−1(X̃ − μ̃), we
have

−(X̃ − μ̃)∗ Σ−1(X̃ − μ̃) = −1

4
{3 [x̃1 − (1 + 2i)]∗[x̃1 − (1 + 2i)]

− (1 + i) [x̃1 − (1 + 2i)]∗[x̃2 − (2 − i)]
− (1 − i) [x̃2 − (2 − i)]∗[x̃1 − (1 + 2i)]
+ 2 [x̃2 − (2 − i)]∗[x̃2 − (2 − i)]}. (iii)
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Thus, the density of the Ñ2(μ̃, Σ) vector whose components can assume any complex
value is

f (X̃) = e−(X̃−μ̃)∗ Σ−1(X̃−μ̃)

4 π2
(3.1a.2)

where Σ−1 is given in (ii) and the exponent, in (iii).

Exercises 3.1

3.1.1. Construct a 2×2 Hermitian positive definite matrix A and write down a Hermitian
form with this A as its matrix.

3.1.2. Construct a 2 × 2 Hermitian matrix B where the determinant is 4, the trace is 5,
and first row is 2, 1 + i. Then write down explicitly the Hermitian form X∗BX.

3.1.3. Is B in Exercise 3.1.2 positive definite? Is the Hermitian form X∗BX positive
definite? Establish the results.

3.1.4. Construct two 2 × 2 Hermitian matrices A and B such that AB = O (null), if that
is possible.

3.1.5. Specify the eigenvalues of the matrix B in Exercise 3.1.2, obtain a unitary matrix
Q, QQ∗ = I, Q∗Q = I such that Q∗BQ is diagonal and write down the canonical form
for a Hermitian form X∗BX = λ1|y1|2 + λ2|y2|2.

3.2. The Multivariate Normal or Gaussian Distribution, Real Case

We may define a real p-variate Gaussian density via the following characterization: Let
x1, .., xp be real scalar variables and X be a p × 1 vector with x1, . . . , xp as its elements,
that is, X′ = (x1, . . . , xp). Let L′ = (a1, . . . , ap) where a1, . . . , ap are arbitrary real
scalar constants. Consider the linear function u = L′X = X′L = a1x1 + · · · + apxp.
If, for all possible L, u = L′X has a real univariate Gaussian distribution, then the
vector X is said to have a multivariate Gaussian distribution. For any linear function
u = L′X, E[u] = L′E[X] = L′μ, μ′ = (μ1, . . . , μp), μj = E[xj ], j = 1, . . . , p,
and Var(u) = L′ΣL, Σ = Cov(X) = E[X − E(X)][X − E(X)]′ in the real case. If u is
univariate normal then its mgf, with parameter t , is the following:

Mu(t) = E[etu] = etE(u)+ t2
2 Var(u) = etL′μ+ t2

2 L′ΣL.

Note that tL′μ + t2

2 L′ΣL = (tL)′μ + 1
2(tL)′Σ(tL) where there are p parameters

a1, . . . , ap when the aj ’s are arbitrary. As well, tL contains only p parameters as, for
example, taj is a single parameter when both t and aj are arbitrary. Then,
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Mu(t) = MX(tL) = e(tL)′μ+ 1
2 (tL)′Σ(tL) = eT ′μ+ 1

2 T ′ΣT = MX(T ), T = tL. (3.2.1)

Thus, when L is arbitrary, the mgf of u qualifies to be the mgf of a p-vector X. The density
corresponding to (3.2.1) is the following, when Σ > O:

f (X) = c e− 1
2 (X−μ)′Σ−1(X−μ), −∞ < xj < ∞, −∞ < μj < ∞, Σ > O

for j = 1, . . . , p. We can evaluate the normalizing constant c when f (X) is a density, in
which case the total integral is unity. That is,

1 =
∫

X

f (X)dX =
∫

X

c e− 1
2 (X−μ)′Σ−1(X−μ)dX.

Let Σ− 1
2 (X − μ) = Y ⇒ dY = |Σ |− 1

2 d(X − μ) = |Σ |− 1
2 dX since μ is a constant. The

Jacobian of the transformation may be obtained from Theorem 1.6.1. Now,

1 = c|Σ | 1
2

∫

Y

e− 1
2 Y ′Y dY.

But Y ′Y = y2
1 +· · ·+y2

p where y1, . . . , yp are the real elements in Y and
∫∞
−∞ e− 1

2 y2
j dyj =√

2π . Hence
∫
Y

e− 1
2 Y ′Y dY = (

√
2π)p. Then c = [|Σ | 1

2 (2π)
p
2 ]−1 and the p-variate real

Gaussian or normal density is given by

f (X) = 1

|Σ | 1
2 (2π)

p
2

e− 1
2 (X−μ)′Σ−1(X−μ) (3.2.2)

for Σ > O, −∞ < xj < ∞, −∞ < μj < ∞, j = 1, . . . , p. The density (3.2.2) is
called the nonsingular normal density in the real case—nonsingular in the sense that Σ is
nonsingular. In fact, Σ is also real positive definite in the nonsingular case. When Σ is
singular, we have a singular normal distribution which does not have a density function.
However, in the singular case, all the properties can be studied with the help of the asso-
ciated mgf which is of the form in (3.2.1), as the mgf exists whether Σ is nonsingular or
singular.

We will use the standard notation X ∼ Np(μ, Σ) to denote a p-variate real normal or
Gaussian distribution with mean value vector μ and covariance matrix Σ . If it is nonsingu-
lar real Gaussian, we write Σ > O; if it is singular normal, then we specify |Σ | = 0. If we
wish to combine the singular and nonsingular cases, we write X ∼ Np(μ, Σ), Σ ≥ O.
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What are the mean value vector and the covariance matrix of a real p-Gaussian vector
X?

E[X] = E[X − μ] + E[μ] = μ +
∫

X

(X − μ)f (X)dX

= μ + 1

|Σ | 1
2 (2π)

p
2

∫

X

(X − μ) e− 1
2 (X−μ)′Σ−1(X−μ)dX

= μ + Σ
1
2

(2π)
p
2

∫

Y

Y e− 1
2 Y ′Y dY, Y = Σ− 1

2 (X − μ).

The expected value of a matrix is the matrix of the expected value of every element in the
matrix. The expected value of the component yj of Y ′ = (y1, . . . , yp) is

E[yj ] = 1√
2π

∫ ∞

−∞
yje− 1

2 y2
j dyj

{ p∏

i 
=j=1

1√
2π

∫ ∞

−∞
e− 1

2 y2
i dyi

}
.

The product is equal to 1 and the first integrand being an odd function of yj , it is equal to
0 since integral is convergent. Thus, E[Y ] = O (a null vector) and E[X] = μ, the first
parameter appearing in the exponent of the density. Now, consider the covariance matrix
of X. For a vector real X,

Cov(X) = E[X − E(X)][X − E(X)]′ = E[(X − μ)(X − μ)′]
= 1

|Σ | 1
2 (2π)

p
2

∫

X

(X − μ)(X − μ)′e− 1
2 (X−μ)′Σ−1(X−μ)dX

= 1

(2π)
p
2
Σ

1
2

[ ∫

Y

YY ′e− 1
2 Y ′Y dY

]
Σ

1
2 , Y = Σ− 1

2 (X − μ).

But

YY ′ =
⎡

⎢
⎣

y1
...

yp

⎤

⎥
⎦ [y1, . . . , yp] =

⎡

⎢
⎢
⎢
⎣

y2
1 y1y2 · · · y1yp

y2y1 y2
2 · · · y2yp

...
...

. . .
...

ypy1 ypy2 · · · y2
p

⎤

⎥
⎥
⎥
⎦

.

The non-diagonal elements are linear in each variable yi and yj , i 
= j and hence the inte-
grals over the non-diagonal elements will be equal to zero due to a property of convergent
integrals over odd functions. Hence we only need to consider the diagonal elements. When
considering y1, the integrals over y2, . . . , yp will give the following:

∫ ∞

−∞
e− 1

2 y2
j dyj = √

2π, j = 2, . . . , p ⇒ (2π)
p−1

2
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and hence we are left with

1√
2π

∫ ∞

−∞
y2

1e− 1
2 y2

1 dy1 = 2√
2π

∫ ∞

0
y2

1e− 1
2 y2

1 dy1

due to evenness of the integrand, the integral being convergent. Let u = y2
1 so that y1 = u

1
2

since y1 > 0. Then dy1 = 1
2u

1
2 −1du. The integral is available as Γ (3

2)2
3
2 = 1

2Γ (1
2)2

3
2 =√

2π since Γ (1
2) = √

π , and the constant is canceled leaving 1. This shows that each
diagonal element integrates out to 1 and hence the integral over YY ′ is the identity matrix
after absorbing (2π)−

p
2 . Thus Cov(X) = Σ

1
2 Σ

1
2 = Σ the inverse of which is the other

parameter appearing in the exponent of the density. Hence the two parameters are

μ =E[X] and Σ = Cov(X). (3.2.3)

The bivariate case
When p = 2, we obtain the bivariate real normal density from (3.2.2), which is denoted
by f (x1, x2). Note that when p = 2,

(X − μ)′Σ−1(X − μ) = (x1 − μ1, x2 − μ2) Σ−1
(

x1 − μ1

x2 − μ2

)

,

Σ =
(

σ11 σ12

σ21 σ22

)

=
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)

,

where σ 2
1 = Var(x1) = σ11, σ 2

2 = Ver(x2) = σ22, σ12 = Cov(x1, x2) = σ1σ2ρ where ρ

is the correlation between x1 and x2, and ρ, in general, is defined as

ρ = Cov(x1, x2)√
Var(x1)Var(x2)

= σ12

σ1σ2
, σ1 
= 0, σ2 
= 0,

which means that ρ is defined only for non-degenerate random variables, or equivalently,
that the probability mass of either variable should not lie at a single point. This ρ is a scale-
free covariance, the covariance measuring the joint variation in (x1, x2) corresponding to
the square of scatter, Var(x), in a real scalar random variable x. The covariance, in general,
depends upon the units of measurements of x1 and x2, whereas ρ is a scale-free pure
coefficient. This ρ does not measure relationship between x1 and x2 for −1 < ρ < 1.
But for ρ = ±1 it can measure linear relationship. Oftentimes, ρ is misinterpreted as
measuring any relationship between x1 and x2, which is not the case as can be seen from
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the counterexamples pointed out in Mathai and Haubold (2017). If ρx,y is the correlation
between two real scalar random variables x and y and if u = a1x + b1 and v = a2y + b2

where a1 
= 0, a2 
= 0 and b1, b2 are constants, then ρu,v = ±ρx,y . It is positive when
a1 > 0, a2 > 0 or a1 < 0, a2 < 0 and negative otherwise. Thus, ρ is both location and
scale invariant.

The determinant of Σ in the bivariate case is

|Σ | =
∣
∣
∣
∣

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

∣
∣
∣
∣ = σ 2

1 σ 2
2 (1 − ρ2), −1 < ρ < 1, σ1 > 0, σ2 > 0.

The inverse is as follows, taking the inverse as the transpose of the matrix of cofactors
divided by the determinant:

Σ−1 = 1

σ 2
1 σ 2

2 (1 − ρ2)

[
σ 2

2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]

= 1

1 − ρ2

[ 1
σ 2

1
− ρ

σ1σ2

− ρ
σ1σ2

1
σ 2

2

]

. (3.2.4)

Then,

(X − μ)′Σ−1(X − μ) =
(x1 − μ1

σ1

)2 +
(x2 − μ2

σ2

)2 − 2ρ
(x1 − μ1

σ1

)(x2 − μ2

σ2

)
≡ Q.

(3.2.5)
Hence, the real bivariate normal density is

f (x1, x2) = 1

2πσ1σ2

√
(1 − ρ2)

e
− Q

2(1−ρ2) (3.2.6)

where Q is given in (3.2.5). Observe that Q is a positive definite quadratic form and hence
Q > 0 for all X and μ. We can also obtain an interesting result on the standardized
variables of x1 and x2. Let the standardized xj be yj = xj−μj

σj
, j = 1, 2 and u = y1 − y2.

Then

Var(u) = Var(y1) + Var(y2) − 2Cov(y1, y2) = 1 + 1 − 2ρ = 2(1 − ρ). (3.2.7)

This shows that the smaller the absolute value of ρ is, the larger the variance of u, and
vice versa, noting that −1 < ρ < 1 in the bivariate real normal case but in general,
−1 ≤ ρ ≤ 1. Observe that if ρ = 0 in the bivariate normal density given in (3.2.6),
this joint density factorizes into the product of the marginal densities of x1 and x2, which
implies that x1 and x2 are independently distributed when ρ = 0. In general, for real scalar
random variables x and y, ρ = 0 need not imply independence; however, in the bivariate
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normal case, ρ = 0 if and only if x1 and x2 are independently distributed. As well, the
exponent in (3.2.6) has the following feature:

Q = (X−μ)′Σ−1(X−μ) =
(x1 − μ1

σ1

)2+
(x2 − μ2

σ2

)2−2ρ
(x1 − μ1

σ1

)(x2 − μ2

σ2

)
= c

(3.2.8)
where c is positive describes an ellipse in two-dimensional Euclidean space, and for a
general p,

(X − μ)′Σ−1(X − μ) = c > 0, Σ > O, (3.2.9)

describes the surface of an ellipsoid in the p-dimensional Euclidean space, observing that
Σ−1 > O when Σ > O.

Example 3.2.1. Let

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , μ =
⎡

⎣
1

−1
−2

⎤

⎦ , Σ =
⎡

⎣
3 0 −1
0 3 1

−1 1 2

⎤

⎦ .

Show that Σ > O and that Σ can be a covariance matrix for X. Taking E[X] = μ and
Cov(X) = Σ, construct the exponent of a trivariate real Gaussian density explicitly and
write down the density.

Solution 3.2.1. Let us verify the definiteness of Σ . Note that Σ = Σ ′ (symmetric). The

leading minors are |(3)| = 3 > 0,

∣
∣
∣
∣

3 0
0 3

∣
∣
∣
∣ = 9 > 0, |Σ | = 12 > 0, and hence Σ > O.

The matrix of cofactors of Σ , that is, Cof(Σ) and the inverse of Σ are the following:

Cof(Σ) =
⎡

⎣
5 −1 3

−1 5 −3
3 −3 9

⎤

⎦ , Σ−1 = 1

12

⎡

⎣
5 −1 3

−1 5 −3
3 −3 9

⎤

⎦ . (i)

Thus the exponent of the trivariate real Gaussian density is −1
2Q where

Q = 1

12
[x1 − 1, x2 + 1, x3 + 2]

⎡

⎣
5 −1 3

−1 5 −3
3 −3 9

⎤

⎦

⎡

⎣
x1 − 1
x2 + 1
x3 + 2

⎤

⎦

= 1

12
{5(x1 − 1)2 + 5(x2 + 1)2 + 9(x3 + 2)2 − 2(x1 − 1)(x2 + 1)

+ 6(x1 − 1)(x3 + 2) − 6(x2 + 1)(x3 + 2)}. (ii)
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The normalizing constant of the density being

(2π)
p
2 |Σ | 1

2 = (2π)
3
2 [12] 1

2 = 2
5
2
√

3π
3
2 ,

the resulting trivariate Gaussian density is

f (X) = [2 5
2
√

3π
3
2 ]−1e− 1

2 Q

for −∞ < xj < ∞, j = 1, 2, 3, where Q is specified in (ii).

3.2.1. The moment generating function in the real case

We have defined the multivariate Gaussian distribution via the following character-
ization whose proof relies on its moment generating function: if all the possible linear
combinations of the components of a random vector are real univariate normal, then this
vector must follow a real multivariate Gaussian distribution. We are now looking into the
derivation of the mgf given the density. For a parameter vector T , with T ′ = (t1, . . . , tp),
we have

MX(T ) = E[eT ′X] =
∫

X

eT ′Xf (X)dX = eT ′μE[eT ′(X−μ)]

= eT ′μ

|Σ | 1
2 (2π)

p
2

∫

X

eT ′(X−μ)− 1
2 (X−μ)′Σ−1(X−μ)dX.

Observe that the moment generating function (mgf) in the real multivariate case is the
expected value of e raised to a linear function of the real scalar variables. Making the
transformation Y = Σ− 1

2 (X − μ) ⇒ dY = |Σ |− 1
2 dX. The exponent can be simplified as

follows:

T ′(X − μ) − 1

2
(X − μ)′Σ−1(X − μ) = −1

2
{−2T ′Σ

1
2 Y + Y ′Y }

= −1

2
{(Y − Σ

1
2 T )′(Y − Σ

1
2 T ) − T ′ΣT }.

Hence

MX(T ) = eT ′μ+ 1
2 T ′ΣT 1

(2π)
p
2

∫

Y

e− 1
2 (Y−Σ

1
2 T )′(Y−Σ

1
2 T )dY.

The integral over Y is 1 since this is the total integral of a multivariate normal density
whose mean value vector is Σ

1
2 T and covariance matrix is the identity matrix. Thus the

mgf of a multivariate real Gaussian vector is

MX(T ) = eT ′μ+ 1
2 T ′ΣT . (3.2.10)
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In the singular normal case, we can still take (3.2.10) as the mgf for Σ ≥ O (non-negative
definite), which encompasses the singular and nonsingular cases. Then, one can study
properties of the normal distribution whether singular or nonsingular via (3.2.10).

We will now apply the differential operator ∂
∂T

defined in Sect. 1.7 on the moment
generating function of a p × 1 real normal random vector X and evaluate the result at
T = O to obtain the mean value vector of this distribution, that is, μ = E[X]. As well,
E[XX′] is available by applying the operator ∂

∂T
∂

∂T ′ on the mgf, and so on. From the mgf
in (3.2.10), we have

∂

∂T
MX(T )|T =O = ∂

∂T
eT ′μ+ 1

2 T ′ΣT |T =O

= [eT ′μ+ 1
2 T ′ΣT [μ + ΣT ]|T =O] ⇒ μ = E[X]. (i)

Then,

∂

∂T ′MX(T ) = eT ′μ+ 1
2 T ′ΣT [μ′ + T ′Σ]. (ii)

Remember to write the scalar quantity, MX(T ), on the left for scalar multiplication of
matrices. Now,

∂

∂T

∂

∂T ′MX(T ) = ∂

∂T
eT ′μ+ 1

2 T ′ΣT [μ′ + T ′Σ]
= MX(T )[μ + ΣT ][μ′ + T ′Σ] + MX(T )[Σ].

Hence,

E[XX′] =
[ ∂

∂T

∂

∂T ′MX(T )|T =O

]
= Σ + μμ′. (iii)

But
Cov(X) = E[XX′] − E[X]E[X′] = (Σ + μμ′) − μμ′ = Σ. (iv)

In the multivariate real Gaussian case, we have only two parameters μ and Σ and both of
these are available from the above equations. In the general case, we can evaluate higher
moments as follows:

E[ · · · X′XX′] = · · · ∂

∂T ′
∂

∂T

∂

∂T ′MX(T )|T =O . (v)

If the characteristic function φX(T ), which is available from the mgf by replacing T by
iT , i = √

(−1), is utilized, then multiply the left-hand side of (v) by i = √
(−1) with each

operator operating on φX(T ) because φX(T ) = MX(iT ). The corresponding differential
operators can also be developed for the complex case.
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Given a real p-vector X ∼ Np(μ, Σ), Σ > O, what will be the distribution of a
linear function of X? Let u = L′X, X ∼ Np(μ, Σ), Σ > O, L′ = (a1, . . . , ap) where
a1, . . . , ap are real scalar constants. Let us examine its mgf whose argument is a real scalar
parameter t . The mgf of u is available by integrating out over the density of X. We have

Mu(t) = E[etu] = E[etL′X] = E[e(tL′)X].

This is of the same form as in (3.2.10) and hence, Mu(t) is available from (3.2.10) by
replacing T ′ by (tL′), that is,

Mu(t) = et (L′μ)+ t2
2 L′ΣL ⇒ u ∼ N1(L

′μ, L′ΣL). (3.2.11)

This means that u is a univariate normal with mean value L′μ = E[u] and the variance of
L′ΣL = Var(u). Now, let us consider a set of linearly independent linear functions of X.
Let A be a real q × p, q ≤ p matrix of full rank q and let the linear functions U = AX

where U is q × 1. Then E[U ] = AE[X] = Aμ and the covariance matrix in U is

Cov(U) = E[U − E(U)][U − E(U)]′ = E[A(X − μ)(X − μ)′A′]
= AE[(X − μ)(X − μ)′]A′ = A ΣA′.

Observe that since Σ > O, we can write Σ = Σ1Σ
′
1 so that AΣA′ = (AΣ1)(AΣ1)

′
and AΣ1 is of full rank which means that AΣA′ > O. Therefore, letting T be a q × 1
parameter vector, we have

MU(T ) = E[eT ′U ] = E[eT ′AX] = E[e(T ′A)X],

which is available from (3.2.10). That is,

MU(T ) = eT ′Aμ+ 1
2 (T ′AΣA′T ) ⇒ U ∼ Nq(Aμ, AΣA′).

Thus U is a q-variate multivariate normal with parameters Aμ and AΣA′ and we have the
following result:

Theorem 3.2.1. Let the vector random variable X have a real p-variate nonsingular
Np(μ, Σ) distribution and the q × p matrix A with q ≤ p, be a full rank constant matrix.
Then

U = AX ∼ Nq(Aμ, AΣA′), AΣA > O. (3.2.12)
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Corollary 3.2.1. Let the vector random variable X have a real p-variate nonsingular
Np(μ, Σ) distribution and B be a 1 × p constant vector. Then U1 = BX has a univariate
normal distribution with parameters Bμ and BΣB ′.

Example 3.2.2. Let X, μ = E[X], Σ = Cov(X), Y, and A be as follows:

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , μ =
⎡

⎣
2
0

−1

⎤

⎦ , Σ =
⎡

⎣
4 −2 0

−2 3 1
0 1 2

⎤

⎦ , Y =
[
y1

y2

]

.

Let y1 = x1 + x2 + x3 and y2 = x1 − x2 + x3 and write Y = AX. If Σ > O and if
X ∼ N3(μ, Σ), derive the density of (1) Y ; (2) y1 directly as well as from (1).

Solution 3.2.2. The leading minors of Σ are |(4)| = 4 > 0,

∣
∣
∣
∣

4 −2
−2 3

∣
∣
∣
∣ = 8 >

0, |Σ | = 12 > 0 and Σ = Σ ′. Being symmetric and positive definite, Σ is a bona fide
covariance matrix. Now, Y = AX where

A =
[

1 1 1
1 −1 1

]

;

E[Y ] = AE[X] = A

⎡

⎣
2
0

−1

⎤

⎦ =
[

1 1 1
1 −1 1

]
⎡

⎣
2
0

−1

⎤

⎦ =
[

1
1

]

; (i)

Cov(Y ) = A Cov(X)A′ =
[

1 1 1
1 −1 1

]
⎡

⎣
4 −2 0

−2 3 1
0 1 2

⎤

⎦

⎡

⎣
1 1
1 −1
1 1

⎤

⎦ =
[

7 3
3 11

]

. (ii)

Since A is of full rank (rank 2) and y1 and y2 are linear functions of the real Gaussian
vector X, Y has a bivariate nonsingular real Gaussian distribution with parameters E(Y )

and Cov(Y ). Since
[

7 3
3 11

]−1

= 1

68

[
11 −3

−3 7

]

,

the density of Y has the exponent −1
2Q where

Q = 1

68

{

[y1 − 1, y2 − 1]
[

11 −3
−3 7

] [
y1 − 1
y2 − 1

]}

= 1

68
{11(y1 − 1)2 + 7(y2 − 1)2 − 6(y1 − 1)(y2 − 1)}. (iii)
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The normalizing constant being (2π)
p
2 |Σ | 1

2 = 2π
√

68 = 4
√

17π , the density of Y , de-
noted by f (Y ), is given by

f (Y ) = 1

4
√

17π
e− 1

2 Q (iv)

where Q is specified in (iii). This establishes (1). For establishing (2), we first start with the

formula. Let y1 = A1X ⇒ A1 = [1, 1, 1], E[y1] = A1E[X] = [1, 1, 1]
⎡

⎣
2
0

−1

⎤

⎦ = 1

and

Var(y1) = A1Cov(X)A′
1 = [1, 1, 1]

⎡

⎣
4 −2 0

−2 3 1
0 1 2

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦ = 7.

Hence y1 ∼ N1(1, 7). For establishing this result directly, observe that y1 is a linear func-
tion of real normal variables and hence, it is univariate real normal with the parameters
E[y1] and Var(y1). We may also obtain the marginal distribution of y1 directly from the
parameters of the joint density of y1 and y2, which are given in (i) and (ii). Thus, (2) is
also established.

The marginal distributions can also be determined from the mgf. Let us partition T , μ

and Σ as follows:

T =
[
T1

T2

]

, μ =
[
μ(1)

μ(2)

]

, Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, X =
[
X1

X2

]

(v)

where T1, μ(1), X1 are r × 1 and Σ11 is r × r . Letting T2 = O (the null vector), we have

T ′μ + 1

2
T ′ΣT = [T ′

1, O
′]
[
μ(1)

μ(2)

]

+ 1

2
[T ′

1, O
′]
[
Σ11 Σ12

Σ21 Σ22

] [
T1

O

]

= T ′
1 μ(1) + 1

2
T ′

1 Σ11T1,

which is the structure of the mgf of a real Gaussian distribution with mean value vector
E[X1] = μ(1) and covariance matrix Cov(X1) = Σ11. Therefore X1 is an r-variate real
Gaussian vector and similarly, X2 is (p − r)-variate real Gaussian vector. The standard
notation used for a p-variate normal distribution is X ∼ Np(μ, Σ), Σ ≥ O, which
includes the nonsingular and singular cases. In the nonsingular case, Σ > O, whereas
|Σ | = 0 in the singular case.
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From the mgf in (3.2.10) and (i) above, if we have Σ12 = O with Σ21 = Σ ′
12, then the

mgf of X =
(

X1

X2

)

becomes eT ′
1 μ(1)+T ′

2 μ(2)+ 1
2 T ′

1 Σ11T1+ 1
2 T ′

2 Σ22T2 . That is,

MX(T ) = MX1(T1)MX2(T2),

which implies that X1 and X2 are independently distributed. Hence the following result:

Theorem 3.2.2. Let the real p × 1 vector X ∼ Np(μ, Σ), Σ > O, and let X be
partitioned into subvectors X1 and X2, with the corresponding partitioning of μ and Σ ,
that is,

X =
(

X1

X2

)

, μ =
(

μ(1)

μ(2)

)

, Σ =
(

Σ11 Σ12

Σ21 Σ22

)

.

Then, X1 and X2 are independently distributed if and only if Σ12 = Σ ′
21 = O.

Observe that a covariance matrix being null need not imply independence of the sub-
vectors; however, in the case of subvectors having a joint normal distribution, it suffices to
have a null covariance matrix to conclude that the subvectors are independently distributed.

3.2a. The Moment Generating Function in the Complex Case

The determination of the mgf in the complex case is somewhat different. Take a p-
variate complex Gaussian X̃ ∼ Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O. Let T̃ ′ = (t̃1, . . . , t̃p) be a
parameter vector. Let T̃ = T1+iT2, where T1 and T2 are p×1 real vectors and i = √

(−1).
Let X̃ = X1 + iX2 with X1 and X2 being real. Then consider T̃ ∗X̃ = (T ′

1 − iT ′
2)(X1 +

iX2) = T ′
1X1 +T ′

2X2 + i(T ′
1X2 −T ′

2X1). But T ′
1X1 +T ′

2X2 already contains the necessary
number of parameters and all the corresponding real variables and hence to be consistent
with the definition of the mgf in the real case one must take only the real part in T̃ ∗X̃.
Hence the mgf in the complex case, denoted by MX̃(T̃ ), is defined as E[e�(T̃ ∗X̃)]. For

convenience, we may take X̃ = X̃ − μ̃ + μ̃. Then E[e�(T̃ ∗X̃)] = e�(T̃ ∗μ̃)E[e�(T̃ ∗(X̃−μ̃))].
On making the transformation Ỹ = Σ− 1

2 (X̃ − μ̃), |det(Σ)| appearing in the denominator
of the density of X̃ is canceled due to the Jacobian of the transformation and we have
(X̃ − μ̃) = Σ

1
2 Ỹ . Thus,

E[e�(T̃ ∗Ỹ )] = 1

πp

∫

Ỹ

e�(T̃ ∗Σ
1
2 Ỹ ) − Ỹ ∗Ỹ dỸ . (i)

For evaluating the integral in (i), we can utilize the following result which will be stated
here as a lemma.
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Lemma 3.2a.1. Let Ũ and Ṽ be two p × 1 vectors in the complex domain. Then

2 �(Ũ∗Ṽ ) = U∗Ṽ + Ṽ ∗Ũ = 2 �(Ṽ ∗Ũ ).

Proof: Let Ũ = U1 + iU2, Ṽ = V1 + iV2 where U1, U2, V1, V2 are real vectors and
i = √

(−1). Then Ũ∗Ṽ = [U ′
1 − iU ′

2][V1 + iV2] = U ′
1V1 + U ′

2V2 + i[U ′
1V2 − U ′

2V1].
Similarly Ṽ ∗Ũ = V ′

1U1 + V ′
2U2 + i[V ′

1U2 − V ′
2U1]. Observe that since U1, U2, V1, V2 are

real, we have U ′
iVj = V ′

jUi for all i and j . Hence, the sum Ũ∗Ṽ + Ṽ ∗Ũ = 2[U ′
1V1 +

U ′
2V2] = 2 �(Ṽ ∗Ũ ). This completes the proof.

Now, the exponent in (i) can be written as

�(T̃ ∗Σ
1
2 Ỹ ) = 1

2
T̃ ∗Σ

1
2 Ỹ + 1

2
Ỹ ∗Σ

1
2 T̃

by using Lemma 3.2a.1, observing that Σ = Σ∗. Let us expand (Ỹ − C)∗(Ỹ − C) as
Ỹ ∗Ỹ − Ỹ ∗C − C∗Ỹ + C∗C for some C. Comparing with the exponent in (i), we may take
C∗ = 1

2 T̃ ∗Σ 1
2 so that C∗C = 1

4 T̃ ∗ΣT̃ . Therefore in the complex Gaussian case, the mgf
is

MX̃(T̃ ) = e�(T̃ ∗μ̃)+ 1
4 T̃ ∗ΣT̃ . (3.2a.1)

Example 3.2a.1. Let X̃, E[X̃] = μ̃, Cov(X̃) = Σ be the following where X̃ ∼
Ñ2(μ̃, Σ), Σ > O,

X̃ =
[
x̃1

x̃2

]

, μ̃ =
[

1 − i

2 − 3i

]

, Σ =
[

3 1 + i

1 − i 2

]

.

Compute the mgf of X̃ explicitly.

Solution 3.2a.1. Let T̃ =
[
t̃1
t̃2

]

where let t̃1 = t11 + it12, t̃2 = t21 + it22 with

t11, t12, t21, t22 being real scalar parameters. The mgf of X̃ is

MX̃(T̃ ) = e�(T̃ ∗μ̃)+ 1
4 T̃ ∗ΣT̃ .

Consider the first term in the exponent of the mgf:

�(T̃ ∗μ̃) = �
{
[t11 − it12, t21 − it22]

[
1 − i

2 − 3i

] }

= �{(t11 − it12)(1 − i) + (t21 − it22)(2 − 3i)}
= t11 − t12 + 2t21 − 3t22.
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The second term in the exponent is the following:

1

4
T̃ ∗ΣT̃ = 1

4

{
[t̃∗1 , t̃∗2 ]

[
3 1 + i

1 − i 2

] [
t̃1
t̃2

] }

= 1

4
{3t̃∗1 t̃1 + 2t̃∗2 t̃2 + (1 + i)t̃∗1 t̃2 + (1 − i)t̃∗2 t̃1.}.

Note that since the parameters are scalar quantities, the conjugate transpose means only
the conjugate or t̃∗j = ¯̃tj , j = 1, 2. Let us look at the non-diagonal terms. Note that
[(1 + i)t̃∗1 t̃2] + [(1 − i)t̃∗2 t̃1] gives 2(t11t21 + t12t22 + t12t21 − t11t22). However, t̃∗1 t̃1 =
t2
11 + t2

12, t̃
∗
2 t̃2 = t2

21 + t2
22. Hence if the exponent of MX̃(t̃) is denoted by φ,

φ = [t11 − t12 + 2t21 − 3t22] + 1

4
{3(t2

11 + t2
12) + 2(t2

21 + t2
22)

+ 2(t11t21 + t12t22 + t12t21 − t11t22)}. (i)

Thus the mgf is
MX̃(T̃ ) = eφ

where φ is given in (i).

3.2a.1. Moments from the moment generating function

We can also derive the moments from the mgf of (3.2a.1) by operating with the differ-
ential operator of Sect. 1.7 of Chap. 1. For the complex case, the operator ∂

∂X1
in the real

case has to be modified. Let X̃ = X1 + iX2 be a p × 1 vector in the complex domain
where X1 and X2 are real and p × 1 and i = √

(−1). Then in the complex domain the
differential operator is

∂

∂X̃
= ∂

∂X1
+ i

∂

∂X2
. (ii)

Let T̃ = T1 + iT2, μ̃ = μ(1) + iμ(2), Σ = Σ1 + iΣ2 where T1, T2, μ(1), μ(2), Σ1, Σ2

are all real and i = √
(−1), Σ1 = Σ ′

1, and Σ ′
2 = −Σ2 because Σ is Hermitian. Note that

T̃ ∗ΣT̃ = (T ′
1 − iT ′

2)Σ(T1 + iT2) = T ′
1ΣT1 + T ′

2ΣT2 + i(T ′
1ΣT2 − T ′

2ΣT1), and observe
that

T ′
j ΣTj = T ′

j (Σ1 + iΣ2)Tj = T ′
j Σ1Tj + 0 (iii)

for j = 1, 2 since Σ2 is skew symmetric. The exponent in the mgf in (3.2a.1) can
be simplified as follows: Letting u denote the exponent in the mgf and observing that
[T̃ ∗ΣT̃ ]∗ = T̃ ∗ΣT̃ is real,
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u = �(T̃ ∗μ̃) + 1

4
T̃ ∗ΣT̃ = �(T ′

1 − iT ′
2)(μ(1) + iμ(2)) + 1

4
(T ′

1 − iT ′
2)Σ(T1 + iT2)

= T ′
1μ(1) + T ′

2μ(2) + 1

4
[T ′

1 ΣT1 + T ′
2 ΣT2] + 1

4
u1, u1 = i(T ′

1 ΣT2 − T ′
2 ΣT1)

= T ′
1μ(1) + T ′

2μ(2) + 1

4
[T ′

1 Σ1T1 + T ′
2 Σ1T2] + 1

4
u1. (iv)

In this last line, we have made use of the result in (iii). The following lemma will enable
us to simplify u1.

Lemma 3.2a.2. Let T1 and T2 be real p×1 vectors. Let the p×p matrixΣ be Hermitian,
Σ = Σ∗ = Σ1 + iΣ2, with Σ1 = Σ ′

1 and Σ2 = −Σ ′
2. Then

u1 = i(T ′
1 ΣT2 − T ′

2 ΣT1) = −2T ′
1 Σ2T2 = 2T ′

2 Σ2T1

⇒ ∂

∂T1
u1 = −2Σ2T2 and

∂

∂T2
u1 = 2Σ2T1. (v)

Proof: This result will be established by making use of the following general properties:
For a 1 × 1 matrix, the transpose is itself whereas the conjugate transpose is the conjugate
of the same quantity. That is, (a + ib)′ = a + ib, (a + ib)∗ = a − ib and if the conjugate
transpose is equal to itself then the quantity is real or equivalently, if (a+ib) = (a+ib)∗ =
a − ib then b = 0 and the quantity is real. Thus,

u1 = i(T ′
1ΣT2 − T ′

2ΣT1) = i[T ′
1(Σ1 + iΣ2)T2 − T ′

2(Σ1 + iΣ2)T1],
= iT ′

1Σ1T2 − T ′
1Σ2T2 − iT ′

2Σ1T1 + T ′
2Σ2T1 = −T ′

1Σ2T2 + T ′
2Σ2T1

= −2T ′
1Σ2T2 = 2T ′

2Σ2T1. (vi)

The following properties were utilized: T ′
i Σ1Tj = T ′

jΣ1Ti for all i and j since Σ1 is
a symmetric matrix, the quantity is 1 × 1 and real and hence, the transpose is itself;
T ′

i Σ2Tj = −T ′
jΣ2Ti for all i and j because the quantities are 1×1 and then, the transpose

is itself, but the transpose of Σ ′
2 = −Σ2. This completes the proof.

Now, let us apply the operator ( ∂
∂T1

+ i ∂
∂T2

) to the mgf in (3.2a.1) and determine the
various quantities. Note that in light of results stated in Chap. 1, we have

∂

∂T1
(T ′

1Σ1T1) = 2Σ1T1,
∂

∂T1
(−2T ′

1Σ2T2) = −2Σ2T2,
∂

∂T1
�(T̃ ∗μ̃) = μ(1),

∂

∂T2
(T ′

2Σ1T2) = 2Σ1T2,
∂

∂T2
(2T ′

2Σ2T1) = 2Σ2T1,
∂

∂T2
�(T̃ ∗μ̃) = μ(2).
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Thus, given (ii)–(vi), the operator applied to the exponent of the mgf gives the following
result:
( ∂

∂T1
+ i

∂

∂T2

)
u = μ(1) + iμ(2) + 1

4
[2Σ1T1 − 2Σ2T2 + 2Σ1iT2 + 2Σ2iT1]

= μ̃ + 1

4
[2(Σ1 + iΣ2)T1 + 2(Σ1 + iΣ2)iT2 = μ̃ + 1

4
[2ΣT̃ ] = μ̃ + 1

2
ΣT̃ ,

so that

∂

∂T̃
MX̃(T̃ )|T̃ =O =

( ∂

∂T1
+ i

∂

∂T2

)
MX̃(T̃ )|T̃ =O

= [MX̃(T̃ )[μ̃ + 1

2
Σ̃T̃ ]|T1=O,T2=O = μ̃, (vii)

noting that T̃ = O implies that T1 = O and T2 = O. For convenience, let us denote the
operator by

∂

∂T̃
=
( ∂

∂T1
+ i

∂

∂T2

)
.

From (vii), we have

∂

∂T̃
MX̃(T̃ ) = MX̃(T̃ )[μ̃ + 1

2
ΣT̃ ],

∂

∂T̃ ∗MX̃(T̃ ) = [μ̃∗ + 1

2
T̃ ∗Σ̃]MX̃(T̃ ).

Now, observe that

T̃ ∗Σ = (T ′
1 − iT ′

2)Σ = T ′
1Σ − iT ′

2Σ ⇒
∂

∂T1
(T̃ ∗Σ) = Σ,

∂

∂T2
(T̃ ∗Σ) = −iΣ,

( ∂

∂T1
+ i

∂

∂T2

)
(T̃ ∗Σ) = Σ − i(i)Σ = 2Σ,

and
∂

∂T̃

∂

∂T̃ ∗MX̃(T̃ )|T̃ =O = μ̃μ̃∗ + Σ̃.

Thus,
∂

∂T̃
MX̃(T̃ )|T̃ =O = μ̃ and

∂

∂T̃

∂

∂T̃ ∗MX̃(T̃ )|T̃ =O = Σ̃ + μ̃μ̃∗,
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and then Cov(X̃) = Σ̃ . In general, for higher order moments, one would have

E[ · · · X̃∗X̃X̃∗] = · · · ∂

∂T̃ ∗
∂

∂T̃

∂

∂T̃ ∗MX̃(T̃ )|T̃ =O .

3.2a.2. Linear functions

Let w̃ = L∗X̃ where L∗ = (a1, . . . , ap) and a1, . . . , ap are scalar constants, real
or complex. Then the mgf of w̃ can be evaluated by integrating out over the p-variate
complex Gaussian density of X̃. That is,

Mw̃(t̃) = E[e�(t̃w̃)] = E[e(�(t̃L∗X̃))]. (3.2a.2)

Note that this expected value is available from (3.2a.1) by replacing T̃ ∗ by t̃L∗. Hence

Mw̃(t̃) = e�(t̃(L∗μ̃))+ 1
4 t̃ t̃∗(L∗ΣL). (3.2a.3)

Then from (2.1a.1), w̃ = L∗X̃ is univariate complex Gaussian with the parameters L∗μ̃
and L∗ΣL. We now consider several such linear functions: Let Ỹ = AX̃ where A is
q ×p, q ≤ p and of full rank q. The distribution of Ỹ can be determined as follows. Since
Ỹ is a function of X̃, we can evaluate the mgf of Ỹ by integrating out over the density of
X̃. Since Ỹ is q × 1, let us take a q × 1 parameter vector Ũ . Then,

MỸ (Ũ) = E[e�(Ũ∗Ỹ )] = E[e�(Ũ∗AX̃)] = E[e�[(Ũ∗A)X̃]]. (3.2a.4)

On comparing this expected value with (3.2a.1), we can write down the mgf of Ỹ as the
following:

MỸ (Ũ) = e�(Ũ∗Aμ̃)+ 1
4 (Ũ∗A)Σ(A∗Ũ ) = e�(Ũ∗(Aμ̃))+ 1

4 Ũ∗(AΣA∗)Ũ , (3.2a.5)

which means that Ỹ has a q-variate complex Gaussian distribution with the parameters
A μ̃ and AΣA∗. Thus, we have the following result:

Theorem 3.2a.1. Let X̃ ∼ Ñp(μ̃, Σ), Σ > O be a p-variate nonsingular complex
normal vector. Let A be a q × p, q ≤ p, constant real or complex matrix of full rank q.
Let Ỹ = AX̃. Then,

Ỹ ∼ Ñq(A μ̃, AΣA∗), AΣA∗ > O. (3.2a.6)



152 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Let us consider the following partitioning of T̃ , X̃, Σ where T̃ is p × 1, T̃1 is r × 1,
r ≤ p, X̃1 is r × 1, Σ11 is r × r , μ̃(1) is r × 1:

T̃ =
[
T̃1

T̃2

]

, T̃1 =
⎡

⎢
⎣

t̃1
...

t̃r

⎤

⎥
⎦ , X̃ =

[
X̃1

X̃2

]

, Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, μ̃ =
[
μ̃(1)

μ̃(2)

]

.

Let T̃2 = O. Then the mgf of X̃ becomes that of X̃1 as

[T̃ ∗
1 , O]

[
Σ11 Σ12

Σ21 Σ22

] [
T̃1

O

]

= T̃ ∗
1 Σ11T̃1.

Thus the mgf of X̃1 becomes

MX̃1
(T̃1) = e�(T̃ ∗

1 μ̃(1))+ 1
4 T̃ ∗

1 Σ11T̃1 . (3.2a.7)

This is the mgf of the r ×1 subvector X̃1 and hence X̃1 has an r-variate complex Gaussian
density with the mean value vector μ̃(1) and the covariance matrix Σ11. In a real or complex
Gaussian vector, the individual variables can be permuted among themselves with the
corresponding permutations in the mean value vector and the covariance matrix. Hence,
all subsets of components of X̃ are Gaussian distributed. Thus, any set of r components
of X̃ is again a complex Gaussian for r = 1, 2, . . . , p when X̃ is a p-variate complex
Gaussian.

Suppose that, in the mgf of (3.2a.1), Σ12 = O where X̃ ∼ Ñp(μ̃, Σ), Σ > O and

X̃ =
(

X̃1

X̃2

)

, μ̃ =
(

μ̃(1)

μ̃(2)

)

, Σ =
(

Σ11 Σ12

Σ21 Σ22

)

, T̃ =
(

T̃1

T̃2

)

.

When Σ12 is null, so is Σ21 since Σ21 = Σ∗
12. Then Σ =

(
Σ11 O

O Σ22

)

is block-diagonal.

As well, �(T̃ ∗μ̃) = �(T̃ ∗
1 μ̃(1)) + �(T̃ ∗

2 μ̃(2)) and

T̃ ∗ΣT̃ = (T̃ ∗
1 , T̃ ∗

2 )

(
Σ11 O

O Σ22

)(
T̃1

T̃2

)

= T̃ ∗
1 Σ11T̃1 + T̃ ∗

2 Σ22T̃2. (i)

In other words, MX̃(T̃ ) becomes the product of the the mgf of X̃1 and the mgf of X̃2, that
is, X̃1 and X̃2 are independently distributed whenever Σ12 = O.

Theorem 3.2a.2. Let X̃ ∼ Ñp(μ̃, Σ), Σ > O, be a nonsingular complex Gaussian
vector. Consider the partitioning of X̃, μ̃, T̃ , Σ as in (i) above. Then, the subvectors X̃1

and X̃2 are independently distributed as complex Gaussian vectors if and only if Σ12 = O

or equivalently, Σ21 = O.
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Exercises 3.2

3.2.1. Construct a 2 × 2 real positive definite matrix A. Then write down a bivariate real
Gaussian density where the covariance matrix is this A.

3.2.2. Construct a 2×2 Hermitian positive definite matrix B and then construct a complex
bivariate Gaussian density. Write the exponent and normalizing constant explicitly.

3.2.3. Construct a 3×3 real positive definite matrix A. Then create a real trivariate Gaus-
sian density with this A being the covariance matrix. Write down the exponent and the
normalizing constant explicitly.

3.2.4. Repeat Exercise 3.2.3 for the complex Gaussian case.

3.2.5. Let the p×1 real vector random variable have a p-variate real nonsingular Gaussian
density X ∼ Np(μ, Σ), Σ > O. Let L be a p×1 constant vector. Let u = L′X = X′L =
a linear function of X. Show that E[u] = L′μ, Var(u) = L′ΣL and that u is a univariate
Gaussian with the parameters L′μ and L′ΣL.

3.2.6. Show that the mgf of u in Exercise 3.2.5 is

Mu(t) = et (L′μ)+ t2
2 L′ΣL.

3.2.7. What are the corresponding results in Exercises 3.2.5 and 3.2.6 for the nonsingular
complex Gaussian case?

3.2.8. Let X ∼ Np(O, Σ), Σ > O, be a real p-variate nonsingular Gaussian vector. Let
u1 = X′Σ−1X, and u2 = X′X. Derive the densities of u1 and u2.

3.2.9. Establish Theorem 3.2.1 by using transformation of variables [Hint: Augment the

matrix A with a matrix B such that C =
(

A

B

)

is p×p and nonsingular. Derive the density

of Y = CX, and therefrom, the marginal density of AX.]

3.2.10. By constructing counter examples or otherwise, show the following: Let the
real scalar random variables x1 and x2 be such that x1 ∼ N1(μ1, σ

2
1 ), σ1 > 0, x2 ∼

N1(μ2, σ
2
2 ), σ2 > 0 and Cov(x1, x2) = 0. Then, the joint density need not be bivariate

normal.

3.2.11. Generalize Exercise 3.2.10 to p-vectors X1 and X2.

3.2.12. Extend Exercises 3.2.10 and 3.2.11 to the complex domain.



154 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

3.3. Marginal and Conditional Densities, Real Case

Let the p × 1 vector have a real p-variate Gaussian distribution X ∼ Np(μ, Σ), Σ >

O. Let X, μ and Σ be partitioned as the following:

X =
⎡

⎢
⎣

x1
...

xp

⎤

⎥
⎦ =

[
X1

X2

]

, μ =
[
μ(1)

μ(2)

]

, Σ−1 =
[
Σ11 Σ12

Σ21 Σ22

]

where X1 and μ(1) are r × 1, X2 and μ(2) are (p − r) × 1, Σ11 is r × r , and so on. Then

(X − μ)′Σ−1(X − μ) = [(X1 − μ(1))
′, (X2 − μ(2))

′]
[
Σ11 Σ12

Σ21 Σ22

] [
X1 − μ(1)

X2 − μ(2)

]

= (X1 − μ(1))
′Σ11(X1 − μ(1)) + (X2 − μ(2))

′Σ22(X2 − μ(2))

+ (X1 − μ(1))
′Σ12(X2 − μ(2)) + (X2 − μ(2))

′Σ21(X1 − μ(1)).

(i)

But
[(X1 − μ(1))

′Σ12(X2 − μ(2))]′ = (X2 − μ(2))
′Σ21(X1 − μ(1))

and both are real 1 × 1. Thus they are equal and we may write their sum as twice either
one of them. Collecting the terms containing X2 − μ(2), we have

(X2 − μ(2))
′Σ22(X2 − μ(2)) + 2(X2 − μ(2))

′Σ21(X1 − μ(1)). (ii)

If we expand a quadratic form of the type (X2 − μ(2) + C)′Σ22(X2 − μ(2) + C), we have

(X2 − μ(2) + C)′Σ22(X2 − μ(2) + C) = (X2 − μ(2))
′Σ22(X2 − μ(2))

+ (X2 − μ(2))
′Σ22C + C′Σ22(X2 − μ(2)) + C′Σ22C. (iii)

Comparing (ii) and (iii), let

Σ22C = Σ21(X1 − μ(1)) ⇒ C = (Σ22)−1Σ21(X1 − μ(1)).

Then,
C′Σ22C = (X1 − μ(1))

′Σ12(Σ22)−1Σ21(X1 − μ(1)).

Hence,

(X − μ)′Σ−1(X − μ) = (X1 − μ(1))
′[Σ11 − Σ12(Σ22)−1Σ21](X1 − μ(1))

+ (X2 − μ(2) + C)′Σ22(X2 − μ(2) + C),
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and after integrating out X2, the balance of the exponent is (X1 − μ(1))
′Σ−1

11 (X1 − μ(1)),
where Σ11 is the r × r leading submatrix in Σ ; the reader may refer to Sect. 1.3 for results
on the inversion of partitioned matrices. Observe that Σ−1

11 = Σ11 − Σ12(Σ22)−1Σ21.
The integral over X2 only gives a constant and hence the marginal density of X1 is

f1(X1) = c1 e− 1
2 (X1−μ(1))

′Σ−1
11 (X1−μ(1)).

On noting that it has the same structure as the real multivariate Gaussian density, its nor-
malizing constant can easily be determined and the resulting density is as follows:

f1(X1) = 1

|Σ11| 1
2 (2π)

r
2

e− 1
2 (X1−μ(1))

′Σ−1
11 (X1−μ(1)), Σ11 > O, (3.3.1)

for −∞ < xj < ∞, −∞ < μj < ∞, j = 1, . . . , r , and where Σ11 is the covariance
matrix in X1 and μ(1) = E[X1] and Σ11 = Cov(X1). From symmetry, we obtain the
following marginal density of X2 in the real Gaussian case:

f2(X2) = 1

|Σ22| 1
2 (2π)

p−r
2

e− 1
2 (X2−μ(2))

′Σ−1
22 (X2−μ(2)), Σ22 > O, (3.3.2)

for −∞ < xj < ∞, −∞ < μj < ∞, j = r + 1, . . . , p.

Observe that we can permute the elements in X as we please with the correspond-
ing permutations in μ and the covariance matrix Σ . Hence the real Gaussian density in
the p-variate case is a multivariate density and not a vector/matrix-variate density. From
this property, it follows that every subset of the elements from X has a real multivariate
Gaussian distribution and the individual variables have univariate real normal or Gaussian
distribution. Hence our derivation of the marginal density of X1 is a general density for
a subset of r elements in X because those r elements can be brought to the first r posi-
tions through permutations of the elements in X with the corresponding permutations in μ

and Σ .

The bivariate case

Let us look at the explicit form of the real Gaussian density for p = 2. In the bivariate
case,

Σ =
[
σ11 σ12

σ12 σ22

]

,

∣
∣
∣
∣
σ11 σ12

σ12 σ22

∣
∣
∣
∣ = σ11σ22 − (σ12)

2.

For convenience, let us denote σ11 by σ 2
1 and σ22 by σ 2

2 . Then σ12 = σ1σ2ρ where ρ is
the correlation between x1 and x1, and for p = 2,

|Σ | = σ 2
1 σ 2

2 − (σ1σ2ρ)2 = σ 2
1 σ 2

2 (1 − ρ2).



156 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Thus, in that case,

Σ−1 = 1

|Σ | [cof(Σ)]′ = 1

σ 2
1 σ 2

2 (1 − ρ2)

[
σ 2

2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]

= 1

1 − ρ2

[ 1
σ 2

1
− ρ

σ1σ2

− ρ
σ1σ2

1
σ 2

2

]

, −1 < ρ < 1.

Hence, substituting these into the general expression for the real Gaussian density and
denoting the real bivariate density as f (x1, x2), we have the following:

f (x1, x2) = 1

(2π)σ1σ2

√
1 − ρ2

exp
{

− 1

2(1 − ρ2)
Q
}

(3.3.3)

where Q is the real positive definite quadratic form

Q =
(x1 − μ1

σ1

)2 − 2ρ
(x1 − μ1

σ1

)(x2 − μ2

σ2

)
+
(x2 − μ2

σ2

)2

for σ1 > 0, σ2 > 0, −1 < ρ < 1, −∞ < xj < ∞, −∞ < μj < ∞, j = 1, 2.

The conditional density of X1 given X2, denoted by g1(X1|X2), is the following:

g1(X1|X2) = f (X)

f2(X2)
= |Σ22| 1

2

(2π)
r
2 |Σ | 1

2

× exp
{
− 1

2
[(X − μ)′Σ−1(X − μ) − (X2 − μ(2))

′Σ−1
22 (X2 − μ(2))]

}
.

We can simplify the exponent, excluding −1
2 , as follows:

(X − μ)′Σ−1(X − μ) − (X2 − μ(2))
′Σ−1

22 (X2 − μ(2))

= (X1 − μ(1))
′Σ11(X1 − μ(1)) + 2(X1 − μ(1))

′Σ12(X2 − μ(2))

+ (X2 − μ(2))
′Σ22(X2 − μ(2)) − (X2 − μ(2))

′Σ−1
22 (X2 − μ(2)).

But Σ−1
22 = Σ22 − Σ21(Σ11)−1Σ12. Hence the terms containing Σ22 are canceled. The

remaining terms containing X2 − μ(2) are

2(X1 − μ(1))
′Σ12(X2 − μ(2)) + (X2 − μ(2))

′Σ21(Σ11)−1Σ12(X2 − μ(2)).

Combining these two terms with (X1 −μ(1))
′Σ11(X1 −μ(1)) results in the quadratic form

(X1 − μ(1) + C)′Σ11(X1 − μ(1) + C) where C = (Σ11)−1Σ12(X2 − μ(2)). Now, noting
that

|Σ22| 1
2

|Σ | 1
2

=
[

|Σ22|
|Σ22| |Σ11 − Σ12Σ

−1
22 Σ21|

] 1
2

= 1

|Σ11 − Σ12Σ
−1
22 Σ21| 1

2

,



The Multivariate Gaussian and Related Distributions 157

the conditional density of X1 given X2, which is denoted by g1(X1|X2), can be expressed
as follows:

g1(X1|X2) = 1

(2π)
r
2 |Σ11 − Σ12Σ

−1
22 Σ21| 1

2

× exp{−1

2
(X1 − μ(1) + C)′(Σ11 − Σ12Σ

−1
22 Σ21)

−1(X1 − μ(1) + C)

(3.3.4)

where C = (Σ11)−1Σ12(X2 − μ(2)). Hence, the conditional expectation and covariance
of X1 given X2 are

E[X1|X2] = μ(1) − C = μ(1) − (Σ11)−1Σ12(X2 − μ(2))

= μ(1) + Σ12Σ
−1
22 (X2 − μ(2)), which is linear in X2.

Cov(X1|X2) = Σ11 − Σ12Σ
−1
22 Σ21, which is free of X2. (3.3.5)

From the inverses of partitioned matrices obtained in Sect. 1.3, we have −(Σ11)−1Σ12

= Σ12Σ
−1
22 , which yields the representation of the conditional expectation appearing in

Eq. (3.3.5). The matrix Σ12Σ
−1
22 is often called the matrix of regression coefficients. From

symmetry, it follows that the conditional density of X2, given X1, denoted by g2(X2|X1),
is given by

g2(X2|X1) = 1

(2π)
p−r

2 |Σ22 − Σ21Σ
−1
11 Σ12| 1

2

× exp
{
− 1

2
(X2 − μ(2) + C1)

′(Σ22 − Σ21Σ
−1
11 Σ12)

−1(X2 − μ(2) + C1)
}

(3.3.6)

where C1 = (Σ22)−1Σ21(X1 − μ(1)), and the conditional expectation and conditional
variance of X2 given X1 are

E[X2|X1] = μ(2) − C1 = μ(2) − (Σ22)−1Σ21(X1 − μ(1))

= μ(2) + Σ21Σ
−1
11 (X1 − μ(1)), which linear in X1

Cov(X2|X1) = Σ22 − Σ21Σ
−1
11 Σ12, which is free of X1, (3.3.7)

the matrix Σ21Σ
−1
11 being often called the matrix of regression coefficients.
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What is then the conditional expectation of x1 given x2 in the bivariate normal case?
From formula (3.3.5) for p = 2, we have

E[X1|X2] = μ(1) + Σ12Σ
−1
22 (X2 − μ(2)) = μ1 + σ12

σ 2
2

(x2 − μ2)

= μ1 + σ1σ2ρ

σ 2
2

(x2 − μ2) = μ1 + σ1

σ2
ρ(x2 − μ2) = E[x1|x2], (3.3.8)

which is linear in x2. The coefficient σ1
σ2

ρ is often referred to as the regression coefficient.
Then, from (3.3.7) we have

E[x2|x1] = μ2 + σ2

σ1
ρ(x1 − μ1), which is linear in x1 (3.3.9)

and σ2
σ1

ρ is the regression coefficient. Thus, (3.3.8) gives the best predictor of x1 based
on x2 and (3.3.9), the best predictor of x2 based on x1, both being linear in the case of a
multivariate real normal distribution; in this case, we have a bivariate normal distribution.

Example 3.3.1. Let X, x1, x2, x3, E[X] = μ, Cov(X) = Σ be specified as follows
where X ∼ N3(μ, Σ), Σ > O:

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , μ =
⎡

⎣
μ1

μ2

μ3

⎤

⎦ =
⎡

⎣
−1

0
−2

⎤

⎦ , Σ =
⎡

⎣
3 −2 0

−2 2 1
0 1 3

⎤

⎦ .

Compute (1) the marginal densities of x1 and X2 =
[
x2

x3

]

; (2) the conditional density of

x1 given X2 and the conditional density of X2 given x1; (3) conditional expectations or
regressions of x1 on X2 and X2 on x1.

Solution 3.3.1. Let us partition Σ accordingly, that is,

Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, Σ11 = σ11 = (3), Σ12 = [−2, 0], Σ21 =
[ −2

0

]

, Σ22 =
[

2 1
1 3

]

.
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Let us compute the following quantities:

Σ−1
22 = 1

5

[
3 −1

−1 2

]

Σ11 − Σ12Σ
−1
22 Σ21 = 3 − [−2, 0]

(1

5

) [ 3 −1
−1 2

] [−2
0

]

= 3

5

Σ22 − Σ21Σ
−1
11 Σ12 =

[
2 1
1 3

]

−
(1

3

) [ −2
0

]

[−2, 0] =
[

2
3 1
1 3

]

[Σ11 − Σ12Σ
−1
22 Σ21]−1 = 5

3

[Σ22 − Σ21Σ
−1
11 Σ12]−1 =

[
3 −1

−1 2
3

]

.

As well,

Σ12Σ
−1
22 = [−2, 0]

(1

5

) [ 3 −1
−1 2

]

=
[

− 6

5
,

2

5

]
and Σ21Σ

−1
11 =

(1

3

) [−2
0

]

=
[−2/3

0

]

.

Then we have the following:

E[X1|X2] = μ(1) + Σ12Σ
−1
22 (X2 − μ(2))

= −1 +
[

− 6

5
,

2

5

] [
x2 − 0
x3 + 2

]

= −1 − 6

5
x2 + 2

5
(x3 + 2) (i)

and

Cov(X1|X2) = Σ11 − Σ12Σ
−1
22 Σ21 = 3

5
; (ii)

E[X2|X1] = μ(2) + Σ12Σ
−1
22 (X1 − μ(1))

=
[

0
−2

]

+
[−2/3

0

]

(x1 + 1) =
[−2

3(x1 + 1)

−2

]

(iii)

and

Cov(X2|X1) = Σ22 − Σ21Σ
−1
11 Σ12 =

[
2/3 1
1 3

]

. (iv)

The distributions of x1 and X2 are respectively x1 ∼ N1(−1, 3) and X2 ∼ N2(μ(2), Σ22),
the corresponding densities denoted by f1(x1) and f2(X2) being

f1(x1) = 1√
(2π)

√
3

e− 1
6 (x1+1)2

, −∞ < x1 < ∞,

f2(X2) = 1

(2π)
√

5
e− 1

2 Q1, Q1 = 1

5
[3(x2)

2 − 2(x2)(x3 + 2) + 2(x3 + 2)2]
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for −∞ < xj < ∞, j = 2, 3. The conditional distributions are X1|X2 ∼ N1(E(X1|X2),

Var(X1|X2)) and X2|X1 ∼ N2(E(X2|X1), Cov(X2|X1)), the associated densities denoted
by g1(X1|X2) and g2(X2|X1) being given by

g1(X1|X2) = 1
√

(2π)(3/5)
1
2

e− 5
6 [x1+1+ 6

5 x2− 2
5 (x3+2)]2

,

g2(X2|X1) = 1

2π × 1
e− 1

2 Q2,

Q2 = 3
[
x2 + 2

3
(x1 + 1)

]2 − 2
[
x2 + 2

3
(x1 + 1)

]
(x3 + 2) + 2

3
(x3 + 2)2

for −∞ < xj < ∞, j = 1, 2, 3. This completes the computations.

3.3a. Conditional and Marginal Densities in the Complex Case

Let the p × 1 complex vector X̃ have the p-variate complex normal distribution,
X̃ ∼ Ñp(μ̃, Σ̃), Σ̃ > O. As can be seen from the corresponding mgf which was de-
rived in Sect. 3.2a, all subsets of the variables x̃1, . . . , x̃p are again complex Gaussian
distributed. This result can be obtained by integrating out the remaining variables from the
p-variate complex Gaussian density. Let Ũ = X̃ − μ̃ for convenience. Partition X̃, μ̃, Ũ

into subvectors and Σ into submatrices as follows:

Σ−1 =
[
Σ11 Σ12

Σ21 Σ22

]

, μ̃ =
[
μ̃(1)

μ̃(2)

]

, X̃ =
[
X̃1

X̃2

]

, Ũ =
[
Ũ1

Ũ2

]

where X̃1, μ̃(1), Ũ1 are r × 1 and Σ11 is r × r . Consider

Ũ∗Σ−1Ũ = [Ũ∗
1 , Ũ∗

2 ]
[
Σ11 Σ12

Σ21 Σ22

] [
Ũ1

Ũ2

]

= Ũ∗
1 Σ11Ũ1 + Ũ∗

2 Σ22Ũ2 + Ũ∗
1 Σ12Ũ2 + Ũ∗

2 Σ21Ũ1 (i)

and suppose that we wish to integrate out Ũ2 to obtain the marginal density of Ũ1. The
terms containing Ũ2 are Ũ∗

2 Σ22Ũ2 + Ũ∗
1 Σ12Ũ2 + Ũ∗

2 Σ21Ũ1. On expanding the Hermitian
form

(Ũ2 + C)∗Σ22(Ũ2 + C) = Ũ∗
2 Σ22Ũ2 + Ũ∗

2 Σ22C

+ C∗Σ22Ũ2 + C∗Σ22C, (ii)

for some C and comparing (i) and (ii), we may let Σ21Ũ1 = Σ22C ⇒ C =
(Σ22)−1Σ21Ũ1. Then C∗Σ22C = Ũ∗

1 Σ12(Σ22)−1Σ21Ũ1 and (i) may thus be written
as

Ũ∗
1 (Σ11 − Σ12(Σ22)−1Σ21)Ũ1 + (Ũ2 + C)∗Σ22(Ũ2 + C), C = (Σ22)−1Σ21Ũ1.
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However, from Sect. 1.3 on partitioned matrices, we have

Σ11 − Σ12(Σ22)−1Σ21 = Σ−1
11 .

As well,

det(Σ) = [det(Σ11)][det(Σ22 − Σ21Σ
−1
11 Σ12)]

= [det(Σ11)][det((Σ22)−1)].
Note that the integral of exp{−(Ũ2+C)∗Σ22(Ũ2+C)} over Ũ2 gives πp−r |det(Σ22)−1| =
πp−r |det(Σ22 − Σ21Σ

−1
11 Σ12)|. Hence the marginal density of X̃1 is

f̃1(X̃1) = 1

πr |det(Σ11)|e
−(X̃1−μ̃(1))

∗Σ−1
11 (X̃1−μ̃(1)), Σ11 > O. (3.3a.1)

It is an r-variate complex Gaussian density. Similarly X̃2 has the (p − r)-variate complex
Gaussian density

f̃2(X̃2) = 1

πp−r |det(Σ22)|e
−(X̃2−μ̃(2))

∗Σ−1
22 (X̃2−μ̃(2)), Σ22 > O. (3.3a.2)

Hence, the conditional density of X̃1 given X̃2, is

g̃1(X̃1|X̃2) = f̃ (X̃1, X̃2)

f̃2(X̃2)
= πp−r |det(Σ22)|

πp|det(Σ)|
× e−(X̃−μ̃)∗Σ−1(X̃−μ̃)+(X̃2−μ̃(2))

∗Σ−1
22 (X̃2−μ̃(2)).

From Sect. 1.3, we have

|det(Σ)| = |det(Σ22)| |det(Σ11 − Σ12Σ
−1
22 Σ21)|

and then the normalizing constant is [πr |det(Σ11 − Σ12Σ
−1
22 Σ21)|]−1. The exponential

part reduces to the following by taking Ũ = X̃ − μ̃, Ũ1 = X̃1 − μ̃(1), Ũ2 = X̃2 − μ̃(2):

(X̃ − μ̃)∗Σ−1(X̃ − μ̃) − (X̃2 − μ̃(2))
∗Σ−1

22 (X̃2 − μ̃(2))

= Ũ∗
1 Σ11Ũ1 + Ũ∗

2 Σ22Ũ2 + Ũ∗
1 Σ12Ũ2

+ Ũ∗
2 Σ21Ũ1 − Ũ∗

2 (Σ22 − Σ21(Σ11)−1Σ12)Ũ2

= Ũ∗
1 Σ11Ũ1 + Ũ∗

2 Σ21(Σ11)−1Σ12Ũ2 + 2 Ũ∗
1 Σ12Ũ2

= [Ũ1 + (Σ11)−1Σ12Ũ2]∗Σ11[Ũ1 + (Σ11)−1Σ12Ũ2]. (3.3a.3)
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This exponent has the same structure as that of a complex Gaussian density with
E[Ũ1|Ũ2] = −(Σ11)−1Σ12Ũ2 and Cov(X̃1|X̃2) = (Σ11)−1 = Σ11 − Σ12Σ

−1
22 Σ21.

Therefore the conditional density of X̃1 given X̃2 is given by

g̃1(X̃1|X̃2) = 1

πr |det(Σ11 − Σ12Σ
−1
22 Σ21)|

e−(X̃1−μ̃(1)+C)∗Σ11(X̃1−μ̃(1)+C),

C = −(Σ11)−1Σ12(X̃2 − μ̃(2)). (3.3a.4)

The conditional expectation of X̃1 given X̃2 is then

E[X̃1|X̃2] = μ̃(1) − (Σ11)−1Σ12(X̃2 − μ̃(2))

= μ̃(1) + Σ12Σ
−1
22 (X̃2 − μ̃(2)) (linear in X̃2) (3.3a.5)

which follows from a result on partitioning of matrices obtained in Sect. 1.3. The matrix
Σ12Σ

−1
22 is referred to as the matrix of regression coefficients. The conditional covariance

matrix is
Cov(X̃1|X̃2) = Σ11 − Σ12Σ

−1
22 Σ21 (free of X̃2).

From symmetry, the conditional density of X̃2 given X̃1 is given by

g̃2(X̃2|X̃1) = 1

πp−r |det(Σ22 − Σ21Σ
−1
11 Σ12)|

× e−(X̃2−μ̃(2)+C1)
∗Σ22(X̃2−μ̃(2)+C1), (3.3a.6)

C1 = −(Σ22)−1Σ21(X̃1 − μ̃(1)), Σ22 > O.

Then the conditional expectation and the conditional covariance of X̃2 given X̃1 are the
following:

E[X̃2|X̃1] = μ̃(2) − (Σ22)−1Σ21(X̃1 − μ̃(1))

= μ̃(2) + Σ21Σ
−1
11 (X̃1 − μ̃(1)) (linear in X̃1) (3.3a.7)

Cov(X̃2|X̃1) = (Σ22)−1 = Σ22 − Σ21Σ
−1
11 Σ12 (free of X̃1),

where, in this case, the matrix Σ21Σ
−1
11 is referred to as the matrix of regression coeffi-

cients.

Example 3.3a.1. Let X̃, μ̃ = E[X̃], Σ = Cov(X̃) be as follows:

X̃ =
⎡

⎣
x̃1

x̃2

x̃3

⎤

⎦ , μ̃ =
⎡

⎣
1 + i

2 − i

3i

⎤

⎦ , Σ =
⎡

⎣
3 1 + i 0

1 − i 2 i

0 −i 3

⎤

⎦ .
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Consider the partitioning

Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, Σ11 =
[

3 1 + i

1 − i 2

]

, Σ12 =
[

0
i

]

, X̃ =
[
X̃1

X̃2

]

, X̃1 =
[
x̃1

x̃2

]

,

Σ21 = [0, −i], Σ22 = (3), X̃2 = (x̃3),

where x̃j , j = 1, 2, 3 are scalar complex variables and X̃ ∼ Ñ3(μ̃, Σ). Determine (1) the
marginal densities of X̃1 and X̃2; (2) the conditional expectation of X̃1|X̃2 or E[X̃1|X̃2]
and the conditional expectation of X̃2|X̃1 or E[X̃2|X̃1]; (3) the conditional densities of
X̃1|X̃2 and X̃2|X̃1.

Solution 3.3a.1. Note that Σ = Σ∗ and hence Σ is Hermitian. Let us compute the

leading minors of Σ : det((3)) = 3 > 0, det
( [ 3 1 + i

1 − i 2

] )
= 6 − (1 + 1) = 4 > 0,

det(Σ) = 3
[
det
( [ 2 i

−i 3

] )]
− (1 + i)

[
det
( [1 − i i

0 3

] )]
+ 0

= (3)(5) − 3(1 + 1) = 9 > 0.

Hence Σ is Hermitian positive definite. Note that the cofactor expansion for determinants
holds whether the elements present in the determinant are real or complex. Let us compute
the inverses of the submatrices by taking the transpose of the matrix of cofactors divided
by the determinant. This formula applies whether the elements comprising the matrix are
real or complex. Then

Σ−1
22 = 1

3
, Σ−1

11 =
[

3 1 + i

1 − i 2

]−1

= 1

4

[
2 −(1 + i)

−(1 − i) 3

]

; (i)

Σ11 − Σ12Σ
−1
22 Σ21 =

[
3 1 + i

1 − i 2

]

−
[

0
i

] (1

3

)
[0, −i]

=
[

3 1 + i

1 − i 2

]

− 1

3

[
0 0
0 1

]

=
[

3 1 + i

1 − i 5
3

]

⇒ (ii)

[Σ11 − Σ12Σ
−1
22 Σ21]−1 =

[
3 + 1 + i

1 − i 5
3

]−1

= 1

3

[
5
3 −(1 + i)

−(1 − i) 3

]

; (iii)

Σ22 − Σ21Σ
−1
11 Σ12 = 3 − [0, −i]

(1

4

[
2 −(1 + i)

−(1 − i) 3

] ) [0
i

]

= 3 − 3

4
= 9

4
⇒ (iv)

[Σ22 − Σ21Σ
−1
11 Σ12]−1 = 4

9
. (v)
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As well,

Σ12Σ
−1
22 = 1

3

[
0
i

]

=
[

0
i
3

]

; (vi)

Σ21Σ
−1
11 = [0, −i]

(1

4

[
2 −(1 + i)

−(1 − i) 3

] )
= 1

4
[1 + i, −3i]. (vii)

With these computations, all the questions can be answered. We have

X̃1 ∼ Ñ2(μ̃(1), Σ11), μ̃(1) =
[

1 + i

2 − i

]

, Σ11 =
[

3 1 + i

1 − i 2

]

and X̃2 = x̃3 ∼ Ñ1(3i, 3). Let the densities of X̃1 and X̃2 = x̃3 be denoted by f̃1(X̃1) and
f̃2(x̃3), respectively. Then

f̃2(x̃3) = 1

(π)(3)
e− 1

3 (x̃3−3i)∗(x̃3−3i);

f̃1(X̃1) = 1

(π2)(4)
e−Q1,

Q1 = 1

4
[2(x̃1 − (1 + i))∗(x̃1 − (1 + i))

− (1 + i)(x̃1 − (1 + i))∗(x̃2 − (2 − i)) − (1 − i)(x̃2

− (2 − i))∗(x̃1 − (1 + i)) + 3(x̃2 − (2 − i))∗(x̃2 − (2 − i)).

The conditional densities, denoted by g̃1(X̃1|X̃2) and g̃2(X̃2|X̃1), are the following:

g̃1(X̃1|X̃2) = 1

(π2)(3)
e−Q2,

Q2 = 1

3

[5

3
(x̃1 − (1 + i))∗(x̃1 − (1 + i))

− (1 + i)(x̃1 − (1 + i))∗(x̃2 − (2 − i) − i

3
(x̃3 − 3i))

− (1 − i)(x̃2 − (2 − i) − i

3
(x̃3 − 3i))∗(x̃1 − (1 + i))

+ 3(x̃2 − (2 − i) − i

3
(x̃3 − 3i))∗(x̃2 − (2 − i) − i

3
(x̃3 − 3i))

]
;
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g̃2(X̃2|X̃1) = 1

(π)(9/4)
e−Q3,

Q3 = 4

9
[(x̃3 − M3)

∗(x̃3 − M3) where

M3 = 3i + 1

4
{(1 + i)[x̃1 − (1 + i)] − 3i[x̃2 − (2 − i)]}

= 3i + 1

4
{(1 + i)x̃1 − 3ix̃2 + 3 + 4i}.

The bivariate complex Gaussian case
Letting ρ denote the correlation between x̃1 and x̃2, it is seen from (3.3a.5) that for p = 2,

E[X̃1|X̃2] = μ̃(1) + Σ12Σ
−1
22 (X̃2 − μ̃(2)) = μ̃1 + σ12

σ 2
2

(x̃2 − μ̃2)

= μ̃1 + σ1σ2ρ

σ 2
2

(x̃2 − μ̃2) = μ̃1 + σ1

σ2
ρ (x̃2 − μ̃2) = E[x̃1|x̃2] (linear in x̃2).

(3.3a.8)

Similarly,

E[x̃2|x̃1] = μ̃2 + σ2

σ1
ρ (x̃1 − μ̃1) (linear in x̃1). (3.3a.9)

Incidentally, σ12/σ
2
2 and σ12/σ

2
1 are referred to as the regression coefficients.

Exercises 3.3

3.3.1. Let the real p × 1 vector X have a p-variate nonsingular normal density X ∼
Np(μ, Σ), Σ > O. Let u = X′Σ−1X. Make use of the mgf to derive the density of u for
(1) μ = O, (2) μ 
= O.

3.3.2. Repeat Exercise 3.3.1 for μ 
= O for the complex nonsingular Gaussian case.

3.3.3. Observing that the density coming from Exercise 3.3.1 is a noncentral chi-square
density, coming from the real p-variate Gaussian, derive the non-central F (the numerator
chisquare is noncentral and the denominator chisquare is central) density with m and n

degrees of freedom and the two chisquares are independently distributed.

3.3.4. Repeat Exercise 3.3.3 for the complex Gaussian case.

3.3.5. Taking the density of u in Exercise 3.3.1 as a real noncentral chisquare density,
derive the density of a real doubly noncentral F.
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3.3.6. Repeat Exercise 3.3.5 for the corresponding complex case.

3.3.7. Construct a 3 × 3 Hermitian positive definite matrix V . Let this be the covariance
matrix of a 3 × 1 vector variable X̃. Compute V −1. Then construct a Gaussian density for
this X̃. Derive the marginal joint densities of (1) x̃1 and x̃2, (2) x̃1 and x̃3, (3) x̃2 and x̃3,
where x̃1, x̃2, x̃3 are the components of X̃. Take E[X̃] = O.

3.3.8. In Exercise 3.3.7, compute (1) E[x̃1|x̃2], (2) the conditional joint density of x̃1, x̃2,
given x̃3. Take E[X̃] = μ̃ 
= O.

3.3.9. In Exercise 3.3.8, compute the mgf in the conditional space of x̃1 given x̃2, x̃3, that
is, E[e�(t1x̃1)|x̃2, x̃3].
3.3.10. In Exercise 3.3.9, compute the mgf in the marginal space of x̃2, x̃3. What is the
connection of the results obtained in Exercises 3.3.9 and 3.3.10 with the mgf of X̃?

3.4. Chisquaredness and Independence of Quadratic Forms in the Real Case

Let the p × 1 vector X have a p-variate real Gaussian density with a null vector as its
mean value and the identity matrix as its covariance matrix, that is, X ∼ Np(O, I), that is,
the components of X are mutually independently distributed real scalar standard normal
variables. Let u = X′AX, A = A′ be a real quadratic form in this X. The chisquaredness
of a quadratic form such as u has already been discussed in Chap. 2. In this section, we
will start with such a u and then consider its generalizations. When A = A′, there exists an
orthonormal matrix P , that is, PP ′ = I, P ′P = I, such that P ′AP = diag(λ1, . . . , λp)

where λ1, . . . , λp are the eigenvalues of A. Letting Y = P ′X, E[Y ] = P ′O = O and
Cov(Y ) = P ′IP = I . But Y is a linear function of X and hence, Y is also real Gaus-

sian distributed; thus, Y ∼ Np(O, I). Then, y2
j

iid∼ χ2
1 , j = 1, . . . , p, or the y2

j ’s are
independently distributed chisquares, each having one degree of freedom. Note that

u = X′AX = Y ′P ′APY = λ1y
2
1 + · · · + λpy2

p. (3.4.1)

We have the following result on the chisquaredness of quadratic forms in the real p-variate
Gaussian case, which corresponds to Theorem 2.2.1.

Theorem 3.4.1. Let the p × 1 vector be real Gaussian with the parameters μ = O and
Σ = I or X ∼ Np(O, I). Let u = X′AX, A = A′ be a quadratic form in this X. Then
u = X′AX ∼ χ2

r , that is, a real chisquare with r degrees of freedom, if and only if A = A2

and the rank of A is r .
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Proof: When A = A′, we have the representation of the quadratic form given in (3.4.1).
When A = A2, all the eigenvalues of A are 1’s and 0’s. Then r of the λj ’s are unities
and the remaining ones are zeros and then (3.4.1) becomes the sum of r independently
distributed real chisquares having one degree of freedom each, and hence the sum is a
real chisquare with r degrees of freedom. For proving the second part, we will assume
that u = X′AX ∼ χ2

r . Then the mgf of u is Mu(t) = (1 − 2t)− r
2 for 1 − 2t > 0. The

representation in (3.4.1) holds in general. The mgf of y2
j , λjy

2
j and the sum of λjy

2
j are

the following:

My2
j
(t) = (1 − 2t)−

1
2 , Mλjy

2
j
(t) = (1 − 2λj t)

− 1
2 , Mu(t) =

p∏

j=1

(1 − 2λj t)
− 1

2

for 1 − λj t > 0, j = 1, . . . , p. Hence, we have the following identity:

(1 − 2t)−
r
2 =

p∏

j=1

(1 − 2λj t)
− 1

2 , 1 − 2t > 0, 1 − 2λj t > 0, j = 1, . . . , p. (3.4.2)

Taking natural logarithm on both sides of (3.4.2), expanding and then comparing the coef-

ficients of 2t,
(2t)2

2 , . . . , we have

r =
p∑

j=1

λj =
p∑

j=1

λ2
j =

p∑

j=1

λ3
j = · · · (3.4.3)

The only solution (3.4.3) can have is that r of the λj ’s are unities and the remaining ones
zeros. This property alone will not guarantee that A is idempotent. However, having eigen-
values that are equal to zero or one combined with the property that A = A′ will ensure
that A = A2. This completes the proof.

Let us look into some generalizations of the Theorem 3.4.1. Let the p × 1 vector have
a real Gaussian distribution X ∼ Np(O, Σ), Σ > O, that is, X is a Gaussian vector
with the null vector as its mean value and a real positive definite matrix as its covariance
matrix. When Σ is positive definite, we can define Σ

1
2 . Letting Z = Σ− 1

2 X, Z will
be distributed as a standard Gaussian vector, that is, Z ∼ Np(O, I), since Z is a linear
function of X with E[Z] = O and Cov(Z) = I . Now, Theorem 3.4.1 is applicable to Z.
Then u = X′AX, A = A′, becomes

u = Z′Σ
1
2 AΣ

1
2 Z, Σ

1
2 AΣ

1
2 = (Σ

1
2 AΣ

1
2 )′,

and it follows from Theorem 3.4.1 that the next result holds:
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Theorem 3.4.2. Let the p × 1 vector X have a real p-variate Gaussian density X ∼
Np(O, Σ), Σ > O. Then q = X′AX, A = A′, is a real chisquare with r degrees of

freedom if and only if Σ
1
2 AΣ

1
2 is idempotent and of rank r or, equivalently, if and only if

A = AΣA and the rank of A is r .

Now, let us consider the general case. Let X ∼ Np(μ, Σ), Σ > O. Let q =
X′AX, A = A′. Then, referring to representation (2.2.1), we can express q as

λ1(u1 + b1)
2 + · · · + λp(up + bp)2 ≡ λ1w

2
1 + · · · + λpw2

p (3.4.4)

where U = (u1, . . . , up)′ ∼ Np(O, I), the λj ’s, j = 1, . . . , p, are the eigenvalues of

Σ
1
2AΣ

1
2 and bi is the i-th component of P ′Σ− 1

2 μ, P being a p × p orthonormal matrix
whose j -th column consists of the normalized eigenvectors corresponding to λj , j =
1, . . . , p. When μ = O, w2

j is a real central chisquare random variable having one degree
of freedom; otherwise, it is a real noncentral chisquare random variable with one degree
of freedom and noncentality parameter 1

2b2
j . Thus, in general, (3.4.4) is a linear function of

independently distributed real noncentral chisquare random variables having one degree
of freedom each.

Example 3.4.1. Let X ∼ N3(O, Σ), q = X′AX where

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , Σ = 1

3

⎡

⎣
2 0 −1
0 2 −1

−1 −1 3

⎤

⎦ , A =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ .

(1) Show that q ∼ χ2
1 by applying Theorem 3.4.2 as well as independently; (2) If the mean

value vector μ′ = [−1, 1, −2], what is then the distribution of q?

Solution 3.4.1. In (1) μ = O and

X′AX = x2
1 + x2

2 + x2
3 + 2(x1x2 + x1x3 + x2x3) = (x1 + x2 + x3)

2.

Let y1 = x1 + x2 + x3. Then E[y1] = 0 and

Var(y1) = Var(x1) + Var(x2) + Var(x3) + 2[Cov(x1, x2) + Cov(x1, x3) + Cov(x2, x3)]
= 1

3
[2 + 2 + 3 + 0 − 2 − 2] = 3

3
= 1.

Hence, y1 = x1 + x2 + x3 has E[u1] = 0 and Var(u1) = 1, and since it is a linear
function of the real normal vector X, y1 is a standard normal. Accordingly, q = y2

1 ∼
χ2

1 . In order to apply Theorem 3.4.2, consider AΣA:
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AΣA =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦
(1

3

⎡

⎣
2 0 −1
0 2 −1

−1 −1 3

⎤

⎦
)
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ = A.

Then, by Theorem 3.4.2, q = X′AX ∼ χ2
r where r is the rank of A. In this case, the rank

of A is 1 and hence y ∼ χ2
1 . This completes the calculations in connection with respect

to (1). When μ 
= O, u ∼ χ2
1 (λ), a noncentral chisquare with noncentrality parameter

λ = 1
2μ′ Σ−1μ. Let us compute Σ−1 by making use of the formula Σ−1 = 1

|Σ | [Cof(Σ)]′
where Cof(Σ) is the matrix of cofactors of Σ wherein each of its elements is replaced by
its cofactor. Now,

Σ−1 =
{1

3

⎡

⎣
2 0 −1
0 2 −1

−1 −1 3

⎤

⎦
}−1 = 3

8

⎡

⎣
5 1 2
1 5 2
2 2 4

⎤

⎦ = Σ−1.

Then,

λ = 1

2
μ′ Σ−1μ = 3

16
[−1, 1, −2]

⎡

⎣
5 1 2
1 5 2
2 2 4

⎤

⎦

⎡

⎣
−1

1
−2

⎤

⎦ = 3

16
× 24 = 9

2
.

This completes the computations for the second part.

3.4.1. Independence of quadratic forms

Another relevant result in the real case pertains to the independence of quadratic forms.
The concept of chisquaredness and the independence of quadratic forms are prominently
encountered in the theoretical underpinnings of statistical techniques such as the Anal-
ysis of Variance, Regression and Model Building when it is assumed that the errors are
normally distributed. First, we state a result on the independence of quadratic forms in
Gaussian vectors whose components are independently distributed.

Theorem 3.4.3. Let u1 = X′AX, A = A′, and u2 = X′BX, B = B ′, be two quadratic
forms in X ∼ Np(μ, I). Then u1 and u2 are independently distributed if and only if
AB = O.

Note that independence property holds whether μ = O or μ 
= O. The result will still
be valid if the covariance matrix is σ 2I where σ 2 is a positive real scalar quantity. If the
covariance matrix is Σ > O, the statement of Theorem 3.4.3 needs modification.
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Proof: Since AB = O, we have AB = O = O ′ = (AB)′ = B ′A′ = BA, which means
that A and B commute. Then there exists an orthonormal matrix P, PP ′ = I, P ′P = I,

that diagonalizes both A and B, and

AB = O ⇒ PABP = O ⇒ P ′APP ′BP = D1D2 = O,

D1 = diag(λ1, . . . , λp), D2 = diag(ν1, . . . , νp), (3.4.5)

where λ1, . . . , λp are the eigenvalues of A and ν1, . . . , νp are the eigenvalues of B. Let
Y = P ′X, then the canonical representations of u1 and u2 are the following:

u1 = λ1y
2
1 + · · · + λpy2

p (3.4.6)

u2 = ν1y
2
1 + · · · + νpy2

p (3.4.7)

where yj ’s are real and independently distributed. But D1D2 = O means that whenever
a λj 
= 0 then the corresponding νj = 0 and vice versa. In other words, whenever a yj

is present in (3.4.6), it is absent in (3.4.7) and vice versa, or the independent variables
yj ’s are separated in (3.4.6) and (3.4.7), which implies that u1 and u2 are independently
distributed.

The necessity part of the proof which consists in showing that AB = O given that
A = A′, B = B ′ and u1 and u2 are independently distributed, cannot be established by
retracing the steps utilized for proving the sufficiency as it requires more matrix manipu-
lations. We note that there are several incorrect or incomplete proofs of Theorem 3.4.3 in
the statistical literature. A correct proof for the central case is given in Mathai and Provost
(1992).

If X ∼ Np(μ, Σ), Σ > O, consider the transformation Y = Σ− 1
2 X ∼

Np(Σ− 1
2 μ, I). Then, u1 = X′AX = Y ′Σ 1

2 AΣ
1
2 Y, u2 = X′BX = Y ′Σ 1

2 BΣ
1
2 Y , and

we can apply Theorem 3.4.3. In that case, the matrices being orthogonal means

Σ
1
2 AΣ

1
2 Σ

1
2 BΣ

1
2 = O ⇒ AΣB = O.

Thus we have the following result:

Theorem 3.4.4. Let u1 = X′AX, A = A′ and u2 = X′BX, B = B ′ where
X ∼ Np(μ, Σ), Σ > O. Then u1 and u2 are independently distributed if and only if
AΣB = O.
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What about the distribution of the quadratic form y = (X − μ)′Σ−1(X − μ) that is
present in the exponent of the p-variate real Gaussian density? Let us first determine the
mgf of y, that is,

My(t) = E[ety] = 1

(2π)
p
2 |Σ | 1

2

∫

X

et (X−μ)′Σ−1(X−μ)− 1
2 (X−μ)′Σ−1(X−μ)dX

= 1

(2π)
p
2 |Σ | 1

2

∫

X

e− 1
2 (1−2t)(X−μ)′Σ−1(X−μ)dX

= (1 − 2t)−
p
2 for (1 − 2t) > 0. (3.4.8)

This is the mgf of a real chisquare random variable having p degrees of freedom. Hence
we have the following result:

Theorem 3.4.5. When X ∼ Np(μ, Σ), Σ > O,

y = (X − μ)′Σ−1(X − μ) ∼ χ2
p, (3.4.9)

and if y1 = X′Σ−1X, then y1 ∼ χ2
p(λ), that is, a real non-central chisquare with p

degrees of freedom and noncentrality parameter λ = 1
2μ′Σ−1μ.

Example 3.4.2. Let X ∼ N3(μ, Σ) and consider the quadratic forms u1 = X′AX and
u2 = X′BX where

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , Σ = 1

3

⎡

⎣
2 0 −1
0 2 −1

−1 −1 3

⎤

⎦ , A =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ ,

B = 1

3

⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦ , μ =
⎡

⎣
1
2
3

⎤

⎦ .

Show that u1 and u2 are independently distributed.

Solution 3.4.2. Let J be a 3 × 1 column vector of unities or 1’s as its elements.
Then observe that A = JJ ′ and B = I − 1

3JJ ′. Further, J ′J = 3, J ′Σ = J ′ and
hence AΣ = JJ ′Σ = JJ ′. Then AΣB = JJ ′[I − 1

3JJ ′] = JJ ′ − JJ ′ = O.
It then follows from Theorem 3.4.4 that u1 and u2 are independently distributed. Now,
let us prove the result independently without resorting to Theorem 3.4.4. Note that
u3 = x1 + x2 + x3 = J ′X has a standard normal distribution as shown in Exam-
ple 3.4.1. Consider the B in BX, namely I − 1

3JJ ′. The first component of BX is of the
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form 1
3 [2, −1, −1]X = 1

3 [2x1 − x2 − x3], which shall be denoted by u4. Then u3 and
u4 are linear functions of the same real normal vector X, and hence u3 and u4 are
real normal variables. Let us compute the covariance between u3 and u4, observing that
J ′Σ = J ′ = J ′Cov(X):

Cov(u3, u4) = 1

3
[1, 1, 1]Cov(X)

⎡

⎣
2

−1
−1

⎤

⎦ = 1

3
[1, 1, 1]

⎡

⎣
2

−1
−1

⎤

⎦ = 0.

Thus, u3 and u4 are independently distributed. As a similar result can be established with
respect to the second and third component of BX, u3 and BX are indeed independently
distributed. This implies that u2

3 = (J ′X)2 = X′JJ ′X = X′AX and (BX)′(BX) =
X′B ′BX = X′BX are independently distributed. Observe that since B is symmetric and
idempotent, B ′B = B. This solution makes use of the following property: if Y1 and Y2

are real vectors or matrices that are independently distributed, then Y ′
1Y1 and Y ′

2Y2 are also
independently distributed. It should be noted that the converse does not necessarily hold.

3.4a. Chisquaredness and Independence in the Complex Gaussian Case

Let the p × 1 vector X̃ in the complex domain have a p-variate complex Gaussian
density X̃ ∼ Ñp(O, I). Let ũ = X̃∗AX̃ be a Hermitian form, A = A∗ where A∗ denotes
the conjugate transpose of A. Then there exists a unitary matrix Q, QQ∗ = I, Q∗Q = I ,
such that Q∗AQ = diag(λ1, . . . , λp) where λ1, . . . , λp are the eigenvalues of A. It can be
shown that when A is Hermitian, which means in the real case that A = A′ (symmetric),
all the eigenvalues of A are real. Let Ỹ = Q∗X̃ then

ũ = X̃∗AX̃ = Ỹ ∗Q∗AQỸ = λ1|ỹ1|2 + · · · + λp|ỹp|2 (3.4a.1)

where |ỹj | denotes the absolute value or modulus of ỹj . If ỹj = yj1 + iyj2 where yj1 and
yj2 are real, i = √

(−1), then |ỹj |2 = y2
j1 + y2

j2. We can obtain the following result which
is the counterpart of Theorem 3.4.1:

Theorem 3.4a.1. Let X̃ ∼ Ñp(O, I) and ũ = X̃∗AX̃, A = A∗. Then ũ ∼ χ̃2
r , a

chisquare random variable having r degrees of freedom in the complex domain, if and
only if A = A2 (idempotent) and A is of rank r .

Proof: The definition of an idempotent matrix A as A = A2 holds whether the elements
of A are real or complex. Let A be idempotent and of rank r . Then r of the eigenvalues of
A are unities and the remaining ones are zeros. Then the representation given in (3.4a.1)
becomes

ũ = |ỹ1|2 + · · · + |ỹr |2 ∼ χ̃2
r ,
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a chisquare with r degrees of freedom in the complex domain, that is, a real gamma with
the parameters (α = r, β = 1) whose mgf is (1 − t)−r , 1 − t > 0. For proving the
necessity, let us assume that ũ ∼ χ̃2

r , its mgf being Mũ(t) = (1 − t)−r for 1 − t > 0. But
from (3.4a.1), |ỹj |2 ∼ χ̃2

1 and its mgf is (1 − t)−1 for 1 − t > 0. Hence the mgf of λj |ỹj |2
is Mλj |ỹj |2(t) = (1 − λj t)

−1 for 1 − λj t > 0, and we have the following identity:

(1 − t)−r =
p∏

j=1

(1 − λj t)
−1. (3.4a.2)

Take the natural logarithm on both sides of (3.4a.2, expand and compare the coefficients
of t, t2

2 , . . . to obtain

r =
p∑

j=1

λj =
p∑

j=1

λ2
j = · · · (3.4a.3)

The only possibility for the λj ’s in (3.4a.3) is that r of them are unities and the remaining
ones, zeros. This property, combined with A = A∗ guarantees that A = A2 and A is of
rank r . This completes the proof.

An extension of Theorem 3.4a.1 which is the counterpart of Theorem 3.4.2 can also be
obtained. We will simply state it as the proof is parallel to that provided in the real case.

Theorem 3.4a.2. Let X̃ ∼ Ñp(O, Σ), Σ > O and ũ = X̃∗AX̃, A = A∗, be a
Hermitian form. Then ũ ∼ χ̃2

r , a chisquare random variable having r degrees of freedom
in the complex domain, if and only if A = AΣA and A is of rank r .

Example 3.4a.1. Let X̃ ∼ Ñ3(μ̃, Σ), ũ = X̃∗AX̃ where

X̃ =
⎡

⎣
x̃1

x̃2

x̃3

⎤

⎦ , Σ = 1

3

⎡

⎣
3 −(1 + i) −(1 − i)

−(1 − i) 3 −(1 + i)

−(1 + i) −(1 − i) 3

⎤

⎦ ,

A =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ , μ̃ =
⎡

⎣
2 + i

−i

2i

⎤

⎦ .

First determine whether Σ can be a covariance matrix. Then determine the distribution
of ũ by making use of Theorem 3.4a.2 as well as independently, that is, without using
Theorem 3.4a.2, for the cases (1) μ̃ = O; (2) μ̃ as given above.
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Solution 3.4a.1. Note that Σ = Σ∗, that is, Σ is Hermitian. Let us verify that Σ is a
Hermitian positive definite matrix. Note that Σ must be either positive definite or positive
semi-definite to be a covariance matrix. In the semi-definite case, the density of X̃ does not

exist. Let us check the leading minors: det((3)) = 3 > 0, det
( [ 3 −(1 + i)

−(1 − i) 3

] )
=

9 − 2 = 7 > 0, det(Σ) = 13
33 > 0 [evaluated by using the cofactor expansion which is

the same in the complex case]. Hence Σ is Hermitian positive definite. In order to apply
Theorem 3.4a.2, we must now verify that AΣA = A when μ̃ = O. Observe the following:
A = JJ ′, J ′A = 3J ′, J ′J = 3 where J ′ = [1, 1, 1]. Hence AΣA = (JJ ′)Σ(JJ ′) =
J (J ′Σ)JJ ′ = 1

3(JJ ′)(JJ ′) = 1
3J (J ′J )J ′ = 1

3J (3)J ′ = JJ ′ = A. Thus the condition
holds and by Theorem 3.4a.2, ũ ∼ χ̃2

1 in the complex domain, that is, ũ a real gamma
random variable with parameters (α = 1, β = 1) when μ̃ = O. Now, let us derive this
result without using Theorem 3.4a.2. Let ũ1 = x̃1 + x̃2 + x̃3 and A1 = (1, 1, 1)′. Note that
A′

1X̃ = ũ1, the sum of the components of X̃. Hence ũ∗
1ũ1 = X̃∗A1A

′
1X̃ = X̃∗AX̃. For

μ̃ = O, we have E[ũ1] = 0 and

Var(ũ1) = Var(x̃1) + Var(x̃2) + Var(x̃3) + [Cov(x̃1, x̃2) + Cov(x̃2, x̃1)]
+ [Cov(x̃1, x̃3) + Cov(x̃3, x̃1)] + [Cov(x̃2, x̃3) + Cov(x̃3, x̃2)]

= 1

3
{3 + 3 + 3 + [−(1 + i) − (1 − i)] + [−(1 − i) − (1 + i)]

+ [−(1 + i) − (1 − i)]} = 1

3
[9 − 6] = 1.

Thus, ũ1 is a standard normal random variable in the complex domain and ũ∗
1ũ1 ∼ χ̃2

1 , a
chisquare random variable with one degree of freedom in the complex domain, that is, a
real gamma random variable with parameters (α = 1, β = 1).

For μ̃ = (2 + i, −i, 2i)′, this chisquare random variable is noncentral with noncen-
trality parameter λ = μ̃∗Σ−1μ̃. Hence, the inverse of Σ has to be evaluated. To do so,
we will employ the formula Σ−1 = 1

|Σ | [Cof(Σ)]′, which also holds for the complex case.

Earlier, the determinant was found to be equal to 13
33 and

1

|Σ | [Cof(Σ)] = 33

13

⎡

⎣
7 3 − i 3 + i

3 + i 7 3 − i

3 − i 3 + i 7

⎤

⎦ ; then

Σ−1 = 1

|Σ | [Cof(Σ)]′ = 33

13

⎡

⎣
7 3 + i 3 − i

3 − i 7 3 + i

3 + i 3 − i 7

⎤

⎦
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and

λ = μ̃∗Σ−1μ̃ = 33

13
[2 − i, i,−2i]

⎡

⎣
7 3 + i 3 − i

3 − i 7 3 + i

3 + i 3 − i 7

⎤

⎦

⎡

⎣
2 + i

−i

2i

⎤

⎦

= (76)(33)

13
= 2052

13
≈ 157.85.

This completes the computations.

3.4a.1. Independence of Hermitian forms

We shall mainly state certain results in connection with Hermitian forms in this section
since they parallel those pertaining to the real case.

Theorem 3.4a.3. Let ũ1 = X̃∗AX̃, A = A∗, and ũ2 = X̃∗BX̃, B = B∗, where
X̃ ∼ Ñ(μ, I ). Then, ũ1 and ũ2 are independently distributed if and only if AB = O.

Proof: Let us assume that AB = O. Then

AB = O = O∗ = (AB)∗ = B∗A∗ = BA. (3.4a.4)

This means that there exists a unitary matrix Q, QQ∗ = I, Q∗Q = I , that will
diagonalize both A and B. That is, Q∗AQ = diag(λ1, . . . , λp) = D1, Q∗BQ =
diag(ν1, . . . , νp) = D2 where λ1, . . . , λp are the eigenvalues of A and ν1, . . . , νp are
the eigenvalues of B. But AB = O implies that D1D2 = O. As well,

ũ1 = X̃∗AX̃ = Ỹ ∗Q∗AQỸ = λ1|ỹ1|2 + · · · + λp|ỹp|2, (3.4a.5)

ũ2 = X̃∗BX̃ = Ỹ ∗Q∗BQỸ = ν1|ỹ1|2 + · · · + νp|ỹp|2. (3.4a.6)

Since D1D2 = O, whenever a λj 
= 0, the corresponding νj = 0 and vice versa. Thus the
independent variables ỹj ’s are separated in (3.4a.5) and (3.4a.6) and accordingly, ũ1 and
ũ2 are independently distributed. The proof of the necessity which requires more matrix
algebra, will not be provided herein. The general result can be stated as follows:

Theorem 3.4a.4. Letting X̃ ∼ Ñp(μ, Σ), Σ > O, the Hermitian forms ũ1 = X̃∗AX̃,

A = A∗, and ũ2 = X̃∗BX̃, B = B∗, are independently distributed if and only if
AΣB = O.

Now, consider the density of the exponent in the p-variate complex Gaussian density.
What will then be the density of ỹ = (X̃ − μ̃)∗Σ−1(X̃ − μ̃)? Let us evaluate the mgf of
ỹ. Observing that ỹ is real so that we may take E[et ỹ] where t is a real parameter, we have
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Mỹ(t) = E[et ỹ] = 1

πp|det(Σ)|
∫

X̃

et (X̃−μ̃)∗Σ−1(X̃−μ̃)−(X̃−μ̃)∗Σ−1(X̃−μ̃)dX̃

= 1

πp|det(Σ)|
∫

X̃

e−(1−t)(X̃−μ̃)∗Σ−1(X̃−μ̃)dX̃

= (1 − t)−p for 1 − t > 0. (3.4a.7)

This is the mgf of a real gamma random variable with the parameters (α = p, β = 1) or a
chisquare random variable in the complex domain with p degrees of freedom. Hence we
have the following result:

Theorem 3.4a.5. When X̃ ∼ Ñp(μ̃, Σ), Σ > O then ỹ = (X̃ − μ̃)∗Σ−1(X̃ − μ̃) is
distributed as a real gamma random variable with the parameters (α = p, β = 1) or a
chisquare random variable in the complex domain with p degrees of freedom, that is,

ỹ ∼ gamma(α = p, β = 1) or ỹ ∼ χ̃2
p. (3.4a.8)

Example 3.4a.2. Let X̃ ∼ Ñ3(μ̃, Σ), ũ1 = X̃∗AX̃, ũ2 = X̃∗BX̃ where

X̃ =
⎡

⎣
x̃1

x̃2

x̃3

⎤

⎦ , μ̃ =
⎡

⎣
2 − i

3 + 2i

1 − i

⎤

⎦ , Σ = 1

3

⎡

⎣
3 −(1 + i) −(1 − i)

−(1 − i) 3 −(1 + i)

−(1 + i) −(1 − i) 3

⎤

⎦ ,

A =
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ , B = 1

3

⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦ .

(1) By making use of Theorem 3.4a.4, show that ũ1 and ũ2 are independently distributed.
(2) Show the independence of ũ1 and ũ2 without using Theorem 3.4a.4.

Solution 3.4a.2. In order to use Theorem 3.4a.4, we have to show that AΣB = O ir-
respective of μ̃. Note that A = JJ ′, J ′ = [1, 1, 1], J ′J = 3, J ′Σ = 1

3J ′, J ′B = O.
Hence AΣ = JJ ′Σ = J (J ′Σ) = 1

3JJ ′ ⇒ AΣB = 1
3JJ ′B = 1

3J (J ′B) =
O. This proves the result that ũ1 and ũ2 are independently distributed through The-
orem 3.4a.4. This will now be established without resorting to Theorem 3.4a.4. Let
ũ3 = x̃1 + x̃2 + x̃3 = J ′X and ũ4 = 1

3 [2x̃1 − x̃2 − x̃3] or the first row of BX̃.
Since independence is not affected by the relocation of the variables, we may assume,
without any loss of generality, that μ̃ = O when considering the independence of ũ3 and
ũ4. Let us compute the covariance between ũ3 and ũ4:
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Cov(ũ3, ũ4) = 1

3
[1, 1, 1]Σ

⎡

⎣
2

−1
−1

⎤

⎦ = 1

32
[1, 1, 1]

⎡

⎣
2

−1
−1

⎤

⎦ = 0.

Thus, ũ3 and ũ4 are uncorrelated and hence independently distributed since both are
linear functions of the normal vector X̃. This property holds for each row of BX̃ and
therefore ũ3 and BX̃ are independently distributed. However, ũ1 = X̃∗AX̃ = ũ∗

3ũ3

and hence ũ1 and (BX̃)∗(BX̃) = X̃∗B∗BX̃ = X̃∗BX̃ = ũ2 are independently dis-
tributed. This completes the computations. The following property was utilized: Let Ũ

and Ṽ be vectors or matrices that are independently distributed. Then, all the pairs
(Ũ , Ṽ ∗), (Ũ , Ṽ Ṽ ∗), (Ũ , Ṽ ∗Ṽ ), . . . , (Ũ Ũ∗, Ṽ Ṽ ∗), are independently distributed when-
ever the quantities are defined. The converses need not hold when quadratic terms are
involved; for instance, (Ũ Ũ∗, Ṽ Ṽ ∗) being independently distributed need not imply that
(Ũ , Ṽ ) are independently distributed.

Exercises 3.4

3.4.1. In the real case on the right side of (3.4.4), compute the densities of the following
items: (i) z2

1, (ii) λ1z
2
1, (iii) λ1z

2
1 + λ2z

2
2, (iv) λ1z

2
1 + · · · + λ4z

2
4 if λ1 = λ2, λ3 = λ4 for

μ = O.

3.4.2. Compute the density of u = X′AX, A = A′ in the real case when (i) X ∼
Np(O, Σ), Σ > O, (ii) X ∼ Np(μ, Σ), Σ > O.

3.4.3. Modify the statement in Theorem 3.4.1 if (i) X ∼ Np(O, σ 2I ), σ 2 > 0, (ii)
X ∼ Np(μ, σ 2I ), μ 
= O.

3.4.4. Prove the only if part in Theorem 3.4.3

3.4.5. Establish the cases (i), (ii), (iii) of Exercise 3.4.1 in the corresponding complex
domain.

3.4.6. Supply the proof for the only if part in Theorem 3.4a.3.

3.4.7. Can a matrix A having at least one complex element be Hermitian and idempotent
at the same time? Prove your statement.

3.4.8. Let the p × 1 vector X have a real Gaussian density Np(O, Σ), Σ > O. Let
u = X′AX, A = A′. Evaluate the density of u for p = 2 and show that this density can
be written in terms of a hypergeometric series of the 1F1 type.

3.4.9. Repeat Exercise 3.4.8 if X̃ is in the complex domain, X̃ ∼ Ñp(O, Σ), Σ > O.

3.4.10. Supply the proofs for the only if part in Theorems 3.4.4 and 3.4a.4.
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3.5. Samples from a p-variate Real Gaussian Population

Let the p×1 real vectors X1, . . . , Xn be iid as Np(μ, Σ), Σ > O. Then, the collection
X1, . . . , Xn is called a simple random sample of size n from this Np(μ, Σ), Σ > O. Then
the joint density of X1, . . . , Xn is the following:

L =
n∏

j=1

f (Xj) =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= [(2π)
np
2 |Σ | n

2 ]−1e− 1
2

∑n
j=1(Xj−μ)′Σ−1(Xj−μ)

. (3.5.1)

This L at an observed set of X1, . . . , Xn is called the likelihood function. Let the sample
matrix, which is p×n, be denoted by a bold-faced X. In order to avoid too many symbols,
we will use X to denote the p × n matrix in this section. In earlier sections, we had used
X to denote a p × 1 vector. Then

X = [X1, . . . , Xn] =

⎡

⎢
⎢
⎢
⎣

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤

⎥
⎥
⎥
⎦

, Xk =

⎡

⎢
⎢
⎢
⎣

x1k

x2k
...

xpk

⎤

⎥
⎥
⎥
⎦

, k = 1, . . . , n. (i)

Let the sample average be denoted by X̄ = 1
n
(X1 + · · · + Xn). Then X̄ will be of the

following form:

X̄ =
⎡

⎢
⎣

x̄1
...

x̄p

⎤

⎥
⎦ , x̄i = 1

n

n∑

k=1

xik = average on the i-th component of any Xj . (ii)

Let the bold-faced X̄ be defined as follows:

X̄ = [X̄, . . . , X̄] =

⎡

⎢
⎢
⎢
⎣

x̄1 x̄1 . . . x̄1

x̄2 x̄2 . . . x̄2
...

...
. . .

...

x̄p x̄p . . . x̄p

⎤

⎥
⎥
⎥
⎦

.

Then,

X − X̄ =

⎡

⎢
⎢
⎢
⎣

x11 − x̄1 x12 − x̄1 . . . x1n − x̄1

x21 − x̄2 x22 − x̄2 . . . x2n − x̄2
...

...
. . .

...

xp1 − x̄p xp2 − x̄p . . . xpn − x̄p

⎤

⎥
⎥
⎥
⎦

,
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and
S = (X − X̄)(X − X̄)′ = (sij ),

so that

sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j ).

S is called the sample sum of products matrix or the corrected sample sum of products
matrix, corrected in the sense that the averages are deducted from the observations. As
well, 1

n
sii is called the sample variance on the component xi of any vector Xk, referring to

(i) above, and 1
n
sij , i 
= j, is called the sample covariance on the components xi and xj

of any Xk, 1
n
S being referred to as the sample covariance matrix. The exponent in L can

be simplified by making use of the following properties: (1) When u is a 1 × 1 matrix or
a scalar quantity, then tr(u) = tr(u′) = u = u′. (2) For two matrices A and B, whenever
AB and BA are defined, tr(AB) = tr(BA) where AB need not be equal to BA. Observe
that the following quantity is real scalar and hence, it is equal to its trace:

n∑

j=1

(Xj − μ)′Σ−1(Xj − μ) = tr
[ n∑

j=1

(Xj − μ)′Σ−1(Xj − μ)
]

= tr[Σ−1
n∑

j=1

(Xj − μ)(Xj − μ)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄ + X̄ − μ)(Xj − X̄ + X̄ − μ)′
]

= tr[Σ−1(X − X̄)(X − X̄)′] + ntr[Σ−1(X̄ − μ)(X̄ − μ)′]
= tr(Σ−1S) + n(X̄ − μ)′Σ−1(X̄ − μ)

because

tr(Σ−1(X̄ − μ)(X̄ − μ)′) = tr((X̄ − μ)′Σ−1(X̄ − μ) = (X̄ − μ)′Σ−1(X̄ − μ).

The right-hand side expression being 1 × 1, it is equal to its trace, and L can be written as

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ−1S)− n
2 (X̄−μ)′Σ−1(X̄−μ). (3.5.2)

If we wish to estimate the parameters μ and Σ from a set of observation vectors cor-
responding to X1, . . . , Xn, one method consists in maximizing L with respect to μ and
Σ given those observations and estimating the parameters. By resorting to calculus, L is



180 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

differentiated partially with respect to μ and Σ , the resulting expressions are equated to
null vectors and matrices, respectively, and these equations are then solved to obtain the
solutions for μ and Σ . Those estimates will be called the maximum likelihood estimates
or MLE’s. We will explore this aspect later.

Example 3.5.1. Let the 3×1 vector X1 be real Gaussian, X1 ∼ N3(μ, Σ), Σ > O. Let
Xj, j = 1, 2, 3, 4 be iid as X1. Compute the 3 × 4 sample matrix X, the sample average
X̄, the matrix of sample means X̄, the sample sum of products matrix S, the maximum
likelihood estimates of μ and Σ , based on the following set of observations on Xj, j =
1, 2, 3, 4:

X1 =
⎡

⎣
2
0

−1

⎤

⎦ , X2 =
⎡

⎣
1

−1
2

⎤

⎦ , X3 =
⎡

⎣
1
0
4

⎤

⎦ , X4 =
⎡

⎣
0
1
3

⎤

⎦ .

Solution 3.5.1. The 3 × 4 sample matrix and the sample average are

X =
⎡

⎣
2 1 1 0
0 −1 0 1

−1 2 4 3

⎤

⎦ , X̄ = 1

4

⎡

⎣
2 + 1 + 1 + 0
0 − 1 + 0 + 1

−1 + 2 + 4 + 3

⎤

⎦ =
⎡

⎣
1
0
2

⎤

⎦ .

Then X̄ and X − X̄ are the following:

X̄ = [X̄, X̄, X̄, X̄] =
⎡

⎣
1 1 1 1
0 0 0 0
2 2 2 2

⎤

⎦ , X − X̄ =
⎡

⎣
1 0 0 −1
0 −1 0 1

−3 0 2 1

⎤

⎦ ,

and the sample sum of products matrix S is the following:

S = [X−X̄][X−X̄]′ =
⎡

⎣
1 0 0 −1
0 −1 0 1

−3 0 2 1

⎤

⎦

⎡

⎢
⎢
⎣

1 0 −3
0 −1 0
0 0 2

−1 1 1

⎤

⎥
⎥
⎦ =

⎡

⎣
2 −1 −4

−1 2 1
−4 1 14

⎤

⎦ .

Then, the maximum likelihood estimates of μ and Σ , denoted with a hat, are

μ̂ = X̄ =
⎡

⎣
1
0
2

⎤

⎦ , Σ̂ = 1

n
S = 1

4

⎡

⎣
2 −1 −4

−1 2 1
−4 1 14

⎤

⎦ .

This completes the computations.
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3.5a. Simple Random Sample from a p-variate Complex Gaussian Population

Our population density is given by the following:

f̃ (X̃j ) = e−(X̃j−μ̃)∗Σ̃−1(X̃j−μ̃)

πp|det(Σ)| , X̃j ∼ Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O.

Let X̃1, . . . , X̃n be a collection of complex vector random variables iid as X̃j ∼
Ñp(μ̃, Σ̃), Σ̃ > O. This collection is called a simple random sample of size n from
this complex Gaussian population f̃ (X̃j ). We will use notations parallel to those utilized

in the real case. Let X̃ = [X̃1, . . . , X̃n], ¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = (
¯̃
X, . . . ,

¯̃
X), and

S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗ = S̃ = (s̃ij ). Then

s̃ij =
n∑

k=1

(x̃ik − ¯̃xi)(x̃jk − ¯̃xj )
∗

with 1
n
s̃ij being the sample covariance between the components x̃i and x̃j , i 
= j , of any

X̃k, k = 1, . . . , n, 1
n
s̃ii being the sample variance on the component x̃i . The joint density

of X̃1, . . . , X̃n, denoted by L̃, is given by

L̃ =
n∏

j=1

e−(X̃j−μ)∗Σ̃−1(X̃j−μ)

πp|det(Σ̃)| = e−∑n
j=1(X̃j−μ)∗Σ̃−1(X̃j−μ)

πnp|det(Σ̃)|n , (3.5a.1)

which can be simplified to the following expression by making use of steps parallel to
those utilized in the real case:

L = e−tr(Σ̃−1S̃)−n(
¯̃
X−μ)∗Σ̃−1(

¯̃
X−μ)

πnp|det(Σ̃)|n . (3.5a.2)

Example 3.5a.1. Let the 3×1 vector X̃1 in the complex domain have a complex trivariate
Gaussian distribution X̃1 ∼ Ñ3(μ̃, Σ̃), Σ̃ > O. Let X̃j , j = 1, 2, 3, 4 be iid as X̃1.

With our usual notations, compute the 3 × 4 sample matrix X̃, the sample average ¯̃
X,

the 3 × 4 matrix of sample averages ¯̃X, the sample sum of products matrix S̃ and the
maximum likelihood estimates of μ̃ and Σ̃ based on the following set of observations on
X̃j , j = 1, 2, 3, 4:

X̃1 =
⎡

⎣
1 + i

2 − i

1 − i

⎤

⎦ , X̃2 =
⎡

⎣
−1 + 2i

3i

−1 + i

⎤

⎦ , X̃3 =
⎡

⎣
−2 + 2i

3 + i

4 + 2i

⎤

⎦ , X̃4 =
⎡

⎣
−2 + 3i

3 + i

−4 + 2i

⎤

⎦ .
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Solution 3.5a.1. The sample matrix X̃ and the sample average ¯̃
X are

X̃ =
⎡

⎣
1 + i −1 + 2i −2 + 2i −2 + 3i

2 − i 3i 3 + i 3 + i

1 − i −1 + i 4 + 2i −4 + 2i

⎤

⎦ ,
¯̃
X =

⎡

⎣
−1 + 2i

2 + i

i

⎤

⎦ .

Then, with our usual notations, ¯̃X and X̃ − ¯̃X are the following:

¯̃X =
⎡

⎣
−1 + 2i −1 + 2i −1 + 2i −1 + 2i

2 + i 2 + i 2 + i 2 + i

i i i i

⎤

⎦ ,

X̃ − ¯̃X =
⎡

⎣
2 − i 0 −1 −1 + i

−2i −2 + 2i 1 1
1 − 2i −1 4 + i −4 + i

⎤

⎦ .

Thus, the sample sum of products matrix S̃ is

S̃ = [X̃ − ¯̃X][X̃ − ¯̃X]∗

=
⎡

⎣
2 − i 0 −1 −1 + i

−2i −2 + 2i 1 1
1 − 2i −1 4 + i −4 + i

⎤

⎦

⎡

⎢
⎢
⎣

2 + i 2i 1 + 2i

0 −2 − 2i −1
−1 1 4 − i

−1 − i 1 −4 − i

⎤

⎥
⎥
⎦

=
⎡

⎣
8 5i 5 + i

−5i 14 6 − 6i

5 − i 6 + 6i 40

⎤

⎦ .

The maximum likelihood estimates are as follows:

ˆ̃μ = ¯̃
X =

⎡

⎣
−1 + 2i

2 + i

i

⎤

⎦ ,
ˆ̃

Σ = 1

4
S̃

where S̃ is given above. This completes the computations.

3.5.1. Some simplifications of the sample matrix in the real Gaussian case

The p × n sample matrix is

X = [X1, . . . , Xn] =

⎡

⎢
⎢
⎢
⎣

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤

⎥
⎥
⎥
⎦

, Xk =

⎡

⎢
⎢
⎢
⎣

x1k

x2k
...

xpk

⎤

⎥
⎥
⎥
⎦
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where the rows are iid variables on the components of the p-vector X1. For example,
(x11, x12, . . . , x1n) are iid variables distributed as the first component of X1. Let

X̄ =

⎡

⎢
⎢
⎢
⎣

x̄1

x̄2
...

x̄p

⎤

⎥
⎥
⎥
⎦

=
⎡

⎢
⎣

1
n

∑n
k=1 x1k
...

1
n

∑n
k=1 xpk

⎤

⎥
⎦

=
⎡

⎢
⎣

1
n
(x11, . . . , x1n)J

...
1
n
(xp1, . . . , xpn)J

⎤

⎥
⎦ = 1

n
XJ, J =

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ , n × 1.

Consider the matrix

X̄ = (X̄, . . . , X̄) = 1

n
XJJ ′ = XB, B = 1

n
JJ ′.

Then,

X − X̄ = XA, A = I − B = I − 1

n
JJ ′.

Observe that A = A2, B = B2, AB = O, A = A′ and B = B ′ where both A and
B are n × n matrices. Then XA and XB are p × n and, in order to determine the mgf,
we will take the p × n parameter matrices T1 and T2. Accordingly, the mgf of XA is
MXA(T1) = E[etr(T ′

1XA)], that of XB is MXB(T2) = E[etr(T ′
2XB)] and the joint mgf is

E[e tr(T ′
1XA)+tr(T ′

2XB)]. Let us evaluate the joint mgf for Xj ∼ Np(O, I),

E[etr(T ′
1XA)+tr(T ′

2XB)] =
∫

X

1

(2π)
np
2 |Σ | n

2
etr(T ′

1XA)+tr(T ′
2XB)− 1

2 tr(XX′)dX.

Let us simplify the exponent,

− 1

2
{tr(XX′) − 2tr[X(AT ′

1 + BT ′
2)]}. (i)

If we expand tr[(X − C)(X − C)′] for some C, we have

tr(XX′) − tr(CX′) − tr(XC′) + tr(CC ′)
= tr(XX′) − 2tr(XC′) + tr(CC′) (ii)

as tr(XC′) = tr(CX′) even though CX′ 
= XC′. On comparing (i) and (ii), we have
C′ = AT ′

1 + BT ′
2, and then

tr(CC′) = tr[(T1A
′ + T2B

′)(AT ′
1 + BT ′

2)]
= tr(T1A

′AT ′
1) + tr(T2B

′BT ′
2) + tr(T1A

′BT ′
2) + tr(T2B

′AT ′
1). (iii)
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Since the integral over X − C will absorb the normalizing constant and give 1, the joint
mgf is etr(CC′). Proceeding exactly the same way, it is seen that the mgf of XA and XB are
respectively

MXA(T1) = e
1
2 tr(T1A

′AT ′
1) and MXB(T2) = e

1
2 tr(T2B

′BT ′
2).

The independence of XA and XB implies that the joint mgf should be equal to the product
of the individual mgf’s. In this instance, this is the case as A′B = O, B ′A = O. Hence,
the following result:

Theorem 3.5.1. Assuming that X1, . . . , Xn are iid as Xj ∼ Np(O, I), let the p × n

matrixX = (X1, . . . , Xn) and X̄ = 1
n
XJ, J ′ = (1, 1, .., 1). Let X̄ = XB andX−X̄ = XA

so that A = A′, B = B ′, A2 = A, B2 = B, AB = O. Letting U1 = XB and U2 = XA,
it follows that U1 and U2 are independently distributed.

Now, appealing to a general result to the effect that if U and V are independently
distributed then U and V V ′ as well as U and V ′V are independently distributed whenever
V V ′ and V ′V are defined, the next result follows.

Theorem 3.5.2. For the p × n matrix X, let XA and XB be as defined in Theorem 3.5.1.
Then XB and XAA′X′ = XAX′ = S are independently distributed and, consequently, the
sample mean X̄ and the sample sum of products matrix S are independently distributed.

As μ is absent from the previous derivations, the results hold for a Np(μ, I) pop-
ulation. If the population is Np(μ, Σ), Σ > O, it suffices to make the transforma-

tion Yj = Σ− 1
2 Xj or Y = Σ− 1

2X, in which case X = Σ
1
2Y. Then, tr(T ′

1XA) =
tr(T ′

1Σ
1
2YA) = tr[(T ′

1Σ
1
2 )YA] so that Σ

1
2 is combined with T ′

1, which does not affect
YA. Thus, we have the general result that is stated next.

Theorem 3.5.3. Letting the population be Np(μ, Σ), Σ > O, and X, A, B, S, and
X̄ be as defined in Theorem 3.5.1, it then follows that U1 = XA and U2 = XB are
independently distributed and thereby, that the sample mean X̄ and the sample sum of
products matrix S are independently distributed.

3.5.2. Linear functions of the sample vectors

Let the Xj ’s, j = 1, . . . , n, be iid as Xj ∼ Np(μ, Σ), Σ > O. Let us consider a
linear function a1X1 +a2X2 +· · ·+anXn where a1, . . . , an are real scalar constants. Then
the mgf’s of Xj, ajXj , U =∑n

j=1 ajXj are obtained as follows:
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MXj
(T ) = E[eT ′Xj ] = eT ′μ+ 1

2 T ′ΣT , MajXj
(T ) = eT ′(ajμ)+ 1

2 a2
j T ′ΣT

M∑n
j=1 ajXj

(T ) =
n∏

j=1

MajXj
(T ) = eT ′μ(

∑n
j=1 aj )+ 1

2 (
∑n

j=1 a2
j )T ′ΣT

,

which implies that U = ∑n
j=1 ajXj is distributed as a real normal vector

random variable with parameters (
∑n

j=1 aj )μ and (
∑n

j=1 a2
j )Σ , that is, U ∼

Np(μ(
∑n

j=1 aj ), (
∑n

j=1 a2
j )Σ). Thus, the following result:

Theorem 3.5.4. Let the Xj ’s be iid Np(μ, Σ), Σ > O, j = 1, . . . , n, and U =
a1X1 + · · · + anXn be a linear function of the Xj ’s, j = 1, . . . , n, where a1, . . . , an are
real scalar constants. Then U is distributed as a p-variate real Gaussian vector random
variable with parameters [(∑n

j=1 aj )μ, (
∑n

j=1 a2
j )Σ], that is, U ∼ Np((

∑n
j=1 aj )μ,

(
∑n

j=1 a2
j )Σ), Σ > O.

If, in Theorem 3.5.4, aj = 1
n

, j = 1, . . . , n, then
∑n

j aj = ∑n
j=1

1
n

= 1 and
∑n

j=1 a2
j = ∑n

j=1(
1
n
)2 = 1

n
. However, when aj = 1

n
, j = 1, . . . , n, U = X̄ =

1
n
(X1 + · · · + Xn). Hence we have the following corollary.

Corollary 3.5.1. Let the Xj ’s be Np(μ, Σ), Σ > O, j = 1, . . . , n. Then, the sam-
ple mean X̄ = 1

n
(X1 + · · · + Xn) is distributed as a p-variate real Gaussian with the

parameters μ and 1
n
Σ , that is, X̄ ∼ Np(μ, 1

n
Σ), Σ > O.

From the representation given in Sect. 3.5.1, let X be the sample matrix, X̄ = 1
n
(X1 +

· · · + Xn), the sample average, and the p × n matrix X̄ = (X̄, . . . , X̄), X − X̄ = X(I −
1
n
JJ ′) = XA, J ′ = (1, . . . , 1). Since A is idempotent of rank n − 1, there exists an

orthonormal matrix P , PP ′ = I, P ′P = I, such that P ′AP = diag(1, . . . , 1, 0) ≡
D, A = PDP ′ and XA = XPDP ′ = ZDP ′. Note that A = A′, A2 = A and D2 = D.
Thus, the sample sum of products matrix has the following representations:

S = (X − X̄)(X − X̄)′ = XAA′X = XAX′ = ZDD′Z′ = Zn−1Z′
n−1 (3.5.3)

where Zn−1 is a p×(n−1) matrix consisting of the first n−1 columns of Z = XP . When

D =
[

In−1 O

O 0

]

, Z = (Zn−1, Z(n)), ZDZ′ = Zn−1Z′
n−1,

where Z(n) denotes the last column of Z. For a p-variate real normal population wherein
the Xj ’s are iid Np(μ, Σ), Σ > O, j = 1, . . . , n, Xj − X̄ = (Xj − μ) − (X̄ − μ) and
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hence the population can be taken to be distributed as Np(O, Σ), Σ > O without any
loss of generality. Then the n − 1 columns of Zn−1 will be iid standard normal Np(O, I).
After discussing the real matrix-variate gamma distribution in the next chapter, we will
show that whenever (n − 1) ≥ p, Zn−1Z′

n−1 has a real matrix-variate gamma distribution,
or equivalently, that it is Wishart distributed with n − 1 degrees of freedom.

3.5a.1. Some simplifications of the sample matrix in the complex Gaussian case

Let the p × 1 vector X̃1 in the complex domain have a complex Gaussian den-
sity Ñp(μ̃, Σ), Σ > O. Let X̃1, . . . , X̃n be iid as X̃j ∼ Ñp(μ̃, Σ), Σ > O or
X̃ = [X̃1, . . . , X̃n] is the sample matrix of a simple random sample of size n from

a Ñp(μ̃, Σ), Σ > O. Let the sample mean vector or the sample average be ¯̃
X =

1
n
(X̃1 + · · · + X̃n) and the matrix of sample means be the bold-faced p × n matrix ¯̃X.

Let S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗. Then ¯̃X = 1
n
X̃JJ ′ = X̃B, X̃ − ¯̃X = X̃(I − 1

n
JJ ′) = X̃A.

Then, A = A2, A = A′ = A∗, B = B ′ = B∗, B = B2, AB = O, BA = O. Thus,
results parallel to Theorems 3.5.1 and 3.5.2 hold in the complex domain, and we now state
the general result.

Theorem 3.5a.1. Let the population be complex p-variate Gaussian Ñp(μ̃, Σ), Σ >

O. Let the p × n sample matrix be X̃ = (X̃1, . . . , X̃n) where X̃1, . . . , X̃n are iid as

Ñp(μ̃, Σ), Σ > O. Let X̃,
¯̃
X, S̃, X̃A, X̃B be as defined above. Then, X̃A and X̃B are

independently distributed, and thereby the sample mean ¯̃
X and the sample sum of products

matrix S̃ are independently distributed.

3.5a.2. Linear functions of the sample vectors in the complex domain

Let X̃j ∼ Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O be a p-variate complex Gaussian vector random
variable. Consider a simple random sample of size n from this population, in which case
the X̃j ’s, j = 1, . . . , n, are iid as Ñp(μ̃, Σ̃), Σ̃ > O. Let the linear function Ũ =
a1X̃1 +· · ·+anX̃n where a1, . . . , an are real or complex scalar constants. Then, following
through steps parallel to those provided in Sect. 3.5.2, we obtain the following mgf:

M̃Ũ (T̃ ) = e�(T̃ ∗μ̃(
∑n

j=1 aj ))+ 1
4 (
∑n

j=1 aj a
∗
j )T̃ ∗Σ̃T̃

where
∑n

j=1 aja
∗
j = |ã1|2 + · · · + |ãn|2. For example, if aj = 1

n
, j = 1, . . . , n, then

∑n
j=1 aj = 1 and

∑n
j=1 aja

∗
j = 1

n
. Hence, we have the following result and the resulting

corollary.
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Theorem 3.5a.2. Let the p × 1 complex vector have a p-variate complex Gaussian
distribution Ñp(μ̃, Σ̃), Σ̃ = Σ̃∗ > O. Consider a simple random sample of size n

from this population, with the X̃j ’s, j = 1, . . . , n, being iid as this p-variate complex
Gaussian. Let a1, . . . , an be scalar constants, real or complex. Consider the linear func-
tion Ũ = a1X̃1 + · · · + anX̃n. Then Ũ ∼ Ñp(μ̃(

∑n
j=1 aj ), (

∑n
j=1 aja

∗
j )Σ̃), that is,

Ũ has a p-variate complex Gaussian distribution with the parameters (
∑n

j=1 aj )μ̃ and

(
∑n

j=1 aja
∗
j )Σ̃ .

Corollary 3.5a.1. Let the population and sample be as defined in Theorem 3.5a.2. Then

the sample mean ¯̃
X = 1

n
(X̃1 + · · · + X̃n) is distributed as a p-variate complex Gaussian

with the parameters μ̃ and 1
n
Σ̃ .

Proceeding as in the real case, we can show that the sample sum of products matrix S̃

can have a representation of the form

S̃ = Z̃n−1Z̃∗
n−1 (3.5a.3)

where the columns of Z̃n−1 are iid standard normal vectors in the complex domain if the
population is a p-variate Gaussian in the complex domain. In this case, it will be shown
later, that S̃ is distributed as a complex Wishart matrix with (n − 1) ≥ p degrees of
freedom.

3.5.3. Maximum likelihood estimators of the p-variate real Gaussian distribution

Letting L denote the joint density of the sample values X1, . . . , Xn, which are p × 1
iid Gaussian vectors constituting a simple random sample of size n, we have

L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= e− 1
2 tr(Σ−1S)− 1

2 n(X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
(3.5.4)

where, as previously denoted, X is the p × n matrix

X = (X1, . . . , Xn), X̄ = 1

n
(X1 + · · · + Xn), X̄ = (X̄, . . . , X̄),

S = (X − X̄)(X − X̄)′ = (sij ), sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j ).

In this case, the parameters are the p × 1 vector μ and the p × p real positive definite
matrix Σ . If we resort to Calculus to maximize L, then we would like to differentiate L, or
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the one-to-one function ln L, with respect to μ and Σ directly, rather than differentiating
with respect to each element comprising μ and Σ . For achieving this, we need to further
develop the differential operators introduced in Chap. 1.

Definition 3.5.1. Derivative with respect to a matrix. Let Y = (yij ) be a p × q matrix
where the elements yij ’s are distinct real scalar variables. The operator ∂

∂Y
will be defined

as ∂
∂Y

= ( ∂
∂yij

) and this operator applied to a real scalar quantity f will be defined as

∂

∂Y
f =

( ∂f

∂yij

)
.

For example, if f = y2
11 + y2

12 + y2
13 − y11y12 + y21 + y2

22 + y23 and the 2 × 3 matrix Y is

Y =
[
y11 y12 y13

y21 y22 y23

]

⇒ ∂f

∂Y
=
[

∂f
∂y11

∂f
∂y12

∂f
∂y13

∂f
∂y21

∂f
∂y22

∂f
∂y23

]

,

∂f

∂Y
=
[

2y11 − y12 2y12 − y11 2y13

1 2y22 1

]

.

There are numerous examples of real-valued scalar functions of matrix argument. The
determinant and the trace are two scalar functions of a square matrix A. The derivative
with respect to a vector has already been defined in Chap. 1. The loglikelihood function
ln L which is available from (3.5.4) has to be differentiated with respect to μ and with
respect to Σ and the resulting expressions have to be respectively equated to a null vector
and a null matrix. These equations are then solved to obtain the critical points where
the L as well as ln L may have a local maximum, a local minimum or a saddle point.
However, ln L contains a determinant and a trace. Hence we need to develop some results
on differentiating a determinant and a trace with respect to a matrix, and the following
results will be helpful in this regard.

Theorem 3.5.5. Let the p × p matrix Y = (yij ) be nonsingular, the yij ’s being distinct
real scalar variables. Let f = |Y |, the determinant of Y . Then,

∂

∂Y
|Y | =

{
|Y |(Y−1)′ for a general Y

|Y |[2Y−1 − diag(Y−1)] for Y = Y ′

where diag(Y−1) is a diagonal matrix whose diagonal elements coincide with those of
Y−1.
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Proof: A determinant can be obtained by expansions along any row (or column), the re-
sulting sums involving the corresponding elements and their associated cofactors. More
specifically, |Y | = yi1Ci1 + · · · + yipCip for each i = 1, . . . , p, where Cij is the cofactor
of yij . This expansion holds whether the elements in the matrix are real or complex. Then,

∂

∂yij

|Y | =

⎧
⎪⎨

⎪⎩

Cij for a general Y

2Cij for Y = Y ′, i 
= j

Cjj for Y = Y ′, i = j.

Thus, ∂
∂Y

|Y | = the matrix of cofactors = |Y |(Y−1)′ for a general Y . When Y = Y ′, then

∂

∂Y
|Y | =

⎡

⎢
⎢
⎢
⎣

C11 2C12 · · · 2C1p

2C21 C22 · · · 2C2p
...

...
. . .

...

2Cp1 2Cp2 · · · Cpp

⎤

⎥
⎥
⎥
⎦

= |Y | [2Y−1 − diag(Y−1)].
Hence the result.

Theorem 3.5.6. Let A and Y = (yij ) be p × p matrices where A is a constant matrix
and the yij ’s are distinct real scalar variables. Then,

∂

∂Y
[tr(AY )] =

{
A′ for a general Y
A + A′ − diag(A) for Y = Y ′.

Proof: tr(AY ) = ∑
ij ajiyij for a general Y , so that ∂

∂Y
[tr(Y )] = A′ for a general Y .

When Y = Y ′, ∂
∂yjj

[tr(AY )] = ajj and ∂
∂yij

[tr(AY )] = aij + aji for i 
= j . Hence,
∂

∂Y
[tr(AY )] = A + A′ − diag(A) for Y = Y ′. Thus, the result is established.

With the help of Theorems 3.5.5 and 3.5.6, we can optimize L or ln L with L as spec-
ified in Eq. (3.5.4). For convenience, we take ln L which is given by

ln L = −np

2
ln(2π) − n

2
ln |Σ | − 1

2
tr(Σ−1S) − n

2
(X̄ − μ)′Σ−1(X̄ − μ). (3.5.5)

Then,
∂

∂μ
ln L = O ⇒ 0 − n

2

∂

∂μ
(X̄ − μ)′Σ−1(X̄ − μ) = O

⇒ nΣ−1(X̄ − μ) = O ⇒ X̄ − μ = O

⇒ μ = X̄,
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referring to the vector derivatives defined in Chap. 1. The extremal value, denoted with
a hat, is μ̂ = X̄. When differentiating with respect to Σ , we may take B = Σ−1 for
convenience and differentiate with respect to B. We may also substitute X̄ to μ because
the critical point for Σ must correspond to μ̂ = X̄. Accordingly, ln L at μ = X̄ is

ln L(μ̂, B) = −np

2
ln(2π) + n

2
ln |B| − 1

2
tr(BS).

Noting that B = B ′,

∂

∂B
ln L(μ̂, B) = O ⇒ n

2
[2B−1 − diag(B−1)] − 1

2
[2S − diag(S)] = O

⇒ n[2Σ − diag(Σ)] = 2S − diag(S)

⇒ σ̂jj = 1

n
sjj , σ̂ij = 1

n
sij , i 
= j

⇒ (μ̂ = X̄, Σ̂ = 1

n
S).

Hence, the only critical point is (μ̂, Σ̂) = (X̄, 1
n
S). Does this critical point correspond to a

local maximum or a local minimum or something else? For μ̂ = X̄, consider the behavior
of ln L. For convenience, we may convert the problem in terms of the eigenvalues of B.
Letting λ1, . . . , λp be the eigenvalues of B, observe that λj > 0, j = 1, . . . , p, that the
determinant is the product of the eigenvalues and the trace is the sum of the eigenvalues.
Examining the behavior of ln L for all possible values of λ1 when λ2, . . . , λp are fixed, we
see that ln L at μ̂ goes from −∞ to −∞ through finite values. For each λj , the behavior
of ln L is the same. Hence the only critical point must correspond to a local maximum.
Therefore μ̂ = X̄ and Σ̂ = 1

n
S are the maximum likelihood estimators (MLE’s) of μ

and Σ respectively. The observed values of μ̂ and Σ̂ are the maximum likelihood esti-
mates of μ and Σ , for which the same abbreviation MLE is utilized. While maximum
likelihood estimators are random variables, maximum likelihood estimates are numerical
values. Observe that, in order to have an estimate for Σ , we must have that the sample size
n ≥ p.

In the derivation of the MLE of Σ , we have differentiated with respect to B = Σ−1

instead of differentiating with respect to the parameter Σ . Could this affect final result?
Given any θ and any non-trivial differentiable function of θ , φ(θ), whose derivative is
not identically zero, that is, d

dθ
φ(θ) 
= 0 for any θ , it follows from basic calculus that

for any differentiable function g(θ), the equations d
dθ

g(θ) = 0 and d
dφ

g(θ) = 0 will lead

to the same solution for θ . Hence, whether we differentiate with respect to B = Σ−1 or
Σ , the procedures will lead to the same estimator of Σ . As well, if θ̂ is the MLE of θ ,
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then g(θ̂) will also the MLE of g(θ) whenever g(θ) is a one-to-one function of θ . The
numerical evaluation of maximum likelihood estimates for μ and Σ has been illustrated
in Example 3.5.1.

3.5a.3. MLE’s in the complex p-variate Gaussian case

Let the p×1 vectors in the complex domain X̃1, . . . , X̃n be iid as Ñp(μ̃, Σ), Σ > O.
and let the joint density of the X̃j ’s, j = 1, . . . , n, be denoted by L̃. Then

L̃ =
n∏

j=1

e−(X̃j−μ̃)∗Σ−1(X̃j−μ̃)

πp|det(Σ)| = e−∑n
j=1(X̃j−μ̃)∗Σ−1(X̃j−μ̃)

πnp|det(Σ)|n

= e−tr(Σ−1S̃)−n(
¯̃
X−μ̃)∗Σ−1(

¯̃
X−μ̃)

πnp|det(Σ)|n

where |det(Σ)| denotes the absolute value of the determinant of Σ,

S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗ = (s̃ij ), s̃ij =
n∑

k=1

(x̃ik − ¯̃xi)(x̃jk − ¯̃xj )
∗,

X̃ = [X̃1, . . . , X̃n], ¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = [ ¯̃
X, . . . ,

¯̃
X],

where X̃ and ¯̃X are p × n. Hence,

ln L̃ = −np ln π − n ln |det(Σ)| − tr(Σ−1S̃) − n(
¯̃
X − μ̃)∗Σ−1(

¯̃
X − μ̃). (3.5a.4)

3.5a.4. Matrix derivatives in the complex domain

Consider tr(B̃S̃∗), B̃ = B̃∗ > O, S̃ = S̃∗ > O. Let B̃ = B1+iB2, S̃ = S1+iS2, i =√
(−1). Then B1 and S1 are real symmetric and B2 and S2 are real skew symmetric since

B̃ and S̃ are Hermitian. What is then ∂

∂B̃
[tr(B̃S̃∗)]? Consider

B̃S̃∗ = (B1 + iB2)(S
′
1 − iS′

2) = B1S
′
1 + B2S

′
2 + i(B2S

′
1 − B1S

′
2),

tr(B̃S̃∗) = tr(B1S
′
1 + B2S

′
2) + i[tr(B2S

′
1) − tr(B1S

′
2)].

It can be shown that when B2 and S2 are real skew symmetric and B1 and S1 are real
symmetric, then tr(B2S

′
1) = 0, tr(B1S

′
2) = 0. This will be stated as a lemma.
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Lemma 3.5a.1. Consider two p × p real matrices A and B where A = A′ (symmetric)
and B = −B ′ (skew symmetric). Then, tr(AB) = 0.

Proof: tr(AB) = tr(AB)′ = tr(B ′A′) = −tr(BA) = −tr(AB), which implies that
tr(AB) = 0.

Thus, tr(B̃S̃∗) = tr(B1S
′
1 + B2S

′
2). The diagonal elements of S1 in tr(B1S

′
1) are multi-

plied once by the diagonal elements of B1 and the non-diagonal elements in S1 are multi-
plied twice each by the corresponding elements in B1. Hence,

∂

∂B1
tr(B1S

′
1) = 2S1 − diag(S1).

In B2 and S2, the diagonal elements are zeros and hence

∂

∂B2
tr(B2S

′
2) = 2S2.

Therefore

( ∂

∂B1
+ i

∂

∂B2

)
tr(B1S

′
1 + B2S

′
2) = 2(S1 + iS2) − diag(S1) = 2S̃ − diag(S̃).

Thus, the following result:

Theorem 3.5a.3. Let S̃ = S̃∗ > O and B̃ = B̃∗ > O be p × p Hermitian matrices. Let
B̃ = B1 + iB2 and S̃ = S1 + iS2 where the p × p matrices B1 and S1 are symmetric and
B2 and S2 are skew symmetric real matrices. Letting ∂

∂B̃
= ∂

∂B1
+ i ∂

∂B2
, we have

∂

∂B̃
tr(B̃S̃∗) = 2S̃ − diag(S̃).

Theorem 3.5a.4. Let Σ̃ = (σ̃ij ) = Σ̃∗ > O be a Hermitian positive definite p × p ma-
trix. Let det(Σ) be the determinant and |det(Σ)| be the absolute value of the determinant
respectively. Let ∂

∂Σ̃
= ∂

∂Σ1
+ i ∂

∂Σ2
be the differential operator, where Σ̃ = Σ1 + iΣ2,

i = √
(−1), Σ1 being real symmetric and Σ2, real skew symmetric. Then,

∂

∂Σ̃
ln |det(Σ̃)| = 2Σ̃−1 − diag(Σ̃−1).



The Multivariate Gaussian and Related Distributions 193

Proof: Note that for two scalar complex quantities, x̃ = x1 + ix2 and ỹ = y1 + iy2 where
i = √

(−1) and x1, x2, y1, y2 are real, and for the operator ∂
∂x̃

= ∂
∂x1

+ i ∂
∂x2

, the following
results hold, which will be stated as a lemma.

Lemma 3.5a.2. Given x̃, ỹ and the operator ∂
∂x1

+ i ∂
∂x2

defined above,

∂

∂x̃
(x̃ỹ) = 0,

∂

∂x̃
(x̃ỹ∗) = 0,

∂

∂x̃
(x̃∗ỹ) = 2ỹ,

∂

∂x̃
(x̃∗ỹ∗) = 2ỹ∗,

∂

∂x̃
(x̃x̃∗) = ∂

∂x̃
(x̃∗x̃) = 2x̃,

∂

∂x̃∗ (x̃∗x̃) = ∂

∂x̃∗ (x̃x̃∗) = 2x̃∗

where, for example, x̃∗ which, in general, is the conjugate transpose of x̃, is only the
conjugate in this case since x̃ is a scalar quantity.

Observe that for a p×p Hermitian positive definite matrix X̃, the absolute value of the

determinant, namely, |det(X̃)| =
√

det(X̃)det(X̃∗) = det(X̃) = det(X̃∗) since X̃ = X̃∗.

Consider the following cofactor expansion of det(X̃) (in general, a cofactor expansion
is valid whether the elements of the matrix are real or complex). Letting Cij denote the
cofactor of xij in X̃ = (xij ) when xij is real or complex,

det(X) = x11C11 + x12C12 + · · · + x1pC1p (1)

= x21C21 + x22C22 + · · · + x2pC2p (2)
...

= xp1Cp1 + xp2Cp2 + · · · + xppCpp . (p)

When X̃ = X̃∗, the diagonal elements xjj ’s are all real. From Lemma 3.5a.2 and equation
(1), we have

∂

∂x11
(x11C11) = C11,

∂

∂x1j

(x1jC1j ) = 0, j = 2, . . . , p.

From Eq. (2), note that x21 = x∗
12, C21 = C∗

12 since X̃ = X̃∗. Then from Lemma 3.5a.2
and (2), we have

∂

∂x12
(x∗

12C
∗
12) = C∗

12,
∂

∂x22
(x∗

22C
∗
22) = C∗

22,
∂

∂x2j

(x2jC2j ) = 0, j = 3, . . . , p,

observing that x∗
22 = x22 and C∗

22 = C22. Now, continuing the process with
Eqs. (3), (4), . . . , (p), we have the following result:

∂

∂xij

[det(X̃)] =
{

C∗
jj , j = 1, . . . , p

2C∗
ij for all i 
= j.
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Observe that for Σ̃−1 = B̃ = B̃∗,

∂

∂B̃
[ln(det(B̃))] = 1

det(B̃)

⎡

⎢
⎢
⎢
⎣

B∗
11 2B∗

12 . . . B∗
1p

2B∗
21 B∗

22 . . . 2B∗
2p

...
...

. . .
...

2B∗
p1 2B∗

p2 . . . B∗
pp

⎤

⎥
⎥
⎥
⎦

= 2B̃−1 − diag(B̃−1) = 2Σ̃ − diag(Σ̃)

where Brs is the cofactor of b̃rs , B̃ = (b̃rs). Therefore, at μ̂ = ¯̃
X, for Σ̃−1 = B̃, and from

Theorems 3.5a.5 and 3.5a.6, we have
∂

∂B̃
[ln L̃] = O ⇒ n[Σ̃ − diag(Σ̃)] − [S̃ − diag(S̃)] = O

⇒ Σ̃ = 1

n
S̃ ⇒ ˆ̃

Σ = 1

n
S̃ for n ≥ p,

where a hat denotes the estimate/estimator.

Again, from Lemma 3.5a.2 we have the following:
∂

∂μ̃
[( ¯̃

X − μ̃)∗Σ̃−1(
¯̃
X − μ̃)] = ∂

∂μ̃
{ ¯̃
X∗Σ̃−1 ¯̃

X + μ̃∗Σ̃−1μ̃ − ¯̃
X∗Σ̃−1μ̃ + μ̃∗Σ̃−1 ¯̃

X} = O

⇒ O + 2Σ̃−1μ̃ − O − 2Σ̃−1 ¯̃
X = O

⇒ ˆ̃μ = ¯̃
X.

Thus, the MLE of μ̃ and Σ̃ are respectively ˆ̃μ = ¯̃
X and ˆ̃

Σ = 1
n
S̃ for n ≥ p. It is not

difficult to show that the only critical point ( ˆ̃μ,
ˆ̃

Σ) = (
¯̃
X, 1

n
S̃) corresponds to a local

maximum for L̃. Consider ln L̃ at ˆ̃μ = ¯̃
X. Let λ1, . . . , λp be the eigenvalues of B̃ = Σ̃−1

where the λj ’s are real as B̃ is Hermitian. Examine the behavior of ln L̃ when a λj is
increasing from 0 to ∞. Then ln L̃ goes from −∞ back to −∞ through finite values.

Hence, the only critical point corresponds to a local maximum. Thus, ¯̃
X and 1

n
S̃ are the

MLE’s of μ̃ and Σ̃, respectively.

Theorems 3.5.7, 3.5a.5. For the p-variate real Gaussian with the parameters μ and
Σ > O and the p-variate complex Gaussian with the parameters μ̃ and Σ̃ > O, the

maximum likelihood estimators (MLE’s) are μ̂ = X̄, Σ̂ = 1
n
S, ˆ̃μ = ¯̃

X,
ˆ̃

Σ = 1
n
S̃ where

n is the sample size, X̄ and S are the sample mean and sample sum of products matrix in
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the real case, and ¯̃
X and S̃ are the sample mean and the sample sum of products matrix in

the complex case, respectively.

A numerical illustration of the maximum likelihood estimates of μ̃ and Σ̃ in the com-
plex domain has already been given in Example 3.5a.1.

It can be shown that the MLE of μ and Σ in the real and complex p-variate Gaus-
sian cases are such that E[X̄] = μ, E[X̃] = μ̃, E[S] = n−1

n
Σ, E[S̃] = n−1

n
Σ̃ . For

these results to hold, the population need not be Gaussian. Any population for which the
covariance matrix exists will have these properties. This will be stated as a result.

Theorems 3.5.8, 3.5a.6. Let X1, . . . , Xn be a simple random sample from any p-variate
population with mean value vector μ and covariance matrix Σ = Σ ′ > O in the real
case and mean value vector μ̃ and covariance matrix Σ̃ = Σ̃∗ > O in the complex
case, respectively, and let Σ and Σ̃ exist in the sense all the elements therein exist. Let

X̄ = 1
n
(X1 + · · · + Xn),

¯̃
X = 1

n
(X̃1 + · · · + X̃n) and let S and S̃ be the sample sum of

products matrices in the real and complex cases, respectively. Then E[X̄] = μ, E[ ¯̃
X] =

μ̃, E[Σ̂] = E[ 1
n
S] = n−1

n
Σ → Σ as n → ∞ and E[ ¯̃

X] = μ̃, E[ ˆ̃
Σ] = E[ 1

n
S̃] =

n−1
n

Σ̃ → Σ̃ as n → ∞.

Proof: E[X̄] = 1
n
{E[X1] + · · · + E[Xn]} = 1

n
{μ + · · · + μ} = μ. Similarly, E[ ¯̃

X] = μ̃.
Let M = (μ, μ, . . . , μ), that is, M is a p × n matrix wherein every column is the p × 1
vector μ. Let X̄ = (X̄, . . . , X̄), that is, X̄ is a p × n matrix wherein every column is X̄.
Now, consider

E[(X − M)(X − M)′] = E[
n∑

j=1

(Xj − μ)(Xj − μ)′] =
n∑

j=1

{Σ + · · · + Σ} = nΣ.

As well,

(X − M)(X − M)′ = (X − X̄ + X̄ − M)(X − X̄ + X̄ − M)′

= (X − X̄)(X − X̄)′ + (X − X̄)(X̄ − M)′

+ (X̄ − M)(X − X̄)′ + (X̄ − M)(X̄ − M)′ ⇒

(X − M)(X − M)′ = S +
n∑

j=1

(Xj − X̄)(X̄ − μ)′ +
n∑

j=1

(X̄ − μ)(Xj − X̄)′

+
n∑

j=1

(X̄ − μ)(X̄ − μ)′

= S + O + O + n(X̄ − μ)(X̄ − μ)′ ⇒
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nΣ = E[S] + O + O + nCov(X̄) = E[S] + n
[1

n
Σ
]

= E[S] + Σ ⇒

E[S] = (n − 1)Σ ⇒ E[Σ̂] = E
[1

n
S
]

= n − 1

n
Σ → Σ as n → ∞.

Observe that
∑n

j=1(Xj − X̄) = O, this result having been utilized twice in the above
derivations. The complex case can be established in a similar manner. This completes the
proof.

3.5.4. Properties of maximum likelihood estimators

Definition 3.5.2 Unbiasedness. Let g(θ) be a function of the parameter θ which stands
for all the parameters associated with a population’s distribution. Let the independently
distributed random variables x1, . . . , xn constitute a simple random sample of size n from
a univariate population. Let T (x1, . . . , xn) be an observable function of the sample values
x1, . . . , xn. This definition for a statistic holds when the iid variables are scalar, vector or
matrix variables, whether in the real or complex domains. Then T is called a statistic (the
plural form, statistics, is not to be confused with the subject of Statistics). If E[T ] = g(θ)

for all θ in the parameter space, then T is said to be unbiased for g(θ) or an unbiased
estimator of g(θ).

We will look at some properties of the MLE of the parameter or parameters represented
by θ in a given population specified by its density/probability function f (x, θ). Consider
a simple random sample of size n from this population. The sample will be of the form
x1, . . . , xn if the population is univariate or of the form X1, . . . , Xn if the population is
multivariate or matrix-variate. Some properties of estimators in the scalar variable case
will be illustrated first. Then the properties will be extended to the vector/matrix-variate
cases. The joint density of the sample values will be denoted by L. Thus, in the univariate
case,

L = L(x1, . . . , xn, θ) =
n∏

j=1

f (xj , θ) ⇒ ln L =
n∑

j=1

ln f (xj , θ).

Since the total probability is 1, we have the following, taking for example the variable to
be continuous and a scalar parameter θ :

∫

X

L dX = 1 ⇒ ∂

∂θ

∫

X

L dX = 0, X′ = (x1, . . . , xn).
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We are going to assume that the support of x is free of theta and the differentiation can be
done inside the integral sign. Then,

0 =
∫

X

∂

∂θ
L dX =

∫

X

1

L

( ∂

∂θ
L
)

L dX =
∫

X

[ ∂

∂θ
ln L

]
L dX.

Noting that
∫
X
(·)L dX = E[(·)], we have

E
[ ∂

∂θ
ln L

]
= 0 ⇒ E

[ n∑

j=1

∂

∂θ
ln f (xj , θ)

]
= 0. (3.5.6)

Let θ̂ be the MLE of θ . Then

∂

∂θ
L|

θ=θ̂
= 0 ⇒ ∂

∂θ
ln L|

θ=θ̂
= 0

⇒ E
[ n∑

j=1

∂

∂θ
ln f (xj , θ)|

θ=θ̂

]
= 0. (3.5.7)

If θ is scalar, then the above are single equations, otherwise they represent a system of
equations as the derivatives are then vector or matrix derivatives. Here (3.5.6) is the like-
lihood equation giving rise to the maximum likelihood estimators (MLE) of θ . However,
by the weak law of large numbers (see Sect. 2.6),

1

n

n∑

j=1

∂

∂θ
ln f (xj , θ)|

θ=θ̂
→ E

[ ∂

∂θ
ln f (xj , θo)

]
as n → ∞ (3.5.8)

where θo is the true value of θ . Noting that E[ ∂
∂θ

ln f (xj , θo)] = 0 owing to the fact that
∫∞
−∞ f (x)dx = 1, we have the following results:

n∑

j=1

∂

∂θ
ln f (xj , θ)|

θ=θ̂
= 0, E

[ ∂

∂θ
ln f (xj , θ)|θ=θo

]
= 0.

This means that E[θ̂ ] = θ0 or E[θ̂ ] → θo as n → ∞, that is, θ̂ is asymptotically unbiased
for the true value θo of θ . As well, θ̂ → θo as n → ∞ almost surely or with probability
1, except on a set having probability measure zero. Thus, the MLE of θ is asymptotically
unbiased and consistent for the true value θo, which is stated next as a theorem:

Theorem 3.5.9. In a given population’s distribution whose parameter or set of parame-
ters is denoted by θ , the MLE of θ , denoted by θ̂ , is asymptotically unbiased and consistent
for the true value θo.
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Definition 3.5.3. Consistency of an estimator If Pr{θ̂ → θo} → 1 as n → ∞, then
we say that θ̂ is consistent for θo, where θ̂ is an estimator for θ .

Example 3.5.2. Consider a real p-variate Gaussian population Np(μ, Σ), Σ > O.
Show that the MLE of μ is unbiased and consistent for μ and that the MLE of Σ is
asymptotically unbiased for Σ .

Solution 3.5.2. We have μ̂ = X̄ = the sample mean or sample average and Σ̂ = 1
n
S

where S is the sample sum of products matrix. From Theorem 3.5.4, E[X̄] = μ and
Cov(X̄) = 1

n
Σ → O as n → ∞. Therefore, μ̂ = X̄ is unbiased and consistent for μ.

From Theorem 3.5.8, E[Σ̂] = n−1
n

Σ → Σ as n → ∞ and hence Σ̂ is asymptotically
unbiased for Σ .

Another desirable property for point estimators is referred to as sufficiency. If T is a
statistic used to estimate a real scalar, vector or matrix parameter θ and if the conditional
distribution of the sample values, given this statistic T , is free of θ , then no more informa-
tion about θ can be secured from that sample once the statistic T is known. Accordingly,
all the information that can be obtained from the sample is contained in T or, in this sense,
T is sufficient or a sufficient estimator for θ .

Definition 3.5.4. Sufficiency of estimators Let θ be a scalar, vector or matrix parameter
associated with a given population’s distribution. Let T = T (X1, . . . , Xn) be an estimator
of θ , where X1, . . . , Xn are iid as the given population. If the conditional distribution of the
sample values X1, . . . , Xn, given T , is free of θ , then we say that this T is a sufficient es-
timator for θ . If there are several scalar, vector or matrix parameters θ1, . . . , θk associated
with a given population and if T1(X1, . . . , Xn), . . . , Tr(X1, . . . , Xn) are r statistics, where
r may be greater, smaller or equal to k, then if the conditional distribution of X1, . . . , Xn,
given T1, . . . , Tr , is free of θ1, . . . , θk, then we say that T1, . . . , Tr are jointly sufficient for
θ1, . . . , θk. If there are several sets of statistics, where each set is sufficient for θ1, . . . , θk,
then that set of statistics which allows for the maximal reduction of the data is called the
minimal sufficient set of statistics for θ1, . . . , θk.

Example 3.5.3. Show that the MLE of μ in a Np(μ, Σ), Σ > O, is sufficient for μ.

Solution 3.5.3. Let X1, . . . , Xn be a simple random sample from a Np(μ, Σ). Then the
joint density of X1, . . . , Xn can be written as

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ−1S)− n
2 (X̄−μ)′Σ−1(X̄−μ), (i)

referring to (3.5.2). Since X̄ is a function of X1, . . . , Xn, the joint density of X1, . . . , Xn

and X̄ is L itself. Hence, the conditional density of X1, . . . , Xn, given X̄, is L/f1(X̄)
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where f1(X̄) is the marginal density of X̄. However, appealing to Corollary 3.5.1, f1(X̄)

is Np(μ, 1
n
Σ). Hence

L

f1(X̄)
= 1

(2π)
n(p−1)

2 n
p
2 |Σ | n−1

2

e− 1
2 tr(Σ−1S), (ii)

which is free of μ so that μ̂ is sufficient for μ.

Note 3.5.1. We can also show that μ̂ = X̄ and Σ̂ = 1
n
S are jointly sufficient for μ and

Σ in a Np(μ, Σ), Σ > O, population. This results requires the density of S, which will
be discussed in Chap. 5.

An additional property of interest for a point estimator is that of relative efficiency. If
g(θ) is a function of θ and if T = T (x1, . . . , xn) is an estimator of g(θ), then E|T −g(θ)|2
is a squared mathematical distance between T and g(θ). We can consider the following
criterion: the smaller the distance, the more efficient the estimator is, as we would like this
distance to be as small as possible when we are estimating g(θ) by making use of T . If
E[T ] = g(θ), then T is unbiased for g(θ) and, in this case, E|T − g(θ)|2 = Var(T ), the
variance of T . In the class of unbiased estimators, we seek that particular estimator which
has the smallest variance.

Definition 3.5.5. Relative efficiency of estimators If T1 and T2 are two estimators of
the same function g(θ) of θ and if E[|T1 − g(θ)|2] < E[|T2 − g(θ)|2], then T1 is said
to be relatively more efficient for estimating g(θ). If T1 and T2 are unbiased for g(θ), the
criterion becomes Var(T1) < Var(T2).

Let u be an unbiased estimator of g(θ), a function of the parameter θ associated with
any population, and let T be a sufficient statistic for θ . Let the conditional expectation
of u, given T , be denoted by h(T ), that is, E[u|T ] ≡ h(T ). We have the two following
general properties on conditional expectations, refer to Mathai and Haubold (2017), for ex-
ample. For any two real scalar random variables x and y having a joint density/probability
function,

E[y] = E[E(y|x)] (3.5.9)

and
Var(y) = Var(E[y|x]) + E[Var(y|x)] (3.5.10)

whenever the expected values exist. From (3.5.9),

g(θ) = E[u] = E[E(u|T )] = E[h(T )] ⇒ E[h(T )] = g(θ). (3.5.11)
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Then,

Var(u) = E[u − g(θ)]2 = Var(E[u|T ]) + E[Var(E[u|T ])] = Var(h(T )) + δ, δ ≥ 0

⇒ Var(u) ≥ Var(h(T )), (3.5.12)

which means that if we have a sufficient statistic T for θ , then the variance of h(T ), with
h(T ) = E[u|T ] where u is any unbiased estimator of g(θ), is smaller than or equal to
the variance of any unbiased estimator of g(θ). Accordingly, we should restrict ourselves
to the class of h(T ) when seeking minimum variance estimators. Observe that since δ

in (3.5.12) is the expected value of the variance of a real variable, it is nonnegative. The
inequality in (3.5.12) is known in the literature as the Rao-Blackwell Theorem.

It follows from (3.5.6) that E[ ∂
∂θ

ln L] = ∫
X
( ∂
∂θ

ln L)L dX = 0. Differentiating once
again with respect to θ , we have

0 =
∫

X

∂

∂θ

[( ∂

∂θ
ln L

)
L
]
dX = 0

⇒
∫

X

{( ∂2

∂θ2
ln L

)
L +

( ∂

∂θ
ln L

)2}
dX = 0

⇒
∫

X

( ∂

∂θ
ln L

)2
L dX = −

∫

X

( ∂2

∂θ2
ln L

)
L dX,

so that

Var
( ∂

∂θ
ln L

)
= E

[ ∂

∂θ
ln L

]2 = −E
[ ∂2

∂θ2
ln L

]

= nE
[ ∂

∂θ
ln f (xj , θ)

]2 = −nE
[ ∂2

∂θ2
ln f (xj , θ)

]
. (3.5.13)

Let T be any estimator for θ , where θ is a real scalar parameter. If T is unbiased for θ ,
then E[T ] = θ ; otherwise, let E[T ] = θ + b(θ) where b(θ) is some function of θ , which
is called the bias. Then, differentiating both sides with respect to θ ,

∫

X

T L dX = θ + b(θ) ⇒

1 + b′(θ) =
∫

X

T
∂

∂θ
L dX, b′(θ) = d

dθ
b(θ)

⇒ E[T (
∂

∂θ
ln L)] = 1 + b′(θ)

= Cov(T ,
∂

∂θ
ln L)
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because E[ ∂
∂θ

ln L] = 0. Hence,

[Cov(T ,
∂

∂θ
ln L)]2 = [1 + b′(θ)]2 ≤ Var(T )Var

( ∂

∂θ
ln L

)
⇒

Var(T ) ≥ [1 + b′(θ)]2

Var( ∂
∂θ

ln L)
= [1 + b′(θ)]2

nVar( ∂
∂θ

ln f (xj , θ))

= [1 + b′(θ)]2

E[ ∂
∂θ

ln L]2
= [1 + b′(θ)]2

nE[ ∂
∂θ

ln f (xj , θ)]2
, (3.5.14)

which is a lower bound for the variance of any estimator for θ . This inequality is known
as the Cramér-Rao inequality in the literature. When T is unbiased for θ , then b′(θ) = 0
and then

Var(T ) ≥ 1

In(θ)
= 1

nI1(θ)
(3.5.15)

where

In(θ) = Var
( ∂

∂θ
ln L

)
= E

[ ∂

∂θ
ln L

]2 = nE
[ ∂

∂θ
ln f (xj , θ)

]2

= −E
[ ∂2

∂θ2
ln L

]
= −nE

[ ∂2

∂θ2
ln f (xj , θ)

]
= nI1(θ) (3.5.16)

is known as Fisher’s information about θ which can be obtained from a sample of size n,
I1(θ) being Fisher’s information in one observation or a sample of size 1. Observe that
Fisher’s information is different from the information in Information Theory. For instance,
some aspects of Information Theory are discussed in Mathai and Rathie (1975).

Asymptotic efficiency and normality of MLE’s

We have already established that

0 = ∂

∂θ
ln L(X, θ)|

θ=θ̂
, (i)

which is the likelihood equation giving rise to the MLE. Let us expand (i) in a neighbor-
hood of the true parameter value θo :

0 = ∂

∂θ
ln L(X, θ)|θ=θo

+ (θ̂ − θo)
∂2

∂θ2
ln L(X, θ)|θ=θo

+ (θ̂ − θo)
2

2

∂3

∂θ3
ln L(X, θ)|θ=θ1 (ii)
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where |θ̂ − θ1| < |θ̂ − θo|. Multiplying both sides by
√

n and rearranging terms, we have
the following:

√
n(θ̂ − θ0) =

− 1√
n

∂
∂θ

ln L(X, θ)|θ=θo

1
n

∂2

∂θ2 ln(X, θ)|θ=θo
+ 1

n
(θ̂−θo)

2
∂3

∂θ3 ln L(X, θ)|θ=θ1

. (iii)

The second term in the denominator of (iii) goes to zero because θ̂ → θo as n → ∞, and
the third derivative is assumed to be bounded. Then the first term in the denominator is
such that

1

n

∂2

∂θ2
ln L(X, θ)|θ=θo

= 1

n

n∑

j=1

∂2

∂θ2
ln f (xj , θ)|θ=θo

→ E
[ ∂2

∂θ2
ln f (xj , θ)

]
= −I1(θ)|θo

= −Var
[ ∂

∂θ
ln f (xj , θ)

]∣
∣
∣
θ=θo

,

I1(θ)|θ=θo
= Var

[ ∂

∂θ
ln f (xj , θ)

]∣
∣
∣
θ=θo

,

which is the information bound I1(θo). Thus,

1

n

∂2

∂θ2
ln L(X, θ)|θ=θo

→ −I1(θo), (iv)

and we may write (iii) as follows:

√
I1(θo)

√
n(θ̂ − θo) ≈

√
n√

I1(θo)

1

n

n∑

j=1

∂

∂θ
ln f (xj , θ)|θ=θo

, (v)

where ∂
∂θ

ln f (xj , θ) has zero as its expected value and I1(θo) as its variance. Further,
f (xj , θ), j = 1, . . . , n are iid variables. Hence, by the central limit theorem which is
stated in Sect. 2.6,

√
n√

I (θo)

1

n

n∑

j=1

∂

∂θ
ln f (xj , θ) → N1(0, 1) as n → ∞. (3.5.17)

where N1(0, 1) is a univariate standard normal random variable. This may also be re-
expressed as follows since I1(θo) is free of n:

1√
n

n∑

j=1

∂

∂θ
ln f (xj , θ)|θ=θo

→ N1(0, I1(θo))
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or √
I1(θo)

√
n(θ̂ − θo) → N1(0, 1) as n → ∞. (3.5.18)

Since I1(θo) is free of n, this result can also be written as

√
n(θ̂ − θo) → N1

(
0,

1

I1(θo)

)
. (3.5.19)

Thus, the MLE θ̂ is asymptotically unbiased, consistent and asymptotically normal, refer-
ring to (3.5.18) or (3.5.19).

Example 3.5.4. Show that the MLE of the parameter θ in a real scalar exponential pop-
ulation is unbiased, consistent, efficient and that asymptotic normality holds as in (3.5.18).

Solution 3.5.4. As per the notations introduced in this section,

f (xj , θ) = 1

θ
e− xj

θ , 0 ≤ xj < ∞, θ > 0,

L = 1

θn
e− 1

θ

∑n
j=1 xj .

In the exponential population, E[xj ] = θ, Var(xj ) = θ2, j = 1, . . . , n, the MLE of θ is

θ̂ = x̄, x̄ = 1
n
(x1 + · · · + xn) and Var(θ̂ ) = θ2

n
→ 0 as n → ∞. Thus, E[θ̂ ] = θ and

Var(θ̂ ) → 0 as n → ∞. Hence, θ̂ is unbiased and consistent for θ . Note that

ln f (xj , θ) = − ln θ − 1

θ
xj ⇒ −E

[ ∂2

∂θ2
f (xj , θ)

]
= − 1

θ2
+ 2

E[xj ]
θ3

= 1

θ2
= 1

Var(xj )
.

Accordingly, the information bound is attained, that is, θ̂ is minimum variance unbiased
or most efficient. Letting the true value of θ be θo, by the central limit theorem, we have

x̄ − θo√
Var(x̄)

=
√

n(θ̂ − θo)

θo

→ N1(0, 1) as n → ∞,

and hence the asymptotic normality is also verified. Is θ̂ sufficient for θ? Let us consider
the statistic u = x1 + · · · + xn, the sample sum. If u is sufficient, then x̄ = θ̂ is also
sufficient. The mgf of u is given by

Mu(t) =
n∏

j=1

(1 − θt)−1 = (1 − θt)−n, 1 − θt > 0 ⇒ u ∼ gamma(α = n, β = θ)
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whose density is f1(u) = un−1

θnΓ (n)
e− u

θ , u = x1 + · · · + xn. However, the joint density

of x1, . . . , xn is L = 1
θn e− 1

θ
(x1+···+xn). Accordingly, the conditional density of x1, . . . , xn

given θ̂ = x̄ is
L

f1(u)
= Γ (n)

un−1
,

which is free of θ , and hence θ̂ is also sufficient.

3.5.5. Some limiting properties in the p-variate case

The p-variate extension of the central limit theorem is now being considered. Let the
p × 1 real vectors X1, . . . , Xn be iid with common mean value vector μ and the common
covariance matrix Σ > O, that is, E(Xj) = μ and Cov(Xj ) = Σ > O, j = 1, . . . , n.

Assume that ‖Σ‖ < ∞ where ‖(·)‖ denotes a norm of (·). Letting Yj = Σ− 1
2 Xj , E[Yj ] =

Σ− 1
2 μ and Cov(Yj ) = I, j = 1, . . . , n, and letting X̄ = 1

n
(X1 + · · · + Xn), Ȳ = Σ− 1

2 X̄,

E(X̄) = μ and E(Ȳ ) = Σ− 1
2 μ. If we let

U = √
nΣ− 1

2 (X̄ − μ), (3.5.20)

the following result holds:

Theorem 3.5.10. Let the p × 1 vector U be as defined in (3.5.20). Then, as n → ∞,
U → Np(O, I).

Proof: Let L′ = (a1, . . . , ap) be an arbitrary constant vector such that L′L = 1. Then,
L′Xj, j = 1, . . . , n, are iid with common mean L′μ and common variance Var(L′Xj) =
L′ΣL. Let Yj = Σ− 1

2 Xj and uj = L′Yj = L′Σ− 1
2 Xj . Then, the common mean of the

uj ’s is L′Σ− 1
2 μ and their common variance is Var(uj ) = L′Σ− 1

2 ΣΣ− 1
2 L = L′L =

1, j = 1, . . . , n. Note that ū = 1
n
(u1 + · · · + un) = L′Ȳ = L′Σ− 1

2 X̄ and that Var(ū) =
1
n
L′L = 1

n
. Then, in light of the univariate central limit theorem as stated in Sect. 2.6, we

have
√

nL′Σ− 1
2 (X̄ − μ) → N1(0, 1) as n → ∞. If, for some p-variate vector W , L′W

is univariate normal for arbitrary L, it follows from a characterization of the multivariate
normal distribution that W is p-variate normal vector. Thus,

U = √
nΣ− 1

2 (X̄ − μ) → Np(O, I) as n → ∞, (3.5.21)

which completes the proof.
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A parallel result also holds in the complex domain. Let X̃j , j = 1, . . . , n, be iid from
some complex population with mean μ̃ and Hermitian positive definite covariance matrix

Σ̃ = Σ̃∗ > O where ‖Σ̃‖ < ∞. Letting ¯̃
X = 1

n
(X̃1 + · · · + X̃n), we have

√
n Σ̃− 1

2 (
¯̃
X − μ̃) → Np(O, I) as n → ∞. (3.5a.5)

Exercises 3.5

3.5.1. By making use of the mgf or otherwise, show that the sample mean X̄ = 1
n
(X1 +

· · ·+Xn) in the real p-variate Gaussian case, Xj ∼ Np(μ, Σ), Σ > O, is again Gaussian
distributed with the parameters μ and 1

n
Σ .

3.5.2. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n and iid. Let X = (X1, . . . , Xn)

be the p × n sample matrix. Derive the density of (1) tr(Σ−1(X − M)(X − M)′ where
M = (μ, . . . , μ) or a p × n matrix where all the columns are μ; (2) tr(XX′). Derive the
densities in both the cases, including the noncentrality parameter.

3.5.3. Let the p × 1 real vector Xj ∼ Np(μ, Σ), Σ > O for j = 1, . . . , n and iid. Let
X = (X1, . . . , Xn) the p × n sample matrix. Derive the density of tr(X − X̄)(X − X̄)′
where X̄ = (X̄, . . . , X̄) is the p × n matrix where every column is X̄.

3.5.4. Repeat Exercise 3.5.1 for the p-variate complex Gaussian case.

3.5.5. Repeat Exercise 3.5.2 for the complex Gaussian case and write down the density
explicitly.

3.5.6. Consider a real bivariate normal density with the parameters μ1, μ2, σ 2
1 , σ 2

2 , ρ.
Write down the density explicitly. Consider a simple random sample of size n, X1, . . . , Xn,
from this population where Xj is 2 × 1, j = 1, . . . , n. Then evaluate the MLE of these
five parameters by (1) by direct evaluation, (2) by using the general formula.

3.5.7. In Exercise 3.5.6 evaluate the maximum likelihood estimates of the five parameters
if the following is an observed sample from this bivariate normal population:

[
0

−1

]

,

[
1
1

]

,

[−1
2

]

,

[
1
5

]

,

[
0
7

]

,

[
4
2

]

3.5.8. Repeat Exercise 3.5.6 if the population is a bivariate normal in the complex domain.

3.5.9. Repeat Exercise 3.5.7 if the following is an observed sample from the complex
bivariate normal population referred to in Exercise 3.5.8:

[
1 + 2i

i

]

,

[
1
1

]

,

[
3i

1 − i

]

,

[
2 − i

i

]

,

[
2
1

]

.
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3.5.10. Let the p × 1 real vector X1 be Gaussian distributed, X1 ∼ Np(O, I). Consider
the quadratic forms u1 = X′

1A1X1, u2 = X′
1A2X1. Let Aj = A2

j , j = 1, 2 and A1+A2 =
I . What can you say about the chisquaredness and independence of u1 and u2? Prove your
assertions.

3.5.11. Let X1 ∼ Np(O, I). Let uj = X′
1AjX1, Aj = A2

j , j = 1, . . . , k, A1 + · · · +
Ak = I . What can you say about the chisquaredness and independence of the uj ’s? Prove
your assertions.

5.3.12. Repeat Exercise 3.5.11 for the complex case.

5.3.13. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n and iid. Let X̄ = 1
n
(X1 +· · ·+Xn).

Show that the exponent in the density of X̄, excluding −1
2 , namely,

√
n(X̄ −μ)′Σ−1(X̄ −

μ) ∼ χ2
p. Derive the density of tr(X̄′Σ−1X̄).

3.5.14. Let Q = √
n(X̄−μ)′Σ−1(X̄−μ) as in Exercise 5.3.13. For a given α consider the

probability statement Pr{Q ≥ b} = α. Show that b = χ2
p,α where Pr{χ2

p ≥ χ2
p,α} = α.

3.5.15. Let Q1 = √
n(X̄ − μo)

′Σ−1(X̄ − μo) where X̄, Σ and μ are all as defined in
Exercise 5.3.14. If μo 
= μ, show that Q1 ∼ χ2

p(λ) where the noncentrality parameter

λ = 1
2(μ − μo)

′Σ−1(μ − μo).

3.6. Elliptically Contoured Distribution, Real Case

Let X be a real p × 1 vector of distinct real scalar variables with x1, . . . , xp as its
components. For some p × 1 parameter vector B and p × p positive definite constant
matrix A > O, consider the positive definite quadratic form (X − B)′A(X − B). We have
encountered such a quadratic form in the exponent of a real p-variate Gaussian density,
in which case B = μ is the mean value vector and A = Σ−1, Σ being the positive
definite covariance matrix. Let g(·) ≥ 0 be a non-negative function such that |A| 1

2 g((X −
B)′A(X − B)) ≥ 0 and

∫

X

|A| 1
2 g((X − B)′A(X − B))dX = 1, (3.6.1)

so that |A| 1
2 g((X − B)′A(X − B)) is a statistical density. Such a density is referred to as

an elliptically contoured density.

3.6.1. Some properties of elliptically contoured distributions

Let Y = A
1
2 (X − B). Then, from Theorem 1.6.1, dX = |A|− 1

2 dY and from (3.6.1),
∫

Y

g(Y ′Y )dY = 1 (3.6.2)
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where
Y ′Y = y2

1 + y2
2 + · · · + y2

p, Y ′ = (y1, . . . , yp).

We can further simplify (3.6.2) via a general polar coordinate transformation:

y1 = r sin θ1

y2 = r cos θ1 sin θ2

y3 = r cos θ1 cos θ2 sin θ3

...

yp−2 = r cos θ1 · · · cos θp−3 sin θp−2

yp−1 = r cos θ1 · · · cos θp−2 sin θp−1

yp = r cos θ1 · · · cos θp−1 (3.6.3)

for −π
2 < θj ≤ π

2 , j = 1, . . . , p − 2, −π < θp−1 ≤ π, 0 ≤ r < ∞. It then follows that

dy1 ∧ . . . ∧ dyp = rp−1(cos θ1)
p−1 · · · (cos θp−1) dr ∧ dθ1 ∧ . . . ∧ dθp−1. (3.6.4)

Thus,
y2

1 + · · · + y2
p = r2.

Given (3.6.3) and (3.6.4), observe that r, θ1, . . . , θp−1 are mutually independently dis-
tributed. Separating the factors containing θi from (3.6.4) and then, normalizing it, we
have ∫ π

2

−π
2

(cos θi)
p−i−1dθi = 1 ⇒ 2

∫ π
2

0
(cos θi)

p−i−1dθi = 1. (i)

Let u = sin θi ⇒ du = cos θidθi . Then (i) becomes 2
∫ 1

0 (1 − u2)
p−i

2 −1du = 1, and letting
v = u2 gives (i) as

∫ 1

0
v

1
2 −1(1 − v)

p−i
2 −1dv = Γ (1

2)Γ (
p−i

2 )

Γ (
p−i+1

2 )
. (ii)

Thus, the density of θj , denoted by fj (θj ), is

fj (θj ) = Γ (
p−j+1

2 )

Γ (1
2)Γ (

p−j
2 )

(cos θj )
p−j−1, −π

2
< θj ≤ π

2
, (3.6.5)

and zero, elsewhere, for j = 1, . . . , p − 2, and

fp−1(θp−1) = 1

2π
, −π < θp−1 ≤ π, (iii)
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and zero elsewhere. Taking the product of the p − 2 terms in (ii) and (iii), the total integral
over the θj ’s is available as

{ p−2∏

j=1

∫ π
2

−π
2

(cos θj )
p−j−1dθj

} ∫ π

−π

dθp−1 = 2π
p
2

Γ (
p
2 )

. (3.6.6)

The expression in (3.6.6), excluding 2, can also be obtained by making the transformation
s = Y ′Y and then writing ds in terms of dY by appealing to Theorem 4.2.3.

3.6.2. The density of u = r2

From (3.6.2) and (3.6.3),

2π
p
2

Γ (
p
2 )

∫ ∞

0
rp−1g(r2)dr = 1, (3.6.7)

that is,

2
∫ ∞

r=0
rp−1g(r2)dr = Γ (

p
2 )

π
p
2

. (iv)

Letting u = r2, we have
∫ ∞

0
u

p
2 −1g(u)du = Γ (

p
2 )

π
p
2

, (v)

and the density of r , denoted by fr(r), is available from (3.6.7) as

fr(r) = 2π
p
2

Γ (
p
2 )

rp−1g(r2), 0 ≤ r < ∞, (3.6.8)

and zero, elsewhere. The density of u = r2 is then

fu(u) = π
p
2

Γ (
p
2 )

u
p
2 −1g(u), 0 ≤ u < ∞, (3.6.9)

and zero, elsewhere. Considering the density of Y given in (3.6.2), we may observe that
y1, . . . , yp are identically distributed.

Theorem 3.6.1. If yj = r uj , j = 1, . . . , p, in the transformation in (3.6.3), then
E[u2

j ] = 1
p
, j = 1, . . . , p, and u1, . . . , up are uniformly distributed.
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Proof: From (3.6.3), yj = ruj , j = 1, . . . , p. We may observe that u2
1 + · · · + u2

p = 1
and that u1, . . . , up are identically distributed. Hence E[u2

1] + E[u2
2] + · · · + E[u2

p] =
1 ⇒ E[u2

j ] = 1
p

.

Theorem 3.6.2. Consider the yj ’s in Eq. (3.6.2). If g(u) is free of p and if E[u] < ∞,
then E[y2

j ] = 1
2π
; otherwise, E[y2

j ] = 1
p
E[u] provided E[u] exists.

Proof: Since r and uj are independently distributed and since E[u2
j ] = 1

p
in light of

Theorem 3.6.1, E[y2
j ] = E[r2]E[u2

j ] = 1
p
E[r2] = 1

p
E[u]. From (3.6.9),

∫ ∞

0
u

p
2 −1g(u)du = Γ (

p
2 )

π
p
2

. (vi)

However,

E[u] = π
p
2

Γ (
p
2 )

∫ ∞

u=0
u

p
2 +1−1g(u)du. (vii)

Thus, assuming that g(u) is free of p, that p
2 can be taken as a parameter and that (vii) is

convergent,

E[y2
j ] = 1

p
E[r2] = 1

p
E[u] = 1

p

π
p
2

Γ (
p
2 )

Γ (
p
2 + 1)

π
p
2 +1

= 1

2π
; (3.6.10)

otherwise, E[y2
j ] = 1

p
E[u] as long as E[u] < ∞.

3.6.3. Mean value vector and covariance matrix

From (3.6.1),

E[X] = |A| 1
2

∫

X

X g((X − B)′A(X − B))dX.

Noting that
E[X] = E[X − B + B] = B + E[X − B]

= B + |A| 1
2

∫

X

(X − B)g((X − B)′A(X − B))dX

and letting Y = A
1
2 (X − B), we have

E[X] = B +
∫

Y

Yg(Y ′Y )dY, −∞ < yj < ∞, j = 1, . . . , p.

But Y ′Y is even whereas each element in Y is linear and odd. Hence, if the integral exists,∫
Y

Yg(Y ′Y )dY = O and so, E[X] = B ≡ μ. Let V = Cov(X), the covariance matrix
associated with X. Then
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V = E[(X − μ)(X − μ)′] = A− 1
2 [
∫

Y

(YY ′)g(Y ′Y )dY ]A− 1
2 ,

where Y = A
1
2 (X − μ), (3.6.11)

YY ′ =

⎡

⎢
⎢
⎢
⎣

y2
1 y1y2 · · · y1yp

y2y1 y2
2 · · · y2yp

...
...

. . .
...

ypy1 ypy2 · · · y2
p

⎤

⎥
⎥
⎥
⎦

. (viii)

Since the non-diagonal elements, yiyj , i 
= j, are odd and g(Y ′Y ) is even, the integrals
over the non-diagonal elements are equal to zero whenever the second moments exist.
Since E[Y ] = O, V = E(YY ′). It has already been determined in (3.6.10) that E[y2

j ] =
1

2π
for j = 1, . . . , p, whenever g(u) is free of p and E[u] exists, the density of u being as

specified in (3.6.9). If g(u) is not free of p, the diagonal elements will each integrate out
to 1

p
E[r2]. Accordingly,

Cov(X) = V = 1

2π
A−1 or V = 1

p
E[r2]A−1. (3.6.12)

Theorem 3.6.3. When X has the p-variate elliptically contoured distribution defined
in (3.6.1), the mean value vector of X, E[X] = B and the covariance of X, denoted by Σ ,
is such that Σ = 1

p
E[r2]A−1 where A is the parameter matrix in (3.6.1), u = r2 and r is

defined in the transformation (3.6.3).

3.6.4. Marginal and conditional distributions

Consider the density

f (X) = |A| 1
2 g((X − μ)′A(X − μ)), A > O, −∞ < xj < ∞, −∞ < μj < ∞

(3.6.13)

where X′ = (x1, . . . , xp), μ′ = (μ1, . . . , μp), A = (aij ) > O. Consider the following
partitioning of X, μ and A:

X =
[
X1

X2

]

, μ =
[
μ(1)

μ(2)

]

, A =
[
A11 A12

A21 A22

]

where X1, μ1 are p1 × 1, X2, μ2 are p2 × 1, A11 is p1 × p1 and A22 is p2 × p2,
p1 + p2 = p. Then, as was established in Sect. 3.3,
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(X − μ)′A(X − μ) = (X1 − μ(1))
′A11(X1 − μ(1)) + 2(X2 − μ(2))

′A21(X1 − μ(1))

+ (X2 − μ(2))
′A22(X2 − μ(2))

= (X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1))

+ (X2 − μ(2) + C)′A22(X2 − μ(2) + C), C = A−1
22 A21(X1 − μ(1)).

In order to obtain the marginal density of X1, we integrate out X2 from f (X). Let the
marginal densities of X1 and X2 be respectively denoted by g1(X1) and g2(X2). Then

g1(X1) = |A| 1
2

∫

X2

g((X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1))

+ (X2 − μ(2) + C)′A22(X2 − μ(2) + C))dX2.

Letting A
1
2
22(X2 − μ(2) + C) = Y2, dY2 = |A22| 1

2 dX2 and

g1(X1) = |A| 1
2 |A22|− 1

2

∫

Y2

g((X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1)) + Y ′

2Y2) dY2.

Note that |A| = |A22| |A11 − A12A
−1
22 A21| from the results on partitioned matrices pre-

sented in Sect. 1.3 and thus, |A| 1
2 |A22|− 1

2 = |A11 −A12A
−1
22 A21| 1

2 . We have seen that Σ−1

is a constant multiple of A where Σ is the covariance matrix of the p × 1 vector X. Then

(Σ11)−1 = Σ11 − Σ12Σ
−1
22 Σ21

which is a constant multiple of A11 −A12A
−1
22 A21. If Y ′

2Y2 = s2, then from Theorem 4.2.3,

dY2 = π
p2
2

Γ (
p2
2 )

∫

s2>0
s

p2
2 −1

2 g(s2 + u1) ds2 (3.6.14)

where u1 = (X1 − μ(1))
′[A11 − A12A

−1
22 A21](X1 − μ(1)). Note that (3.6.14) is elliptically

contoured or X1 has an elliptically contoured distribution. Similarly, X2 has an elliptically
contoured distribution. Letting Y11 = (A11 − A12A

−1
22 A21)

1
2 (X1 − μ(1)), then Y11 has a

spherically symmetric distribution. Denoting the density of Y11 by g11(Y11), we have

g1(Y11) = π
p2
2

Γ (
p2
2 )

∫

s2>0
s

p2
2 −1

2 g(s2 + Y ′
11Y11) ds2. (3.6.15)
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By a similar argument, the marginal density of X2, namely g2(X2), and the density of Y22,
namely g22(Y22), are as follows:

g2(X2) = |A22 − A21A
−1
11 A12| 1

2
π

p1
2

Γ (
p1
2 )

×
∫

s1>0
s

p1
2 −1

1 g(s1 + (X2 − μ(2))
′[A22 − A21A

−1
11 A12](X2 − μ(2))) ds1,

g22(Y22) = π
p1
2

Γ (
p1
2 )

∫

s1>0
s

p1
2 −1

1 g(s1 + Y ′
22Y22) ds1. (3.6.16)

3.6.5. The characteristic function of an elliptically contoured distribution

Let T be a p × 1 parameter vector, T ′ = (t1, . . . , tp), so that T ′X = t1x1 +· · ·+ tpxp.
Then, the characteristic function of X, denoted by φX(T ), is E[ei T ′X] where E denotes
the expected value and i = √

(−1), that is,

φX(T ) = E[ei T ′X] =
∫

X

ei T ′X|A| 1
2 g((X − μ)′A(X − μ))dX. (3.6.17)

Writing X as X − μ + μ and then making the transformation Y = A
1
2 (X − μ), we have

φX(T ) = ei T ′μ
∫

Y

ei T ′A− 1
2 Y g(Y ′Y )dY. (3.6.18)

However, g(Y ′Y ) is invariant under orthonormal transformation of the type Z =
PY, PP ′ = I, P ′P = I, as Z′Z = Y ′Y so that g(Y ′Y ) = g(Z′Z) for all orthonor-
mal matrices. Thus,

φX(T ) = ei T ′μ
∫

Z

ei T ′A− 1
2 P ′Zg(Z′Z)dZ (3.6.19)

for all P . This means that the integral in (3.6.19) is a function of (T ′A− 1
2 )(T ′A− 1

2 )′ =
T ′A−1T , say ψ(T ′A−1T ). Then,

φX(T ) = ei T ′μψ(T ′A−1T ) (3.6.20)

where A−1 is proportional to Σ , the covariance matrix of X, and

∂

∂T
φX(T )|T =O = iμ ⇒ E(X) = μ;
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the reader may refer to Chap. 1 for vector/matrix derivatives. Now, considering φX−μ(T ),
we have

∂

∂T
φX−μ(T ) = ∂

∂T
ψ(T ′A−1T ) = ψ ′(T A−1T )2A−1T

⇒ ∂

∂T ′ψ(T ′A−1T ) = ψ ′(T ′A−1T )2T ′A−1

⇒ ∂

∂T

∂

∂T ′ψ(T ′A−1T ) = ψ ′′(T ′A−1T )(2A−1T )(2T ′A−1) + ψ ′(T A−1T )2A−1

⇒ ∂

∂T

∂

∂T ′ψ(T ′A−1T )|T =O = 2A−1,

assuming that ψ ′(T ′A−1T )|T =O = 1 and ψ ′′(T ′A−1T )|T =O = 1, where ψ ′(u) =
d

du
ψ(u) for a real scalar variable u and ψ ′′(u) denotes the second derivative of ψ with

respect to u. The same procedure can be utilized to obtain higher order moments of the
type E[ · · · XX′XX′] by repeatedly applying vector derivatives to φX(T ) as · · · ∂

∂T
∂

∂T ′ op-
erating on φX(T ) and then evaluating the result at T = O. Similarly, higher order central
moments of the type E[ · · · (X − μ)(X − μ)′(X − μ)(X − μ)′] are available by applying
the vector differential operator · · · ∂

∂T
∂

∂T ′ on ψ(T ′A−1T ) and then evaluating the result at
T = O. However, higher moments with respect to individual variables, such as E[xk

j ], are
available by differentiating φX(T ) partially k times with respect to tj , and then evaluating
the resulting expression at T = O. If central moments are needed then the differentiation
is done on ψ(T ′A−1T ).

Thus, we can obtain results parallel to those derived for the p-variate Gaussian distribu-
tion by applying the same procedures on elliptically contoured distributions. Accordingly,
further discussion of elliptically contoured distributions will not be taken up in the coming
chapters.

Exercises 3.6

3.6.1. Let x1, . . . , xk be independently distributed real scalar random variables with den-
sity functions fj (xj ), j = 1, . . . , k. If the joint density of x1, . . . , xk is of the form
f1(x1) · · · fk(xk) = g(x2

1 + · · · + x2
k ) for some differentiable function g, show that

x1, . . . , xk are identically distributed as Gaussian random variables.

3.6.2. Letting the real scalar random variables x1, . . . , xk have a joint density such that
f (x1, . . . , xk) = c for x2

1 + · · · + x2
k ≤ r2, r > 0, show that (1) (x1, . . . , xk) is uniformly

distributed over the volume of the k-dimensional sphere; (2) E[xj ] = 0, Cov(xi, xj ) =
0, i 
= j = 1, . . . , k; (3) x1, . . . , xk are not independently distributed.
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3.6.3. Let u = (X − B)′A(X − B) in Eq. (3.6.1), where A > O and A is a p × p matrix.
Let g(u) = c1(1−a u)ρ, a > 0, 1−a u > 0 and c1 is an appropriate constant. If |A| 1

2 g(u)

is a density, show that (1) this density is elliptically contoured; (2) evaluate its normalizing
constant and specify the conditions on the parameters.

3.6.4. Solve Exercise 3.6.3 for g(u) = c2(1+a u)−ρ , where c2 is an appropriate constant.

3.6.5. Solve Exercise 3.6.3 for g(u) = c3 uγ−1(1 − a u)β−1, a > 0, 1 − a u > 0 and c3

is an appropriate constant.

3.6.6. Solve Exercise 3.6.3 for g(u) = c4 uγ−1e−a u, a > 0 where c4 is an appropriate
constant.

3.6.7. Solve Exercise 3.6.3 for g(u) = c5 uγ−1(1 + a u)−(ρ+γ ), a > 0 where c5 is an
appropriate constant.

3.6.8. Solve Exercises 3.6.3 to 3.6.7 by making use of the general polar coordinate trans-
formation.

3.6.9. Let s = y2
1 + · · · + y2

p where yj , j = 1, . . . , p, are real scalar random variables.
Let dY = dy1 ∧ . . . ∧ dyp and let ds be the differential in s. Then, it can be shown that

dY = π
p
2

Γ (
p
2 )

s
p
2 −1ds. By using this fact, solve Exercises 3.6.3–3.6.7.

3.6.10. If A =
[

3 2
2 4

]

, write down the elliptically contoured density in (3.6.1) explicitly

by taking an arbitrary b = E[X] = μ, if (1) g(u) = (a−c u)α, a > 0 , c > 0, a−c u > 0;
(2) g(u) = (a + c u)−β, a > 0, c > 0, and specify the conditions on α and β.
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Chapter 4
The Matrix-Variate Gaussian Distribution

4.1. Introduction

This chapter relies on various results presented in Chap. 1. We will introduce a class
of integrals called the real matrix-variate Gaussian integrals and complex matrix-variate
Gaussian integrals wherefrom a statistical density referred to as the matrix-variate Gaus-
sian density and, as a special case, the multivariate Gaussian or normal density will be
obtained, both in the real and complex domains.

The notations introduced in Chap. 1 will also be utilized in this chapter. Scalar vari-
ables, mathematical and random, will be denoted by lower case letters, vector/matrix
variables will be denoted by capital letters, and complex variables will be indicated by
a tilde. Additionally, the following notations will be used. All the matrices appearing in
this chapter are p × p real positive definite or Hermitian positive definite unless stated
otherwise. X > O will mean that that the p × p real symmetric matrix X is positive
definite and X̃ > O, that the p × p matrix X̃ in the complex domain is Hermitian, that
is, X̃ = X̃∗ where X̃∗ denotes the conjugate transpose of X̃ and X̃ is positive definite.
O < A < X < B will indicate that the p × p real positive definite matrices are such that
A > O, B > O, X > O, X−A > O, B−X > O.

∫
X

f (X)dX represents a real-valued
scalar function f (X) being integrated out over all X in the domain of X where dX stands
for the wedge product of differentials of all distinct elements in X. If X = (xij ) is a real
p×q matrix, the xij ’s being distinct real scalar variables, then dX = dx11∧dx12∧. . .∧dxpq

or dX = ∧p

i=1 ∧q

j=1 dxij . If X = X′, that is, X is a real symmetric matrix of dimension

p ×p, then dX = ∧p

i≥j=1dxij = ∧p

i≤j=1dxij , which involves only p(p +1)/2 differential
elements dxij . When taking the wedge product, the elements xij ’s may be taken in any
convenient order to start with. However, that order has to be maintained until the com-
putations are completed. If X̃ = X1 + iX2, where X1 and X2 are real p × q matrices,
i = √

(−1), then dX̃ will be defined as dX̃ = dX1 ∧ dX2.
∫
A<X̃<B

f (X̃)dX̃ represents
the real-valued scalar function f of complex matrix argument X̃ being integrated out over
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all p × p matrix X̃ such that A > O, X̃ > O, B > O, X̃ − A > O, B − X̃ > O (all
Hermitian positive definite), where A and B are constant matrices in the sense that they are
free of the elements of X̃. The corresponding integral in the real case will be denoted by
∫
A<X<B

f (X)dX = ∫ B

A
f (X)dX, A > O, X > O, X − A > O, B > O, B − X > O,

where A and B are constant matrices, all the matrices being of dimension p × p.

4.2. Real Matrix-variate and Multivariate Gaussian Distributions

Let X = (xij ) be a p × q matrix whose elements xij are distinct real variables. For
any real matrix X, be it square or rectangular, tr(XX′) = tr(X′X) = sum of the squares
of all the elements of X. Note that XX′ need not be equal to X′X. Thus, tr(XX′) =∑p

i=1

∑q

j=1 x2
ij and, in the complex case, tr(X̃X̃∗) = ∑p

i=1

∑q

j=1 |x̃ij |2 where if x̃rs =
xrs1 + ixrs2 where xrs1 and xrs2 are real, i = √

(−1), with |x̃rs | = +[x2
rs1 + x2

rs2]
1
2 .

Consider the following integrals over the real rectangular p × q matrix X:

I1 =
∫

X

e−tr(XX′)dX =
∫

X

e−∑p
i=1

∑q
j=1 x2

ij dX =
∏

i,j

∫ ∞

−∞
e−x2

ij dxij

=
∏

i,j

√
π = π

pq
2 , (i)

I2 =
∫

X

e− 1
2 tr(XX′)dX = (2π)

pq
2 . (ii)

Let A > O be p×p and B > O be q ×q constant positive definite matrices. Then we can
define the unique positive definite square roots A

1
2 and B

1
2 . For the discussions to follow,

we need only the representations A = A1A
′
1, B = B1B

′
1 with A1 and B1 nonsingular, a

prime denoting the transpose. For an m × n real matrix X, consider

tr(AXBX′) = tr(A
1
2 A

1
2 XB

1
2 B

1
2 X′) = tr(A

1
2 XB

1
2 B

1
2 X′A

1
2 )

= tr(YY ′), Y = A
1
2 XB

1
2 . (iii)

In order to obtain the above results, we made use of the property that for any two matrices
P and Q such that PQ and QP are defined, tr(PQ) = tr(QP ) where PQ need not be
equal to QP . As well, letting Y = (yij ), tr(YY ′) = ∑p

i=1

∑q

j=1 y2
ij . YY ′ is real positive

definite when Y is p × q, p ≤ q, is of full rank p. Observe that any real square matrix U

that can be written as U = V V ′ for some matrix V where V may be square or rectangular,
is either positive definite or at least positive semi-definite. When V is a p × q matrix,
q ≥ p, whose rank is p, V V ′ is positive definite; if the rank of V is less than p, then V V ′
is positive semi-definite. From Result 1.6.4,
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Y = A
1
2 XB

1
2 ⇒ dY = |A| q

2 |B|p
2 dX

⇒ dX = |A|− q
2 |B|−p

2 dY (iv)

where we use the standard notation |(·)| = det(·) to denote the determinant of (·) in
general and |det(·)| to denote the absolute value or modulus of the determinant of (·) in
the complex domain. Let

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(AXBX′), A > O, B > O (4.2.1)

for X = (xij ), −∞ < xij < ∞ for all i and j . From the steps (i) to (iv), we see that
fp,q(X) in (4.2.1) is a statistical density over the real rectangular p × q matrix X. This
function fp,q(X) is known as the real matrix-variate Gaussian density. We introduced a
1
2 in the exponent so that particular cases usually found in the literature agree with the
real p-variate Gaussian distribution. Actually, this 1

2 factor is quite unnecessary from a
mathematical point of view as it complicates computations rather than simplifying them.
In the complex case, the factor 1

2 does not appear in the exponent of the density, which is
consistent with the current particular cases encountered in the literature.

Note 4.2.1. If the factor 1
2 is omitted in the exponent, then 2π is to be replaced by π in

the denominator of (4.2.1), namely,

fp,q(X) = |A| q
2 |B|p

2

(π)
pq
2

e−tr(AXBX′), A > O, B > O. (4.2.2)

When p = 1, the matrix X is 1 × q and we let X = (x1, . . . , xq) where X is a row vector
whose components are x1, . . . , xq . When p = 1, A is 1 × 1 or a scalar quantity. Letting
A = 1 and B = V −1, V > O, be of dimension q × q, then in the real case,

f1,q(X) = |1
2V −1| 1

2

π
q
2

e− 1
2 XV −1X′

, X = (x1, . . . , xq),

= 1

(2π)
q
2 |V | 1

2

e− 1
2 XV −1X′

, (4.2.3)

which is the usual real nonsingular Gaussian density with parameter matrix V , that is, X′ ∼
Nq(O, V ). If a location parameter vector μ = (μ1, . . . , μq) is introduced or, equivalently,
if X is replaced by X − μ, then we have

f1,q(X) = [(2π)
q
2 |V | 1

2 ]−1e− 1
2 (X−μ)V −1(X−μ)′, V > O. (4.2.4)

On the other hand, when q = 1, a real p-variate Gaussian or normal density is available
from (4.2.1) wherein B = 1; in this case, X ∼ Np(μ, A−1) where X and the location
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parameter vector μ are now p × 1 column vectors. This density is given by

fp,1(X) = |A| 1
2

(2π)
p
2

e− 1
2 (X−μ)′A(X−μ), A > O. (4.2.5)

Example 4.2.1. Write down the exponent and the normalizing constant explicitly in a
real matrix-variate Gaussian density where

X =
[
x11 x12 x13

x21 x22 x23

]

, E[X] = M =
[

1 0 −1
−1 −2 0

]

,

A =
[

1 1
1 2

]

, B =
⎡

⎣
1 1 1
1 2 1
1 1 3

⎤

⎦ ,

where the xij ’s are real scalar random variables.

Solution 4.2.1. Note that A = A′ and B = B ′, the leading minors in A being |(1)| =
1 > 0 and |A| = 1 > 0 so that A > O. The leading minors in B are |(1)| = 1 >

0,

∣
∣
∣
∣
1 1
1 2

∣
∣
∣
∣ = 1 > 0 and

|B| = (1)

∣
∣
∣
∣
2 1
1 3

∣
∣
∣
∣− (1)

∣
∣
∣
∣
1 1
1 3

∣
∣
∣
∣+ (1)

∣
∣
∣
∣
1 2
1 1

∣
∣
∣
∣ = 2 > 0,

and hence B > O. The density is of the form

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(A(X−M)B(X−M)′)

where the normalizing constant is (1)
3
2 (2)

2
2

(2π)
(2)(3)

2
= 2

(2π)3 = 1
4π3 . Let X1 and X2 be the two rows

of X and let Y = X − M =
[
Y1

Y2

]

. Then Y1 = (y11, y12, y13) = (x11 − 1, x12, x13 + 1),

Y2 = (y21, y22, y23) = (x21 + 1, x22 + 2, x23). Now

(X − M)B(X − M)′ =
[
Y1

Y2

]

B[Y ′
1, Y

′
2] =

[
Y1BY ′

1 Y1BY ′
2

Y2BY ′
1 Y2BY ′

2

]

,

A(X − M)B(X − M)′ =
[

1 1
1 2

] [
Y1BY ′

1 Y1BY ′
2

Y2BY ′
1 Y2BY ′

2

]

=
[

Y1BY ′
1 + Y2BY ′

1 Y1BY ′
2 + Y2BY ′

2
Y1BY ′

1 + 2Y2BY ′
1 Y1BY ′

2 + 2Y2BY ′
2

]

.
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Thus,

tr[A(X − M)B(X − M)′] = Y1BY ′
1 + Y2BY ′

1 + Y1BY ′
2 + 2Y2BY ′

2

= Y1BY ′
1 + 2Y1BY ′

2 + 2Y2BY ′
2, ≡ Q, (i)

noting that Y1BY ′
2 and Y2BY ′

1 are equal since both are real scalar quantities and one is the
transpose of the other. Here are now the detailed computations of the various items:

Y1BY ′
1 = y2

11 + 2y11y12 + 2y11y13 + 2y2
12 + 2y12y13 + 3y2

13 (ii)

Y2BY ′
2 = y2

21 + 2y21y22 + 2y21y23 + 2y2
22 + 2y22y23 + 3y2

23 (iii)

Y1BY ′
2 = y11y21 + y11y22 + y11y23 + y12y21 + 2y12y22 + y12y23

+ y13y21 + y13y22 + 3y13y33 (iv)

where the y1j ’s and y2j ’s and the various quadratic and bilinear forms are as specified
above. The density is then

f2,3(X) = 1

4π3
e− 1

2 (Y1BY ′
1+2Y1BY ′

2+Y2BY ′
2)

where the terms in the exponent are given in (ii)-(iv). This completes the computations.

4.2a. The Matrix-variate Gaussian Density, Complex Case

In the following discussion, the absolute value of a determinant will be denoted by
|det(A)| where A is a square matrix. For example, if det(A) = a + ib with a and b real
scalar and i = √

(−1), the determinant of the conjugate transpose of A is det(A∗) =
a − ib. Then the absolute value of the determinant is

|det(A)| = +
√

(a2 + b2) = +[(a+ib)(a−ib)] 1
2 = +[det(A)det(A∗)] 1

2 = +[det(AA∗)] 1
2 .

(4.2a.1)
The matrix-variate Gaussian density in the complex case, which is the counterpart to that
given in (4.2.1) for the real case, is

f̃p,q(X̃) = |det(A)|q |det(B)|p
πpq

e−tr(AX̃BX̃∗) (4.2a.2)

for A > O, B > O, X̃ = (x̃ij ), |(·)| denoting the absolute value of (·). When p = 1 and
A = 1, the usual multivariate Gaussian density in the complex domain is obtained:

f̃1,q(X̃) = |det(B)|
πq

e−(X̃−μ)B(X̃−μ)∗, X̃′ ∼ Ñq(μ̃
′, B−1) (4.2a.3)
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where B > O and X̃ and μ are 1 × q row vectors, μ being a location parameter vector.
When q = 1 in (4.2a.1), we have the p-variate Gaussian or normal density in the complex
case which is given by

f̃p,1(X̃) = |det(A)|
πp

e−(X̃−μ)∗A(X̃−μ), X̃ ∼ Ñp(μ, A−1) (4.2a.4)

where X̃ and the location parameter also denoted by μ are now p × 1 vectors.

Example 4.2a.1. Consider a 2×3 complex matrix-variate Gaussian density. Write down
the normalizing constant and the exponent explicitly if

X̃ =
[
x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

]

, E[X̃] = M̃ =
[
i −i 1 + i

0 1 − i 1

]

,

A =
[

3 1 + i

1 − i 2

]

, B =
⎡

⎣
4 1 + i i

1 − i 2 1 − i

−i 1 + i 3

⎤

⎦ ,

where the x̃ij ’s are scalar complex random variables.

Solution 4.2a.1. Let us verify the definiteness of A and B. It is obvious that A =
A∗, B = B∗ and hence they are Hermitian. The leading minors of A are |(3)| = 3 >

0, |A| = 4 > 0 and hence A > O. The leading minors of B are |(4)| = 4 >

0,

∣
∣
∣
∣

4 1 + i

1 − i 2

∣
∣
∣
∣ = 6 > 0,

|B| = 4

∣
∣
∣
∣

2 1 − i

1 + i 3

∣
∣
∣
∣− (1 + i)

∣
∣
∣
∣
1 − i 1 − i

−i 3

∣
∣
∣
∣+ i

∣
∣
∣
∣
1 − i 2
−i 1 + i

∣
∣
∣
∣ = 8 > 0,

and hence B > O. The normalizing constant is then

|det(A)|q |det(B)|p
πpq

= (43)(82)

π6
.

Let the two rows of X̃ be X̃1 and X̃2. Let (X̃ − M̃) = Ỹ =
[
Ỹ1

Ỹ2

]

,

Ỹ1 = (ỹ11, ỹ12, ỹ13) = (x̃11 − i, x̃12 + i, x̃13 − (1 + i))

Ỹ2 = (ỹ21, ỹ22, ỹ23) = (x̃21, x̃22 − (1 − i), x̃23 − 1).
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(X̃ − M̃)B(X̃ − M̃)∗ = ỸBỸ ∗ =
[
Ỹ1

Ỹ2

]

B[Ỹ ∗
1 , Ỹ ∗

2 ]

=
[
Ỹ1BỸ ∗

1 Ỹ1BỸ ∗
2

Ỹ2BỸ ∗
1 Ỹ2BỸ ∗

2

]

.

Then,

tr[A(X̃ − M̃)B(X̃ − M̃)∗] = tr

{[
3 1 + i

1 − i 2

] [
Ỹ1BỸ ∗

1 Ỹ1BỸ ∗
2

Ỹ2BỸ ∗
1 Ỹ2BỸ ∗

2

]}

= 3Ỹ1BỸ ∗
1 + (1 + i)(Ỹ2BỸ ∗

1 ) + (1 − i)(Ỹ1BỸ ∗
2 ) + 2Ỹ2BỸ ∗

2

≡ Q (i)

where

Ỹ1BỸ ∗
1 = 4ỹ11ỹ

∗
11 + 2ỹ12ỹ

∗
12 + 3ỹ13ỹ

∗
13

+ (1 + i)ỹ11ỹ
∗
12 + iỹ11ỹ

∗
13 + (1 − i)ỹ12ỹ

∗
11

+ (1 − i)ỹ12ỹ
∗
13 − iỹ13ỹ

∗
11 + (1 + i)ỹ13ỹ

∗
12 (ii)

Ỹ2BỸ ∗
2 = 4ỹ21ỹ

∗
21 + 2ỹ22ỹ

∗
22 + 3ỹ23ỹ

∗
23

+ (1 + i)ỹ21ỹ
∗
22 + iỹ21ỹ

∗
23 + (1 − i)ỹ22ỹ

∗
21

+ (1 − i)ỹ22ỹ
∗
23 − iỹ23ỹ

∗
21 + (1 + i)ỹ23ỹ

∗
22 (iii)

Ỹ1BỸ ∗
2 = 4ỹ11ỹ

∗
21 + 2ỹ12ỹ

∗
22 + 3ỹ13ỹ

∗
23

+ (1 + i)ỹ11ỹ
∗
22 + iỹ11ỹ

∗
23 + (1 − i)ỹ12ỹ

∗
21

+ (1 − i)ỹ12ỹ
∗
23 − iỹ13ỹ

∗
21 + (1 + i)ỹ13ỹ

∗
22 (iv)

Ỹ2BỸ ∗
1 = (iv) with ỹ1j and ỹ2j interchanged. (v)

Hence, the density of X̃ is given by

f̃2,3(X̃) = (43)(82)

π6
e−Q

where Q is given explicitly in (i)-(v) above. This completes the computations.
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4.2.1. Some properties of a real matrix-variate Gaussian density

In order to derive certain properties, we will need some more Jacobians of matrix
transformations, in addition to those provided in Chap. 1. These will be listed in this sec-
tion as basic results without proofs. The derivations as well as other related Jacobians are
available from Mathai (1997).

Theorem 4.2.1. Let X be a p×q, q ≥ p, real matrix of rank p, that is, X has full rank,
where the pq elements of X are distinct real scalar variables. Let X = T U1 where T is
a p × p real lower triangular matrix whose diagonal elements are positive and U1 is a
semi-orthonormal matrix such that U1U

′
1 = Ip. Then

dX =
⎧
⎨

⎩

p∏

j=1

t
q−j

jj

⎫
⎬

⎭
dT h(U1) (4.2.6)

where h(U1) is the differential element corresponding to U1.

Theorem 4.2.2. For the differential elements h(U1) in (4.2.6), the integral is over the
Stiefel manifold Vp,q or over the space of p × q, q ≥ p, semi-orthonormal matrices and
the integral over the full orthogonal group Op when q = p are respectively

∫

Vp,q

h(U1) = 2pπ
pq
2

Γp(
q
2 )

and
∫

Op

h(U1) = 2pπ
p2

2

Γp(
p
2 )

(4.2.7)

where Γp(α) is the real matrix-variate gamma function given by

Γp(α) = π
p(p−1)

4 Γ (α)Γ (α − 1/2) · · · Γ (α − (p − 1)/2), �(α) >
p−1

2 , (4.2.8)

�(·) denoting the real part of (·).
For example,

Γ3(α) = π
3(2)

4 Γ (α)Γ (α − 1/2)Γ (α − 1) = π
3
2 Γ (α)Γ (α − 1/2)Γ (α − 1), �(α) > 1.

With the help of Theorems 4.2.1, 4.2.2 and 1.6.7 of Chap. 1, we can derive the follow-
ing result:

Theorem 4.2.3. Let X be a real p × q, q ≥ p, matrix of rank p and S = XX′. Then,
S > O (real positive definite) and

dX = π
pq
2

Γp(
q
2 )

|S| q
2 −p+1

2 dS, (4.2.9)

after integrating out over the Stiefel manifold.
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4.2a.1. Some properties of a complex matrix-variate Gaussian density

The corresponding results in the complex domain follow.

Theorem 4.2a.1. Let X̃ be a p × q, q ≥ p, matrix of rank p in the complex domain and
T̃ be a p × p lower triangular matrix in the complex domain whose diagonal elements
tjj > 0, j = 1, . . . , p, are real and positive. Then, letting Ũ1 be a semi-unitary matrix
such that Ũ1Ũ

∗
1 = Ip,

X̃ = T̃ Ũ1 ⇒ dX̃ =
⎧
⎨

⎩

p∏

j=1

t
2(q−j)+1
jj

⎫
⎬

⎭
dT̃ h̃(Ũ1) (4.2a.5)

where h̃(Ũ1) is the differential element corresponding to Ũ1.

When integrating out h̃(Ũ1), there are three situations to be considered. One of the
cases is q > p. When q = p, the integration is done over the full unitary group Õp;
however, there are two cases to be considered in this instance. One case occurs where all
the elements of the unitary matrix Ũ1, including the diagonal ones, are complex, in which
case Õp will be denoted by Õ

(1)
p , and the other one, wherein the diagonal elements of Ũ1

are real, in which instance the unitary group will be denoted by Õ
(2)
p . When unitary trans-

formations are applied to Hermitian matrices, this is our usual situations when Hermitian
matrices are involved, then the diagonal elements of the unique Ũ1 are real and hence the
unitary group is Õ

(2)
p . The integral of h̃(Ũ1) under these three cases are given in the next

theorem.

Theorem 4.2a.2. Let h̃(Ũ1) be as defined in equation (4.2a.5). Then, the integral of
h̃(Ũ1), over the Stiefel manifold Ṽp,q of semi-unitary matrices for q > p, and when q = p,

the integrals over the unitary groups Õ
(1)
p and Õ

(2)
p are the following:

∫

Ṽp,q

h̃(Ũ1) = 2pπpq

Γ̃p(q)
, q > p;

∫

Õ
(1)
p

h̃(Ũ1) = 2pπp2

Γ̃p(p)
,

∫

Õ
(2)
p

h̃(Ũ1) = πp(p−1)

Γ̃p(p)
, (4.2a.6)

the factor 2p being omitted when Ũ1 is uniquely specified; Õ
(1)
p is the case of a general X̃,

Õ
(2)
p is the case corresponding to X̃ Hermitian, and Γ̃p(α) is the complex matrix-variate

gamma, given by

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1. (4.2a.7)
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For example,

Γ̃3(α) = π
3(2)

2 Γ (α)Γ (α − 1)Γ (α − 2) = π3Γ (α)Γ (α − 1)Γ (α − 2), �(α) > 2.

Theorem 4.2a.3. Let X̃ be p × q, q ≥ p, matrix of rank p in the complex domain and
S̃ = X̃X̃∗ > O. Then after integrating out over the Stiefel manifold,

dX̃ = πpq

Γ̃p(q)
|det(S̃)|q−pdS̃. (4.2a.8)

4.2.2. Additional properties in the real and complex cases

On making use of the above results, we will establish a few results in this section
as well as additional ones later on. Let us consider the matrix-variate Gaussian densities
corresponding to (4.2.1) and (4.2a.2) with location matrices M and M̃, respectively, and
let the densities be again denoted by fp,q(X) and f̃p,q(X̃) respectively, where

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr[A(X−M)B(X−M)′] (4.2.10)

and

f̃p,q(X̃) = |det(A)|q |det(B)|p
πpq

e−tr[A(X̃−M̃)B(X̃−M̃)∗]. (4.2a.9)

Then, in the real case the expected value of X or the mean value of X, denoted by E(X),
is given by

E(X) =
∫

X

Xfp,q(X) dX =
∫

X

(X − M)fp,q(X) dX + M

∫

X

fp,q(X) dX. (i)

The second integral in (i) is the total integral in a density, which is 1, and hence the second
integral gives M . On making the transformation Y = A

1
2 (X − M)B

1
2 , we have

E[X] = M + A− 1
2

1

(2π)
np
2

∫

Y

Y e− 1
2 tr(YY ′)dYB− 1

2 . (ii)

But tr(YY ′) is the sum of squares of all elements in Y . Hence Y e− 1
2 tr(YY ′) is an odd function

and the integral over each element in Y is convergent, so that each integral is zero. Thus,
the integral over Y gives a null matrix. Therefore E(X) = M . It can be shown in a similar
manner that E(X̃) = M̃ .
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Theorem 4.2.4, 4.2a.4. For the densities specified in (4.2.10) and (4.2a.9),

E(X) = M and E(X̃) = M̃. (4.2.11)

Theorem 4.2.5, 4.2a.5. For the densities given in (4.2.10), (4.2a.9)

E[(X − M)B(X − M)′] = qA−1, E[(X − M)′A(X − M)] = pB−1 (4.2.12)

and

E[(X̃ − M̃)B(X̃ − M̃)∗] = qA−1, E[(X̃ − M̃)∗A(X̃ − M̃)] = pB−1. (4.2a.10)

Proof: Consider the real case first. Let Y = A
1
2 (X − M)B

1
2 ⇒ A− 1

2 Y = (X − M)B
1
2 .

Then

E[(X − M)B(X − M)′] = A− 1
2

(2π)
pq
2

∫

Y

YY ′e− 1
2 tr(YY ′)dYA− 1

2 . (i)

Note that Y is p×q and YY ′ is p×p. The non-diagonal elements in YY ′ are dot products of
the distinct row vectors in Y and hence linear functions of the elements of Y . The diagonal
elements in YY ′ are sums of squares of elements in the rows of Y . The exponent has all
sum of squares and hence the convergent integrals corresponding to all the non-diagonal
elements in YY ′ are zeros. Hence, only the diagonal elements need be considered. Each
diagonal element is a sum of squares of q elements of Y . For example, the first diagonal
element in YY ′ is y2

11 + y2
12 + · · · + y2

1q where Y = (yij ). Let Y1 = (y11, . . . , y1q) be the

first row of Y and let s = Y1Y
′
1 = y2

11 + · · · + y2
1q . It follows from Theorem 4.2.3 that

when p = 1,

dY1 = π
q
2

Γ (
q
2 )

s
q
2 −1ds. (ii)

Then
∫

Y1

Y1Y
′
1e− 1

2 Y1Y
′
1dY1 =

∫ ∞

s=0
s

π
q
2

Γ (
q
2 )

s
q
2 −1e− 1

2 sds. (iii)

The integral part over s is 2
q
2 +1Γ (

q
2 + 1) = 2

q
2 +1 q

2Γ (
q
2 ) = 2

q
2 qΓ (

q
2 ). Thus Γ (

q
2 ) is

canceled and (2π)
q
2 cancels with (2π)

pq
2 leaving (2π)

(p−1)q
2 in the denominator and q in

the numerator. We still have p − 1 such sets of q, y2
ij ’s in the exponent in (i) and each such
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integrals is of the form
∫∞
−∞ e− 1

2 z2
dz = √

(2π) which gives (2π)
(p−1)q

2 and thus the factor
containing π is also canceled leaving only q at each diagonal position in YY ′. Hence the
integral 1

(2π)
pq
2

∫
Y

YY ′e− 1
2 tr(YY ′)dY = qI where I is the identity matrix, which establishes

one of the results in (4.2.12). Now, write

tr[A(X − M)B(X − M)′] = tr[(X − M)′A(X − M)B] = tr[B(X − M)′A(X − M)].
This is the same structure as in the previous case where B occupies the place of A and
the order is now q in place of p in the previous case. Then, proceeding as in the deriva-
tions from (i) to (iii), the second result in (4.2.12) follows. The results in (4.2a.10) are
established in a similar manner.

From (4.2.10), it is clear that the density of Y, denoted by g(Y ), is of the form

g(Y ) = 1

(2π)
pq
2

e− 1
2 tr(YY ′), Y = (yij ), −∞ < yij < ∞, (4.2.13)

for all i and j . The individual yij ’s are independently distributed and each yij has the
density

gij (yij ) = 1√
(2π)

e− 1
2 y2

ij , −∞ < yij < ∞. (iv)

Thus, we have a real standard normal density for yij . The complex case corresponding
to (4.2.13), denoted by g̃(Ỹ ), is given by

g̃(Ỹ ) = 1

πpq
e−tr(Ỹ Ỹ ∗). (4.2a.11)

In this case, the exponent is tr(Ỹ Ỹ ∗) =∑p

i=1

∑q

j=1 |ỹij |2 where ỹrs = yrs1 + iyrs2, yrs1,

yrs2 real, i = √
(−1) and |ỹrs |2 = y2

rs1 + y2
rs2.

For the real case, consider the probability that yij ≤ tij for some given tij and this is the
distribution function of yij , which is denoted by Fyij

(tij ). Then, let us compute the density
of y2

ij . Consider the probability that y2
ij ≤ u, u > 0 for some u. Let uij = y2

ij . Then,
Pr{uij ≤ vij } for some vij is the distribution function of uij evaluated at vij , denoted by
Fuij

(vij ). Consider

Pr{y2
ij ≤ t, t > 0} = Pr{|yij | ≤ √

t} = Pr{−√
t ≤ yij ≤ √

t} = Fyij
(
√

t)−Fyij
(−√

t).

(v)
Differentiate throughout with respect to t . When Pr{y2

ij ≤ t} is differentiated with respect

to t , we obtain the density of uij = y2
ij , evaluated at t . This density, denoted by hij (uij ),

is given by
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hij (uij )|uij=t = d

dt
Fyij

(
√

t) − d

dt
F (−√

t)

= gij (yij = t)1
2 t

1
2 −1 − gij (yij = t)(−1

2 t
1
2 −1)

= 1√
(2π)

[t 1
2 −1e− 1

2 t ] = 1√
(2π)

[u
1
2 −1
ij e− 1

2 uij ] (vi)

evaluated at uij = t for 0 ≤ t < ∞. Hence we have the following result:

Theorem 4.2.6. Consider the density fp,q(X) in (4.2.1) and the transformation Y =
A

1
2 XB

1
2 . Letting Y = (yij ), the yij ’s are mutually independently distributed as in (iv)

above and each y2
ij is distributed as a real chi-square random variable having one degree

of freedom or equivalently a real gamma with parameters α = 1
2 and β = 2 where the

usual real scalar gamma density is given by

f (z) = 1

βαΓ (α)
zα−1e− z

β , (vii)

for 0 ≤ z < ∞, �(α) > 0, �(β) > 0 and f (z) = 0 elsewhere.

As a consequence of the y2
ij ’s being independently gamma distributed,

∑q

j=1 y2
ij is real

gamma distributed with the parameters α = q
2 and β = 2. Then tr(YY ′) is real gamma

distributed with the parameters α = pq
2 and β = 2 and each diagonal element in YY ′

is real gamma distributed with parameters q
2 and β = 2 or a real chi-square variable

with q degrees of freedom and an expected value 2q
2 = q. This is an alternative way

of proving (4.2.12). Proofs for the other results in (4.2.12) and (4.2a.10) are parallel and
hence are omitted.

4.2.3. Some special cases

Consider the real p×q matrix-variate Gaussian case where the exponent in the density
is −1

2 tr(AXBX′). On making the transformation A
1
2 X = Z ⇒ dZ = |A| q

2 dX, Z has a
p × q matrix-variate Gaussian density of the form

fp,q(Z) = |B|p
2

(2π)
pq
2

e− 1
2 tr(ZBZ′). (4.2.14)

If the distribution has a p × q constant matrix M as location parameter, then replace Z by
Z−M in (4.2.14), which does not affect the normalizing constant. Letting Z1, Z2, . . . , Zp

denote the rows of Z, we observe that Zj has a q-variate multinormal distribution with the
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null vector as its mean value and B−1 as its covariance matrix for each j = 1, . . . , p.
This can be seen from the considerations that follow. Let us consider the transformation
Y = ZB

1
2 ⇒ dZ = |B|−p

2 dY . The density in (4.2.14) then reduces to the following,
denoted by fp,q(Y ):

fp,q(Y ) = 1

(2π)
pq
2

e− 1
2 tr(YY ′). (4.2.15)

This means that each element yij in Y = (yij ) is a real univariate standard normal variable,
yij ∼ N1(0, 1) as per the usual notation, and all the yij ’s are mutually independently
distributed. Letting the p rows of Y be Y1, . . . , Yp, then each Yj is a q-variate standard
normal vector for j = 1, . . . , p. Letting the density of Yj be denoted by fYj

(Yj ), we have

fYj
(Yj ) = 1

(2π)
q
2

e− 1
2 (YjY

′
j ).

Now, consider the transformation Zj = YjB
− 1

2 ⇒ dYj = |B| 1
2 dZj and Yj = ZjB

1
2 . That

is, YjY
′
j = ZjBZ′

j and the density of Zj denoted by fZj
(Zj ) is as follows:

fZj
(Zj ) = |B| 1

2

(2π)
q
2

e− 1
2 (ZjBZ′

j ), B > O, (4.2.16)

which is a q-variate real multinormal density with the covariance matrix of Zj given by
B−1, for each j = 1, . . . , p, and the Zj ’s, j = 1, . . . , p, are mutually independently
distributed. Thus, the following result:

Theorem 4.2.7. Let Z1, . . . , Zp be the p rows of the p × q matrix Z in (4.2.14). Then
each Zj has a q-variate real multinormal distribution with the covariance matrix B−1, for
j = 1, . . . , p, and Z1, . . . , Zp are mutually independently distributed.

Observe that the exponent in the original real p × q matrix-variate Gaussian density
can also be rewritten in the following format:

−1

2
tr(AXBX′) = −1

2
tr(X′AXB) = −1

2
tr(BX′AX)

= −1

2
tr(U ′AU) = −1

2
tr(ZBZ′), A

1
2 X = Z, XB

1
2 = U.

Now, on making the transformation U = XB
1
2 ⇒ dX = |B|−p

2 dU , the density of U ,
denoted by fp,q(U), is given by

fp,q(U) = |A| q
2

(2π)
pq
2

e− 1
2 tr(U ′AU). (4.2.17)

Proceeding as in the derivation of Theorem 4.2.7, we have the following result:
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Theorem 4.2.8. Consider the p × q real matrix U in (4.2.17). Let U1, . . . , Uq be the
columns of U . Then, U1, . . . , Uq are mutually independently distributed with Uj having a
p-variate multinormal density, denoted by fUj

(Uj ), given as

fUj
(Uj ) = |A| 1

2

(2π)
p
2

e− 1
2 (U ′

jAUj ). (4.2.18)

The corresponding results in the p × q complex Gaussian case are the following:

Theorem 4.2a.6. Consider the p × q complex Gaussian matrix X̃. Let A
1
2 X̃ = Z̃ and

Z̃1, . . . , Z̃p be the rows of Z̃. Then, Z̃1, . . . , Z̃p are mutually independently distributed
with Z̃j having a q-variate complex multinormal density, denoted by f̃Z̃j

(Z̃j ), given by

f̃Z̃j
(Z̃j ) = |det(B)|

πq
e−(Z̃jBZ̃∗

j )
. (4.2a.12)

Theorem 4.2a.7. Let the p×q matrix X̃ have a complex matrix-variate distribution. Let
Ũ = X̃B

1
2 and Ũ1, . . . , Ũq be the columns of Ũ . Then Ũ1, . . . , Ũq are mutually indepen-

dently distributed as p-variate complex multinormal with covariance matrix A−1 each,
the density of Ũj , denoted by f̃Ũj

(Ũj ), being given as

f̃Ũj
(Ũj ) = |det(A)|

πp
e−(Ũ∗

j AŨj ). (4.2a.13)

Exercises 4.2

4.2.1. Prove the second result in equation (4.2.12) and prove both results in (4.2a.10).

4.2.2. Obtain (4.2.12) by establishing first the distribution of the row sum of squares and
column sum of squares in Y , and then taking the expected values in those variables.

4.2.3. Prove (4.2a.10) by establishing first the distributions of row and column sum of
squares of the absolute values in Ỹ and then taking the expected values.

4.2.4. Establish 4.2.12 and 4.2a.10 by using the general polar coordinate transformations.

4.2.5. First prove that
∑q

j=1 |ỹij |2 is a 2q-variate real gamma random variable. Then

establish the results in (4.2a.10) by using the those on real gamma variables, where Ỹ =
(ỹij ), the ỹij ’s in (4.2a.11) being in the complex domain and |ỹij | denoting the absolute
value or modulus of ỹij .
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4.2.6. Let the real matrix A > O be 2 × 2 with its first row being (1, 1) and let B > O

be 3 × 3 with its first row being (1, 1, −1). Then complete the other rows in A and B so
that A > O, B > O. Obtain the corresponding 2×3 real matrix-variate Gaussian density
when (1): M = O, (2): M 
= O with a matrix M of your own choice.

4.2.7. Let the complex matrix A > O be 2 × 2 with its first row being (1, 1 + i) and
let B > O be 3 × 3 with its first row being (1, 1 + i, −i). Complete the other rows with
numbers in the complex domain of your own choice so that A = A∗ > O, B = B∗ > O.
Obtain the corresponding 2×3 complex matrix-variate Gaussian density with (1): M̃ = O,
(2): M̃ 
= O with a matrix M̃ of your own choice.

4.2.8. Evaluate the covariance matrix in (4.2.16), which is E(Z′
jZj ), and show that it is

B−1.

4.2.9. Evaluate the covariance matrix in (4.2.18), which is E(UjU
′
j ), and show that it is

A−1.

4.2.10. Repeat Exercises 4.2.8 and 4.2.9 for the complex case in (4.2a.12) and (4.2a.13).

4.3. Moment Generating Function and Characteristic Function, Real Case

Let T = (tij ) be a p × q parameter matrix. The matrix random variable X = (xij ) is
p × q and it is assumed that all of its elements xij ’s are real and distinct scalar variables.
Then

tr(T X′) =
p∑

i=1

q∑

j=1

tij xij = tr(X′T ) = tr(XT ′). (i)

Note that each tij and xij appear once in (i) and thus, we can define the moment generating
function (mgf) in the real matrix-variate case, denoted by Mf (T ) or MX(T ), as follows:

Mf (T ) = E[etr(T X′)] =
∫

X

etr(T X′)fp,q(X)dX = MX(T ) (ii)

whenever the integral is convergent, where E denotes the expected value. Thus, for the
p × q matrix-variate real Gaussian density,

MX(T ) = Mf (T ) = |A| q
2 |B|p

2

(2π)
pq
2

∫

X

etr(T X′)− 1
2 tr(A

1
2 XBX′A

1
2 )dX

where A is p × p, B is q × q and A and B are constant real positive definite matrices so
that A

1
2 and B

1
2 are uniquely defined. Consider the transformation Y = A

1
2 XB

1
2 ⇒ dY =

|A| q
2 |B|p

2 dX by Theorem 1.6.4. Thus, X = A− 1
2 YB− 1

2 and

tr(T X′) = tr(T B− 1
2 Y ′A− 1

2 ) = tr(A− 1
2 T B− 1

2 Y ′) = tr(T(1)Y
′)
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where T(1) = A− 1
2 T B− 1

2 . Then

MX(T ) = 1

(2π)
pq
2

∫

Y

etr(T(1)Y
′)− 1

2 tr(YY ′)dY.

Note that T(1)Y
′ and YY ′ are p×p. Consider −2tr(T(1)Y

′)+ tr(YY ′), which can be written
as

−2tr(T(1)Y
′) + tr(YY ′) = −tr(T(1)T

′
(1)) + tr[(Y − T(1))(Y − T(1))

′].

Therefore

MX(T ) = e
1
2 tr(T(1)T

′
(1)

) 1

(2π)
pq
2

∫

Y

e− 1
2 tr[(Y−T(1))(Y

′−T ′
(1)

)]dY

= e
1
2 tr(T(1)T

′
(1)

) = e
1
2 tr(A− 1

2 T B−1T ′A− 1
2 ) = e

1
2 tr(A−1T B−1T ′) (4.3.1)

since the integral is 1 from the total integral of a matrix-variate Gaussian density.

In the presence of a location parameter matrix M , the matrix-variate Gaussian density
is given by

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(A

1
2 (X−M)B(X−M)′A

1
2 ) (4.3.2)

where M is a constant p×q matrix. In this case, T X′ = T (X−M +M)′ = T (X−M)′ +
T M ′, and

MX(T ) = Mf (T ) = E[etr(T X′)] = etr(T M ′)E[etr(T (X−M)′)]
= etr(T M ′)e

1
2 tr(A−1T B−1T ′) = etr(T M ′)+tr( 1

2 A−1T B−1T ′). (4.3.3)

When p = 1, we have the usual q-variate multinormal density. In this case, A is 1 × 1 and
taken to be 1. Then the mgf is given by

MX(T ) = eT M ′+ 1
2 T B−1T ′

(4.3.4)
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where T , M and X are 1 × q and B > O is q × q. The corresponding characteristic
function when p = 1 is given by

φ(T ) = eiT M ′− 1
2 T B−1T ′

. (4.3.5)

Example 4.3.1. Let X have a 2×3 real matrix-variate Gaussian density with the follow-
ing parameters:

X =
[
x11 x12 x13

x21 x22 x23

]

, E[X] = M =
[

1 0 −1
−1 1 0

]

, A =
[

1 1
1 2

]

,

B =
⎡

⎣
3 −1 1

−1 2 1
1 1 3

⎤

⎦ .

Consider the density f2,3(X) with the exponent preceded by 1
2 to be consistent with p-

variate real Gaussian density. Verify whether A and B are positive definite. Then compute
the moment generating function (mgf) of X or that associated with f2,3(X) and write down
the exponent explicitly.

Solution 4.3.1. Consider a 2×3 parameter matrix T = (tij ). Let us compute the various
quantities in the mgf. First,

T M ′ =
[
t11 t12 t13

t21 t22 t23

]
⎡

⎣
1 −1
0 1

−1 0

⎤

⎦ =
[
t11 − t13 −t11 + t12

t21 − t23 −t21 + t22

]

,

so that
tr(T M ′) = t11 − t13 − t21 + t22. (i)

Consider the leading minors in A and B. Note that |(1)| = 1 > 0, |A| = 1 > 0, |(3)| =
3 > 0,

∣
∣
∣
∣

3 −1
−1 2

∣
∣
∣
∣ = 5 > 0, |B| = 8 > 0; thus both A and B are positive definite. The

inverses of A and B are obtained by making use of the formula C−1 = 1
|C|(Cof(C))′; they

are

A−1 =
[

2 −1
−1 1

]

, B−1 = 1

8

⎡

⎣
5 4 −3
4 8 −4

−3 −4 5

⎤

⎦ .
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For determining the exponent in the mgf, we need A−1T and B−1T ′, which are

A−1T =
[

2 −1
−1 1

] [
t11 t12 t13

t21 t22 t23

]

=
[

2t11 − t21 2t12 − t22 2t13 − t23

−t11 + t21 −t12 + t22 −t13 + t23

]

B−1T ′ = 1

8

⎡

⎣
5 4 −3
4 8 −4

−3 −4 5

⎤

⎦

⎡

⎣
t11 t21

t12 t22

t13 t23

⎤

⎦

= 1

8

⎡

⎣
5t11 + 4t12 − 3t13 5t21 + 4t22 − 3t23

4t11 + 8t12 − 4t13 4t21 + 8t22 − 4t23

−3t11 − 4t12 + 5t13 −3t21 − 4t22 + 5t23

⎤

⎦ .

Hence,

1

2
tr[A−1T B−1T ′] = 1

16
[(2t11 − t21)(5t11 + 4t12 − 3t13)

+ (2t12 − t22)(4t11 + 8t12 − 4t13) + (2t13 − t23)(−3t11 − 4t12 + 5t13)

+ (−t11 + t21)(5t21 + 4t22 − 3t23) + (−t12 + t22)(4t21 + 8t22 − 4t23)

+ (−t13 + t23)(−3t21 − 4t22 + 5t23)]. (ii)

Thus, the mgf is MX(T ) = eQ(T ) where

Q(T ) = tr(T M ′) + 1

2
tr(A−1T B−1T ′),

these quantities being given in (i) and (ii). This completes the computations.

4.3a. Moment Generating and Characteristic Functions, Complex Case

Let X̃ = (x̃ij ) be a p × q matrix where the x̃ij ’s are distinct scalar complex variables.
We may write X̃ = X1 + iX2, i = √

(−1), X1, X2 being real p × q matrices. Let T̃

be a p × q parameter matrix and T̃ = T1 + iT2, T1, T2 being real p × q matrices. The
conjugate transposes of X̃ and T̃ are denoted by X̃∗ and T̃ ∗, respectively. Then,

tr(T̃ X̃∗) = tr[(T1 + iT2)(X
′
1 − iX′

2)]
= tr[T1X

′
1 + T2X

′
2 + i(T2X

′
1 − T1X

′
2)]

= tr(T1X
′
1) + tr(T2X

′
2) + i tr(T2X

′
1 − T1X

′
2).
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If T1 = (t
(1)
ij ), X1 = (x

(1)
ij ), X2 = (x

(2)
ij ), T2 = (t

(2)
ij ), tr(T1X

′
1) = ∑p

i=1

∑q

j=1 t
(1)
ij x

(1)
ij ,

tr(T2X
′
2) = ∑p

i=1

∑q

j=1 t
(2)
ij x

(2)
ij . In other words, tr(T1X

′
1) + tr(T2X

′
2) gives all the xij ’s

in the real and complex parts of X̃ multiplied by the corresponding tij ’s in the real and
complex parts of T̃ . That is, E[etr(T1X

′
1)+tr(T2X

′
2)] gives a moment generating function (mgf)

associated with the complex matrix-variate Gaussian density that is consistent with real
multivariate mgf. However, [tr(T1X

′
1) + tr(T2X

′
2)] = �(tr[T̃ X̃∗]), �(·) denoting the real

part of (·). Thus, in the complex case, the mgf for any real-valued scalar function g(X̃) of
the complex matrix argument X̃, where g(X̃) is a density, is defined as

M̃X̃(T̃ ) =
∫

X̃

e�[tr(T̃ X̃∗)]g(X̃)dX̃ (4.3a.1)

whenever the expected value exists. On replacing T̃ by iT̃ , i = √
(−1), we obtain the

characteristic function of X̃ or that associated with f̃ , denoted by φX̃(T̃ ) = φf̃ (T̃ ). That
is,

φX̃(T̃ ) =
∫

X̃

e�[tr(iT̃ X̃∗)]g(X̃)dX̃. (4.3a.2)

Then, the mgf of the matrix-variate Gaussian density in the complex domain is available
by paralleling the derivation in the real case and making use of Lemma 3.2a.1:

M̃X̃(T̃ ) = E[e�[tr(T̃ X̃∗)]]
= e�[tr(T̃ M̃∗)]+ 1

4 �[tr(A− 1
2 T̃ B−1T̃ ∗A− 1

2 )]. (4.3a.3)

The corresponding characteristic function is given by

φX̃(T̃ ) = e�[tr(iT̃ M̃∗)]− 1
4 �[tr(A− 1

2 T̃ B−1T̃ ∗A− 1
2 )]. (4.3a.4)

Note that when A = A∗ > O and B = B∗ > O (Hermitian positive definite),

(A− 1
2 T̃ B−1T̃ ∗A− 1

2 )∗ = A− 1
2 T̃ B−1T̃ ∗A− 1

2 ,

that is, this matrix is Hermitian. Thus, letting Ũ = A− 1
2 T̃ B−1T̃ ∗A− 1

2 = U1 + iU2

where U1 and U2 are real matrices, U1 = U ′
1 and U2 = −U ′

2, that is, U1 and U2

are respectively symmetric and skew symmetric real matrices. Accordingly, tr(Ũ) =
tr(U1) + itr(U2) = tr(U1) as the trace of a real skew symmetric matrix is zero. Therefore,
�[tr(A− 1

2 T̃ B−1T̃ ∗A− 1
2 )] = tr(A− 1

2 T̃ B−1T̃ ∗A− 1
2 ), the diagonal elements of a Hermitian

matrix being real.



Matrix-Variate Gaussian Distribution 237

When p = 1, we have the usual q-variate complex multivariate normal density and
taking the 1 × 1 matrix A to be 1, the mgf is as follows:

M̃X̃(T̃ ) = e�(T̃ M̃∗)+ 1
4 (T̃ B−1T̃ ∗) (4.3a.5)

where T̃ , M̃ are 1 × q vectors and B = B∗ > O (Hermitian positive definite), the
corresponding characteristic function being given by

φX̃(T̃ ) = e�(iT̃ M̃∗)− 1
4 (T̃ B−1T̃ ∗). (4.3a.6)

Example 4.3a.1. Consider a 2 × 2 matrix X̃ in the complex domain having a complex
matrix-variate density with the following parameters:

X̃ =
[
x̃11 x̃12

x̃21 x̃22

]

, E[X̃] = M̃ =
[

1 + i i

2 − i 1

]

,

A =
[

2 i

−i 3

]

, B =
[

2 −i

i 1

]

.

Determine whether A and B are Hermitian positive definite; then, obtain the mgf of this
distribution and provide the exponential part explicitly.

Solution 4.3a.1. Clearly, A > O and B > O. We first determine A−1, B−1, A−1T̃ ,

B−1T̃ ∗:

A−1 = 1

5

[
3 −i

i 2

]

, A−1T̃ = 1

5

[
3 −i

i 2

] [
t̃11 t̃12

t̃21 t̃22

]

= 1

5

[
3t̃11 − it̃21 3t̃12 − it̃22

it̃11 + 2t̃21 it̃12 + 2t̃22

]

,

B−1 =
[

1 i

−i 2

]

, B−1T̃ ∗ =
[

t̃∗11 + it̃∗12 t̃∗21 + it̃∗22−it̃∗11 + 2t̃∗12 −it̃∗21 + 2t̃∗22

]

.

Letting δ = 1
2 tr(A−1T̃ B−1T̃ ∗),

10δ = {(3t̃11 − it̃21)(t̃
∗
11 + it̃∗12) + (3t̃12 − it̃22)(−it̃∗11 + 2t̃∗12)

+ (it̃11 + 2t̃21)(t̃
∗
21 + it̃∗22) + (it̃12 + 2t̃22)(−it̃∗21 + 2t̃∗22)},

10δ = {3t̃11 t̃
∗
11 + 3it̃11 t̃

∗
12 − it̃21t̃

∗
11 + t̃21 t̃

∗
12

+ 6t̃12 t̃
∗
12 − t̃22 t̃

∗
11 − 2it̃22t̃

∗
12 − 3it̃12 t̃

∗
11

+ it̃11 t̃
∗
21 − t̃11 t̃

∗
22 + 2t̃21 t̃

∗
21 + 2it̃21 t̃

∗
22

+ t̃12 t̃
∗
21 + 2it̃12 t̃

∗
22 − 2it̃22 t̃

∗
21 + 4t̃22 t̃

∗
22},
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10δ = 3t̃11 t̃
∗
11 + 6t̃12 t̃

∗
12 + 2t̃21 t̃

∗
21 + 4t̃22 t̃

∗
22

+ 3i[t̃11 t̃
∗
12 − t̃12 t̃

∗
11] − [t̃22 t̃

∗
11 + t̃11 t̃

∗
22]

+ i[t̃11 t̃
∗
21 − t̃∗11 t̃21] + [t̃12 t̃

∗
21 + t̃∗12 t̃21]

+ 2i[t̃21 t̃
∗
22 − t̃∗21 t̃22] + 2i[t̃12 t̃

∗
22 − t̃∗12 t̃22].

Letting t̃rs = trs1 + itrs2, i = √
(−1), trs1, trs2 being real, for all r and s, then δ, the

exponent in the mgf, can be expressed as follows:

δ = 1

10
{3(t2

111 + t2
112) + 6(t2

121 + t2
122) + 2(t2

211 + t2
212) + 4(t2

221 + t2
222)

− 6(t112t121 − t111t122) − 2(t111t221 − t112t222) − 2(t112t211 − t111t212)

+ 2(t121t211 + t122t212) − 4(t212t221 − t211t222) − 4(t122t221 − t121t222)}.
This completes the computations.

4.3.1. Distribution of the exponent, real case

Let us determine the distribution of the exponent in the p×q real matrix-variate Gaus-
sian density. Letting u = tr(AXBX′), its density can be obtained by evaluating its associ-
ated mgf. Then, taking t as its scalar parameter since u is scalar, we have

Mu(t) = E[etu] = E[et tr(AXBX′)].
Since this expected value depends on X, we can integrate out over the density of X:

Mu(t) = C

∫

X

et tr(AXBX′)− 1
2 tr(AXBX′)dX

= C

∫

X

e− 1
2 (1−2t)(tr(AXBX′))dX for 1 − 2t > 0 (i)

where

C = |A| q
2 |B|p

2

(2π)
pq
2

.

The integral in (i) is convergent only when 1−2t > 0. Then distributing
√

(1 − 2t) to each
element in X and X′, and denoting the new matrix by Xt , we have Xt = √

(1 − 2t)X ⇒
dXt = (

√
(1 − 2t))pqdX = (1 − 2t)

pq
2 dX. Integral over Xt , together with C, yields 1 and

hence
Mu(t) = (1 − 2t)−

pq
2 , provided 1 − 2t > 0. (4.3.6)
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The corresponding density is a real chi-square having pq degrees of freedom or a real
gamma density with parameters α = pq

2 and β = 2. Thus, the resulting density, denoted
by fu1(u1), is given by

fu1(u1) = [2pq
2 Γ (pq/2)]−1u

pq
2 −1

1 e− u1
2 , 0 ≤ u1 < ∞, p, q = 1, 2, . . . , (4.3.7)

and fu1(u1) = 0 elsewhere.

4.3a.1. Distribution of the exponent, complex case

In the complex case, letting ũ = tr(A
1
2 X̃BX̃∗A 1

2 ), we note that ũ = ũ∗ and ũ is a
scalar, so that ũ is real. Hence, the mgf of ũ, with real parameter t , is given by

Mũ(t) = E[et tr(A
1
2 X̃BX̃∗A

1
2 )] = C1

∫

X̃

e−(1−t)tr(A
1
2 X̃BX̃∗A

1
2 )dX̃, 1 − t > 0, with

C1 = |det(A)|q |det(B)|p
πp q

.

On making the transformation Ỹ = A
1
2 X̃B

1
2 , we have

Mũ(t) = 1

πp q

∫

Ỹ

e−(1−t)tr(Ỹ Ỹ ∗)dỸ .

However,

tr(Ỹ Ỹ ∗) =
p∑

r=1

q∑

s=1

|ỹrs |2 =
p∑

r=1

q∑

s=1

(y2
rs1 + y2

rs2)

where ỹrs = yrs1 + iyrs2, i = √
(−1), yrs1, yrs2 being real. Hence

1

π

∫ ∞

−∞

∫ ∞

−∞
e−(1−t)(y2

rs1+y2
rs2)dyrs1 ∧ dyrs2 = 1

1 − t
, 1 − t > 0.

Therefore,
Mũ(t) = (1 − t)−p q, 1 − t > 0, (4.3a.7)

and ũ = v has a real gamma density with parameters α = p q, β = 1, or a chi-square
density in the complex domain with p q degrees of freedom, that is,

fv(v) = 1

Γ (p q)
vp q−1e−v, 0 ≤ v < ∞, (4.3a.8)

and fv(v) = 0 elsewhere.
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4.3.2. Linear functions in the real case

Let the p × q real matrix X = (xij ) of the real scalar random variables xij ’s have the
density in (4.2.2), namely

fp,q(X) = |A| q
2 |B|p

2

(2π)
pq
2

e− 1
2 tr(A(X−M)B(X−M)′) (4.3.8)

for A > O, B > O, where M is a p × q location parameter matrix. Let L1 be a p × 1
vector of constants. Consider the linear function Z1 = L′

1X where Z1 is 1 × q. Let T be a
1 × q parameter vector. Then the mgf of the 1 × q vector Z1 is

MZ1(T ) = E[e(T Z′
1)] = E[e(T X′L1)] = E[etr(T X′L1)]

= E[etr((L1T )X′)]. (i)

This can be evaluated by replacing T by L1T in (4.3.4). Then

MZ1(T ) = etr((L1T )M ′)+ 1
2 tr(A−1L1T B−1(L1T )′)

= etr(T M ′L1)+ 1
2 tr[(L′

1A
−1L1)T B−1T ′]. (ii)

Since L′
1A

−1L1 is a scalar,

(L′
1A

−1L1)T B−1T ′ = T (L′
1A

−1L1)B
−1T ′.

On comparing the resulting expression with the mgf of a q-variate real normal distribution,
we observe that Z1 is a q-variate real Gaussian vector with mean value vector L′

1M and
covariance matrix [L′

1A
−1L1]B−1. Hence the following result:

Theorem 4.3.1. Let the real p × q matrix X have the density specified in (4.3.8) and L1

be a p × 1 constant vector. Let Z1 be the linear function of X, Z1 = L′
1X. Then Z1, which

is 1 × q, has the mgf given in (ii) and thereby Z1 has a q-variate real Gaussian density
with the mean value vector L′

1M and covariance matrix [L′
1A

−1L1]B−1.

Theorem 4.3.2. Let L2 be a q × 1 constant vector. Consider the linear function Z2 =
XL2 where the p × q real matrix X has the density specified in (4.3.8). Then Z2, which is
p × 1, is a p-variate real Gaussian vector with mean value vector ML2 and covariance
matrix [L′

2B
−1L2]A−1.

The proof of Theorem 4.3.2 is parallel to the derivation of that of Theorem 4.3.1.
Theorems 4.3.1 and 4.3.2 establish that when the p × q matrix X has a p × q-variate real
Gaussian density with parameters M, A > O, B > O, then all linear functions of the
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form L′
1X where L1 is p × 1 are q-variate real Gaussian and all linear functions of the

type XL2 where L2 is q × 1 are p-variate real Gaussian, the parameters in these Gaussian
densities being given in Theorems 4.3.1 and 4.3.2.

By retracing the steps, we can obtain characterizations of the density of the p × q real
matrix X through linear transformations. Consider all possible p × 1 constant vectors L1

or, equivalently, let L1 be arbitrary. Let T be a 1 × q parameter vector. Then the p × q

matrix L1T , denoted by T(1), contains pq free parameters. In this case the mgf in (ii) can
be written as

M(T(1)) = etr(T(1)M
′)+ 1

2 tr(A−1T(1)B
−1T ′

(1)
)
, (iii)

which has the same structure of the mgf of a p × q real matrix-variate Gaussian density
as given in (4.3.8), whose the mean value matrix is M and parameter matrices are A > O

and B > O. Hence, the following result can be obtained:

Theorem 4.3.3. Let L1 be a constant p × 1 vector, X be a p × q matrix whose elements
are real scalar variables and A > O be p ×p and B > O be q × q constant real positive
definite matrices. If for an arbitrary vector L1, L′

1X is a q-variate real Gaussian vector
as specified in Theorem 4.3.1, then X has a p × q real matrix-variate Gaussian density as
given in (4.3.8).

As well, a result parallel to this one follows from Theorem 4.3.2:

Theorem 4.3.4. Let L2 be a q × 1 constant vector, X be a p × q matrix whose elements
are real scalar variables and A > O be p ×p and B > O be q × q constant real positive
definite matrices. If for an arbitrary constant vector L2, XL2 is a p-variate real Gaus-
sian vector as specified in Theorem 4.3.2, then X is p × q real matrix-variate Gaussian
distributed as in (4.3.8).

Example 4.3.2. Consider a 2 × 2 matrix-variate real Gaussian density with the parame-
ters

A =
[

2 1
1 1

]

, B =
[

2 1
1 2

]

, M =
[

1 −1
0 1

]

= E[X], X =
[
x11 x12

x21 x22

]

.

Letting U1 = L′
1X, U2 = XL2, U3 = L′

1XL2, evaluate the densities of U1, U2, U3

by applying Theorems 4.3.1 and 4.3.2 where L′
1 = [1, 1], L′

2 = [1, −1]; as well, obtain
those densities without resorting to these theorems.

Solution 4.3.2. Let us first compute the following quantities:

A−1, B−1, L′
1A

−1L1, L′
2B

−1L2, L′
1M, ML2, L′

1ML2.
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They are

A−1 =
[

1 −1
−1 2

]

, B−1 = 1

3

[
2 −1

−1 2

]

,

L′
1M = [1, 1]

[
1 −1
0 1

]

= [1, 0], ML2 =
[

2
−1

]

,

L′
1A

−1L1 = [1, 1]
[

1 −1
−1 2

] [
1
1

]

= 1, L′
2B

−1L2 = 1

3
[1, −1]

[
2 −1

−1 2

] [
1

−1

]

= 2,

L′
1ML2 = [1, 0]

[
2

−1

]

= 2.

Let U1 = L′
1X, U2 = XL2, U3 = L′

1XL2. Then by making use of Theorems 4.3.1
and 4.3.2 and then, results from Chap. 2 on q-variate real Gaussian vectors, we have the
following:

U1 ∼ N2((1, 0), (1)B−1), U2 ∼ N2(ML2, 2A−1), U3 ∼ N1(1, (1)(2)) = N1(1, 2).

Let us evaluate the densities without resorting to these theorems. Note that U1 = [x11 +
x21, x12 + x22]. Then U1 has a bivariate real distribution. Let us compute the mgf of U1.
Letting t1 and t2 be real parameters, the mgf of U1 is

MU1(t1, t2) = E[et1(x11+x21)+t2(x12+x22)] = E[et1x11+t1x21+t2x12+t2x22],

which is available from the mgf of X by letting t11 = t1, t21 = t1, t12 = t2, t22 = t2.
Thus,

A−1T =
[

1 −1
−1 2

] [
t1 t2
t1 t2

]

=
[

0 0
t1 t2

]

B−1T ′ = 1

3

[
2 −1

−1 2

] [
t1 t1
t2 t2

]

= 1

3

[
2t1 − t2 2t1 − t2

−t1 + 2t2 −t1 + 2t2

]

,

so that

1

2
tr(A−1T B−1T ′) = 1

2

{1

3
[2t2

1 + 2t2
2 − 2t1t2]

}
= 1

2
[t1, t2]B−1

[
t1
t2

]

. (i)

Since

U2 = XL2 =
[
x11 − x12

x21 − x22

]

,
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we let t11 = t1, t12 = −t1, t21 = t2, t22 = −t2. With these substitutions, we have the
following:

A−1T =
[

2 −1
−1 2

] [
t1 −t1
t2 −t2

]

=
[

t1 − t2 −t1 + t2
−t1 + 2t2 t1 − 2t2

]

B−1T ′ = 1

3

[
2 −1

−1 2

] [
t1 t2

−t1 −t2

]

=
[

t1 t2
−t1 −t2

]

.

Hence,

tr(A−1T B−1T ′) = t1(t1 − t2) − t1(−t1 + t2) + t2(−t1 + 2t2) − t2(t1 − 2t2)

= 2[t1, t2]
[

1 −1
−1 2

] [
t1
t2

]

.

Therefore, U2 is a 2-variate real Gaussian with covariance matrix 2A−1 and mean value

vector

[
2

−1

]

. That is, U2 ∼ N2(ML2, 2A−1). For determining the distribution of U3,

observe that L′
1XL2 = L′

1U2. Then, L′
1U2 is univariate real Gaussian with mean value

E[L′
1U2] = L′

1ML2 = [1, 1]
[

2
−1

]

= 1 and variance L′
1Cov(U2)L1 = L′

12A−1L1 = 2.

That is, U3 = u3 ∼ N1(1, 2). This completes the solution.

The results stated in Theorems 4.3.1 and 4.3.2 are now generalized by taking sets of
linear functions of X:

Theorem 4.3.5. Let C′ be a r × p, r ≤ p, real constant matrix of full rank r and G

be a q × s matrix, s ≤ q, of rank s. Let Z = C ′X and W = XG where X has the
density specified in (4.3.8). Then, Z has a r × q real matrix-variate Gaussian density
with M replaced by C′M and A−1 replaced by C′A−1C, B−1 remaining unchanged, and
W = XG has a p × s real matrix-variate Gaussian distribution with B−1 replaced by
G′B−1G and M replaced by MG, A−1 remaining unchanged.

Example 4.3.3. Let the 2 × 2 real X = (xij ) have a real matrix-variate Gaussian dis-
tribution with the parameters M, A and B. Consider the set of linear functions U = C ′X
where

M =
[

2 −1
1 1

]

, A =
[

2 −1
−1 1

]

, B =
[

2 1
1 3

]

, C′ =
[√

2 − 1√
2

0 1√
2

]

.

Show that the rows of U are independently distributed real q-variate Gaussian vectors with
common covariance matrix B−1 and the rows of M as the mean value vectors.
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Solution 4.3.3. Let us compute A−1 and C′A−1C:

A−1 =
[

1 1
1 2

]

C′A−1C =
[√

2 − 1√
2

0 1√
2

][
1 1
1 2

][ √
2 0

− 1√
2

1√
2

]

=
[

1 0
0 1

]

= I2.

In the mgf of U = C′X, A−1 is replaced by C′A−1C = I2 and B−1 remains the
same. Then, the exponent in the mgf of U , excluding tr(T M ′) is 1

2 tr(T B−1T ′) =
1
2

∑p

j=1 TjB
−1T ′

j where Tj is the j -th row of T . Hence the p rows of U are indepen-

dently distributed q-variate real Gaussian with the common covariance matrix B−1. This
completes the computations.

The previous example entails a general result that now is stated as a corollary.

Corollary 4.3.1. Let X be a p×q-variate real Gaussian matrix with the usual parameters
M, A and B, whose density is as given in (4.3.8). Consider the set of linear functions
U = C′X where C is a p × p constant matrix of full rank p and C is such that A = CC ′.
Then C′A−1C = C′(CC′)−1C = C′(C′)−1C−1C = Ip. Consequently, the rows of U ,
denoted by U1, . . . , Up, are independently distributed as real q-variate Gaussian vectors
having the common covariance matrix B−1.

It is easy to construct such a C. Since A = (aij ) is real positive definite, set it as
A = CC′ where C is a lower triangular matrix with positive diagonal elements. The first
row, first column element in C = (cij ) is c11 = +√

a11. Note that since A > O, all the
diagonal elements are real positive. The first column of C is readily available from the first
column of A and c11. Now, given a22 and the first column in C, c22 can be determined, and
so on.

Theorem 4.3.6. Let C, G and X be as defined in Theorem 4.3.5. Consider the r × s

real matrix Z = C′XG. Then, when X has the distribution specified in (4.3.8), Z has an
r × s real matrix-variate Gaussian density with M replaced by C ′MG, A−1 replaced by
C′A−1C and B−1 replaced by G′B−1G.

Example 4.3.4. Let the 2 × 2 matrix X = (xij ) have a real matrix-variate Gaussian
density with the parameters M, A and B, and consider the set of linear functions Z =
C′XG where C′ is a p × p constant matrix of rank p and G is a q × q constant matrix of
rank q, where
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M =
[

2 −1
1 5

]

, A =
[

2 −1
−1 1

]

, B =
[

2 1
1 3

]

,

C′ =
[√

2 − 1√
2

0 1√
2

]

, G =
[√

2 0
1√
2

√
5
2

]

.

Show that all the elements zij ’s in Z = (zij ) are mutually independently distributed real
scalar standard Gaussian random variables when M = O.

Solution 4.3.4. We have already shown in Example 4.3.3 that C′A−1C = I . Let us
verify that GG′ = B and compute G′B−1G:

GG′ =
[√

2 0
1√
2

√
5
2

]⎡

⎣

√
2 1√

2

0
√

5
2

⎤

⎦ =
[

2 1
1 3

]

= B;

B−1 = 1

5

[
3 −1

−1 2

]

,

G′B−1G = 1

5

⎡

⎣

√
2 1√

2

0
√

5
2

⎤

⎦
[

3 −1
−1 2

]

G = 1

5

⎡

⎣
3
√

2 − 1√
2

0

−
√

5
2 2

√
5
2

⎤

⎦G

= 1

5

⎡

⎣
3
√

2 − 1√
2

0

−
√

5
2 2

√
5
2

⎤

⎦

[√
2 0

1√
2

√
5
2

]

= 1

5

[
5 0
0 5

]

= I2.

Thus, A−1 is replaced by C′A−1C = I2 and B−1 is replaced by G′B−1G = I2 in the mgf
of Z, so that the exponent in the mgf, excluding tr(T M ′), is 1

2 tr(T T ′). It follows that all
the elements in Z = C′XG are mutually independently distributed real scalar standard
normal variables. This completes the computations.

The previous example also suggests the following results which are stated as corollar-
ies:

Corollary 4.3.2. Let the p × q real matrix X = (xij ) have a real matrix-variate Gaus-
sian density with parameters M, A and B, as given in (4.3.8). Consider the set of lin-
ear functions Y = XG where G is a q × q constant matrix of full rank q, and let
B = GG′. Then, the columns of Y , denoted by Y(1), . . . , Y(q), are independently dis-
tributed p-variate real Gaussian vectors with common covariance matrix A−1 and mean
value (MG)(j), j = 1, . . . , q, where (MG)(j) is the j -th column of MG.
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Corollary 4.3.3. Let Z = C′XG where C is a p × p constant matrix of rank p, G is a
q × q constant matrix of rank q and X is a real p × q Gaussian matrix whose parameters
are M = O, A and B, the constant matrices C and G being such that A = CC ′ and
B = GG′. Then, all the elements zij in Z = (zij ) are mutually independently distributed
real scalar standard Gaussian random variables.

4.3a.2. Linear functions in the complex case

We can similarly obtain results parallel to Theorems 4.3.1–4.3.6 in the complex case.
Let X̃ be p × q matrix in the complex domain, whose elements are scalar complex vari-
ables. Assume that X̃ has a complex p × q matrix-variate density as specified in (4.2a.9)
whose associated moment generating function is as given in (4.3a.3). Let C̃1 be a p × 1
constant vector, C̃2 be a q × 1 constant vector, C̃ be a r × p, r ≤ p, constant matrix of
rank r and G̃ be a q × s, s ≤ q, a constant matrix of rank s. Then, we have the following
results:

Theorem 4.3a.1. Let C̃1 be a p × 1 constant vector as defined above and let the p × q

matrix X̃ have the density given in (4.2a.9) whose associated mgf is as specified in (4.3a.3).
Let Ũ be the linear function of X̃, Ũ = C̃∗

1 X̃. Then Ũ has a q-variate complex Gaussian
density with the mean value vector C̃∗

1M̃ and covariance matrix [C̃∗
1A−1C̃1]B−1.

Theorem 4.3a.2. Let C̃2 be a q × 1 constant vector. Consider the linear function Ỹ =
X̃C̃2 where the p × q complex matrix X̃ has the density (4.2a.9). Then Ỹ is a p-variate
complex Gaussian random vector with the mean value vector M̃C̃2 and the covariance
matrix [C̃∗

2B−1C̃2]A−1.

Note 4.3a.1. Consider the mgf’s of Ũ and Ỹ in Theorems 4.3a.1 and 4.3a.2, namely
MŨ(T̃ ) = E[e�(T̃ Ũ∗)] and MỸ (T̃ ) = E[e�(Ỹ ∗T̃ )] with the conjugate transpose of the
variable part in the linear form in the exponent; then T̃ in MŨ(T̃ ) has to be 1 × q and
T̃ in MỸ (T̃ ) has to be p × 1. Thus, the exponent in Theorem 4.3a.1 will be of the
form [C̃∗

1A−1C̃1]T̃ B−1T̃ ∗ whereas the corresponding exponent in Theorem 4.3a.2 will
be [C̃∗

2B−1C̃2]T̃ ∗A−1T̃ . Note that in one case, we have T̃ B−1T̃ ∗ and in the other case, T̃

and T̃ ∗ are interchanged as are A and B. This has to be kept in mind when applying these
theorems.

Example 4.3a.2. Consider a 2 × 2 matrix X̃ having a complex 2 × 2 matrix-variate
Gaussian density with the parameters M = O, A and B, as well as the 2 × 1 vectors L1

and L2 and the linear functions L∗
1X̃ and X̃L2 where
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A =
[

2 −i

i 1

]

, B =
[

1 i

−i 2

]

, L1 =
[−2i

3i

]

, L2 =
[ −i

−2i

]

and X̃ =
[

x̃11 x̃12

x̃21 x̃22

]

.

Evaluate the densities of Ũ = L∗
1X̃ and Ỹ = X̃L2 by applying Theorems 4.3a.1 and 4.3a.2,

as well as independently.

Solution 4.3a.2. First, we compute the following quantities:

A−1 =
[

1 i

−i 2

]

, B−1 =
[

2 −i

i 1

]

,

L∗
1 = [2i, −3i], L∗

2 = [i, 2i],
so that

L∗
1A

−1L1 = [2i, −3i]
[

1 i

−i 2

] [−2i

3i

]

= 22

L∗
2B

−1L2 = [i, 2i]
[

2 −i

i 1

] [ −i

−2i

]

= 6.

Then, as per Theorems 4.3a.1 and 4.3a.2, Ũ is a q-variate complex Gaussian vector whose
covariance matrix is 22 B−1 and Ỹ is a p-variate complex Gaussian vector whose co-
variance matrix is 6 A−1, that is, Ũ ∼ Ñ2(O, 22 B−1), Ỹ ∼ Ñ2(O, 6 A−1). Now, let us
determine the densities of Ũ and Ỹ without resorting to these theorems. Consider the mgf
of Ũ by taking the parameter vector T̃ as T̃ = [t̃1, t̃2]. Note that

T̃ Ũ∗ = t1(−2ix̃∗
11 + 3ix̃∗

21) + t2(−2ix̃∗
12 + 3ix̃∗

22). (i)

Then, in comparison with the corresponding part in the mgf of X̃ whose associated general
parameter matrix is T̃ = (t̃ij ), we have

t̃11 = −2it̃1, t̃12 = −2it̃2, t̃21 = 3it̃1, t̃22 = 3it̃2. (ii)

We now substitute the values of (ii) in the general mgf of X̃ to obtain the mgf of Ũ . Thus,

A−1T̃ =
[

1 i

−i 2

] [−2it̃1 −2it̃2
3it̃1 3it̃2

]

=
[
(−3 − 2i)t̃1 (−3 − 2i)t̃2
(−2 + 6i)t̃1 (−2 + 6i)t̃2

]

B−1T̃ ∗ =
[

2 −i

i 1

] [
2it̃∗1 −3it̃∗1
2it̃∗2 −3it̃∗2

]

=
[

4it̃∗1 + 2t̃∗2 −6it̃∗1 − 3t̃∗2−2t̃∗1 + 2it̃∗2 3t̃∗1 − 3it̃∗2

]

.



248 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Here an asterisk only denotes the conjugate as the quantities are scalar.

tr[A−1T̃ B−1T̃ ∗] = [−3 − 2i]t̃1[4it̃∗1 + 2t̃∗2 ] + [(−3 − 2i)t̃2[−2t̃∗1 + 2it̃∗2 ]
+ [(−2 + 6i)t̃1][(−6it̃∗1 − 3t̃∗2 ] + [(−2 + 6i)t̃2[3t̃∗1 − 3it̃∗2 ]

= 22 [2t̃1 t̃
∗
1 − it̃1 t̃

∗
2 + it̃2t̃

∗
1 + t̃2 t̃

∗
2 ]

= 22 [t̃1, t̃2]
[

2 −i

i 1

] [
t̃∗1
t̃∗2

]

= 22 T̃ B−1T̃ ∗, T̃ = [t̃1, t̃2].

This shows that Ũ ∼ Ñ2(O, 22B−1). Now, consider

Ỹ = X̃L2 =
[
x̃11 x̃12

x̃21 x̃22

] [ −i

−2i

]

=
[−ix̃11 − 2ix̃12

−ix̃21 − 2ix̃22

]

.

Then, on comparing the mgf of Ỹ with that of X̃ whose general parameter matrix is T̃ =
(t̃ij ), we have

t̃11 = it̃1, t̃12 = 2it̃1, t̃21 = it̃2, t̃22 = 2it̃2.

On substituting these values in the mgf of X̃, we have

A−1T̃ =
[

1 i

−i 2

] [
it̃1 2it̃1
it̃2 2it̃2

]

=
[

it̃1 − t̃2 2it̃1 − 2t̃2
t̃1 + 2it̃2 2t̃1 + 4it̃2

]

B−1T̃ ∗ =
[

2 −i

i 1

] [ −it̃∗1 −it̃∗2−2it̃∗1 −2it̃∗2

]

=
[
(−2 − 2i)t̃∗1 (−2 − 2i)t̃∗2
(1 − 2i)t̃∗1 (1 − 2i)t̃∗2

]

,

so that

tr[A−1T̃ B−1T̃ ∗] = [(t̃1 − t̃2)][(−2 − 2i)t̃∗1 ] + [2it̃1 − 2t̃2][(1 − 2i)t̃∗1 ]
+ [t̃1 + 2it̃2][(−2 − 2i)t̃∗2 ] + [2t̃1 + 4it̃2][(1 − 2i)t̃∗2 ]

= 6 [t̃1 t̃∗1 − it̃1 t̃
∗
2 + it̃2t̃

∗
1 + 2t̃2 t̃

∗
2 ]

= 6 [t̃∗1 , t̃∗2 ]
[

1 i

−i 2

] [
t̃1
t̃2

]

= 6 T̃ ∗A−1T̃ ;

refer to Note 4.3a.1 regarding the representation of the quadratic forms in the two cases
above. This shows that Ỹ ∼ Ñ2(O, 6A−1). This completes the computations.

Theorem 4.3a.3. Let C̃1 be a constant p×1 vector, X̃ be a p×q matrix whose elements
are complex scalar variables and let A = A∗ > O be p × p and B = B∗ > O be q × q

constant Hermitian positive definite matrices, where an asterisk denotes the conjugate
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transpose. If, for an arbitrary p × 1 constant vector C̃1, C̃∗
1 X̃ is a q-variate complex

Gaussian vector as specified in Theorem 4.3a.1, then X̃ has the p × q complex matrix-
variate Gaussian density given in (4.2a.9).

As well, a result parallel to this one follows from Theorem 4.3a.2:

Theorem 4.3a.4. Let C̃2 be a q ×1 constant vector, X̃ be a p×q matrix whose elements
are complex scalar variables and let A > O be p × p and B > O be q × q Hermitian
positive definite constant matrices. If, for an arbitrary constant vector C̃2, X̃C̃2 is a p-
variate complex Gaussian vector as specified in Theorem 4.3a.2, then X̃ is p × q complex
matrix-variate Gaussian matrix which is distributed as in (4.2a.9).

Theorem 4.3a.5. Let C̃∗ be a r × p, r ≤ p, complex constant matrix of full rank r and
G̃ be a q × s, s ≤ q, constant complex matrix of full rank s. Let Ũ = C̃∗X̃ and W̃ = X̃G̃

where X̃ has the density given in (4.2a.9). Then, Ũ has a r × q complex matrix-variate
density with M̃ replaced by C̃∗M̃ ,A−1 replaced by C̃∗A−1C̃ andB−1 remaining the same,
and W̃ has a p × s complex matrix-variate distribution with B−1 replaced by G̃∗B−1G̃,
M̃ replaced by M̃G̃ and A−1 remaining the same.

Theorem 4.3a.6. Let C̃∗, G̃ and X̃ be as defined in Theorem 4.3a.5. Consider the r × s

complex matrix Z̃ = C̃∗X̃G̃. Then when X̃ has the distribution specified by (4.2a.9), Z̃

has an r × s complex matrix-variate density with M̃ replaced by C̃∗M̃G̃, A−1 replaced by
C̃∗A−1C̃ and B−1 replaced by G̃∗B−1G̃.

Example 4.3a.3. Consider a 2 × 3 matrix X̃ having a complex matrix-variate Gaussian
distribution with the parameter matrices M̃ = O, A and B where

A =
[

2 i

−i 1

]

, B =
⎡

⎣
3 i 0

−i 1 i

0 −i 2

⎤

⎦ , X̃ =
[
x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

]

.

Consider the linear forms

C∗X̃ =
[
ix̃11 − ix̃21 ix̃12 − ix̃22 ix̃13 − ix̃23

x̃11 + 2x̃21 x̃12 + 2x̃22 x̃13 + 2x̃23

]

X̃G =
[
x̃11 + ix̃12 + 2x̃13 x̃12 ix̃11 − ix̃12 + ix̃13

x̃21 + ix̃22 + 2x̃23 x̃22 ix̃21 − ix̃22 + ix̃23

]

.
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(1): Compute the distribution of Z̃ = C∗X̃G; (2): Compute the distribution of Z̃ = C∗X̃G

if A remains the same and G is equal to

⎡

⎢
⎢
⎣

√
3 0 0

− i√
3

√
2
3 0

0 −i

√
3
2

1√
2

⎤

⎥
⎥
⎦ ,

and study the properties of this distribution.

Solution 4.3a.3. Note that A = A∗ and B = B∗ and hence both A and B are Hermitian.
Moreover, |A| = 1 and |B| = 1 and since all the leading minors of A and B are positive,
A and B are both Hermitian positive definite. Then, the inverses of A and B in terms of
the cofactors of their elements are

A−1 =
[

1 −i

i 2

]

, [Cof(B)]′ =
⎡

⎣
1 −2i −1

2i 6 −3i

−1 3i 2

⎤

⎦ = B−1.

The linear forms provided above in connection with part (1) of this exercise can be respec-
tively expressed in terms of the following matrices:

C∗ =
[
i −i

1 2

]

, G =
⎡

⎣
1 0 i

i 1 −i

2 0 i

⎤

⎦ .

Let us now compute C∗A−1C and G∗B−1G:

C∗A−1C =
[
i −i

1 2

] [
1 −i

i 2

] [−i 1
i 2

]

= 3

[
1 1 − i

1 + i 3

]

G∗B−1G =
⎡

⎣
1 −i 2
0 1 0

−i i −i

⎤

⎦

⎡

⎣
1 −2i −1

2i 6 −3i

−1 3i 2

⎤

⎦

⎡

⎣
1 0 i

i 1 −i

2 0 i

⎤

⎦

=
⎡

⎣
3 −2i −2 + i

2i 6 1 − 6i

−2 − i 1 + 6i 7

⎤

⎦ .

Then in (1), C∗X̃G is a 2 × 3 complex matrix-variate Gaussian with A−1 replaced by
C∗A−1C and B−1 replaced by G∗B−1G where C∗A−1C and G∗B−1G are given above.
For answering (2), let us evaluate G∗B−1G:
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G∗B−1G =

⎡

⎢
⎢
⎣

√
3 i√

3
0

0
√

2
3 i

√
3
2

0 0 1√
2

⎤

⎥
⎥
⎦

⎡

⎣
1 −2i −1

2i 6 −3i

−1 3i 2

⎤

⎦

⎡

⎢
⎢
⎣

√
3 0 0

− i√
3

√
2
3 0

0 −i

√
3
2

1√
2

⎤

⎥
⎥
⎦

=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ = I3.

Observe that this q × q matrix G which is such that GG∗ = B, is nonsingular; thus,
G∗B−1G = G∗(GG∗)−1G = G∗(G∗)−1G−1G = I . Letting Ỹ = X̃G, X̃ = ỸG−1, and
the exponent in the density of X̃ becomes

tr(A−1X̃BX̃∗) = tr(A−1ỸG−1B(G∗)−1Ỹ ∗) = tr(Y ∗AỸ ) =
p∑

j=1

Ỹ ∗
(j)AỸ(j)

where the Ỹ(j)’s are the columns of Ỹ , which are independently distributed complex p-
variate Gaussian vectors with common covariance matrix A−1. This completes the com-
putations.

The conclusions obtained in the solution to Example 4.3a.1 suggest the corollaries that
follow.

Corollary 4.3a.1. Let the p × q matrix X̃ have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transfor-
mation Ũ = C∗X̃ where C is a p × p nonsingular matrix such that CC∗ = A so that
C∗A−1C = I . Then the rows of Ũ , namely Ũ1, . . . , Ũp, are mutually independently dis-
tributed q-variate complex Gaussian vectors with common covariance matrix B−1.

Corollary 4.3a.2. Let the p × q matrix X̃ have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transformation
Ỹ = X̃GwhereG is a q×q nonsingular matrix such thatGG∗ = B so thatG∗B−1G = I .
Then the columns of Ỹ , namely Ỹ(1), . . . , Ỹ(q), are independently distributed p-variate
complex Gaussian vectors with common covariance matrix A−1.

Corollary 4.3a.3. Let the p × q matrix X̃ have a matrix-variate complex Gaussian dis-
tribution with the parameters M = O, A > O and B > O. Consider the transformation
Z̃ = C∗X̃G where C is a p × p nonsingular matrix such that CC∗ = A and G is a
q × q nonsingular matrix such that GG∗ = B. Then, the elements z̃ij ’s of Z̃ = (z̃ij ) are
mutually independently distributed complex standard Gaussian variables.
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4.3.3. Partitioning of the parameter matrix

Suppose that in the p × q real matrix-variate case, we partition T as

[
T1

T2

]

where T1 is

p1 × q and T2 is p2 × q, so that p1 + p2 = p. Let T2 = O (a null matrix). Then,

T B−1T ′ =
(

T1

O

)

B−1 (T ′
1 O

) =
[
T1B

−1T ′
1 O1

O2 O3

]

where T1B
−1T ′

1 is a p1 × p1 matrix, O1 is a p1 × p2 null matrix, O2 is a p2 × p1 null
matrix and O3 is a p2 × p2 null matrix. Let us similarly partition A−1 into sub-matrices:

A−1 =
[
A11 A12

A21 A22

]

,

where A11 is p1 × p1 and A22 is p2 × p2. Then,

tr(A−1T B−1T ′) = tr

[
A11T1B

−1T ′
1 O

O O

]

= tr(A11T1B
−1T ′

1).

If A is partitioned as

A =
[
A11 A12

A21 A22

]

,

where A11 is p1 × p1 and A22 is p2 × p2, then, as established in Sect. 1.3, we have

A11 = (A11 − A12A
−1
22 A21)

−1.

Therefore, under this special case of T , the mgf is given by

E[etr(T1X1)] = e
1
2 tr((A11−A12A

−1
22 A21)

−1T1B
−1T ′

1), (4.3.9)

which is also the mgf of the p1 × q sub-matrix of X. Note that the mgf’s in (4.3.9)
and (4.3.1) share an identical structure. Hence, due to the uniqueness of the mgf, X1 has a
real p1 × q matrix-variate Gaussian density wherein the parameter B remains unchanged
and A is replaced by A11 − A12A

−1
22 A21, the Aij ’s denoting the sub-matrices of A as de-

scribed earlier.
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4.3.4. Distributions of quadratic and bilinear forms

Consider the real p × q Gaussian matrix U defined in (4.2.17) whose mean value
matrix is E[X] = M = O and let U = XB

1
2 . Then,

U ′AU =

⎡

⎢
⎢
⎢
⎣

U ′
1AU1 U ′

1AU2 . . . U ′
1AUq

U ′
2AU1 U ′

2AU2 . . . U ′
2AUq

...
...

. . .
...

U ′
qAU1 U ′

qAU2 . . . U ′
qAUq

⎤

⎥
⎥
⎥
⎦

(4.3.10)

where the p×1 column vectors of U , namely, U1, . . . , Uq , are independently distributed as
Np(O, A−1) vectors, that is, the Uj ’s are independently distributed real p-variate Gaussian
(normal) vectors whose covariance matrix is A−1 = E[UU ′], with density

fUj
(Uj ) = |A| 1

2

(2π)
p
2

e− 1
2 (U ′

jAUj ), A > O. (4.3.11)

What is then the distribution of U ′
jAUj for any particular j and what are the distributions

of U ′
iAUj , i 
= j = 1, . . . , q? Let zj = U ′

jAUj and zij = U ′
iAUj , i 
= j . Letting t be a

scalar parameter, consider the mgf of zj :

Mzj
(t) = E[etzj ] =

∫

Uj

etU ′
jAUj fUj

(Uj )dUj

= |A| 1
2

(2π)
p
2

∫

Uj

e− 1
2 (1−2t)U ′

jAUj dUj

= (1 − 2t)−
p
2 for 1 − 2t > 0,

which is the mgf of a real gamma random variable with parameters α = p
2 , β = 2 or a

real chi-square random variable with p degrees of freedom for p = 1, 2, . . . . That is,

U ′
jAUj ∼ χ2

p (a real chi-square random variable having p degrees of freedom).

(4.3.12)
In the complex case, observe that Ũ∗

j AŨj is real when A = A∗ > O and hence, the pa-

rameter in the mgf is real. On making the transformation A
1
2 Ũj = Ṽj , |det(A)| is canceled.

Then, the exponent can be expressed in terms of

−(1 − t)Ỹ ∗Ỹ = −(1 − t)

p∑

j=1

|ỹj |2 = −(1 − t)

p∑

j=1

(y2
j1 + y2

j2),
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where ỹj = yj1 + iyj2, i = √
(−1). The integral gives (1 − t)−p for 1 − t > 0. Hence,

Ṽj = Ũ∗
j AŨj has a real gamma distribution with the parameters α = p, β = 1, that is, a

chi-square distribution with p degrees of freedom in the complex domain. Thus, 2Ṽj is a
real chi-square random variable with 2p degrees of freedom, that is,

2Ṽj = 2 Ũ∗
j AŨj ∼ χ2

2p. (4.3a.9)

What is then the distribution of U ′
iAUj , i 
= j? Let us evaluate the mgf of U ′

iAUj = zij .
As zij is a function of Ui and Uj , we can integrate out over the joint density of Ui and Uj

where Ui and Uj are independently distributed p-variate real Gaussian random variables:

Mzij
(t) = E[etzij ] =

∫

Ui

∫

Uj

et U ′
iAUj fUi

(Ui)fUj
(Uj )dUi ∧ dUj

= |A|
(2π)p

∫ ∫

et U ′
iAUj− 1

2 U ′
jAUj− 1

2 U ′
iAUi dUi ∧ dUj .

Let us first integrate out Uj . The relevant terms in the exponent are

−1

2
(U ′

jA Uj) + 1

2
(2t)(U ′

iA Uj) = −1

2
(Uj − C)′A (Uj − C) + 1

2
t2U ′

iA Ui, C = t Ui.

But the integral over Uj which is the integral over Uj − C will result in the following
representation:

Mzij
(t) = |A| 1

2

(2π)
p
2

∫

Ui

e
t2
2 U ′

iAUi− 1
2 U ′

iAUi dUi

= (1 − t2)−
p
2 for 1 − t2 > 0. (4.3.13)

What is the density corresponding to the mgf (1 − t2)−
p
2 ? This is the mgf of a real scalar

random variable u of the form u = x − y where x and y are independently distributed
real scalar chi-square random variables. For p = 2, x and y will be exponential variables
so that u will have a double exponential distribution or a real Laplace distribution. In the
general case, the density of u can also be worked out when x and y are independently
distributed real gamma random variables with different parameters whereas chi-squares
with equal degrees of freedom constitutes a special case. For the exact distribution of
covariance structures such as the zij ’s, see Mathai and Sebastian (2022).
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Exercises 4.3

4.3.1. In the moment generating function (mgf) (4.3.3), partition the p × q parameter
matrix T into column sub-matrices such that T = (T1, T2) where T1 is p × q1 and T2 is
p × q2 with q1 + q2 = q. Take T2 = O (the null matrix). Simplify and show that if X is
similarly partitioned as X = (Y1, Y2), then Y1 has a real p × q1 matrix-variate Gaussian
density. As well, show that Y2 has a real p × q2 matrix-variate Gaussian density.

4.3.2. Referring to Exercises 4.3.1, write down the densities of Y1 and Y2.

4.3.3. If T is the parameter matrix in (4.3.3), then what type of partitioning of T is re-
quired so that the densities of (1): the first row of X, (2): the first column of X can be
determined, and write down these densities explicitly.

4.3.4. Repeat Exercises 4.3.1–4.3.3 by taking the mgf in (4.3a.3) for the corresponding
complex case.

4.3.5. Write down the mgf explicitly for p = 2 and q = 2 corresponding to (4.3.3)
and (4.3a.3), assuming general A > O and B > O.

4.3.6. Partition the mgf in the complex p × q matrix-variate Gaussian case, correspond-
ing to the partition in Sect. 4.3.1 and write down the complex matrix-variate density cor-
responding to T̃1 in the complex case.

4.3.7. In the real p × q matrix-variate Gaussian case, partition the mgf parameter matrix
into T = (T(1), T(2)) where T(1) is p × q1 and T(2) is p × q2 with q1 + q2 = q. Obtain the
density corresponding to T(1) by letting T(2) = O.

4.3.8. Repeat Exercise 4.3.7 for the complex p × q matrix-variate Gaussian case.

4.3.9. Consider v = Ũ∗
j AŨj . Provide the details of the steps for obtaining (4.3a.9).

4.3.10. Derive the mgf of Ũ∗
i AŨj , i 
= j, in the complex p × q matrix-variate Gaussian

case, corresponding to (4.3.13).

4.4. Marginal Densities in the Real Matrix-variate Gaussian Case

On partitioning the real p × q Gaussian matrix into X1 of order p1 × q and X2 of
order p2 × q so that p1 + p2 = p, it was determined by applying the mgf technique
that X1 has a p1 × q matrix-variate Gaussian distribution with the parameter matrices B

remaining unchanged while A was replaced by A11 − A12A
−1
22 A21 where the Aij ’s are the

sub-matrices of A. This density is then the marginal density of the sub-matrix X1 with
respect to the joint density of X. Let us see whether the same result is available by direct



256 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

integration of the remaining variables, namely by integrating out X2. We first consider the
real case. Note that

tr(AXBX′) = tr

[

A

(
X1

X2

)

B(X′
1 X′

2)

]

= tr

[

A

(
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

)]

.

Now, letting A be similarly partitioned, we have

tr(AXBX′) = tr

[(
A11 A12

A21 A22

)(
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

)]

= tr(A11X1BX′
1) + tr(A12X2BX′

1)

+ tr(A21X1BX′
2) + tr(A22X2BX′

2),

as the remaining terms do not appear in the trace. However, (A12X2BX′
1)

′ = X1BX′
2A21,

and since tr(PQ) = tr(QP ) and tr(S) = tr(S′) whenever S, PQ and QP are square
matrices, we have

tr(AXBX′) = tr(A11X1BX′
1) + 2tr(A21X1BX′

2) + tr(A22X2BX′
2).

We may now complete the quadratic form in tr(A22X2BX′
2) + 2tr(A21X1BX′

2) by taking
a matrix C = A−1

22 A21X1 and replacing X2 by X2 + C. Note that when A > O, A11 > O

and A22 > O. Thus,

tr(AXBX′) = tr(A22(X2 + C)B(X2 + C)′)+tr(A11X1BX′
1)−tr(A12A

−1
22 A21X1BX′

1)

= tr(A22(X2 + C)B(X2 + C)′) + tr((A11 − A12A
−1
22 A21)X1BX′

1).

On applying a result on partitioned matrices from Sect. 1.3, we have

|A| = |A22| |A11 − A12A
−1
22 A21|,

and clearly, (2π)
pq
2 = (2π)

p1q

2 (2π)
p2q

2 . When integrating out X2, |A22| q
2 and (2π)

p2q

2 are
getting canceled. Hence, the marginal density of X1, the p1 × q sub-matrix of X, denoted
by fp1,q(X1), is given by

fp1,q(X1) = |B|p1
2 |A11 − A12A

−1
22 A21| q

2

(2π)
p1q

2

e− 1
2 tr((A11−A12A

−1
22 A21)X1BX′

1). (4.4.1)

When p1 = 1, p2 = 0 and p = 1, we have the usual multivariate Gaussian density.
When p = 1, the 1 × 1 matrix A will be taken as 1 without any loss of generality.
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Then, from (4.4.1), the multivariate (q-variate) Gaussian density corresponding to (4.2.3)
is given by

f1,q(X1) = (1/2)
q
2 |B| 1

2

π
q
2

e− 1
2 tr(X1BX′

1) = |B| 1
2

(2π)
q
2

e− 1
2 X1BX′

1

since the 1 × 1 quadratic form X1BX′
1 is equal to its trace. It is usually expressed in terms

of B = V −1, V > O. When q = 1, X is reducing to a p × 1 vector, say Y . Thus, for a
p × 1 column vector Y with a location parameter μ, the density, denoted by fp,1(Y ), is
the following:

fp,1(Y ) = 1

|V | 1
2 (2π)

p
2

e− 1
2 (Y−μ)′V −1(Y−μ), (4.4.2)

where Y ′ = (y1, . . . , yp), μ′ = (μ1, . . . , μp), −∞ < yj < ∞, −∞ < μj < ∞, j =
1, . . . , p, V > O. Observe that when Y is p × 1, tr(Y − μ)′V −1(Y − μ) = (Y −
μ)′V −1(Y − μ). From symmetry, we can write down the density of the sub-matrix X2 of
X from the density given in (4.4.1). Let us denote the density of X2 by fp2,q(X2). Then,

fp2,q(X2) = |B|p2
2 |A22 − A21A

−1
11 A12| q

2

(2π)
p2q

2

e− 1
2 tr((A22−A21A

−1
11 A12)X2BX′

2). (4.4.3)

Note that A22 − A21A
−1
11 A12 > O as A > O, our intial assumptions being that A > O

and B > O.

Theorem 4.4.1. Let the p×q real matrix X have a real matrix-variate Gaussian density
with the parameter matrices A > O and B > O where A is p × p and B is q × q. Let X

be partitioned into sub-matrices as X =
(

X1

X2

)

where X1 is p1 × q and X2 is p2 × q, with

p1 + p2 = p. Let A be partitioned into sub-matrices as A =
[
A11 A12

A21 A22

]

where A11 is

p1 × p1. Then X1 has a p1 × q real matrix-variate Gaussian density with the parameter
matrices A11 − A12A

−1
22 A21 > O and B > O, as given in (4.4.1) and X2 has a p2 × q

real matrix-variate Gaussian density with the parameter matrices A22 −A21A
−1
11 A12 > O

and B > O, as given in (4.4.3).

Observe that the p1 rows taken in X1 need not be the first p1 rows. They can be any
set of p1 rows. In that instance, it suffices to make the corresponding permutations in the
rows and columns of A and B so that the new set of p1 rows can be taken as the first p1

rows, and similarly for X2.

Can a similar result be obtained in connection with a matrix-variate Gaussian distribu-
tion if we take a set of column vectors and form a sub-matrix of X? Let us partition the
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p × q matrix X into sub-matrices of columns as X = (Y1 Y2) where Y1 is p × q1 and Y2 is
p×q2 such that q1 +q2 = q. The variables Y1, Y2 are used in order to avoid any confusion
with X1, X2 utilized in the discussions so far. Let us partition B as follows:

B =
[
B11 B12

B21 B22

]

, B11 being q1 × q1, B22 being q2 × q2.

Then,

tr(AXBX′) = tr[A(Y1 Y2)

[
B11 B12

B21 B22

](
Y ′

1
Y ′

2

)

]
= tr(AY1B11Y

′
1) + tr(AY2B21Y

′
1) + tr(AY1B12Y

′
2) + tr(AY2B22Y

′
2)

= tr(AY1B11Y
′
1) + 2tr(AY1B12Y

′
2) + tr(AY2B22Y

′
2).

As in the previous case of row sub-matrices, we complete the quadratic form:

tr(AXBX′) = tr(AY1B11Y
′
1) − tr(AY1(B12B

−1
22 B21Y

′
1) + tr(A(Y2 + C)B22(Y2 + C)′)

= tr(AY1(B11 − B12B
−1
22 B21)Y

′
1) + tr(A(Y2 + C)B22(Y2 + C)′).

Now, by integrating out Y2, we have the result, observing that A > O, B > O, B11 −
B12B

−1
22 B21 > O and |B| = |B22| |B11 − B12B

−1
22 B21|. A similar result follows for the

marginal density of Y2. These results will be stated as the next theorem.

Theorem 4.4.2. Let the p×q real matrix X have a real matrix-variate Gaussian density
with the parameter matrices M = O, A > O and B > O where A is p × p and B is
q × q. Let X be partitioned into column sub-matrices as X = (Y1 Y2) where Y1 is p × q1

and Y2 is p × q2 with q1 + q2 = q. Then Y1 has a p × q1 real matrix-variate Gaussian
density with the parameter matrices A > O and B11 − B12B

−1
22 B21 > O, denoted by

fp,q1(Y1), and Y2 has a p × q2 real matrix-variate Gaussian density denoted by fp,q2(Y2)

where

fp,q1(Y1) = |A| q1
2 |B11 − B12B

−1
22 B21|p

2

(2π)
pq1

2

e− 1
2 tr[AY1(B11−B12B

−1
22 B21)Y

′
1] (4.4.4)

fp,q2(Y2) = |A| q2
2 |B22 − B21B

−1
11 B12|p

2

(2π)
pq2

2

e− 1
2 tr[AY2(B22−B21B

−1
11 B12)Y

′
2]. (4.4.5)

If q = 1 and q2 = 0 in (4.4.4), q1 = 1. When q = 1, the 1 × 1 matrix B is taken
to be 1. Then Y1 in (4.4.4) is p × 1 or a column vector of p real scalar variables. Let it
still be denoted by Y1. Then the corresponding density, which is a real p-variate Gaussian
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(normal) density, available from (4.4.4) or from the basic matrix-variate density, is the
following:

fp,1(Y1) = |A| 1
2 (1/2)

p
2

π
p
2

e− 1
2 tr(AY1Y

′
1)

= |A| 1
2

(2π)
p
2

e− 1
2 tr(Y ′

1AY1) = |A| 1
2

(2π)
p
2

e− 1
2 Y ′

1AY1, (4.4.6)

observing that tr(Y ′
1AY1) = Y ′

1AY1 since Y1 is p × 1 and then, Y ′
1AY1 is 1 × 1. In the

usual representation of a multivariate Gaussian density, A replaced by A = V −1, V being
positive definite.

Example 4.4.1. Let the 2 × 3 matrix X = (xij ) have a real matrix-variate distribution
with the parameter matrices M = O, A > O, B > O where

X =
[
x11 x12 x13

x21 x22 x23

]

, A =
[

2 1
1 1

]

, B =
⎡

⎣
3 −1 0

−1 1 1
0 1 2

⎤

⎦ .

Let us partition X, A and B as follows:

X =
[
X1

X2

]

= [Y1, Y2], A =
[
A11 A12

A21 A22

]

, B =
[
B11 B12

B21 B22

]

where A11 = (2), A12 = (1), A21 = (1), A22 = (1), X1 = [x11, x12, x13], X2 =
[x21, x22, x23],

Y1 =
[
x11 x12

x21 x22

]

, Y2 =
[
x13

x23

]

, B11 =
[

3 −1
−1 1

]

, B12 =
[

0
1

]

,

B21 = [0, 1], B22 = (2). Compute the densities of X1, X2, Y1 and Y2.

Solution 4.4.1. We need the following quantities: A11 − A12A
−1
22 A21 = 2 − 1 = 1,

A22 − A21A
−1
11 A12 = 1 − 1

2 = 1
2 , |B| = 1,

B22 − B21B
−1
11 B12 = 2 − [0, 1]

(1

2

) [1 1
1 3

] [
0
1

]

= 2 − 3

2
= 1

2

B11 − B12B
−1
22 B21 =

[
3 −1

−1 1

]

−
[

0
1

] (1

2

)
[0, 1] =

[
3 −1

−1 1
2

]

.
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Let us compute the constant parts or normalizing constants in the various densities. With
our usual notations, the normalizing constants in fp1,q(X1) and fp2,q(X2) are

|B|p1
2 |A11 − A12A

−1
22 A21| q

2

(2π)
p1q

2

= |B| 1
2 (1)

3
2

(2π)
3
2

|B|p2
2 |A22 − A21A

−1
11 A12| 3

2

(2π)
p2q

2

= |B| 1
2 (1

2)
3
2

(2π)
3
2

.

Hence, the corresponding densities of X1 and X2 are the following:

f1,3(X1) = |B| 1
2

(2π)
3
2

e− 1
2 X1BX′

1, −∞ < x1j < ∞, j = 1, 2, 3,

f1,3(X2) = |B| 1
2

2
3
2 (2π)

3
2

e− 1
4 (X2BX′

2), −∞ < x2j < ∞, j = 1, 2, 3.

Let us now evaluate the normalizing constants in the densities fp,q1(Y1), fp,q2(Y2):

|A| q1
2 |B11 − B12B

−1
22 B21|p

2

(2π)
pq1

2

= |A| 1
2 (1

2)1

4π2
= 1

8π2
,

|A| q2
2 |B22 − B21B

−1
11 B12|p

2

(2π)
pq2

2

= |A| 1
2 (1

2)1

2π
= 1

4π
.

Thus, the density of Y1 is

f2,2(Y1) = 1

8π2
e− 1

2 tr{AY1(B11−B12B
−1
22 B21)Y

′
1}

= 1

8π2
e− 1

2 Q, −∞ < xij < ∞, i, j = 1, 2,

where

Q = tr

{[
2 1
1 1

] [
x11 x12

x21 x22

] [
3 −1

−1 1
2

] [
x11 x21

x12 x22

]}

= 6x2
11 + x2

12 + 3x2
21 + 1

2
x2

22 − 4x11x12 − 2x11x22

+ 3x11x21 + x12x22 − 2x12x21 − x22x21,
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the density of Y2 being

f2,1(Y2) = 1

4π
e− 1

2 tr{AY2(B22−B21B
−1
11 B12)Y

′
1}

= 1

4π
e− 1

4 [2x2
13+x2

23+2x13x23], −∞ < xi3 < ∞, i = 1, 2.

This completes the computations.

4.4a. Marginal Densities in the Complex Matrix-variate Gaussian Case

The derivations of the results are parallel to those provided in the real case. Accord-
ingly, we will state the corresponding results.

Theorem 4.4a.1. Let the p×q matrix X̃ have a complex matrix-variate Gaussian density
with the parameter matrices M = O, A > O, B > O where A is p × p and B is
q × q. Consider a row partitioning of X̃ into sub-matrices X̃1 and X̃2 where X̃1 is p1 × q

and X̃2 is p2 × q, with p1 + p2 = p. Then, X̃1 and X̃2 have p1 × q complex matrix-
variate and p2 × q complex matrix-variate Gaussian densities with parameter matrices
A11−A12A

−1
22 A21 andB, andA22−A21A

−1
11 A12 andB, respectively, denoted by f̃p1,q(X̃1)

and f̃p2,q(X̃2). The density of X̃1 is given by

f̃p1,q(X̃1) = |det(B)|p1|det(A11 − A12A
−1
22 A21)|q

πp1q
e−tr((A11−A12A

−1
22 A21)X̃1BX̃∗

1), (4.4a.1)

the corresponding vector case for p = 1 being available from (4.4a.1) for p1 = 1, p2 = 0
and p = 1; in this case, the density is

f̃1,q(X̃1) = |det(B)|
πq

e−(X̃1−μ)B(X̃1−μ)∗ (4.4a.2)

where X̃1 and μ are 1 × q and μ is a location parameter vector. The density of X̃2 is the
following:

f̃p2,q(X̃2) = |det(B)|p2|det(A22 − A21A
−1
11 A12)|q

πp2q
e−tr((A22−A21A

−1
11 A12)X̃2BX̃∗

2). (4.4a.3)

Theorem 4.4a.2. Let X̃, A and B be as defined in Theorem 4.2a.1 and let X̃ be parti-
tioned into column sub-matrices X̃ = (Ỹ1 Ỹ2) where Ỹ1 is p ×q1 and Ỹ2 is p ×q2, so that
q1 + q2 = q. Then Ỹ1 and Ỹ2 have p × q1 complex matrix-variate and p × q2 complex
matrix-variate Gaussian densities given by
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f̃p,q1(Ỹ1) = |det(A)|q1|det(B11 − B12B
−1
22 B21)|p

πpq1

× e−tr(AỸ1(B11−B12B
−1
22 B21)Ỹ

∗
1 ) (4.4a.4)

f̃p,q2(Ỹ2) = |det(A)|q2|det(B22 − B21B
−1
11 B21)|p

πpq2

× e−tr(AỸ2(B22−B21B
−1
11 B12)Ỹ

∗
2 ). (4.4a.5)

When q = 1, we have the usual complex multivariate case. In this case, it will be a p-
variate complex Gaussian density. This is available from (4.4a.4) by taking q1 = 1, q2 = 0
and q = 1. Now, Ỹ1 is a p × 1 column vector. Let μ be a p × 1 location parameter vector.
Then the density is

f̃p,1(Ỹ1) = |det(A)|
πp

e−(Ỹ1−μ)∗A(Ỹ1−μ) (4.4a.6)

where A > O (Hermitian positive definite), Ỹ1 − μ is p × 1 and its 1 × p conjugate
transpose is (Ỹ1 − μ)∗.

Example 4.4a.1. Consider a 2×3 complex matrix-variate Gaussian distribution with the
parameters M = O, A > O, B > O where

X̃ =
[
x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

]

, A =
[

2 i

−i 2

]

, B =
⎡

⎣
2 −i i

i 2 −i

−i i 2

⎤

⎦ .

Consider the partitioning

A =
[
A11 A12

A21 A22

]

, B =
[
B11 B12

B21 B22

]

, X̃ =
[
X̃1

X̃2

]

= [Ỹ1, Ỹ2]
where

Ỹ1 =
[
x̃11

x̃21

]

, Ỹ2 =
[
x̃12 x̃13

x̃22 x̃23

]

, B22 =
[

2 −i

i 2

]

, B21 =
[

i

−i

]

,

X̃1 = [x̃11, x̃12, x̃13], X̃2 = [x̃21, x̃22, x̃23], A11 = (2), A12 = (i), A21 = (−i), A22 = 2;
B11 = (2), B12 = [−i, i]. Compute the densities of X̃1, X̃2, Ỹ1, Ỹ2.

Solution 4.4a.1. It is easy to ascertain that A = A∗ and B = B∗; hence both matrices
are Hermitian. As well, all the leading minors of A and B are positive so that A > O and
B > O. We need the following numerical results: |A| = 3, |B| = 2,

A11 − A12A
−1
22 A21 = 2 − (i)(1/2)(−i) = 2 − 1

2
= 3

2

A22 − A21A
−1
11 A12 = 2 − (−i)(1/2)(i) = 2 − 1

2
= 3

2
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B11 − B12B
−1
22 B21 = 2 − [−i, i]

(1

3

) [ 2 i

−i 2

] [
i

−i

]

= 2

3

B22 − B21B
−1
11 B12 =

[
2 −i

i 2

]

−
[

i

−i

] (1

2

)
[−i, i] =

[
2 −i

i 2

]

− 1

2

[
1 −1

−1 1

]

= 1

2

[
3 1 − 2i

1 + 2i 3

]

.

With these preliminary calculations, we can obtain the required densities with our usual
notations:

f̃p1,q(X̃1) = |det(B)|p1|det(A11 − A12A
−1
22 A21)|q

πp1q

× e−tr[(A11−A12A
−1
22 A21)X̃1BX̃∗

1 ], that is,

f̃1,3(X̃1) = 2(3/2)3

π3
e− 3

2 X̃1BX̃∗
1

where

Q1 = X̃1BX̃∗
1 = [x̃11, x̃12, x̃13]

⎡

⎣
2 −i i

i 2 −i

−i i 2

⎤

⎦

⎡

⎣
x̃∗

11
x̃∗

12
x̃∗

13

⎤

⎦

= 2x̃11x̃
∗
11 + 2x̃12x̃

∗
12 + 2x̃13x̃

∗
13 − ix̃11x̃

∗
12 + ix̃11x̃

∗
13

+ ix̃12x̃
∗
11 − ix̃12x̃

∗
13 − ix̃13x̃

∗
11 + ix̃13x̃

∗
12;

f̃p2,q(X̃2) = |det(A)|p2|det(A22 − A21A
−1
11 A12)|q

πp2q

× e−tr[(A22−A21A
−1
11 A12)X̃2BX̃∗

2 ], that is,

f̃1,3(X̃2) = 2(3/2)3

π3
e− 3

2 X̃2BX̃∗
2

where let Q2 = X̃2BX̃∗
2, Q2 being obtained by replacing X̃1 in Q1 by X̃2;

f̃p,q1(Ỹ1) = |det(A)|q1|det(B11 − B12B
−1
22 B21)|p

πpq1

× e−tr[AỸ1(B11−B12B
−1
22 B21)Ỹ

∗
1 ], that is,

f̃2,1(Ỹ1) = 3(2/3)2

π2
e−tr( 2

3 Q3)
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where

Q3 = Ỹ ∗
1 AỸ1 = [x̃∗

11, x̃
∗
21]
[

2 i

−i 2

] [
x̃11

x̃21

]

= 2x̃11x̃
∗
11 + 2x̃21x̃

∗
21 + ix̃21x̃

∗
11 − ix̃∗

21x̃11;

f̃p,q2(Ỹ2) = |det(A)|q2|det(B22 − B21B
−1
11 B12)|p

πpq2

× e−tr[AỸ2(B22−B21B
−1
11 B12)Ỹ

∗
2 ], that is,

f̃2,2(Ỹ2) = 32

π4
e− 1

2 Q

where

2Q = tr

[
2 i

−i 2

] [
x̃12 x̃13

x̃22 x̃23

] [
3 1 − 2i

1 + 2i 3

] [
x̃∗

12 x̃∗
22

x̃∗
13 x̃∗

23

]

= 6x̃12x̃
∗
12 + 6x̃13x̃

∗
13 + 6x̃22x̃

∗
22 + 6x̃23x̃

∗
23

+ [2(1 − 2i)(x̃12x̃
∗
13 + x̃22x̃

∗
23) + 2(1 + 2i)(x̃23x̃

∗
22 + x̃13x̃

∗
12)]

+ [i(1 − 2i)(x̃22x̃
∗
13 − x̃12x̃

∗
23) − i(1 + 2i)(x̃13x̃

∗
22 − x̃23x̃

∗
12)]

+ 3i[x̃22x̃
∗
12 + x̃23x̃

∗
13 − x̃12x̃

∗
22 − x̃13x̃

∗
23].

This completes the computations.

Exercises 4.4

4.4.1. Write down explicitly the density of a p × q matrix-variate Gaussian for p =
3, q = 3. Then by integrating out the other variables, obtain the density for the case (1):
p = 2, q = 2; (2): p = 2, q = 1; (3): p = 1, q = 2; (4): p = 1, q = 1. Take the location
matrix M = O. Let A and B to be general positive definite parameter matrices.

4.4.2. Repeat Exercise 4.4.1 for the complex case.

4.4.3. Write down the densities obtained in Exercises 4.4.1 and 4.4.2. Then evaluate the
marginal densities for p = 2, q = 2 in both the real and complex domains by partitioning
matrices and integrating out by using matrix methods.

4.4.4. Let the 2×2 real matrix A > O where the first row is (1, 1). Let the real B > O be
3 × 3 where the first row is (1, −1, 1). Complete A and B with numbers of your choosing
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so that A > O, B > O. Consider a real 2 × 3 matrix-variate Gaussian density with these
A and B as the parameter matrices. Take your own non-null location matrix. Write down
the matrix-variate Gaussian density explicitly. Then by integrating out the other variables,
either directly or by matrix methods, obtain (1): the 1×3 matrix-variate Gaussian density;
(2): the 2 × 2 matrix-variate Gaussian density from your 2 × 3 matrix-variate Gaussian
density.

4.4.5. Repeat Exercise 4.4.4 for the complex case if the first row of A is (1, 1+ i) and the
first row of B is (2, 1 + i, 1 − i) where A = A∗ > O and B = B∗ > O.

4.5. Conditional Densities in the Real Matrix-variate Gaussian Case

Consider a real p × q matrix-variate Gaussian density with the parameters M =
O, A > O, B > O. Let us consider the partition of the p × q real Gaussian matrix

X into row sub-matrices as X =
(

X1

X2

)

where X1 is p1 × q and X2 is p2 × q with

p1 + p2 = p. We have already established that the marginal density of X2 is

fp2,q(X2) = |A22 − A21A
−1
11 A12| q

2 |B|p2
2

(2π)
p2q

2

e− 1
2 tr[(A22−A21A

−1
11 A12)X2BX′

2].

Thus, the conditional density of X1 given X2 is obtained as

fp1,q(X1|X2) = fp,q(X)

fp2,q(X2)
= |A| q

2 |B|p
2

|A22 − A21A
−1
11 A12| q

2 |B|p2
2

(2π)
p2q

2

(2π)
pq
2

× e− 1
2 [tr(AXBX′)]+tr[(A22−A21A

−1
11 A12)X2BX′

2].

Note that

AXBX′ = A

(
X1

X2

)

B(X′
1 X′

2) = A

[
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

]

=
[
A11 A12

A21 A22

] [
X1BX′

1 X1BX′
2

X2BX′
1 X2BX′

2

]

=
[
α ∗
∗ β

]

where α = A11X1BX′
1 + A12X2BX′

1, β = A21X1BX′
2 + A22X2BX′

2 and the asterisks
designate elements that are not utilized in the determination of the trace. Then

tr(AXBX′) = tr(A11X1BX′
1 + A12X2BX′

1) + tr(A21X1BX′
2 + A22X2BX′

2).
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Thus the exponent in the conditional density simplifies to

tr(A11X1BX′
1) + 2tr(A12X2BX′

1) + tr(A22X2BX′
2) − tr[(A22 − A21A

−1
11 A12)X2BX′

2)]
= tr(A11X1BX′

1) + 2tr(A12X2BX′
1) + tr[A21A

−1
11 A12X2BX′

2]
= tr[A11(X1 + C)B(X1 + C)′], C = A−1

11 A12X2.

We note that E(X1|X2) = −C = −A−1
11 A12X2: the regression of X1 on X2, the constant

part being |A11| q
2 |B|p1

2 /(2π)
p1q

2 . Hence the following result:

Theorem 4.5.1. If the p × q matrix X has a real matrix-variate Gaussian density with
the parameter matrices M = O, A > O and B > O where A is p × p and B is q × q

and if X is partitioned into row sub-matrices X =
(

X1

X2

)

where X1 is p1 × q and X2 is

p2 × q, so that p1 + p2 = p, then the conditional density of X1 given X2, denoted by
fp1,q(X1|X2), is given by

fp1,q(X1|X2) = |A11| q
2 |B|p1

2

(2π)
p1q

2

e− 1
2 tr[A11(X1+C)B(X1+C)′] (4.5.1)

where C = A−1
11 A12X2 if the location parameter is a null matrix; otherwise C = −M1 +

A−1
11 A12(X2−M2) with M partitioned into row sub-matrices M1 and M2, M1 being p1×q

and M2, p2 × q.

Corollary 4.5.1. Let X, X1, X2, M, M1 and M2 be as defined in Theorem 4.5.1;
then, in the real Gaussian case, the conditional expectation of X1 given X2, denoted by
E(X1|X2), is

E(X1|X2) = M1 − A−1
11 A12(X2 − M2). (4.5.2)

We may adopt the following general notation to represent a real matrix-variate Gaus-
sian (or normal) density:

X ∼ Np,q(M, A, B), A > O, B > O, (4.5.3)

which signifies that the p × q matrix X has a real matrix-variate Gaussian distribution
with location parameter matrix M and parameter matrices A > O and B > O where A is
p × p and B is q × q. Accordingly, the usual q-variate multivariate normal density will
be denoted as follows:

X1 ∼ N1,q(μ, B), B > O ⇒ X′
1 ∼ Nq(μ

′, B−1), B > O, (4.5.4)
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where μ is the location parameter vector, which is the first row of M , and X1 is a 1 × q

row vector consisting of the first row of the matrix X. Note that B−1 = Cov(X1) and
the covariance matrix usually appears as the second parameter in the standard notation
Np(·, ·). In this case, the 1 × 1 matrix A will be taken as 1 to be consistent with the
usual notation in the real multivariate normal case. The corresponding column case will
be denoted as follows:

Y1 ∼ Np,1(μ(1), A), A > O ⇒ Y1 ∼ Np(μ(1), A
−1), A > O, A−1 = Cov(Y1) (4.5.5)

where Y1 is a p × 1 vector consisting of the first column of X and μ(1) is the first column
of M . With this partitioning of X, we have the following result:

Theorem 4.5.2. Let the real matrices X, M, A and B be as defined in Theorem 4.5.1
and X be partitioned into column sub-matrices as X = (Y1 Y2) where Y1 is p × q1

and Y2 is p × q2 with q1 + q2 = q. Let the density of X, the marginal densities
of Y1 and Y2 and the conditional density of Y1 given Y2, be respectively denoted by
fp,q(X), fp,q1(Y1), fp,q2(Y2) and fp,q1(Y1|Y2). Then, the conditional density of Y1 given
Y2 is

fp,q1(Y1|Y2) = |A| q1
2 |B11|p

2

(2π)
pq1

2

e− 1
2 tr[A(Y1−M(1)+C1)B11(Y1−M(1)+C1)

′] (4.5.6)

where A > O, B11 > O and C1 = (Y2 −M2)B21B
−1
11 , so that the conditional expectation

of Y1 given Y2, or the regression of Y1 on Y2, is obtained as

E(Y1|Y2) = M(1) − (Y2 − M(2))B21B
−1
11 , M = (M(1) M(2)), (4.5.7)

where M(1) is p ×q1 and M(2) is p ×q2 with q1 +q2 = q. As well, the conditional density
of Y2 given Y1 is the following:

fp,q2(Y2|Y1) = |A| q2
2 |B22|p

2

(2π)
pq2

2

e− 1
2 tr[A(Y2−M(2)+C2)B22(Y2−M(2)+C2)

′] (4.5.8)

where
M(2) − C2 = M(2) − (Y1 − M(1))B12B

−1
22 = E[Y2|Y1]. (4.5.9)

Example 4.5.1. Consider a 2 × 3 real matrix X = (xij ) having a real matrix-variate
Gaussian distribution with the parameters M, A > O and B > O where

M =
[

1 −1 1
2 0 −1

]

, A =
[

2 1
1 3

]

, B =
⎡

⎣
2 −1 1

−1 3 0
1 0 1

⎤

⎦ .
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Let X be partitioned as

[
X1

X2

]

=[Y1, Y2] where X1 = [x11, x12, x13], X2 = [x21, x22, x23],

Y1 =
[
x11 x12

x21 x22

]

and Y2 =
[
x13

x23

]

. Determine the conditional densities of X1 given

X2, X2 given X1, Y1 given Y2, Y2 given Y1 and the conditional expectations E[X1|X2],
E[X2|X1], E[Y1|Y2] and E[Y2|Y1].
Solution 4.5.1. Given the specified partitions of X, A and B are partitioned accordingly
as follows:

A =
[
A11 A12

A21 A22

]

, B =
[
B11 B12

B21 B22

]

, B11 =
[

2 −1
−1 3

]

, B12 =
[

1
0

]

B21 = [1, 0], B22 = (1), A11 = (2), A12 = (1), A21 = (1), A22 = (3).

The following numerical results are needed:

A11 − A12A
−1
22 A21 = 2 − (1)(1/3)(1) = 5

3

A22 − A21A
−1
11 A12 = 3 − (1)(1/2)(1) = 5

2

B11 − B12B
−1
22 B21 =

[
2 −1

−1 3

]

−
[

1
0

]

(1)[1, 0] =
[

1 −1
−1 3

]

B22 − B21B
−1
11 B12 = 1 − [1, 0](1/5)

[
3 1
1 2

] [
1
0

]

= 2

5
;

|A11| = 2, |A22| = 3, |A| = 5, |A11 − A12A
−1
22 A21| = 5

3
, |A22 − A21A

−1
11 A12| = 5

2
,

|B11| = 5, |B22| = 1, |B11 − B12B
−1
22 B21| = 2, |B22 − B21B

−1
11 B12| = 2

5
, |B| = 2;

A−1
11 A12 = 1

2
, A−1

22 A21 = 1

3
, B−1

22 B21 = [1, 0]

B−1
11 B12 = 1

5

[
3 1
1 2

] [
1
0

]

= 1

5

[
3
1

]

, M1 = [1, −1, 1], M2 = [2, 0, −1]

M(1) =
[

1 −1
2 0

]

, M(2) =
[

1
−1

]

.
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All the conditional expectations can now be determined. They are

E[X1|X2] = M1 − A−1
11 A12(X2 − M2) = [1, −1, 1] − 1

2
(x21 − 2, x22, x23 + 1)

= [1 − 1

2
(x21 − 2), −1 − 1

2
x22, 1 − 1

2
(x23 + 1)] (i)

E[X2|X1] = M2 − A−1
22 A21(X1 − M1) = [2, 0, −1] − 1

3
[x11 − 1, x12 + 1, x13 − 1]

= [2 − 1

3
(x11 − 1), −1

3
(x12 + 1), −1 − 1

3
(x13 − 1)]; (ii)

E[Y1|Y2] = M(1) − (Y2 − M(2))B21B
−1
11 =

[
1 −1
2 0

]

− 1

5

[
x13 − 1
x23 + 1

]

[1, 0]
[

3 1
1 2

]

=
[

1 − 3
5(x13 − 1) −1 − 1

5(x13 − 1)

2 − 3
5(x23 + 1) −1

5(x23 + 1)

]

(iii)

E[Y2|Y1] = M(2) − (Y1 − M(1))B12B
−1
22

=
[

1
−1

]

−
[
x11 − 1 x12 + 1
x21 − 2 x22

] [
1
0

]

[(1)] =
[

2 − x11

1 − x21

]

. (iv)

The conditional densities can now be obtained. That of X1 given X2 is

fp1,q(X1|X2) = |A11| q
2 |B|p1

2

(2π)
p1q

2

e− 1
2 tr[A11(X1−M1+C)B(X1−M1+C)′]

for the matrices A > O and B > O previously specified; that is,

f1,3(X1|X2) = 4

(2π)
3
2

e− 2
2 (X1−M1+C)B(X1−M1+C)′

where M1 − C = E[X1|X2] is given in (i). The conditional density of X2|X1 is the
following:

fp2,q(X2|X1) = |A22| q
2 |B|p2

2

(2π)
p2q

2

e− 1
2 tr[A22(X2−M2+C1)B(X2−M2+C1)

′],

that is,

f1,3(X2|X1) = (3
3
2 )(2

1
2 )

(2π)
3
2

e− 3
2 (X2−M2+C1)B(X2−M2+C2)

′



270 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

where M2 − C2 = E[X2|X1] is given in (ii). The conditional density of Y1 given Y2 is

fp,q1(Y1|Y2) = |A| q1
2 |B11|p

2

(2π)
p q1

2

e− 1
2 tr[A(Y1−M(1)+C2)B11(Y1−M(1)+C2)

′];

that is,

f2,2(Y1|Y2) = 25

(2π)2
e− 1

2 tr[A(Y1−M(1)+C2)B11(Y1−M(1)+C2)
′]

where M(1) − C1 = E[Y1|Y2] is specified in (iii). Finally, the conditional density of Y2|Y1

is the following:

fp,q2(Y2|Y1) = |A| q2
2 |B22|p

2

(2π)
p q2

2

e− 1
2 tr[A(Y2−M(2)+C3)B22(Y2−M(2)+C3)

′];

that is,

f2,1(Y2|Y1) =
√

5

(2π)
e−tr[A(Y2−M(2)+C3)B22(Y2−M(2)+C3)

′]

where M(2) − C3 = E[Y2|Y1] is given in (iv). This completes the computations.

4.5a. Conditional Densities in the Matrix-variate Complex Gaussian Case

The corresponding distributions in the complex case closely parallel those obtained for
the real case. A tilde will be utilized to distinguish them from the real distributions. Thus,

X̃ ∼ Ñp,q(M̃, A, B), A = A∗ > O, B = B∗ > O

will denote a complex p × q matrix X̃ having a p × q matrix-variate complex Gaussian
density. For the 1 × q case, that is, the q-variate multivariate normal distribution in the
complex case, which is obtained from the marginal distribution of the first row of X̃, we
have

X̃1 ∼ Ñ1,q(μ, B), B > O, X̃1 ∼ Ñq(μ, B−1), B−1 = Cov(X̃1),

where X̃1 is 1 × q vector having a q-variate complex normal density with E(X̃1) = μ.
The case q = 1 corresponds to a column vector in X̃, which constitutes a p × 1 column
vector in the complex domain. Letting it be denoted as Ỹ1, we have

Ỹ1 ∼ Ñp,1(μ(1), A), A > O, that is, Ỹ1 ∼ Ñp(μ(1), A
−1), A−1 = Cov(Ỹ1),

where μ(1) is the first column of M .
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Theorem 4.5a.1. Let X̃ be p × q matrix in the complex domain having a p × q matrix-

variate complex Gaussian density denoted by f̃p,q(X̃). Let X̃ =
(

X̃1

X̃2

)

be a row partition-

ing of X̃ into sub-matrices where X̃1 is p1 × q and X̃2 is p2 × q, with p1 + p2 = p. Then
the conditional density of X̃1 given X̃2 denoted by f̃p1,q(X̃1|X̃2), is given by

f̃p1,q(X̃1|X̃2) = |det(A11)|q |det(B)|p1

πp1q
e−tr[A11(X̃1−M1+C̃)B(X̃1−M1+C̃)∗] (4.5a.1)

where C̃ = A−1
11 A12(X̃2 − M2), E[X̃] = M =

[
M1

M2

]

, and the regression of X̃1 on X̃2 is

as follows:

E(X̃1|X̃2) =

⎧
⎪⎨

⎪⎩

M1 − A−1
11 A12(X̃2 − M2) if M =

(
M1

M2

)

−A−1
11 A12X̃2 if M = O.

(4.5a.2)

Analogously, the conditional density of X̃2 given X̃1 is

f̃p2,q(X̃2|X̃1) = |det(A22)|q |det(B)|p2

πp2q
e−tr[A22(X̃2−M2+C1)B(X̃2−M2+C1)

∗] (4.5a.3)

where C1 = A−1
22 A21(X̃1 − M1), so that the conditional expectation of X̃2 given X̃1 or the

regression of X̃2 on X̃1 is given by

E[X̃2|X̃1] = M2 − A−1
22 A21(X̃1 − M1). (4.5a.4)

Theorem 4.5a.2. Let X̃ be as defined in Theorem 4.5a.1. Let X̃ be partitioned into col-
umn submatrices, that is, X̃ = (Ỹ1 Ỹ2)where Ỹ1 is p×q1 and Ỹ2 is p×q2, with q1+q2 = q.
Then the conditional density of Ỹ1 given Ỹ2, denoted by f̃p,q1(Ỹ1|Ỹ2) is given by

f̃p,q1(Ỹ1|Ỹ2) = |det(A)|q1|det(B11)|p
πpq1

e−tr[A(Ỹ1−M(1)+C̃(1))B11(Ỹ1−M(1)+C̃(1))] (4.5a.5)

where C̃(1) = (Ỹ2 − M(2))B21B
−1
11 , and the regression of Ỹ1 on Ỹ2 or the conditional

expectation of Ỹ1 given Ỹ2 is given by

E(Ỹ1|Ỹ2) = M(1) − (Ỹ2 − M(2))B21B
−1
11 (4.5a.6)
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with E[X̃] = M = [M(1) M(2)] = E[Ỹ1 Ỹ2]. As well the conditional density of Ỹ2 given
Ỹ1 is the following:

f̃p,q2(Ỹ2|Ỹ1) = |det(A)|q2|det(B22)|p
πpq2

e−tr[A(Ỹ2−M(2)+C(2))B22(Ỹ2−M(2)+C(2))
∗] (4.5a.7)

where C(2) = (Ỹ1 − M(1))B12B
−1
22 and the conditional expectation of Ỹ2 given Ỹ1 is then

E[Ỹ2|Ỹ1] = M(2) − (Ỹ1 − M(1))B12B
−1
22 . (4.5a.8)

Example 4.5a.1. Consider a 2×3 matrix-variate complex Gaussian distribution with the
parameters

A =
[

2 i

−i 1

]

, B =
⎡

⎣
3 −i 0
i 2 i

0 −i 1

⎤

⎦ , M = E[X̃] =
[

1 + i i −i

i 2 + i 1 − i

]

.

Consider the partitioning of X̃ =
[
X̃1

X̃2

]

= [Ỹ1 Ỹ2] where X̃1 = [x̃11, x̃12, x̃13], X̃2 =

[x̃21, x̃22, x̃23], Ỹ1 =
[
x̃11

x̃21

]

and Ỹ2 =
[
x̃12 x̃13

x̃22 x̃23

]

. Determine the conditional densities of

X̃1|X̃2, X̃2|X̃1, Ỹ1|Ỹ2 and Ỹ2|Ỹ1 and the corresponding conditional expectations.

Solution 4.5a.1. As per the partitioning of X̃, we have the following partitions of A, B
and M:

A =
[
A11 A12
A21 A22

]

, B =
[
B11 B12
B21 B22

]

, B22 =
[

2 i

−i 1

]

, B−1
22 =

[
1 −i

i 2

]

, B21 =
[
i

0

]

,

A11 = (2), A12 = (i), A21 = (−i), A22 = (1), B12 = [−i, 0], A−1
11 = 1

2
, A−1

22 = 1, B−1
11 = 1

3
,

A11 − A12A
−1
22 A21 = 2 − (i)(1)(−i) = 1, |A11 − A12A

−1
22 A21| = 1,

A22 − A21A
−1
11 A12 = 1

2
, |A22 − A21A

−1
11 A12| = 1

2
, |A| = 1, |B| = 2,

B11 − B12B
−1
22 B21 = 3 − [−i 0]

[
1 −i

i 2

] [
i

0

]

= 2, |B11 − B12B
−1
22 B21| = 2,

B22 − B21B
−1
11 B12 =

[
2 i

−i 1

]

−
[
i

0

]

(1/3)[−i 0] =
[

5
3 i

−i 1

]

, |B22 − B21B
−1
11 B12| = 2

3
.

M1 = [1 + i, i, − i], M2 = [i, 2 + i, 1 − i], M(1) =
[

1 + i

i

]

, M(2) =
[

i −i

2 + i 1 − i

]

.



Matrix-Variate Gaussian Distribution 273

All the conditional expectations can now be determined. They are

E[X̃1|X̃2] = M1 − A−1
11 A12(X̃2 − M2) = [1 + i, i, − i] − i

2
(X̃2 − M2) (i)

E[X̃2|X̃1] = M2 − A−1
22 A21(X̃1 − M1) = [i, 2 + i, 1 − i] + i(X̃1 − M1) (ii)

E[Ỹ1|Ỹ2] = M(1) − (Ỹ2 − M(2))B21B
−1
11 = 1

3

[
2 + ix̃12

−1 + 5i − ix̃22

]

(iii)

E[Ỹ2|Ỹ1] = M(2) − (Ỹ1 − M(1))B12B
−1
22

=
[

i −i

2 + i 1 − i

]

−
[
x̃11 − (1 + i)

x̃21 − i

]
[−i 0

]
[

1 −i

−i 2

]

=
[

ix̃11 + 1 x̃11 − 1 − 2i

−ix̃21 + i + 3 x̃21 + 1 − 2i

]

. (iv)

Now, on substituting the above quantities in equations (4.5a.1), (4.5a.3), (4.5a.5)
and (4.5a.7), the following densities are obtained:

f̃1,3(X̃1|X̃2) = 24

π3
e−2(X̃1−E1)B(X̃1−E1)

∗

where E1 = E[X̃1|X̃2] given in (i);

f̃1,3(X̃2|X̃1) = 2

π3
e−(X̃2−E2)B(X̃2−E2)

∗

where E2 = E[X̃2|X̃1] given in (ii);

f̃2,1(Ỹ1|Ỹ2) = 32

π2
e−3tr[A(Ỹ1−E3)(Ỹ1−E3)

∗]

where E3 = E[Ỹ1|Ỹ2] given in (iii);

f̃2,2(Ỹ2|Ỹ1) = 1

π4
e−tr[A(Ỹ2−E4)B22(Ỹ2−E4)

∗]

where E4 = E[Ỹ2|Ỹ1] given in (iv). The exponent in the density of Ỹ1|Ỹ2 can be simplified
as follows:

− tr[A(Ỹ1 − M(1))B11(Ỹ1 − M(1))
∗] = −3(Ỹ1 − M(1))

∗A(Ỹ1 − M(1))

= −3[(x̃11 − (1 + i))∗ (x̃21 − i)∗]
[

2 i

−i 1

] [
(x̃11 − (1 + i))

(x̃21 − i)

]

= −6{(x2
111 + x2

112) + 1
2(x2

211 + x2
212) + (x112x211 − x111x212) − 2x112 − x111 − x211 + 3

2}
by writing x̃k1 = xk11 + ixk12, k = 1, 2, i = √

(−1). This completes the computations.
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4.5.1. Re-examination of the case q = 1

When q = 1, we have a p × 1 vector-variate or the usual p-variate Gaussian density
of the form in (4.5.5). Let us consider the real case first. Let the p × 1 vector be denoted
by Y1 with

Y1 =
⎡

⎢
⎣

y1
...

yp

⎤

⎥
⎦ =

[
Y(1)

Y(2)

]

, Y(1) =
⎡

⎢
⎣

y1
...

yp1

⎤

⎥
⎦ , Y(2) =

⎡

⎢
⎣

yp1+1
...

yp

⎤

⎥
⎦ ;

M(1) =
[
M

(p1)

(1)

M
(p2)

(2)

]

, M
(p1)

(1) =
⎡

⎢
⎣

m1
...

mp1

⎤

⎥
⎦ , M

(p2)

(2) =
⎡

⎢
⎣

mp1+1
...

mp

⎤

⎥
⎦ , E[Y1] = M(1), p1 + p2 = p.

Then, from (4.5.2) wherein q = 1, we have

E[Y(1)|Y(2)] = M
(p1)

(1) − A−1
11 A12(Y(2) − M

(p2)

(2) ), (4.5.10)

with A = Σ−1, Σ being the covariance matrix of Y1, that is, Cov(Y1) = E[(Y1 −
E(Y1))(Y1 − E(Y1))

′]. Let

A−1 = Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, where Σ11 is p1 × p1 and Σ22 is p2 × p2.

From the partitioning of matrices presented in Sect. 1.3, we have

− A−1
11 A12 = A12(A22)−1 = Σ12Σ

−1
22 . (4.5.11)

Accordingly, we may rewrite (4.5.10) in terms of the sub-matrices of the covariance matrix
as

E[Y(1)|Y(2)] = M
(p1)

(1) + Σ12Σ
−1
22 (Y(2) − M

(p2)

(2) ). (4.5.12)

If p1 = 1, then Y(2) will contain p − 1 elements, denoted by Y ′
(2) = (y2, . . . , yp). Letting

E[y1] = m1, we have

E[y1|Y(2)] = m1 + Σ12Σ
−1
22 (Y(2) − M

(p2)

(2) ), p2 = p − 1. (4.5.13)

The conditional expectation (4.5.13) is the best predictor of y1 at the preassigned values
of y2, . . . , yp, where m1 = E[y1]. It will now be shown that Σ12Σ

−1
22 can be expressed

in terms of variances and correlations. Let σ 2
j = σjj = Var(yj ) where Var(·) denotes the
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variance of (·). Note that σij = Cov(yi, yj ) or the covariance between y1 and yj . Letting
ρij be the correlation between yi and yj , we have

Σ12 = [Cov(y1, y2), . . . , Cov(y1, yp)]
= [σ1σ2ρ12, . . . , σ1σpρ1p].

Then

Σ =

⎡

⎢
⎢
⎢
⎣

σ1σ1 σ1σ2ρ12 · · · σ1σpρ1p

σ2σ1ρ21 σ2σ2 · · · σ2σpρ2p
...

...
. . .

...

σpσ1ρp1 σpσ2ρp2 · · · σpσp

⎤

⎥
⎥
⎥
⎦

, ρij = ρji, ρjj = 1,

for all j . Let D = diag(σ1, . . . , σp) be a diagonal matrix whose diagonal elements are
σ1, . . . , σp, the standard deviations of y1, . . . , yp, respectively. Letting R = (ρij ) = de-
note the correlation matrix wherein ρij is the correlation between yi and yj , we can express
Σ as DRD, that is,

Σ =

⎡

⎢
⎢
⎢
⎣

σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σpp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σp

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 ρ12 · · · ρ1p

ρ21 1 · · · ρ2p

...
...

. . .
...

ρp1 ρp2 · · · 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σp

⎤

⎥
⎥
⎥
⎦

so that
Σ−1 = D−1R−1D−1, p = 2, 3, . . . (4.5.14)

We can then re-express (4.5.13) in terms of variances and correlations since

Σ12Σ
−1
22 = σ1R12D(2)D

−1
(2)R

−1
22 D−1

(2) = σ1R12R
−1
22 D−1

(2)

where D(2) = diag(σ2, . . . , σp) and R is partitioned accordingly. Thus,

E[y1|Y(2)] = m1 + σ1R12R
−1
22 D−1

(2) (Y(2) − M
(p2)

(2) ). (4.5.15)

An interesting particular case occurs when p = 2, as there are then only two real scalar
variables y1 and y2, and

E[y1|y2] = m1 + σ1

σ2
ρ12(y2 − m2), (4.5.16)

which is the regression of y1 on y2 or the best predictor of y1 at a given value of y2.
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4.6. Sampling from a Real Matrix-variate Gaussian Density

Let the p × q matrix Xα = (xijα) have a p × q real matrix-variate Gaussian density
with parameter matrices M, A > O and B > O. When n independently and identically
distributed (iid) matrix random variables that are distributed as Xα are available, we say
that we have a simple random sample of size n from Xα or from the population distributed
asXα. We will consider simple random samples from a p×q matrix-variate Gaussian pop-
ulation in the real and complex domains. Since the procedures are parallel to those utilized
in the vector variable case, we will recall the particulars in connection with that particu-
lar case. Some of the following materials are re-examinations of those already presented
Chap. 3. For q = 1, we have a p-vector which will be denoted by Y1. In our previous
notations, Y1 is the same Y1 for q1 = 1, q2 = 0 and q = 1. Consider a sample of size
n from a population distributed as Y1 and let the p × n sample matrix be denoted by Y.
Then,

Y = [Y1, . . . , Yn] =

⎡

⎢
⎢
⎢
⎣

y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
. . .

...

yp1 yp2 · · · ypn

⎤

⎥
⎥
⎥
⎦

, Y1 =
⎡

⎢
⎣

y11
...

yp1

⎤

⎥
⎦ .

In this case, the columns of Y, that is, Yj , j = 1, . . . , n, are iid variables, distributed as
Y1. Let an n × 1 column vector whose components are all equal to 1 be denoted by J and
consider

Ȳ = 1

n
YJ = 1

n

⎡

⎢
⎢
⎢
⎣

y11 · · · y1n

y21 · · · y2n
...

. . .
...

yp1 · · · ypn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

ȳ1

ȳ2
...

ȳp

⎤

⎥
⎥
⎥
⎦

where ȳj =
∑n

k=1 yjk

n
denotes the average of the variables, distributed as yj . Let

S = (Y − Ȳ)(Y − Ȳ)′ where the bold-faced Ȳ =

⎡

⎢
⎢
⎢
⎣

ȳ1 · · · ȳ1

ȳ2 · · · ȳ2
...

. . .
...

ȳp · · · ȳp

⎤

⎥
⎥
⎥
⎦

= [Ȳ , . . . , Ȳ ].

Then,

S = (sij ), sij =
n∑

k=1

(yik − ȳi)(yjk − ȳj ) for all i and j. (4.6.1)

This matrix S is known as the sample sum of products matrix or corrected sample sum of
products matrix. Here “corrected” indicates that the deviations are taken from the respec-
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tive averages ȳ1, . . . , ȳp. Note that 1
n
sij is equal to the sample covariance between yi and

yj and when i = j , it is the sample variance of yi . Observing that

J =
⎡

⎢
⎣

1
...

1

⎤

⎥
⎦⇒ JJ ′ =

⎡

⎢
⎢
⎢
⎣

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤

⎥
⎥
⎥
⎦

and J ′J = n,

we have

Y
(1

n
JJ ′) = Ȳ ⇒ Y − Ȳ = Y[I − 1

n
JJ ′].

Hence

S = (Y − Ȳ)(Y − Ȳ)′ = Y[I − 1

n
JJ ′][I − 1

n
JJ ′]′Y′.

However,

[I − 1

n
JJ ′][I − 1

n
JJ ′]′ = I − 1

n
JJ ′ − 1

n
JJ ′ + 1

n2
JJ ′JJ ′

= I − 1

n
JJ ′ since J ′J = n.

Thus,

S = Y[I − 1

n
JJ ′]Y′. (4.6.2)

Letting C1 = (I − 1
n
JJ ′), we note that C2

1 = C1 and that the rank of C1 is n − 1.
Accordingly, C1 is an idempotent matrix having n−1 eigenvalues equal to 1, the remaining
one being equal to zero. Now, letting C2 = 1

n
JJ ′, it is easy to verify that C2

2 = C2 and
that the rank of C2 is one; thus, C2 is idempotent with n − 1 eigenvalues equal to zero,
the remaining one being equal to 1. Further, since C1C2 = O, that is, C1 and C2 are
orthogonal to each other, Y − Ȳ = YC1 and Ȳ = YC2 are independently distributed, so
that Y− Ȳ and Ȳ are independently distributed. Consequently, S = (Y− Ȳ)(Y− Ȳ)′ and
Ȳ are independently distributed as well. This will be stated as the next result.

Theorem 4.6.1, 4.6a.1. Let Y1, . . . , Yn be a simple random sample of size n from a p-
variate real Gaussian population having a Np(μ, Σ), Σ > O, distribution. Let Ȳ be the
sample average and S be the sample sum of products matrix; then, Ȳ and S are statistically
independently distributed. In the complex domain, let the Ỹj ’s be iid Np(μ̃, Σ̃), Σ̃ =
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Σ̃∗ > O, and ¯̃
Y and S̃ denote the sample average and sample sum of products matrix;

then, ¯̃
Y and S̃ are independently distributed.

4.6.1. The distribution of the sample sum of products matrix, real case

Reprising the notations of Sect. 4.6, let the p × n matrix Y denote a sample matrix
whose columns Y1, . . . , Yn are iid as Np(μ, Σ), Σ > O, Gaussian vectors. Let the sample
mean be Ȳ = 1

n
(Y1 + · · · + Yn) = 1

n
YJ where J ′ = (1, . . . , 1). Let the bold-faced

matrix Ȳ = [Ȳ , . . . , Ȳ ] = YC1 where C1 = In − 1
n
JJ ′. Note that C1 = In − C2 = C2

1
and C2 = 1

n
JJ ′ = C2

2 , that is, C1 and C2 are idempotent matrices whose respective
ranks are n − 1 and 1. Since C1 = C′

1, there exists an n × n orthonormal matrix P ,
PP ′ = In, P ′P = In, such that P ′C1P = D where

D =
[
In−1 O

O 0

]

= P ′C1P.

Let Y = ZP ′ where Z is p × n. Then, Y = ZP ′ ⇒ YC1 = ZP ′C1 = ZP ′PDP ′ =
ZDP ′, so that

S = (YC1)(YC1)
′ = YC1C

′
1Y

′ = Z

[
In−1 O

O 0

] [
In−1 O

O 0

]

Z′

= (Zn−1, O)(Zn−1, O)′ = Zn−1Z
′
n−1 (4.6.3)

where Zn−1 is a p×(n−1) matrix obtained by deleting the last column of the p×n matrix
Z. Thus, S = Zn−1Z

′
n−1 where Zn−1 contains p(n − 1) distinct real variables. Accord-

ingly, Theorems 4.2.1, 4.2.2, 4.2.3, and the analogous results in the complex domain, are
applicable to Zn−1 as well as to the corresponding quantity Z̃n−1 in the complex case. Ob-
serve that when Y1 ∼ Np(μ, Σ), Y−Ȳ has expected value M−M = O, M = (μ, . . . , μ).
Hence, Y− Ȳ = (Y−M)− (Ȳ−M) and therefore, without any loss of generality, we can
assume Y1 to be coming from a Np(O, Σ), Σ > O, vector random variable whenever
Y − Ȳ is involved.

Theorem 4.6.2. Let Y, Ȳ , Ȳ, J, C1 and C2 be as defined in this section. Then, the
p × n matrix (Y − Ȳ)J = O, which implies that there exist linear relationships among
the columns of Y. However, all the elements of Zn−1 as defined in (4.6.3) are distinct real
variables. Thus, Theorems 4.2.1, 4.2.2 and 4.2.3 are applicable to Zn−1.

Note that the corresponding result for the complex Gaussian case also holds.
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4.6.2. Linear functions of sample vectors

Let Yj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, or equivalently, let the Yj ’s constitutes

a simple random sample of size n from this p-variate real Gaussian population. Then, the
density of the p × n sample matrix Y, denoted by L(Y), is the following:

L(Y) = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr[Σ−1(Y−M)(Y−M)′],

where M = (μ, . . . , μ) is p×n whose columns are all equal to the p×1 parameter vector
μ. Consider a linear function of the sample values Y1, . . . , Yn. Let the linear function be
U = YA where A is an n × q constant matrix of rank q, q ≤ p ≤ n, so that U is p × q.
Let us consider the mgf of U . Since U is p ×q, we employ a q ×p parameter matrix T so
that tr(T U) will contain all the elements in U multiplied by the corresponding parameters.
The mgf of U is then

MU(T ) = E[etr(T U)] = E[etr(TYA)] = E[etr(ATY)]
= etr(ATM)E[etr(AT (Y−M))]

where M = (μ, . . . , μ). Letting W = Σ− 1
2 (Y − M), dY = |Σ | n

2 dW and

MU(T ) = etr(ATM)|Σ | n
2 E[etr(AT Σ

1
2 W)]

= etr(ATM)

(2π)
np
2

∫

W

etr(AT Σ
1
2 W)− 1

2 tr(WW ′)dW.

Now, expanding

tr[(W − C)(W − C)′] = tr(WW ′) − 2tr(WC′) + tr(CC′).

and comparing the resulting expression with the exponent in the integrand, which ex-
cluding −1

2 , is tr(WW ′) − 2tr(AT Σ
1
2 W), we may let C′ = AT Σ

1
2 so that tr(CC′) =

tr(AT ΣT ′A′) = tr(T ΣT ′A′A). Since tr(ATM) = tr(TMA) and

1

(2π)
np
2

∫

W

e− 1
2 ((W−C)(W−C)′)dW = 1,

we have
MU(T ) = MYA(T ) = etr(TMA)+ 1

2 tr(T ΣT ′A′A)

where MA = E[YA], Σ > O, A′A > O, A being a full rank matrix, and T ΣT ′A′A is
a q × q positive definite matrix. Hence, the p × q matrix U = YA has a matrix-variate
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real Gaussian density with the parameters MA = E[YA] and A′A > O, Σ > O. Thus,
the following result:

Theorem 4.6.3, 4.6a.2. Let Yj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, or equiva-

lently, let the Yj ’s constitutes a simple random sample of size n from this p-variate real
Gaussian population. Consider a set of linear functions of Y1, . . . , Yn, U = YA where
Y = (Y1, . . . , Yn) is a p × n sample matrix and A is an n × q constant matrix of rank q,
q ≤ p ≤ n. Then, U has a nonsingular p × q matrix-variate real Gaussian distribution
with the parametersMA = E[YA], A′A > O, and Σ > O. Analogously, in the complex
domain, Ũ = ỸA is a p × q-variate complex Gaussian distribution with the correspond-
ing parameters E[ỸA], A∗A > O, and Σ̃ > O, A∗ denoting the conjugate transpose of
A. In the usual format of a p × q matrix-variate Np,q(M, A, B) real Gaussian density, M
is replaced by MA, A, by A′A and B, by Σ , in the real case, with corresponding changes
for the complex case.

A certain particular case turns out to be of interest. Observe that MA = μ(J ′A), J ′ =
(1, . . . , 1), and that when q = 1, we are considering only one linear combination of
Y1, . . . , Yn in the form U1 = a1Y1 +· · ·+anYn, where a1, . . . , an are real scalar constants.
Then J ′A = ∑n

j=1 aj , A′A = ∑n
j=1 a2

j , and the p × 1 vector U1 has a p-variate real

nonsingular Gaussian distribution with the parameters (
∑n

j=1 aj )μ and (
∑n

j=1 a2
j )Σ . This

result was stated in Theorem 3.5.4.

Corollary 4.6.1, 4.6a.1. Let A as defined in Theorem 4.6.3 be n × 1, in which case
A is a column vector whose components are a1, . . . , an, and the resulting single linear
function of Y1, . . . , Yn is U1 = a1Y1 + · · · + anYn. Let the population be p-variate real
Gaussian with the parameters μ and Σ > O. Then U1 has a p-variate nonsingular real
normal distribution with the parameters (

∑n
j=1 aj )μ and (

∑n
j=1 a2

j )Σ . Analogously, in

the complex Gaussian population case, Ũ1 = a1Ỹ1+· · ·+anỸn is distributed as a complex
Gaussian with mean value (

∑n
j=1 aj )μ̃ and covariance matrix (

∑n
j=1 a∗

j aj )Σ̃ . Taking

a1 = · · · = an = 1
n
, U1 = 1

n
(Y1 + · · · + Yn) = Ȳ , the sample average, which has a

p-variate real Gaussian density with the parameters μ and 1
n
Σ . Correspondingly, in the

complex Gaussian case, the sample average ¯̃
Y is a p-variate complex Gaussian vector

with the parameters μ̃ and 1
n
Σ̃, Σ̃ = Σ̃∗ > O.

4.6.3. The general real matrix-variate case

In order to avoid a multiplicity of symbols, we will denote the p×q real matrix-variate
random variable by Xα = (xijα) and the corresponding complex matrix by X̃α = (x̃ijα).
Consider a simple random sample of size n from the population represented by the real
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p × q matrix Xα = (xijα). Let Xα = (xijα) be the α-th sample value, so that the Xα’s,
α = 1, . . . , n, are iid as X1. Let the p × nq sample matrix be denoted by the bold-faced
X = [X1, X2, . . . , Xn] where each Xj is p × q. Let the sample average be denoted by
X̄ = (x̄ij ), x̄ij = 1

n

∑n
α=1 xijα. Let Xd be the sample deviation matrix which is the

p × qn matrix

Xd = [X1 − X̄, X2 − X̄, . . . , Xn − X̄], Xα − X̄ = (xijα − x̄ij ), (4.6.4)

wherein the corresponding sample average is subtracted from each element. For example,

Xα − X̄ =

⎡

⎢
⎢
⎢
⎣

x11α − x̄11 x12α − x̄12 · · · x1qα − x̄1q

x21α − x̄21 x22α − x̄22 · · · x2qα − x̄2q
...

...
. . .

...

xp1α − x̄p1 xp2α − x̄p2 · · · xpqα − x̄pq

⎤

⎥
⎥
⎥
⎦

= [C1α C2α · · · Cqα

]
(i)

where Cjα is the j -th column in the α-th sample deviation matrix Xα −X̄. In this notation,
the p × qn sample deviation matrix can be expressed as follows:

Xd = [C11, C21, . . . , Cq1, C12, C22, . . . , Cq2, . . . , C1n, C2n, . . . , Cqn] (ii)

where, for example, Cγα denotes the γ -th column in the α-th p × q matrix, Xα − X̄, that
is,

Cγα =

⎡

⎢
⎢
⎢
⎣

x1γα − x̄1γ

x2γα − x̄2γ
...

xpγα − x̄pγ

⎤

⎥
⎥
⎥
⎦

. (iii)

Then, the sample sum of products matrix, denoted by S, is given by

S = XdXd
′ = C11C

′
11 + C21C

′
21 + · · · + Cq1C

′
q1

+ C12C
′
12 + C22C

′
22 + · · · + Cq2C

′
q2

...

+ C1nC
′
1n + C2nC

′
2n + · · · + CqnC

′
qn. (iv)

Let us rearrange these matrices by collecting the terms relevant to each column of X which
are ⎡

⎢
⎢
⎢
⎣

x11

x21
...

xp1

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

x12

x22
...

xp2

⎤

⎥
⎥
⎥
⎦

, . . . ,

⎡

⎢
⎢
⎢
⎣

x1q

x2q
...

xpq

⎤

⎥
⎥
⎥
⎦

.
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Then, the terms relevant to these columns are the following:

S = XdXd
′ = C11C

′
11 + C21C

′
21 + · · · + Cq1C

′
q1

+ C12C
′
12 + C22C

′
22 + · · · + Cq2C

′
q2

...

+ C1nC
′
1n + C2nC

′
2n + · · · + CqnC

′
qn

≡ S1 + S2 + · · · + Sq (v)

where S1 denotes the p × p sample sum of products matrix in the first column of X, S2,

the p × p sample sum of products matrix corresponding to the second column of X, and
so on, Sq being equal to the p × p sample sum of products matrix corresponding to the
q-th column of X.

Theorem 4.6.4. Let Xα = (xijα) be a real p × q matrix of distinct real scalar variables
xijα’s. Letting Xα, X̄, X, Xd, S, and S1, . . . , Sq be as previously defined, the sample
sum of products matrix in the p × nq sample matrix X, denoted by S, is given by

S = S1 + · · · + Sq. (4.6.5)

Example 4.6.1. Consider a 2×2 real matrix-variate N2,2(O, A, B) distribution with the
parameters

A =
[

2 1
1 1

]

and B =
[

3 −1
−1 2

]

.

Let Xα, α = 1, . . . , 5, be a simple random sample of size 5 from this real Gaussian
population. Suppose that the following observations on Xα, α = 1, . . . , 5, were obtained:

X1 =
[

1 1
1 2

]

, X2 =
[−1 1
−2 1

]

, X3 =
[

0 1
1 2

]

X4 =
[−1 1

1 2

]

, X5 =
[−4 1
−1 −2

]

.

Compute the sample matrix, the sample average, the sample deviation matrix and the sam-
ple sum of products matrix.
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Solution 4.6.1. The sample average is available as

X̄ = 1

5
[X1 + · · · + X5]

= 1

5

[
1 + (−1) + 0 + (−1) + (−4) 1 + 1 + 1 + 1 + 1

1 + (−2) + 1 + 1 + (−1) 2 + 1 + 2 + 2 + (−2)

]

=
[−1 1

0 1

]

.

The deviations are then

X1d = X1 − X̄ =
[

1 1
1 2

]

−
[−1 1

0 1

]

=
[

2 0
1 1

]

, X2d =
[

0 0
−2 0

]

X3d =
[

1 0
1 1

]

, X4d =
[

0 0
1 1

]

, X5d =
[−3 0
−1 −3

]

.

Thus, the sample matrix, the sample average matrix and the sample deviation matrix, de-
noted by bold-faced letters, are the following:

X = [X1, X2, X3, X4, X5], X̄ = [X̄, . . . , X̄] and Xd = [X1d, X2d, X3d, X4d, X5d].
The sample sum of products matrix is then

S = [X − X̄][X − X̄]′ = [Xd][Xd]′ = S1 + S2

where S1 is obtained from the first columns of each of Xαd, α = 1, . . . , 5, and S2 is
evaluated from the second columns of Xαd, α = 1, . . . , 5. That is,

S1 =
[

2
1

]

[2 1] +
[

0
−2

]

[0 − 2] +
[

1
1

]

[1 1] +
[

0
1

]

[0 1] +
[−3
−1

]

[−3 − 1]

=
[

4 2
2 1

]

+
[

0 0
0 4

]

+
[

1 1
1 1

]

+
[

0 0
0 1

]

+
[

9 3
3 1

]

=
[

14 6
6 8

]

;

S2 =
[

0
1

]

[0 1] +
[

0
0

]

[0 0] +
[

0
1

]

[0 1] +
[

0
1

]

[0 1] +
[

0
−3

]

[0 − 3]

=
[

0 0
0 1

]

+ O +
[

0 0
0 1

]

+
[

0 0
0 1

]

+
[

0 0
0 9

]

=
[

0 0
0 12

]

;

S = S1 + S2 =
[

14 6
6 20

]

.

This S can be directly verified by taking [X − X̄][X − X̄]′ = [Xd][Xd]′ = where

X − X̄ = Xd =
[

2 0 0 0 1 0 0 0 −3 0
1 1 −2 0 1 1 1 1 −1 −3

]

, S = XdX′
d .



284 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

4.6a. The General Complex Matrix-variate Case

The preceding analysis has its counterpart for the complex case. Let X̃α = (x̃ijα)

be a p × q matrix in the complex domain with the x̃ijα’s being distinct complex scalar
variables. Consider a simple random sample of size n from this population designated by
X̃1. Let the α-th sample matrix be X̃α, α = 1, . . . , n, the X̃α’s being iid as X̃1, and the
p × nq sample matrix be denoted by the bold-faced X̃ = [X̃1, . . . , X̃n]. Let the sample

average be denoted by ¯̃
X = ( ¯̃xij ) , ¯̃xij = 1

n

∑n
α=1 x̃ijα, and X̃d be the sample deviation

matrix:
X̃d = [X̃1 − ¯̃

X, . . . , X̃n − ¯̃
X].

Let S̃ be the sample sum of products matrix, namely, S̃ = X̃dX̃∗
d where an asterisk de-

notes the complex conjugate transpose and let S̃j be the sample sum of products matrix
corresponding to the j -th column of X̃. Then we have the following result:

Theorem 4.6a.3. Let X̃,
¯̃
X, X̃d, S̃ and S̃j be as previously defined. Then,

S̃ = S̃1 + · · · + S̃q = X̃dX̃∗
d . (4.6a.1)

Example 4.6a.1. Consider a 2 × 2 complex matrix-variate Ñ2,2(O, A, B) distribution
where

A =
[

2 1 + i

1 − i 3

]

and B =
[

2 i

−1 2

]

.

A simple random sample of size 4 from this population is available, that is, X̃α
iid∼

Ñ2,2(O, A, B), α = 1, 2, 3, 4. The following are one set of observations on these sample
values:

X̃1 =
[

2 i

−i 1

]

, X̃2 =
[

3 −i

i 1

]

, X̃3 =
[

1 1 − i

1 + i 3

]

, X̃4 =
[

2 3 + i

3 − i 7

]

.

Determine the observed sample average, the sample matrix, the sample deviation matrix
and the sample sum of products matrix.

Solution 4.6a.1. The sample average is

¯̃
X = 1

4
[X̃1 + X̃2 + X̃3 + X̃4]

= 1

4

{[
2 i

−i 1

]

+
[

3 −i

i 1

]

+
[

1 1 − i

1 + i 3

]

+
[

2 3 + i

3 − i 7

]}

=
[

2 1
1 3

]
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and the deviations are as follows:

X̃1d = X̃1 − ¯̃
X =

[
0 −1 + i

−1 − i −2

]

, X̃2d =
[

1 −1 − i

−1 + i −2

]

,

X̃3d =
[−1 −i

i 0

]

, X̃4d =
[

0 2 + i

2 − i 4

]

.

The sample deviation matrix is then X̃d = [X̃1d, X̃2d, X̃3d, X̃4d]. If Vα1 denotes the first
column of X̃αd , then with our usual notation, S̃1 = ∑4

j=1 Vα1V
∗
α1 and similarly, if Vα2 is

the second column of X̃αd, then S̃2 = ∑4
α=1 Vα2V

∗
α2 , the sample sum of products matrix

being S̃ = S̃1 + S̃2. Let us evaluate these quantities:

S̃1 =
[

0
−1 − i

]

[0 − 1 + i]+
[

1
−1 + i

]

[1 − 1 − i]+
[−1

i

]

[−1 − i]+
[

0
2 − i

]

[0 2 + i]

=
[

0 0
0 2

]

+
[

1 −1 − i

−1 + i 2

]

+
[

1 i

−i 1

]

+
[

0 0
0 5

]

=
[

2 −1
−1 10

]

,

S̃2 =
[−1 + i

−2

]

[−1 − i − 2] +
[−1 − i

−2

]

[−1 + i − 2] +
[−i

0

]

[i 0] +
[

2 + i

4

]

[2 − i 4]

=
[

2 2 − 2i

2 + 2i 4

]

+
[

2 2 + 2i

2 − 2i 4

]

+
[

1 0
0 0

]

+
[

5 8 + 4i

8 − 4i 16

]

=
[

10 12 + 4i

12 − 4i 24

]

,

and then,

S̃ = S̃1 + S̃2 =
[

2 −1
−1 10

]

+
[

10 12 + 4i

12 − 4i 24

]

=
[

12 11 + 4i

11 − 4i 34

]

.

This can also be verified directly as S̃ = [X̃d][X̃d]∗ where the deviation matrix is

X̃d =
[

0 −1 + i 1 −1 − i −1 −i 0 2 + i

−i − 1 −2 −1 + i −2 i 0 2 − i 4

]

.

As expected,

[X̃d][X̃d]∗ =
[

12 11 + 4i

11 − 4i 34

]

.

This completes the calculations.
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Exercises 4.6

4.6.1. Let A be a 2 × 2 matrix whose first row is (1, 1) and B be 3 × 3 matrix whose first
row is (1, −1, 1). Select your own real numbers to complete the matrices A and B so that
A > O and B > O. Then consider a 2×3 matrix X having a real matrix-variate Gaussian
density with the location parameter M = O and the foregoing parameter matrices A and
B. Let the first row of X be X1 and its second row be X2. Determine the marginal densities
of X1 and X2, the conditional density of X1 given X2, the conditional density of X2 given
X1, the conditional expectation of X1 given X2 = (1, 0, 1) and the conditional expectation
of X2 given X1 = (1, 2, 3).

4.6.2. Consider the matrix X utilized in Exercise 4.6.1. Let its first two columns be Y1

and its last one be Y2. Then, obtain the marginal densities of Y1 and Y2, and the conditional
densities of Y1 given Y2 and Y2 given Y1, and evaluate the conditional expectation of Y1

given Y ′
2 = (1, −1) as well as the conditional expectation of Y2 given Y1 =

[
1 1
1 2

]

.

4.6.3. Let A > O and B > O be 2 × 2 and 3 × 3 matrices whose first rows are (1, 1 − i)

and (2, i, 1 + i), respectively. Select your own complex numbers to complete the matrices
A = A∗ > O and B = B∗ > O. Now, consider a 2 × 3 matrix X̃ having a complex
matrix-variate Gaussian density with the aforementioned matrices A and B as parameter
matrices. Assume that the location parameter is a null matrix. Letting the row partitioning
of X̃, denoted by X̃1, X̃2, be as specified in Exercise 4.6.1, answer all the questions posed
in that exercise.

4.6.4. Let A, B and X̃ be as given in Exercise 4.6.3. Consider the column partitioning
specified in Exercise 4.6.2. Then answer all the questions posed in Exercise 4.6.2.

4.6.5. Repeat Exercise 4.6.4 with the non-null location parameter

M̃ =
[

2 1 − i i

1 + i 2 + i −3i

]

.

4.7. The Singular Matrix-variate Gaussian Distribution

Consider the moment generating function specified in (4.3.3) for the real case, namely,

MX(T ) = Mf (T ) = etr(T M ′)+ 1
2 tr(Σ1T Σ2T

′) (4.7.1)

where Σ1 = A−1 > O and Σ2 = B−1 > O. In the complex case, the moment generating
function is of the form

M̃X̃(T̃ ) = e�[tr(T̃ M̃∗)]+ 1
4 tr(Σ1T̃ Σ2T̃

∗). (4.7a.1)
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The properties of the singular matrix-variate Gaussian distribution can be studied by mak-
ing use of (4.7.1) and (4.7a.1). Suppose that we restrict Σ1 and Σ2 to be positive semi-
definite matrices, that is, Σ1 ≥ O and Σ2 ≥ O. In this case, one can also study many
properties of the distributions represented by the mgf’s given in (4.7.1) and (4.7a.1); how-
ever, the corresponding densities will not exist unless the matrices Σ1 and Σ2 are both
strictly positive definite. The p × q real or complex matrix-variate density does not ex-
ist if at least one of A or B is singular. When either or both Σ1 and Σ2 are only positive
semi-definite, the distributions corresponding to the mgf’s specified by (4.7.1) and (4.7a.1)
are respectively referred to as real matrix-variate singular Gaussian and complex matrix-
variate singular Gaussian.

For instance, let

Σ1 =
[

4 2
2 1

]

and Σ2 =
⎡

⎣
3 −1 0

−1 2 1
0 1 1

⎤

⎦

in the mgf of a 2 × 3 real matrix-variate Gaussian distribution. Note that Σ1 = Σ ′
1 and

Σ2 = Σ ′
2. Since the leading minors of Σ1 are |(4)| = 4 > 0 and |Σ1| = 0 and those

of Σ2 are |(3)| = 3 > 0,

∣
∣
∣
∣

3 −1
−1 2

∣
∣
∣
∣ = 5 > 0 and |Σ2| = 2 > 0, Σ1 is positive

semi-definite and Σ2 is positive definite. Accordingly, the resulting Gaussian distribution
does not possess a density. Fortunately, its distributional properties can nevertheless be
investigated via its associated moment generating function.
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Chapter 5
Matrix-Variate Gamma and Beta Distributions

5.1. Introduction

The notations introduced in the preceding chapters will still be followed in this one.
Lower-case letters such as x, y will be utilized to represent real scalar variables, whether
mathematical or random. Capital letters such as X, Y will be used to denote vector/matrix
random or mathematical variables. A tilde placed on top of a letter will indicate that the
variables are in the complex domain. However, the tilde will be omitted in the case of con-
stant matrices such as A, B. The determinant of a square matrix A will be denoted as |A|
or det(A) and, in the complex domain, the absolute value or modulus of the determinant of
B will be denoted as |det(B)|. Square matrices appearing in this chapter will be assumed
to be of dimension p × p unless otherwise specified.

We will first define the real matrix-variate gamma function, gamma integral and
gamma density, wherefrom their counterparts in the complex domain will be developed. A
particular case of the real matrix-variate gamma density known as the Wishart density is
widely utilized in multivariate statistical analysis. Actually, the formulation of this distri-
bution in 1928 constituted a significant advance in the early days of the discipline. A real
matrix-variate gamma function, denoted by Γp(α), will be defined in terms of a matrix-
variate integral over a real positive definite matrix X > O. This integral representation
of Γp(α) will be explicitly evaluated with the help of the transformation of a real positive
definite matrix in terms of a lower triangular matrix having positive diagonal elements in
the form X = T T ′ where T = (tij ) is a lower triangular matrix with positive diagonal
elements, that is, tij = 0, i < j and tjj > 0, j = 1, . . . , p. When the diagonal elements
are positive, it can be shown that the transformation X = T T ′ is unique. Its associated
Jacobian is provided in Theorem 1.6.7. This result is now restated for ready reference: For
a p × p real positive definite matrix X = (xij ) > O,
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X = T T ′ ⇒ dX = 2p
{

p∏

j=1

t
p+1−j

jj

}
dT (5.1.1)

where T = (tij ), tij = 0, i < j and tjj > 0, j = 1, . . . , p. Consider the following
integral representation of Γp(α) where the integral is over a real positive definite matrix X

and the integrand is a real-valued scalar function of X:

Γp(α) =
∫

X>O

|X|α−p+1
2 e−tr(X)dX. (5.1.2)

Under the transformation in (5.1.1),

|X|α−p+1
2 dX = {

p∏

j=1

(t2
jj )

α−p+1
2
}
2p
{

p∏

j=1

t
p+1−j

jj

}
dT

= 2p
{

p∏

j=1

(t2
jj )

α− j
2
}

dT .

Observe that tr(X) = tr(T T ′) = the sum of the squares of all the elements in T , which is
∑p

j=1 t2
jj +∑i>j t2

ij . By letting t2
jj = yj ⇒ dtjj = 1

2y
1
2 −1
j dyj , noting that tjj > 0, the

integral over tjj gives

2
∫ ∞

0
(t2

jj )
α− j

2 e−t2
jj dtjj = Γ

(
α − j − 1

2

)
, �(α − j − 1

2

)
> 0, j = 1, . . . , p,

the final condition being �(α) >
p−1

2 . Thus, we have the gamma product Γ (α)Γ (α −
1
2) · · · Γ (α − p−1

2 ). Now for i > j , the integral over tij gives

∏

i>j

∫ ∞

−∞
e−t2

ij dtij =
∏

i>j

√
π = π

p(p−1)
4 .

Therefore

Γp(α) = π
p(p−1)

4 Γ (α)Γ
(
α − 1

2

) · · · Γ (α − p − 1

2

)
, �(α) >

p − 1

2
,

=
∫

X>O

|X|α−p+1
2 e−tr(X)dX, �(α) >

p − 1

2
. (5.1.3)

For example,

Γ2(α) = π
(2)(1)

4 Γ (α)Γ
(
α − 1

2

) = π
1
2 Γ (α)Γ

(
α − 1

2

)
, �(α) >

1

2
.
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This Γp(α) is known by different names in the literature. The first author calls it the real
matrix-variate gamma function because of its association with a real matrix-variate gamma
integral.

5.1a. The Complex Matrix-variate Gamma

In the complex case, consider a p×p Hermitian positive definite matrix X̃ = X̃∗ > O,
where X̃∗ denotes the conjugate transpose of X̃. Let T̃ = (t̃ij ) be a lower triangular matrix
with the diagonal elements being real and positive. In this case, it can be shown that the
transformation X̃ = T̃ T̃ ∗ is one-to-one. Then, as stated in Theorem 1.6a.7, the Jacobian is

dX̃ = 2p
{

p∏

j=1

t
2(p−j)+1
jj

}
d T̃ . (5.1a.1)

With the help of (5.1a.1), we can evaluate the following integral over p × p Hermitian
positive definite matrices where the integrand is a real-valued scalar function of X̃. We
will denote the integral by Γ̃p(α), that is,

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃. (5.1a.2)

Let us evaluate the integral in (5.1a.2) by making use of (5.1a.1). Parallel to the real case,
we have

|det(X̃)|α−pdX̃ = {
p∏

i=1

(t2
jj )

α−p
}
2p
{

p∏

j=1

t
2(p−j)+1
jj

}
dT̃

= {
p∏

j=1

2(t2
jj )

α−j+ 1
2
}
dT̃ .

As well,
e−tr(X̃) = e−∑p

j=1 t2
jj−

∑
i>j |t̃ij |2 .

Since tjj is real and positive, the integral over tjj gives the following:

2
∫ ∞

0
(t2

jj )
α−j+ 1

2 e−t2
jj dtjj = Γ (α − (j − 1)), �(α − (j − 1)) > 0, j = 1, . . . , p,

the final condition being �(α) > p − 1. Note that the absolute value of t̃ij , namely, |t̃ij |
is such that |t̃ij |2 = t2

ij1 + t2
ij2 where t̃ij = tij1 + itij2 with tij1, tij2 real and i = √

(−1).
Thus,

∏

i>j

∫ ∞

−∞

∫ ∞

−∞
e−(t2

ij1+t2
ij2)dtij1 ∧ dtij2 =

∏

i>j

π = π
p(p−1)

2 .
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Then

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe− tr(X̃)dX̃, �(α) >
p − 1

2
, (5.1a.3)

= π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − (p − 1)), �(α) > p − 1.

We will refer to Γ̃p(α) as the complex matrix-variate gamma because of its association
with a complex matrix-variate gamma integral. As an example, consider

Γ̃2(α) = π
(2)(1)

2 Γ (α)Γ (α − 1) = πΓ (α)Γ (α − 1), �(α) > 1.

5.2. The Real Matrix-variate Gamma Density

In view of (5.1.3), we can define a real matrix-variate gamma density with shape pa-
rameter α as follows, where X is p × p real positive definite matrix:

f1(X) =
{

1
Γp(α)

|X|α−p+1
2 e−tr(X), X > O, �(α) >

p−1
2

0, elsewhere.
(5.2.1)

Example 5.2.1. Let

X =
[
x11 x12

x12 x22

]

, X̃ =
[

x1 x2 + iy2

x2 − iy2 x3

]

, X = X′ > O, X̃ = X̃∗ > O,

where x11, x12, x22, x1, x2, y2, x3 are all real scalar variables, i = √
(−1), x22 >

0, x11x22 −x2
12 > 0. While these are the conditions for the positive definiteness of the real

matrix X, x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0 are the conditions for the Hermitian
positive definiteness of X̃. Let us evaluate the following integrals, subject to the previously
specified conditions on the elements of the matrix:

(1) : δ1 =
∫

X>O

e−(x11+x22)dx11 ∧ dx12 ∧ dx22

(2) : δ2 =
∫

X̃>O

e−(x1+x3)dx1 ∧ d(x2 + iy2) ∧ dx3

(3) : δ3 =
∫

X>O

|X|e−(x11+x22)dx11 ∧ dx12 ∧ dx22

(4) : δ4 =
∫

X̃>O

|det(X̃)|2e−(x1+x3)dx1 ∧ d(x2 + iy2) ∧ dx3.
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Solution 5.2.1. (1): Observe that δ1 can be evaluated by treating the integral as a real
matrix-variate integral, namely,

δ1 =
∫

X>O

|X|α−p+1
2 e−tr(X)dX with p = 2,

p + 1

2
= 3

2
, α = 3

2
,

and hence the integral is

Γ2(3/2) = π
2(1)

4 Γ (3/2)Γ (1) = π1/2(1/2)Γ (1/2) = π

2
.

This result can also be obtained by direct integration as a multiple integral. In this case,
the integration has to be done under the conditions x11 > 0, x22 > 0, x11x22 − x2

12 >

0, that is, x2
12 < x11x22 or −√

x11x22 < x12 <
√

x11x22. The integral over x12 yields
∫ √

x11x22

−√
x11x22

dx12 = 2
√

x11x22, that over x11 then gives

2
∫ ∞

x11=0

√
x11e−x11dx11 = 2

∫ ∞

0
x

3
2 −1
11 e−x11 dx11 = 2Γ (3/2) = π

1
2 ,

and on integrating with respect to x22, we have
∫ ∞

0

√
x22e−x22dx22 = 1

2
π

1
2 ,

so that δ1 = 1
2

√
π

√
π = π

2 .
(2): On observing that δ2 can be viewed as a complex matrix-variate integral, it is seen that

δ2 =
∫

X̃>O

|det(X̃)|2−2e−tr(X̃) dX̃ = Γ̃2(2) = π
2(1)

2 Γ (2)Γ (1) = π.

This answer can also be obtained by evaluating the multiple integral. Since X̃ > O, we

have x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0, that is, x1 >
(x2

2+y2
2 )

x3
. Integrating first with

respect to x1 and letting y = x1 − (x2
2+y2

2 )

x3
, we have

∫

x1>
(x2

2+y2
2 )

x3

e−x1d x1 =
∫ ∞

y=0
e
−y− (x2

2+y2
2 )

x3 dy = e
− (x2

2+y2
2 )

x3 .

Now, the integrals over x2 and y2 give

∫ ∞

−∞
e
− x2

2
x3 dx2 = √

x3

∫ ∞

−∞
e−u2

du = √
x3

√
π and

∫ ∞

−∞
e
− y2

2
x3 dy2 = √

x3
√

π,
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that with respect to x3 then yielding

∫ ∞

0
x3e−x3dx3 = Γ (2) = 1,

so that δ2 = (1)
√

π
√

π = π.

(3): Observe that δ3 can be evaluated as a real matrix-variate integral. Then

δ3 =
∫

X>O

|X|e−tr(X)dX =
∫

X>O

|X| 5
2 − 3

2 e−tr(X)dX, with
p + 1

2
= 3

2
as p = 2

= Γ2(5/2) = π
2(1)

4 Γ (5/2)Γ (4/2) = π
1
2 (3/2)(1/2)π1/2(1)

= 3

4
π.

Let us proceed by direct integration:

δ3 =
∫

X>O

[x11x22 − x2
12]e−(x11+x22)dx11 ∧ dx12 ∧ dx22

=
∫

X>O

x22

[
x11 − x2

12

x22

]
e−(x11+x22)dx11 ∧ dx12 ∧ dx22;

letting y = x11 − x2
12

x22
, the integral over x11 yields

∫

x11>
x2
12

x22

[
x11 − x2

12

x22

]
e−x11dx11 =

∫ ∞

y=0
y e

−y− x2
12

x22 dy = e
− x2

12
x22 .

Now, the integral over x12 gives
√

x22
√

π and finally, that over x22 yields

∫

x22>0
x

3
2
22e−x22dx22 = Γ (5/2) = (3/2)(1/2)

√
π = 3

4
π.

(4): Noting that we can treat δ4 as a complex matrix-variate integral, we have

δ4 =
∫

X̃>O

|det(X̃)|2e−tr(X̃)dX̃ =
∫

X̃>O

|det(X̃)|4−2e− tr(X̃)dX̃ = Γ̃2(4), α = 4, p = 2,

= π
2(1)

2 Γ (4)Γ (3) = π(3!)(2!) = 12π.

Direct evaluation will be challenging in this case as the integrand involves |det(X̃)|2.
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If a scale parameter matrix B > O is to be introduced in (5.2.1), then consider
tr(BX) = tr(B

1
2 XB

1
2 ) where B

1
2 is the positive definite square root of the real posi-

tive definite constant matrix B. On applying the transformation Y = B
1
2 XB

1
2 ⇒ dX =

|B|− (p+1)
2 dY , as stated in Theorem 1.6.5, we have

∫

X>O

|X|α−p+1
2 e−tr(BX)dX =

∫

X>O

|X|α−p+1
2 e−tr(B

1
2 XB

1
2 ) dX

= |B|−α

∫

Y>O

|Y |α−p+1
2 e−tr(Y )dY

= |B|−αΓp(α). (5.2.2)

This equality brings about two results. First, the following identity which will turn out to
be very handy in many of the computations:

|B|−α ≡ 1

Γp(α)

∫

X>O

|X|α−p+1
2 e−tr(BX)dX, B > O, �(α) >

p − 1

2
. (5.2.3)

As well, the following two-parameter real matrix-variate gamma density with shape pa-
rameter α and scale parameter matrix B > O can be constructed from (5.2.2):

f (X) =
{ |B|α

Γp(α)
|X|α−p+1

2 e−tr(BX), X > O, B > O, �(α) >
p−1

2

0, elsewhere.
(5.2.4)

5.2.1. The mgf of the real matrix-variate gamma distribution

Let us determine the mgf associated with the density given in (5.2.4), that is, the two-
parameter real matrix-variate gamma density. Observing that X = X′, let T be a symmet-
ric p × p real positive definite parameter matrix. Then, noting that

tr(T X) =
p∑

j=1

tjj xjj + 2
∑

i>j

tij xij , (i)

it is seen that the non-diagonal elements in X multiplied by the corresponding parame-
ters will have twice the weight of the diagonal elements multiplied by the corresponding
parameters. For instance, consider the 2 × 2 case:

tr

{[
t11 t12

t12 t22

] [
x11 x12

x12 x22

]}

= tr

[
t11x11 + t12x12 α1

α2 t12x12 + t22x22

]

= t11x11 + 2t12x12 + t22x22 (ii)
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where α1 and α2 represent elements that are not involved in the evaluation of the trace.
Note that due to the symmetry of T and X, t21 = t12 and x21 = x12, so that the cross
product term t12x12 in (ii) appears twice whereas each of the terms t11x11 and t22x22 appear
only once.

However, in order to be consistent with the mgf in a real multivariate case, each
variable need only be multiplied once by the corresponding parameter, the mgf be-
ing then obtained by taking the expected value of the resulting exponential sum. Ac-
cordingly, the parameter matrix has to be modified as follows: let ∗T = (∗tij ) where

∗tjj = tjj , ∗tij = 1
2 tij , i 
= j, and tij = tj i for all i and j or, in other words, the

non-diagonal elements of the symmetric matrix T are weighted by 1
2 , such a matrix being

denoted as ∗T . Then,
tr(∗T X) =

∑

i,j

tij xij ,

and the mgf in the real matrix-variate two-parameter gamma density, denoted by MX(∗T ),
is the following:

MX(∗T ) = E[etr(∗T X)]
= |B|α

Γp(α)

∫

X>O

|X|α−p+1
2 etr(∗T X−BX)dX.

Now, since
tr(BX − ∗T X) = tr((B − ∗T )

1
2 X(B − ∗T )

1
2 )

for (B − ∗T ) > O, that is, (B − ∗T )
1
2 > O, which means that Y = (B − ∗T )

1
2 X(B −

∗T )
1
2 ⇒ dX = |B − ∗T )|−(

p+1
2 )dY , we have

MX(∗T ) = |B|α
Γp(α)

∫

X>O

|X|α−p+1
2 e−tr((B−∗T )X)dX

= |B|α
Γp(α)

|B − ∗T |−α

∫

Y>O

|Y |α−p+1
2 e−tr(Y )dY

= |B|α|B − ∗T |−α

= |I − B−1∗T |−α for I − B−1∗T > O. (5.2.5)

When ∗T is replaced by −∗T , (5.2.5) gives the Laplace transform of the two-parameter
gamma density in the real matrix-variate case as specified by (5.2.4), which is denoted by
Lf (∗T ), that is,

Lf (∗T ) = MX(−∗T ) = |I + B−1∗T |−α for I + B−1∗T > O. (5.2.6)
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For example, if

X =
[
x11 x12

x12 x22

]

, B =
[

2 −1
−1 3

]

and ∗T =
[

∗t11 ∗t12

∗t12 ∗t22

]

,

then |B| = 5 and

MX(∗T ) = |B|α|B − ∗T |−α = 5α

∣
∣
∣
∣

2 − ∗t11 −1 − ∗t12
−1 − ∗t12 3 − ∗t22

∣
∣
∣
∣

−α

= 5α{(2 − ∗t11)(3 − ∗t22) − (1 + ∗t12)
2}−α.

If ∗T is partitioned into sub-matrices and X is partitioned accordingly as

∗T =
[

∗T 11 ∗T 12

∗T 21 ∗T 22

]

and X =
[
X11 X12

X21 X22

]

(iii)

where ∗T 11 and X11 are r × r, r ≤ p, then what can be said about the densities of the
diagonal blocks X11 and X22? The mgf of X11 is available from the definition by letting
∗T 12 = O, ∗T 21 = O and ∗T 22 = O, as then E[etr(∗T X)] = E[ etr(∗T 11X11)]. However,
B−1∗T is not positive definite since B−1∗T is not symmetric, and thereby I − B−1∗T
cannot be positive definite when ∗T 12 = O, ∗T 21 = O, ∗T 22 = O. Consequently, the
mgf of X11 cannot be determined from (5.2.6). As an alternative, we could rewrite (5.2.6)
in the symmetric format and then try to evaluate the density of X11. As it turns out, the
densities of X11 and X22 can be readily obtained from the mgf in two situations: either
when B = I or B is a block diagonal matrix, that is,

B =
[
B11 O

O B22

]

⇒ B−1 =
[
B−1

11 O

O B−1
22

]

. (iv)

Hence we have the following results:

Theorem 5.2.1. Let the p × p matrices X > O and ∗T > O be partitioned as in (iii).
Let X have a p × p real matrix-variate gamma density with shape parameter α and scale
parameter matrix Ip. Then X11 has an r × r real matrix-variate gamma density and X22

has a (p − r) × (p − r) real matrix-variate gamma density with shape parameter α and
scale parameters Ir and Ip−r , respectively.

Theorem 5.2.2. Let X be partitioned as in (iii). Let the p × p real positive definite
parameter matrix B > O be partitioned as in (iv). Then X11 has an r × r real matrix-
variate gamma density with the parameters (α and B11 > O) and X22 has a (p − r) ×
(p − r) real matrix-variate gamma density with the parameters (α and B22 > O).
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Theorem 5.2.3. Let X be partitioned as in (iii). Then X11 and X22 are statistically inde-
pendently distributed under the restrictions specified in Theorems 5.2.1 and 5.2.2.

In the general case of B, write the mgf as MX(∗T ) = |B|α|B − ∗T |−α, which corre-

sponds to a symmetric format. Then, when ∗T =
[

∗T 11 O

O O

]

,

MX(∗T ) = |B|α
∣
∣
∣
∣
B11 − ∗T 11 B12

B21 B22

∣
∣
∣
∣

−α

= |B|α|B22|−α|B11 − ∗T 11 − B12B
−1
22 B21|−α

= |B22|α|B11 − B12B
−1
22 B21|α|B22|−α|(B11 − B12B

−1
22 B21) − ∗T 11|−α

= |B11 − B12B
−1
22 B21|α|(B11 − B12B

−1
22 B21) − ∗T 11|−α,

which is obtained by making use of the representations of the determinant of a partitioned
matrix, which are available from Sect. 1.3. Now, on comparing the last line with the first
one, it is seen that X11 has a real matrix-variate gamma distribution with shape parameter
α and scale parameter matrix B11 − B12B

−1
22 B21. Hence, the following result:

Theorem 5.2.4. If the p×p real positive definite matrix has a real matrix-variate gamma
density with the shape parameter α and scale parameter matrix B and if X and B are
partitioned as in (iii), then X11 has a real matrix-variate gamma density with shape pa-
rameter α and scale parameter matrix B11 − B12B

−1
22 B21, and the sub-matrix X22 has a

real matrix-variate gamma density with shape parameter α and scale parameter matrix
B22 − B21B

−1
11 B12.

5.2a. The Matrix-variate Gamma Function and Density, Complex Case

Let X̃ = X̃∗ > O be a p × p Hermitian positive definite matrix. When X̃ is Her-
mitian, all its diagonal elements are real and hence tr(X̃) is real. Let det(X̃) denote the
determinant and |det(X̃)| denote the absolute value of the determinant of X̃. As a result,
|det(X̃)|α−p e−tr(X̃) is a real-valued scalar function of X̃. Let us consider the following
integral, denoted by Γ̃p(α):

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−p e−tr(X̃)dX̃, (5.2a.1)

which was evaluated in Sect. 5.1a. In fact, (5.1a.3) provides two representations of the
complex matrix-variate gamma function Γ̃p(α). With the help of (5.1a.3), we can define
the complex p × p matrix-variate gamma density as follows:
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f̃1(X̃) =
{

1
Γ̃p(α)

|det(X̃)|α−pe−tr(X̃), X̃ > O, �(α) > p − 1

0, elsewhere.
(5.2a.2)

For example, let us examine the 2 × 2 complex matrix-variate case. Let X̃ be a matrix in

the complex domain, ¯̃
X denoting its complex conjugate and X̃∗, its conjugate transpose.

When X̃ = X̃∗, the matrix is Hermitian and its diagonal elements are real. In the 2 × 2
Hermitian case, let

X̃ =
[

x1 x2 + iy2

x2 − iy2 x3

]

⇒ ¯̃
X =

[
x1 x2 − iy2

x2 + iy2 x3

]

⇒ X̃∗ = X̃.

Then, the determinants are

det(X̃) = x1x3 − (x2 − iy2)(x2 + iy2) = x1x3 − (x2
2 + y2

2)

= det(X̃∗), x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0,

due to Hermitian positive definiteness of X̃. As well,

|det(X̃)| = +[(det(X̃)(det(X̃∗))] 1
2 = x1x3 − (x2

2 + y2
2) > 0.

Note that tr(X̃) = x1 + x3 and Γ̃2(α) = π
2(1)

2 Γ (α)Γ (α − 1), �(α) > 1, p = 2. The
density is then of the following form:

f1(X̃) = 1

Γ̃2(α)
|det(X̃)|α−2e−tr(X̃)

= 1

πΓ (α)Γ (α − 1)
[x1x3 − (x2

2 + y2
2)]α−2e−(x1+x3)

for x1 > 0, x3 > 0, x1x3 − (x2
2 + y2

2) > 0, �(α) > 1, and f1(X̃) = 0 elsewhere.

Now, consider a p × p parameter matrix B̃ > O. We can obtain the following identity
corresponding to the identity in the real case:

|det(B̃)|−α ≡ 1

Γ̃p(α)

∫

X̃>O

|det(X̃)|α−pe− tr(B̃X̃)dX̃, �(α) > p − 1. (5.2a.3)

A two-parameter gamma density in the complex domain can then be derived by proceeding
as in the real case; it is given by

f̃ (X̃) =
⎧
⎨

⎩

|det(B̃)|α
Γ̃p(α)

|det(X̃)|α−pe− tr(B̃X̃), B̃ > O, X̃ > O, �(α) > p − 1

0, elsewhere.
(5.2a.4)
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5.2a.1. The mgf of the complex matrix-variate gamma distribution

The moment generating function in the complex domain is slightly different from that
in the real case. Let T̃ > O be a p × p parameter matrix and let X̃ be p × p two-
parameter gamma distributed as in (5.2a.4). Then T̃ = T1 + iT2 and X̃ = X1 + iX2, with
T1, T2, X1, X2 real and i = √

(−1). When T̃ and X̃ are Hermitian positive definite, T1

and X1 are real symmetric and T2 and X2 are real skew symmetric. Then consider

tr(T̃ ∗X̃) = tr(T1X1) + tr(T2X2) + i[tr(T1X2) − tr(T2X1)].

Note that tr(T1X1) + tr(T2X2) contains all the real variables involved multiplied by the
corresponding parameters, where the diagonal elements appear once and the off-diagonal
elements each appear twice. Thus, as in the real case, T̃ has to be replaced by ∗T̃ = ∗T 1 +
i∗T 2. A term containing i still remains; however, as a result of the following properties,
this term will disappear.

Lemma 5.2a.1. Let T̃ , X̃, T1, T2, X1, X2 be as defined above. Then, tr(T1X2) =
0, tr(T2X1) = 0, tr(∗T1X2) = 0, tr(∗T2X1) = 0.

Proof: For any real square matrix A, tr(A) = tr(A′) and for any two matrices A and B

where AB and BA are defined, tr(AB) = tr(BA). With the help of these two results, we
have the following:

tr(T1X2) = tr(T1X2)
′ = tr(X′

2T
′

1) = −tr(X2T1) = −tr(T1X2)

as T1 is symmetric and X2 is skew symmetric. Now, tr(T1X2) = −tr(T1X2) ⇒ tr(T1X2) =
0 since it is a real quantity. It can be similarly established that the other results stated in
the lemma hold.

We may now define the mgf in the complex case, denoted by MX̃(∗T ), as follows:

MX̃(∗T̃ ) = E[etr(∗T̃ ∗X̃)] =
∫

X̃>O

e tr(∗T̃ ∗X̃)f̃ (X̃)dX̃

= |det(B̃)|α
Γ̃p(α)

∫

X̃>O

e−tr(B̃−∗T̃ ∗)X̃dX̃.

Since tr(X̃(B̃ − ∗T̃
∗
)) = tr(CX̃C∗) for C = (B̃ − ∗T̃

∗
)

1
2 and C > O, it follows from

Theorem 1:6a.5 that Ỹ = CX̃C∗ ⇒ dỸ = |det(CC∗)|p dX̃, that is, dX̃ = |det(B̃ −
∗T̃

∗
)|−p dỸ for B̃ − ∗T̃

∗
> O. Then,
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MX̃(∗T̃ ) = |det(B̃)|α
Γ̃p(α)

| det(B̃ − ∗T̃
∗
)|−α

∫

Ỹ>O

|det(Ỹ )|α−pe−tr(Ỹ )dỸ

= | det(B̃)|α|det(B̃ − ∗T̃
∗
)|−α for B̃ − ∗T̃

∗
> O

= | det(I − B̃−1∗T̃
∗
)|−α, I − B̃−1∗T̃

∗
> O. (5.2a.5)

For example, let p = 2 and

X̃ =
[
x̃11 x̃12

x̃∗
12 x̃22

]

, B =
[

3 i

−i 2

]

and ∗T =
[

∗t̃11 ∗t̃12

∗t̃∗12 ∗t̃22

]

,

with x̃21 = x̃∗
12 and ∗t̃21 = ∗t̃ ∗

12. In this case, the conjugate transpose is only the conjugate
since the quantities are scalar. Note that B = B∗ and hence B is Hermitian. The leading
minors of B being |(3)| = 3 > 0 and |B| = (3)(2) − (−i)(i) = 5 > 0, B is Hermitian
positive definite. Accordingly,

MX̃(∗T̃ ) = |det(B)|α|det(B − ∗T̃
∗
)|−α

= 5α[(3 − ∗t̃∗11)(2 − ∗ t̃∗22) + (i + ∗t̃∗12)(i − ∗t̃12)].
Now, consider the partitioning of the following p × p matrices:

X̃ =
[
X̃11 X̃12

X̃21 X̃22

]

, ∗T̃ =
[

∗T̃ 11 ∗T̃12

∗T̃ 21 ∗T̃ 22

]

and B̃ =
[
B̃11 B̃12

B̃21 B̃22

]

(i)

where X̃11 and ∗T̃ 11 are r × r , r ≤ p. Then, proceeding as in the real case, we have the
following results:

Theorem 5.2a.1. Let X̃ have a p×p complex matrix-variate gamma density with shape
parameter α and scale parameter Ip, and X̃ be partitioned as in (i). Then, X̃11 has an
r × r complex matrix-variate gamma density with shape parameter α and scale parameter
Ir and X̃22 has a (p − r) × (p − r) complex matrix-variate gamma density with shape
parameter α and scale parameter Ip−r .

Theorem 5.2a.2. Let the p × p complex matrix X̃ have a p × p complex matrix-variate
gamma density with the parameters (α, B̃ > O) and let X̃ and B̃ be partitioned as in (i)
and B̃12 = O, B̃21 = O. Then X̃11 and X̃22 have r × r and (p − r) × (p − r) complex
matrix-variate gamma densities with shape parameter α and scale parameters B̃11 and
B̃22, respectively.

Theorem 5.2a.3. Let X̃, X̃11, X̃22 and B̃ be as specified in Theorems 5.2a.1 or 5.2a.2.
Then, X̃11 and X̃22 are statistically independently distributed as complex matrix-variate
gamma random variables on r × r and (p − r) × (p − r) matrices, respectively.
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For a general matrix B where the sub-matrices B12 and B21 are not assumed to be null,
the marginal densities of X̃11 and X̃22 being given in the next result can be determined by
proceeding as in the real case.

Theorem 5.2a.4. Let X̃ have a complex matrix-variate gamma density with shape pa-
rameter α and scale parameter matrix B = B∗ > O. Letting X̃ and B be partitioned as
in (i), then the sub-matrix X̃11 has a complex matrix-variate gamma density with shape
parameter α and scale parameter matrix B11 − B12B

−1
22 B21, and the sub-matrix X̃22 has

a complex matrix-variate gamma density with shape parameter α and scale parameter
matrix B22 − B21B

−1
11 B12.

Exercises 5.2

5.2.1. Show that

π
(p−r)(p−r−1)

4 π
tr(r−1)

4 π
2r(p−r)

4 = π
p(p−1)

4 .

5.2.2. Show that Γr(α)Γp−r (α − r
2) = Γp(α).

5.2.3. Evaluate (1):
∫
X>O

e−tr(X)dX, (2):
∫
X>O

|X| e−tr(X)dX.

5.2.4. Write down (1): Γ3(α), (2): Γ4(α) explicitly in the real and complex cases.

5.2.5. Evaluate the integrals in Exercise 5.2.3 for the complex case. In (2) replace det(X)

by |det(X)|.
5.3. Matrix-variate Type-1 Beta and Type-2 Beta Densities, Real Case

The p × p matrix-variate beta function denoted by Bp(α, β) is defined as follows in
the real case:

Bp(α, β) = Γp(α)Γp(β)

Γp(α + β)
, �(α) >

p − 1

2
, �(β) >

p − 1

2
. (5.3.1)

This function has the following integral representations in the real case where it is assumed
that �(α) >

p−1
2 and �(β) >

p−1
2 :
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Bp(α, β) =
∫

O<X<I

|X|α−p+1
2 |I − X|β−p+1

2 dX, a type-1 beta integral (5.3.2)

Bp(β, α) =
∫

O<Y<I

|Y |β−p+1
2 |I − Y |α−p+1

2 dY, a type-1 beta integral (5.3.3)

Bp(α, β) =
∫

Z>O

|Z|α−p+1
2 |I + Z|−(α+β)dZ, a type-2 beta integral (5.3.4)

Bp(β, α) =
∫

T >O

|T |β−p+1
2 |I + T |−(α+β)dT , a type-2 beta integral. (5.3.5)

For example, for p = 2, let

X =
[
x11 x12

x12 x22

]

⇒ |X| = x11x22 − x2
12 and |I − X| = (1 − x11)(1 − x22) − x2

12.

Then for example, (5.3.2) will be of the following form:

Bp(α, β) =
∫

X>O

|X|α−p+1
2 |I − X|β−p+1

2 dX

=
∫

x11>0

∫

x22>0

∫

x11x22−x2
12>0

[x11x22 − x2
12]α− 3

2

× [(1 − x11)(1 − x22) − x2
12]β− 3

2 dx11 ∧ dx12 ∧ dx22.

We will derive two of the integrals (5.3.2)–(5.3.5), the other ones being then directly
obtained. Let us begin with the integral representations of Γp(α) and Γp(β) for �(α) >
p−1

2 , �(β) >
p−1

2 :

Γp(α)Γp(β) =
[ ∫

X>O

|X|α−p+1
2 e−tr(X) dX

][ ∫

Y>O

|Y |β−p+1
2 e−tr(Y )dY

]

=
∫

X

∫

Y

|X|α−p+1
2 |Y |β−p+1

2 e−tr(X+Y )dX ∧ dY.

Making the transformation U = X + Y, X = V , whose Jacobian is 1, taking out U from

|U − V | = |U | |I − U− 1
2 V U− 1

2 |, and then letting W = U− 1
2 V U− 1

2 ⇒ dV = |U |p+1
2 dW ,

we have
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Γp(α)Γp(β) =
∫

U

∫

V

|V |α−p+1
2 |U − V |β−p+1

2 e−tr(U)dU ∧ dV

=
{ ∫

U>O

|U |α+β−p+1
2 e−tr(U)dU

}

×
{ ∫

O<W<I

|W |α−p+1
2 |I − W |β−p+1

2 dW
}

= Γp(α + β)

∫

O<W<I

|W |α−p+1
2 |I − W |β−p+1

2 dW.

Thus, on dividing both sides by Γp(α, β), we have

Bp(α, β) =
∫

O<W<I

|W |α−p+1
2 |I − W |β−p+1

2 dW. (i)

This establishes (5.3.2). The initial conditions �(α) >
p−1

2 , �(β) >
p−1

2 are sufficient
to justify all the steps above, and hence no conditions are listed at each stage. Now, take
Y = I −W to obtain (5.3.3). Let us take the W of (i) above and consider the transformation

Z = (I − W)−
1
2 W(I − W)−

1
2 = (W−1 − I )−

1
2 (W−1 − I )−

1
2 = (W−1 − I )−1

which gives
Z−1 = W−1 − I ⇒ |Z|−(p+1)dZ = |W |−(p+1)dW. (ii)

Taking determinants and substituting in (ii) we have

dW = |I + Z|−(p+1)dZ.

On expressing W, I − W and dW in terms of Z, we have the result (5.3.4). Now, let T =
Z−1 with the Jacobian dT = |Z|−(p+1)dZ, then (5.3.4) transforms into the integral (5.3.5).
These establish all four integral representations of the real matrix-variate beta function. We
may also observe that Bp(α, β) = Bp(β, α) or α and β can be interchanged in the beta
function. Consider the function

f3(X) = Γp(α + β)

Γp(α)Γp(β)
|X|α−p+1

2 |I − X|β−p+1
2 (5.3.6)

for O < X < I, �(α) >
p−1

2 , �(β) >
p−1

2 , and f3(X) = 0 elsewhere. This is a type-1
real matrix-variate beta density with the parameters (α, β), where O < X < I means
X > O, I − X > O so that all the eigenvalues of X are in the open interval (0, 1). As for

f4(Z) = Γp(α + β)

Γp(α)Γp(β)
|Z|α−p+1

2 |I + Z|−(α+β) (5.3.7)

whenever Z > O, �(α) >
p−1

2 , �(β) >
p−1

2 , and f4(Z) = 0 elsewhere, this is a p × p

real matrix-variate type-2 beta density with the parameters (α, β).
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5.3.1. Some properties of real matrix-variate type-1 and type-2 beta densities

In the course of the above derivations, it was shown that the following results hold. If
X is a p × p real positive definite matrix having a real matrix-variate type-1 beta density
with the parameters (α, β), then:

(1): Y1 = I − X is real type-1 beta distributed with the parameters (β, α);

(2): Y2 = (I − X)− 1
2 X(I − X)− 1

2 is real type-2 beta distributed with the parameters
(α, β);

(3): Y3 = (I −X)
1
2 X−1(I −X)

1
2 is real type-2 beta distributed with the parameters (β, α).

If Y is real type-2 beta distributed with the parameters (α, β) then:

(4): Z1 = Y−1 is real type-2 beta distributed with the parameters (β, α);

(5): Z2 = (I +Y )− 1
2 Y (I +Y )− 1

2 is real type-1 beta distributed with the parameters (α, β);

(6): Z3 = I − (I +Y )− 1
2 Y (I +Y )− 1

2 = (I +Y )−1 is real type-1 beta distributed with the
parameters (β, α).

5.3a. Matrix-variate Type-1 and Type-2 Beta Densities, Complex Case

A matrix-variate beta function in the complex domain is defined as

B̃p(α, β) = Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
, �(α) > p − 1, �(β) > p − 1 (5.3a.1)

with a tilde over B. As B̃p(α, β) = B̃p(β, α), clearly α and β can be interchanged. Then,
B̃p(α, β) has the following integral representations, where �(α) > p − 1, �(β) > p − 1:

B̃p(α, β) =
∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃, a type-1 beta integral (5.3a.2)

B̃p(β, α) =
∫

O<Ỹ<I

|det(Ỹ )|β−p|det(I − Ỹ )|α−pdỸ , a type-1 beta integral (5.3a.3)

B̃p(α, β) =
∫

Z̃>O

|det(Z̃)|α−p|det(I + Z̃)|−(α+β)dZ̃, a type-2 beta integral (5.3a.4)

B̃p(β, α) =
∫

T̃ >O

|det(T̃ )|β−p|det(I + T̃ )|−(α+β)dT̃ , a type-2 beta integral. (5.3a.5)
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For instance, consider the integrand in (5.3a.2) for the case p = 2. Let

X̃ =
[

x1 x2 + iy2

x2 − iy2 x3

]

, X̃ = X̃∗ > O, i = √(−1),

the diagonal elements of X̃ being real; since X̃ is Hermitian positive definite, we have
x1 > 0, x3 > 0, x1x2 − (x2

2 +y2
2) > 0, det(X̃) = x1x3 − (x2

2 +y2
2) > 0 and det(I − X̃) =

(1 − x1)(1 − x3) − (x2
2 + y2

2) > 0. The integrand in (5.3a.2) is then

[x1x3 − (x2
2 + y2

2)]α− 3
2 [(1 − x1)(1 − x3) − (x2

2 + y2
2)]β− 3

2 .

The derivations of (5.3a.2)–(5.3a.5) being parallel to those provided in the real case, they
are omitted. We will list one case for each of a type-1 and a type-2 beta density in the
complex p × p matrix-variate case:

f̃3(X̃) = Γ̃p(α + β)

Γ̃p(α)Γ̃p(β)
|det(X̃)|α−p| det(I − X̃)|β−p (5.3a.6)

for O < X̃ < I, �(α) > p − 1, �(β) > p − 1 and f̃3(X̃) = 0 elsewhere;

f̃4(Z̃) = Γ̃p(α + β)

Γ̃p(α)Γ̃p(β)
|det(Z̃)|α−p| det(I + Z̃)|−(α+β) (5.3a.7)

for Z̃ > O, �(α) > p − 1, �(β) > p − 1 and f̃4(Z̃) = 0 elsewhere.
Properties parallel to (1) to (6) which are listed in Sect. 5.3.1 also hold in the complex

case.

5.3.2. Explicit evaluation of type-1 matrix-variate beta integrals, real case

A detailed evaluation of a type-1 matrix-variate beta integral as a multiple integral is
presented in this section as the steps will prove useful in connection with other compu-
tations; the reader may also refer to Mathai (2014,b). The real matrix-variate type-1 beta
function which is denoted by

Bp(α, β) = Γp(α)Γp(β)

Γp(α + β)
, �(α) >

p − 1

2
, �(β) >

p − 1

2
,

has the following type-1 beta integral representation:

Bp(α, β) =
∫

O<X<I

|X|α−p+1
2 |I − X|β−p+1

2 dX,
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for �(α) >
p−1

2 , �(β) >
p−1

2 where X is a real p × p symmetric positive def-
inite matrix. The standard derivation of this integral relies on the properties of real
matrix-variate gamma integrals after making suitable transformations, as was previously
done. It is also possible to evaluate the integral directly and show that it is equal to
Γp(α)Γp(β)/Γp(α + β) where, for example,

Γp(α) = π
p(p−1)

4 Γ (α)Γ (α − 1/2) · · · Γ (α − (p − 1)/2), �(α) >
p − 1

2
.

A convenient technique for evaluating a real matrix-variate gamma integral consists of
making the transformation X = T T ′ where T is a lower triangular matrix whose diagonal
elements are positive. However, on applying this transformation, the type-1 beta integral

does not simplify due to the presence of the factor |I − X|β−p+1
2 . Hence, we will attempt

to evaluate this integral by appropriately partitioning the matrices and then, successively
integrating out the variables. Letting X = (xij ) be a p × p real matrix, xpp can then be
extracted from the determinants of |X| and |I − X| after partitioning the matrices. Thus,
let

X =
[
X11 X12

X21 X22

]

where X11 is the (p − 1) × (p − 1) leading sub-matrix, X21 is 1 × (p − 1), X22 = xpp

and X12 = X′
21. Then |X| = |X11||xpp − X21X

−1
11 X12| so that

|X|α−p+1
2 = |X11|α−p+1

2 [xpp − X21X
−1
11 X12]α−p+1

2 , (i)

and

|I − X|β−p+1
2 = |I − X11|β−p+1

2 [(1 − xpp) − X21(I − X11)
−1X12]β−p+1

2 . (ii)

It follows from (i) that xpp > X21X
−1
11 X12 and, from (ii) that xpp < 1 − X21(I −

X11)
−1X12; thus, we have X21X

−1
11 X12 < xpp < 1 − X21(I − X11)

−1X12. Let y =
xpp − X21X

−1
11 X12 ⇒ dy = dxpp for fixed X21, X11, so that 0 < y < b where

b = 1 − X21X
−1
11 X12 − X21(I − X11)

−1X12

= 1 − X21X
− 1

2
11 (I − X11)

− 1
2 (I − X11)

− 1
2 X

− 1
2

11 X12

= 1 − WW ′, W = X21X
− 1

2
11 (I − X11)

− 1
2 .



308 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

The second factor on the right-hand side of (ii) then becomes

[b − y]β−p+1
2 = bβ−p+1

2 [1 − y/b]β−p+1
2 .

Now letting u = y
b

for fixed b, the terms containing u and b become bα+β−(p+1)+1uα−p+1
2

(1 − u)β−p+1
2 . Integration over u then gives

∫ 1

0
uα−p+1

2 (1 − u)β−p+1
2 du = Γ (α − p−1

2 )Γ (β − p−1
2 )

Γ (α + β − (p − 1))

for �(α) >
p−1

2 , �(β) >
p−1

2 . Letting W = X21X
− 1

2
11 (I − X11)

− 1
2 for fixed X11,

dX21 = |X11| 1
2 |I − X11| 1

2 dW from Theorem 1.6.1 of Chap. 1 or Theorem 1.18 of Mathai
(1997), where X11 is a (p − 1) × (p − 1) matrix. Now, letting v = WW ′ and integrating
out over the Stiefel manifold by applying Theorem 4.2.3 of Chap. 4 or Theorem 2.16 and
Remark 2.13 of Mathai (1997), we have

dW = π
p−1

2

Γ (
p−1

2 )
v

p−1
2 −1dv.

Thus, the integral over b becomes

∫

bα+β−pdX21 =
∫ 1

0
v

p−1
2 −1(1 − v)α+β−pdv

= Γ (
p−1

2 )Γ (α + β − (p − 1))

Γ (α + β − p−1
2 )

, �(α + β) > p − 1.

Then, on multiplying all the factors together, we have

|X(1)
11 |α+ 1

2 −p+1
2 |I − X

(1)
11 |β+ 1

2 −p+1
2 π

p−1
2

Γ (α − p−1
2 )Γ (β − p−1

2 )

Γ (α + β − p−1
2 )

whenever �(α) >
p−1

2 , �(β) >
p−1

2 . In this case, X
(1)
11 represents the (p − 1) × (p − 1)

leading sub-matrix at the end of the first set of operations. At the end of the second set of
operations, we will denote the (p − 2) × (p − 2) leading sub-matrix by X

(2)
11 , and so on.

The second step of the operations begins by extracting xp−1,p−1 and writing

|X(1)
11 | = |X(2)

11 | [xp−1,p−1 − X
(2)
21 [X(2)

11 ]−1X
(2)
12 ]
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where X
(2)
21 is a 1 × (p − 2) vector. We then proceed as in the first sequence of steps to

obtain the final factors in the following form:

|X(2)
11 |α+1−p+1

2 |I − X
(2)
11 |β+1−p+1

2 π
p−2

2
Γ (α − p−2

2 )Γ (β − p−2
2 )

Γ (α + β − p−2
2 )

for �(α) >
p−2

2 , �(β) >
p−2

2 . Proceeding in such a manner, in the end, the exponent of
π will be

p − 1

2
+ p − 2

2
+ · · · + 1

2
= p(p − 1)

4
,

and the gamma product will be

Γ (α − p−1
2 )Γ (α − p−2

2 ) · · · Γ (α)Γ (β − p−1
2 ) · · · Γ (β)

Γ (α + β − p−1
2 ) · · · Γ (α + β)

.

These gamma products, along with π
p(p−1)

4 , can be written as Γp(α)Γp(β)

Γp(α+β)
= Bp(α, β);

hence the result. It is thus possible to obtain the beta function in the real matrix-variate
case by direct evaluation of a type-1 real matrix-variate beta integral.

A similar approach can yield the real matrix-variate beta function from a type-2 real
matrix-variate beta integral of the form

∫

X>O

|X|α−p+1
2 |I + X|−(α+β)dX

where X is a p × p positive definite symmetric matrix and it is assumed that �(α) >
p−1

2

and �(β) >
p−1

2 , the evaluation procedure being parallel.

Example 5.3.1. By direct evaluation as a multiple integral, show that
∫

X>O

|X|α−p+1
2 |I − X|β−p+1

2 dX = Γp(α)Γp(β)

Γp(α + β)

for p = 2.

Solution 5.3.1. The integral to be evaluated will be denoted by δ. Let

|X| = x11[x22 − x21x
−1
11 x12] = x11

[
x22 − x2

12

x11

]

|I − X| = [1 − x11][(1 − x22) − x12(1 − x11)
−1x12] = (1 − x11)

[
1 − x22 − x2

12

1 − x11

]
.

(i)
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It is seen from (i) that
x2

12

x11
≤ x22 ≤ 1 − x2

12

1 − x11
.

Letting y = x22 − x2
12

x11
so that 0 ≤ y ≤ b, and b = 1 − x2

12
x11

− x2
12

1−x11
= 1 − x2

12
x11(1−x11)

, we
have

|X|α− 3
2 |I − X|β− 3

2 dX = x
α− 3

2
11 (1 − x11)

β− 3
2 yα− 3

2

× (b − y)β− 3
2 dx11 ∧ dx22 ∧ dy.

Now, integrating out y, we have
∫ b

y=0
yα− 3

2 (b − y)β− 3
2 dy = bα+β−3+1

∫ 1

0
vα− 3

2 (1 − v)β− 3
2 dv, v = y

b

= bα+β−2 Γ (α − 1
2)Γ (β − 1

2)

Γ (α + β − 1)
(ii)

whenever �(α) > 1
2 and �(β) > 1

2 , b being as previously defined. Letting w = x12

[x(1−x)] 1
2

,

dx12 = [x11(1 − x11] 1
2 dw for fixed x11. The exponents of x11 and (1 − x11) then become

α − 3
2 + 1

2 and β − 3
2 + 1

2 , and the integral over w gives the following:
∫ 1

−1
(1 − w2)α+β−2dw = 2

∫ 1

0
(1 − w2)α+β−2dw =

∫ 1

0
z

1
2 −1(1 − z)α+β−2dz

= Γ (1
2)Γ (α + β − 1)

Γ (α + β − 1
2)

. (iii)

Now, integrating out x11, we obtain
∫ 1

0
xα−1

11 (1 − x11)
β−1dx11 = Γ (α)Γ (β)

Γ (α + β)
. (iv)

Then, on collecting the factors from (i) to (iv), we have

δ = Γ (1/2)
Γ (α)Γ (α − 1

2)Γ (β)Γ (β − 1
2)

Γ (α + β)Γ (α + β − 1
2)

.

Finally, noting that for p = 2, π
p(p−1)

4 = π
1
2 = π

1
2 π

1
2

π
1
2

, the desired result is obtained, that

is,

δ = Γ2(α)Γ2(β)

Γ2(α + β)
= B2(α, β).

This completes the computations.



Matrix-Variate Gamma and Beta Distributions 311

5.3a.1. Evaluation of matrix-variate type-1 beta integrals, complex case

The integral representation for Bp(α, β) in the complex case is
∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃ = B̃p(α, β)

whenever �(α) > p − 1, �(β) > p − 1 where det(·) denotes the determinant of (·) and
|det(·)|, the absolute value (or modulus) of the determinant of (·). In this case, X̃ = (x̃ij )

is a p × p Hermitian positive definite matrix and accordingly, all of its diagonal elements
are real and positive. As in the real case, let us extract xpp by partitioning X̃ as follows:

X̃ =
[
X̃11 X̃12

X̃21 X̃22

]

so that I − X̃ =
[
I − X̃11 −X̃12

−X̃21 I − X̃22

]

,

where X̃22 ≡ xpp is a real scalar. Then, the absolute value of the determinants have the
following representations:

|det(X̃)|α−p = |det(X̃11)|α−p|xpp − X̃21X̃
−1
11 X̃∗

12|α−p (i)

where * indicates conjugate transpose, and

|det(I − X̃)|β−p = |det(I − X̃11)|β−p|(1 − xpp) − X̃21(I − X̃11)
−1X̃∗

12|β−p. (ii)

Note that whenever X̃ and I − X̃ are Hermitian positive definite, X̃−1
11 and (I − X̃11)

−1

are too Hermitian positive definite. Further, the Hermitian forms X̃21X̃
−1
11 X̃∗

12 and X̃21(I −
X̃11)

−1X̃∗
12 remain real and positive. It follows from (i) and (ii) that

X̃21X̃
−1
11 X̃∗

12 < xpp < 1 − X̃21(I − X̃11)
−1X̃∗

12.

Since the traces of Hermitian forms are real, the lower and upper bounds of xpp are real as
well. Let

W̃ = X̃21X̃
− 1

2
11 (I − X̃11)

− 1
2

for fixed X̃11. Then

dX̃21 = |det(X̃11)|−1|det(I − X̃11)|−1dW̃

and |det(X̃)|α−p, |det(I −X̃11)|β−p will become |det(X̃11)|α+1−p, | det(I −X̃11)|β+1−p,

respectively. Then, we can write

|(1 − xpp) − X̃21X̃
−1
11 X̃∗

12 − X̃21(I − X̃11)
−1X̃∗

12|β−p

= (b − y)β−p = bβ−p[1 − y/b ]β−p.
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Now, letting u = y/b, the factors containing u and b will be of the form uα−p (1 −
u)β−pbα+β−2p+1; the integral over u then gives

∫ 1

0
uα−p(1 − u)β−pdu = Γ (α − (p − 1))Γ (β − (p − 1))

Γ (α + β − 2(p − 1))
,

for �(α) > p − 1, �(β) > p − 1. Letting v = W̃W̃ ∗ and integrating out over the Stiefel
manifold by making use of Theorem 4.2a.3 of Chap. 4 or Corollaries 4.5.2 and 4.5.3 of
Mathai (1997), we have

dW̃ = πp−1

Γ (p − 1)
v(p−1)−1dv.

The integral over b gives
∫

bα+β−2p+1dX̃21 =
∫ 1

0
v(p−1)−1(1 − v)α+β−2p+1dv

= Γ (p − 1)Γ (α + β − 2(p − 1))

Γ (α + β − p + 1)
,

for �(α) > p − 1, �(β) > p − 1. Now, taking the product of all the factors yields

|det(X̃11)|α+1−p|det(I − X̃11)|β+1−pπp−1 Γ (α − p + 1)Γ (β − p + 1)

Γ (α + β − p + 1)

for �(α) > p − 1, �(β) > p − 1. On extracting xp−1,p−1 from |X̃11| and |I − X̃11| and
continuing this process, in the end, the exponent of π will be (p−1)+ (p−2)+· · ·+1 =
p(p−1)

2 and the gamma product will be

Γ (α − (p − 1))Γ (α − (p − 2)) · · · Γ (α)Γ (β − (p − 1)) · · · Γ (β)

Γ (α + β − (p − 1)) · · · Γ (α + β)
.

These factors, along with π
p(p−1)

2 give

Γ̃p(α)Γ̃p(β)

Γ̃p(α + β)
= B̃p(α, β), �(α) > p − 1, �(β) > p − 1.

The procedure for evaluating a type-2 matrix-variate beta integral by partitioning matrices
is parallel and hence will not be detailed here.

Example 5.3a.1. For p = 2, evaluate the integral
∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃

as a multiple integral and show that it evaluates out to B̃2(α, β), the beta function in the
complex domain.
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Solution 5.3a.1. For p = 2, π
p(p−1)

2 = π
2(1)

2 = π , and

B̃2(α, β) = π
Γ (α)Γ (α − 1)Γ (β)Γ (β − 1)

Γ (α + β)Γ (α + β − 1)

whenever �(α) > 1 and �(β) > 1. For p = 2, our matrix and the relevant determinants
are

X̃ =
[
x̃11 x̃12

x̃∗
12 x̃22

]

, |det(X̃)| and |det(I − X̃)|
where x̃∗

12 is only the conjugate of x̃12 as it is a scalar quantity. By expanding the determi-
nants of the partitioned matrices as explained in Sect. 1.3, we have the following:

det(X̃) = x̃11[x̃22 − x̃∗
12x̃

−1
11 x̃12] = x̃11

[
x̃22 − x̃12x̃

∗
12

x̃11

]
(i)

det(I − X̃) = (1 − x̃11)
[
1 − x̃22 − x̃12x̃

∗
12

1 − x̃11

]
. (ii)

From (i) and (ii), it is seen that

x̃12x̃
∗
12

x̃11
≤ x̃22 ≤ 1 − x̃12x̃

∗
12

1 − x̃11
.

Note that when X̃ is Hermitian, x̃11 and x̃22 are real and hence we may not place a tilde on
these variables. Let ỹ = x22 − x̃12x̃

∗
12/x11. Note that ỹ is also real since x̃12x̃

∗
12 is real. As

well, 0 ≤ y ≤ b, where

b = 1 −
[ x̃12x̃

∗
12

x11

]
− x̃12x̃

∗
12

1 − x11
= 1 − x̃12x̃

∗
12

x11(1 − x11)
.

Further, b is a real scalar of the form b = 1 − w̃w̃∗ where w̃ = x̃12

[x11(1−x11)]
1
2

⇒ dx̃12 =
x11(1 − x11)dw̃. This will make the exponents of x11 and (1 − x11) as α − p + 1 = α − 1
and β − 1, respectively. Now, on integrating out y, we have

∫ b

y=0
yα−2(b − y)β−2dy = bα+β−3 Γ (α − 1)Γ (β − 1)

Γ (α + β − 2)
, �(α) > 1, �(β) > 1. (iii)

Integrating out w̃, we have the following:
∫

w̃

(1 − w̃w̃∗)α+β−3dw̃ = π
Γ (α + β − 2)

Γ (α + β − 1)
. (iv)
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This integral is evaluated by writing z = w̃w̃∗. Then, it follows from Theorem 4.2a.3 that

dw̃ = πp−1

Γ (p − 1)
z(p−1)−1dz = πdz for p = 2.

Now, collecting all relevant factors from (i) to (iv), the required representation of the initial
integral, denoted by δ, is obtained:

δ = π
Γ (α)Γ (α − 1)Γ (β)Γ (β − 1)

Γ (α + β)Γ (α + β − 1)
= Γ̃2(α)Γ̃2(β)

Γ̃2(α + β)
= B̃2(α + β)

whenever �(α) > 1 and �(β) > 1. This completes the computations.

5.3.3. General partitions, real case

In Sect. 5.3.2, we have considered integrating one variable at a time by suitably parti-
tioning the matrices. Would it also be possible to have a general partitioning and integrate
a block of variables at a time, rather than integrating out individual variables? We will
consider the real matrix-variate gamma integral first. Let the p×p positive definite matrix
X be partitioned as follows:

X =
[
X11 X12

X21 X22

]

, X11 being p1 × p1 and X22, p2 × p2,

so that X12 is p1 × p2 with X21 = X′
12 and p1 + p2 = p. Without any loss of generality,

let us assume that p1 ≥ p2. The determinant can be partitioned as follows:

|X|α−p+1
2 = |X11|α−p+1

2 |X22 − X21X
−1
11 X12|α−p+1

2

= |X11|α−p+1
2 |X22|α−p+1

2 |I − X
− 1

2
22 X21X

−1
11 X12X

− 1
2

22 |α−p+1
2 .

Letting

Y = X
− 1

2
22 X21X

− 1
2

11 ⇒ dY = |X22|−
p1
2 |X11|−

p2
2 dX21

for fixed X11 and X22 by making use of Theorem 1.6.4 of Chap. 1 or Theorem 1.18 of
Mathai (1997),

|X|α−p+1
2 dX21 = |X11|α+p2

2 −p+1
2 |X22|α+p1

2 −p+1
2 |I − YY ′|α−p+1

2 dY.

Letting S = YY ′ and integrating out over the Stiefel manifold, we have

dY = π
p1p2

2

Γp2(
p1
2 )

|S|p1
2 −p2+1

2 dS;
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refer to Theorem 2.16 and Remark 2.13 of Mathai (1997) or Theorem 4.2.3 of Chap. 4.
Now, the integral over S gives

∫

O<S<I

|S|p1
2 −P2+1

2 |I − S|α−p1
2 −p2+1

2 dS = Γp2(
p1
2 )Γp2(α − p1

2 )

Γp2(α)
,

for �(α) >
p1−1

2 . Collecting all the factors, we have

|X11|α−p1+1
2 |X22|α−p2+1

2 π
p1p2

2
Γp2(α − p1

2 )

Γp2(α)
.

One can observe from this result that the original determinant splits into functions of X11

and X22. This also shows that if we are considering a real matrix-variate gamma density,
then the diagonal blocks X11 and X22 are statistically independently distributed, where
X11 will have a p1-variate gamma distribution and X22, a p2-variate gamma distribution.
Note that tr(X) = tr(X11) + tr(X22) and hence, the integral over X22 gives Γp2(α) and the
integral over X11, Γp1(α). Thus, the total integral is available as

Γp1(α)Γp2(α)π
p1p2

2
Γp2(α − p1

2 )

Γp2(α)
= Γp(α)

since π
p1p2

2 Γp1(α)Γp2(α − p1
2 ) = Γp(α).

Hence, it is seen that instead of integrating out variables one at a time, we could have
also integrated out blocks of variables at a time and verified the result. A similar procedure
works for real matrix-variate type-1 and type-2 beta distributions, as well as the matrix-
variate gamma and type-1 and type-2 beta distributions in the complex domain.

5.3.4. Methods avoiding integration over the Stiefel manifold

The general method of partitioning matrices previously described involves the integra-
tion over the Stiefel manifold as an intermediate step and relies on Theorem 4.2.3. We will
consider another procedure whereby integration over the Stiefel manifold is not required.
Let us consider the real gamma case first. Again, we begin with the decomposition

|X|α−p+1
2 = |X11|α−p+1

2 |X22 − X21X
−1
11 X12|α−p+1

2 . (5.3.8)

Instead of integrating out X21 or X12, let us integrate out X22. Let X11 be a p1 ×p1 matrix
and X22 be a p2 × p2 matrix, with p1 + p2 = p. In the above partitioning, we require
that X11 be nonsingular. However, when X is positive definite, both X11 and X22 will
be positive definite, and thereby nonsingular. From the second factor in (5.3.8), X22 >
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X21X
−1
11 X12 as X22 − X21X

−1
11 X12 is positive definite. We will attempt to integrate out

X22 first. Let U = X22 − X21X
−1
11 X12 so that dU = dX22 for fixed X11 and X12. Since

tr(X) = tr(X11) + tr(X22), we have

e−tr(X22) = e−tr(U)−tr(X21X
−1
11 X12).

On integrating out U, we obtain
∫

U>O

|U |α−p+1
2 e−tr(U)dU = Γp2(α − p1

2
), �(α) >

p − 1

2

since α − p+1
2 = α − p1

2 − p2+1
2 . Letting

Y = X21X
− 1

2
11 ⇒ dY = |X11|−

p2
2 dX21

for fixed X11 (Theorem 1.6.1), we have
∫

X21

e−tr(X21X
−1
11 X12)dX21 = |X11|

p2
2

∫

Y

e−tr(YY ′)dY.

But tr(YY ′) is the sum of the squares of the p1p2 elements of Y and each integral is of the
form

∫∞
−∞ e−z2

dz = √
π . Hence,

∫

Y

e−tr(YY ′)dY = π
p1p2

2 .

We may now integrate out X11:
∫

X11>O

|X11|α+p2
2 −p+1

2 e−tr(X11)dX11

=
∫

X11>O

|X11|α−p1+1
2 e−tr(X11)dX11

= Γp1(α).

Thus, we have the following factors:

π
p1p2

2 Γp2(α − p1/2)Γp1(α) = Γp(α)

since
p1(p1 − 1)

4
+ p2(p2 − 1)

4
+ p1p2

2
= p(p − 1)

4
, p = p1 + p2,
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and

Γp1(α)Γp2(α − p1/2) = Γ (α)Γ (α − 1/2) · · · Γ (α − (p1 − 1)/2)Γp2(α − (p1)/2)

= Γ (α) · · · Γ (α − (p1 + p2 − 1)/2).

Hence the result. This procedure avoids integration over the Stiefel manifold and does not
require that p1 ≥ p2. We could have integrated out X11 first, if needed. In that case, we
would have used the following expansion:

|X|α−p+1
2 = |X22|α−p+1

2 |X11 − X12X
−1
22 X21|α−p+1

2 .

We would have then proceeded as before by integrating out X11 first and would have ended
up with

π
p1p2

2 Γp1(α − p2/2)Γp2(α) = Γp(α), p = p1 + p2.

Note 5.3.1: If we are considering a real matrix-variate gamma density, such as the
Wishart density, then from the above procedure, observe that after integrating out X22,

the only factor containing X21 is the exponential function, which has the structure of a
matrix-variate Gaussian density. Hence, for a given X11, X21 is matrix-variate Gaussian
distributed. Similarly, for a given X22, X12 is matrix-variate Gaussian distributed. Further,
the diagonal blocks X11 and X22 are independently distributed.

The same procedure also applies for the evaluation of the gamma integrals in the com-
plex domain. Since the steps are parallel, they will not be detailed here.

5.3.5. Arbitrary moments of the determinants, real gamma and beta matrices

Let the p × p real positive definite matrix X have a real matrix-variate gamma density
with the parameters (α, B > O). Then for an arbitrary h, we can evaluate the h-th moment
of the determinant of X with the help of the matrix-variate gamma integral, namely,

∫

X>O

|X|α−p+1
2 e−tr(BX)dX = |B|−αΓp(α). (i)

By making use of (i), we can evaluate the h-th moment in a real matrix-variate gamma
density with the parameters (α, B > O) by considering the associated normalizing con-
stant. Let u1 = |X|. Then, the moments of u1 can be obtained by integrating out over the
density of X:
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E[u1]h = |B|α
Γp(α)

∫

X>O

uh
1|X|α−p+1

2 e−tr(BX)dX

= |B|α
Γp(α)

∫

X>O

|X|α+h−p+1
2 e−tr(BX)dX

= |B|α
Γp(α)

Γp(α + h)|B|−(α+h), �(α + h) >
p − 1

2
.

Thus,

E[u1]h = |B|−hΓp(α + h)

Γp(α)
, �(α + h) >

p − 1

2
.

This is evaluated by observing that when E[u1]h is taken, α is replaced by α + h in
the integrand and hence, the answer is obtained from equation (i). The same procedure
enables one to evaluate the h-th moment of the determinants of type-1 beta and type-2
beta matrices. Let Y be a p × p real positive definite matrix having a real matrix-variate
type-1 beta density with the parameters (α, β) and u2 = |Y |. Then, the h-th moment of Y

is obtained as follows:

E[u2]h = Γp(α + β)

Γp(α)Γp(β)

∫

O<Y<I

uh
2|Y |α−p+1

2 |I − Y |β−p+1
2 dY

= Γp(α + β)

Γp(α)Γp(β)

∫

O<Y<I

|Y |α+h−p+1
2 |I − Y |β−p+1

2 dY

= Γp(α + β)

Γp(α)Γp(β)

Γp(α + h)Γp(β)

Γp(α + β + h)
, �(α + h) >

p − 1

2
,

= Γp(α + h)

Γp(α)

Γp(α + β)

Γp(α + β + h)
, �(α + h) >

p − 1

2
.

In a similar manner, let u3 = |Z| where Z has a p × p real matrix-variate type-2 beta
density with the parameters (α, β). In this case, take α +β = (α +h)+ (β −h), replacing
α by α + h and β by β − h. Then, considering the normalizing constant of a real matrix-
variate type-2 beta density, we obtain the h-th moment of u3 as follows:

E[u3]h = Γp(α + h)

Γp(α)

Γp(β − h)

Γp(β)
, �(α + h) >

p − 1

2
, �(β − h) >

p − 1

2
.

Relatively few moments will exist in this case, as �(α + h) >
p−1

2 implies that �(h) >

−�(α) + p−1
2 and �(β − h) >

p−1
2 means that �(h) < �(β) − p−1

2 . Accordingly, only

moments in the range −�(α)+ p−1
2 < �(h) < �(β)− p−1

2 will exist. We can summarize
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the above results as follows: When X is distributed as a real p × p matrix-variate gamma
with the parameters (α, B > O),

E|X|h = |B|−hΓp(α + h)

Γp(α)
, �(α) >

p − 1

2
. (5.3.9)

When Y has a p×p real matrix-variate type-1 beta density with the parameters (α, β) and
if u2 = |Y | then

E[u2]h = Γp(α + h)

Γp(α)

Γp(α + β)

Γp(α + β + h)
, �(α + h) >

p − 1

2
. (5.3.10)

When the p×p real positive definite matrix Z has a real matrix-variate type-2 beta density
with the parameters (α, β), then letting u3 = |Z|,

E[u3]h = Γp(α + h)

Γp(α)

Γp(β − h)

Γp(β)
, − �(α) + p − 1

2
< �(h) < �(β) − p − 1

2
. (5.3.11)

Let us examine (5.3.9):

E|X|h = |B|−hΓp(α + h)

Γp(α)

= |B|−hΓ (α + h)

Γ (α)

Γ (α − 1
2 + h)

Γ (α − 1
2)

. . .
Γ (α − p−1

2 + h)

Γ (α − p−1
2 )

= E[xh
1 ]E[xh

2 ] · · · E[xh
p]

where xj is a real scalar gamma random variable with shape parameter α − j−1
2 and scale

parameter λj where λj > 0, j = 1, . . . , p are the eigenvalues of B > O by observing
that the determinant is the product and trace is the sum of the eigenvalues λ1, . . . , λp. Fur-
ther, x1, .., xp, are independently distributed. Hence, structurally, we have the following
representation:

|X| =
p∏

j=1

xj (5.3.12)

where xj has the density

f1j (xj ) = λ
α− j−1

2
j

Γ (α − j−1
2 )

x
α− j−1

2 −1
j e−λj xj , 0 ≤ xj < ∞,
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for �(α) >
j−1

2 , λj > 0 and zero otherwise. Similarly, when the p × p real positive
definite matrix Y has a real matrix-variate type-1 beta density with the parameters (α, β),
the determinant, |Y |, has the structural representation

|Y | =
p∏

j=1

yj (5.3.13)

where yj is a real scalar type-1 beta random variable with the parameter (α − j−1
2 , β)

for j = 1, . . . , p. When the p × p real positive definite matrix Z has a real matrix-
variate type-2 beta density, then |Z|, the determinant of Z, has the following structural
representation:

|Z| =
p∏

j=1

zj (5.3.14)

where zj has a real scalar type-2 beta density with the parameters (α − j−1
2 , β − j−1

2 ) for
j = 1, . . . , p.

Example 5.3.2. Consider a real 2 × 2 matrix X having a real matrix-variate distribution.
Derive the density of the determinant |X| if X has (a) a gamma distribution with the param-
eters (α, B = I ); (b) a real type-1 beta distribution with the parameters (α = 3

2 , β = 3
2);

(c) a real type-2 beta distribution with the parameters (α = 3
2 , β = 3

2).

Solution 5.3.2. We will derive the density in these three cases by using three different
methods to illustrate the possibility of making use of various approaches for solving such
problems. (a) Let u1 = |X| in the gamma case. Then for an arbitrary h,

E[uh
1] = Γp(α + h)

Γp(α)
= Γ (α + h)Γ (α + h − 1

2)

Γ (α)Γ (α − 1
2)

, �(α) >
1

2
.

Since the gammas differ by 1
2 , they can be combined by utilizing the following identity:

Γ (mz) = (2π)
1−m

2 mmz− 1
2 Γ (z)Γ

(
z + 1

m

) · · · Γ (z + m − 1

m

)
, m = 1, 2, . . . , (5.3.15)

which is the multiplication formula for gamma functions. For m = 2, we have the dupli-
cation formula:

Γ (2z) = (2π)−
1
2 22z− 1

2 Γ (z)Γ (z + 1/2).

Thus,
Γ (z)Γ (z + 1/2) = π

1
2 21−2zΓ (2z).
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Now, by taking z = α − 1
2 +h in the numerator and z = α − 1

2 in the denominator, we can
write

E[uh
1] = Γ (α + h)Γ (α + h − 1

2)

Γ (α)Γ (α − 1
2)

= Γ (2α − 1 + 2h)

Γ (2α − 1)
2−2h.

Accordingly,

E[(4u1)]h = Γ (2α − 1 + 2h)

Γ (2α − 1)
⇒ E[2u

1
2
1 ]2h = Γ (2α − 1 + 2h)

Γ (2α − 1)
.

This shows that v = 2u
1
2
1 has a real scalar gamma distribution with the parameters (2α −

1, 1) whose density is

f (v) dv = v(2α−1)−1

Γ (2α − 1)
e−vdv = (2u

1
2
1 )2α−2

Γ (2α − 1)
e−2u

1
2
1 d(2u

1
2
1 )

= 22α−2u
α− 1

2 −1
1

Γ (2α − 1)
e−2u

1
2
1 du1.

Hence the density of u1, denoted by f1(u1), is the following:

f1(u1) = 22α−2uα− 1
2 −1

Γ (2α − 1)
e−2u

1
2
, 0 ≤ u1 < ∞

and zero elsewhere. It can easily be verified that f1(u1) is a density.
(b) Let u2 = |X|. Then for an arbitrary h, α = 3

2 and β = 3
2 ,

E[uh
2] = Γp(α + h)

Γp(α)

Γp(α + β)

Γp(α + β + h)

= Γ (3)Γ (5
2)

Γ (3
2)Γ (2

2)

Γ (3
2 + h)Γ (1 + h)

Γ (3 + h)Γ (5
2 + h)

= 3
{ 1

(2 + h)(1 + h)(3
2 + h)

}
= 3
{ 2

2 + h
+ 2

1 + h
− 4

3
2 + h

}
,

the last expression resulting from an application of the partial fraction technique. This
results from h-th moment of the distribution of u2, whose density which is

f2(u2) = 6{1 + u2 − 2u
1
2
2 }, 0 ≤ u2 ≤ 1,

and zero elsewhere, is readily seen to be bona fide.
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(c) Let the density u3 = |X| be denoted by f3(u3). The Mellin transform of f3(u3), with
Mellin parameter s, is

E[us−1
3 ] = Γp(α + s − 1)

Γp(α)

Γp(β − s + 1)

Γp(β)
= Γ2(

3
2 + s − 1)

Γ2(
3
2)

Γ2(
3
2 − s + 1)

Γ2(
3
2)

= 1

[Γ (3/2)Γ (1)]2
Γ (1/2 + s)Γ (s)Γ (5/2 − s)Γ (2 − s),

the corresponding density being available by taking the inverse Mellin transform, namely,

f3(u3) = 4

π

1

2πi

∫ c+i∞

c−i∞
Γ (s)Γ (s + 1/2)Γ (5/2 − s)Γ (2 − s)u−s

3 ds (i)

where i = √
(−1) and c in the integration contour is such that 0 < c < 2. The integral in

(i) is available as the sum of residues at the poles of Γ (s)Γ (s + 1
2) for 0 ≤ u3 ≤ 1 and the

sum of residues at the poles of Γ (2 − s)Γ (5
2 − s) for 1 < u3 < ∞. We can also combine

Γ (s) and Γ (s + 1
2) as well as Γ (2 − s) and Γ (5

2 − s) by making use of the duplication
formula for gamma functions. We will then be able to identify the functions in each of

the sectors, 0 ≤ u3 ≤ 1 and 1 < u3 < ∞. These will be functions of u
1
2
3 as done in the

case (a). In order to illustrate the method relying on the inverse Mellin transform, we will
evaluate the density f3(u3) as a sum of residues. The poles of Γ (s)Γ (s + 1

2) are simple
and hence two sums of residues are obtained for 0 ≤ u3 ≤ 1. The poles of Γ (s) occur at
s = −ν, ν = 0, 1, . . . , and those of Γ (s + 1

2) occur at s = −1
2 − ν, ν = 0, 1, . . .. The

residues and the sum thereof will be evaluated with the help of the following two lemmas.

Lemma 5.3.1. Consider a function Γ (γ + s)φ(s)u−s whose poles are simple. The
residue at the pole s = −γ − ν, ν = 0, 1, . . ., denoted by Rν , is given by

Rν = (−1)ν

ν! φ(−γ − ν)uγ+ν.

Lemma 5.3.2. When Γ (δ) and Γ (δ − ν) are defined

Γ (δ − ν) = (−1)νΓ (δ)

(−δ + 1)ν

where, for example, (a)ν = a(a +1) · · · (a +ν −1), (a)0 = 1, a 
= 0, is the Pochhammer
symbol.
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Observe that Γ (α) is defined for all α 
= 0, −1, −2, . . . , and that an integral represen-
tation requires �(α) > 0. As well, Γ (α + k) = Γ (α)(α)k, k = 1, 2, . . . .. With the help
of Lemmas 5.3.1 and 5.3.2, the sum of the residues at the poles of Γ (s) in the integral in
(i), excluding the constant 4

π
, is the following:

∞∑

ν=0

(−1)ν

ν! Γ
(1

2
− ν
)
Γ
(5

2
+ ν
)
Γ (2 + ν)

=
∞∑

ν=0

(−1)ν

ν! Γ
(1

2

)
Γ
(5

2

)
Γ (2)

(−1)ν

(1
2)ν

(5

2

)

ν
(2)νu

ν
3

= 3

4
π 2F1

(5

2
, 2; 1

2
; u3

)
, 0 ≤ u3 ≤ 1,

where the 2F1(·) is Gauss’ hypergeometric function. The same procedure consisting of
taking the sum of the residues at the poles s = −1

2 − ν, ν = 0, 1, . . . , gives

−3πu
1
2
3 2F1

(
3,

5

2
; 3

2
; u3

)
, 0 ≤ u3 ≤ 1.

The inverse Mellin transform for the sector 1 < u3 < ∞ is available as the sum of
residues at the poles of Γ (5

2 − s) and Γ (2 − s) which occur at s = 5
2 + ν and s = 2 + ν

for ν = 0, 1, . . . . The sum of residues at the poles of Γ (5
2 − s) is the following:

∞∑

ν=0

(−1)ν

ν! Γ
(5

2
+ ν
)
Γ (3 + ν)Γ

(
− 1

2
− ν
)
u

− 5
2 −ν

3

= −3πu
− 5

2
3 2F1

(5

2
, 3; 3

2
; 1

u3

)
, 1 < u3 < ∞,

and the sum of the residues at the poles of Γ (2 − s) is given by

3

4
πu−2

3 2F1

(
2,

5

2
; 1

2
; 1

u3

)
, 1 < u3 < ∞.

Now, on combining all the hypergeometric series and multiplying the result by the constant
4
π
, the final representation of the required density is obtained as

f3(u3) =
⎧
⎨

⎩

3 2F1(
5
2 , 2; 1

2; u3) − 12u
1
2
3 2F1(3, 5

2; 3
2; u3), 0 ≤ u3 ≤ 1,

3u−2
3 2F1(2, 5

2; 1
2; 1

u3
) − 12u

− 5
2

3 2F1(
5
2 , 3; 3

2; 1
u3

), 1 < u3 < ∞.

This completes the computations.



324 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

5.3a.2. Arbitrary moments of the determinants in the complex case

In the complex matrix-variate case, one can consider the absolute value of the deter-
minant, which will be real; however, the parameters will be different from those in the real
case. For example, consider the complex matrix-variate gamma density. If X̃ has a p × p

complex matrix-variate gamma density with the parameters (α, B̃ > O), then the h-th
moment of the absolute value of the determinant of X̃ is the following:

E[|det(X̃)|]h = |det(B̃)|−hΓ̃p(α + h)

Γ̃p(α)

= (λ1 · · · λp)−h

p∏

j=1

Γ (α − (j − 1) + h)

Γ (α − (j − 1))
=

p∏

j=1

E[x̃j ]h,

that is, | det(X̃)| has the structural representation

|det(X̃)| = x̃1x̃2 · · · x̃p, (5.3a.8)

where the x̃j is a real scalar gamma random variable with the parameters (α−(j−1), λj ),
j = 1, . . . , p, and the x̃j ’s are independently distributed. Similarly, when Ỹ is a p × p

complex Hermitian positive definite matrix having a complex matrix-variate type-1 beta
density with the parameters (α, β), the absolute value of the determinant of Ỹ , |det(Ỹ )|,
has the structural representation

|det(Ỹ )| =
p∏

j=1

ỹj (5.3a.9)

where the ỹj ’s are independently distributed, ỹj being a real scalar type-1 beta random
variable with the parameters (α − (j − 1), β), j = 1, . . . , p. When Z̃ is a p × p Her-
mitian positive definite matrix having a complex matrix-variate type-2 beta density with
the parameters (α, β), then for arbitrary h, the h-th moment of the absolute value of the
determinant is given by

E[|det(Z̃)|]h = Γ̃p(α + h)

Γ̃p(α)

Γ̃p(β − h)

Γ̃p(β)

=
{ p∏

j=1

Γ (α − (j − 1) + h)

Γ (α − (j − 1))

}{ p∏

j=1

Γ (β − (j − 1) − h)

Γ (β − (j − 1))

}

=
p∏

j=1

E[z̃j ]h,
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so that the absolute value of the determinant of Z̃ has the following structural representa-
tion:

|det(Z̃)| =
p∏

j=1

z̃j (5.3a.10)

where the z̃j ’s are independently distributed real scalar type-2 beta random variables with
the parameters (α − (j − 1), β − (j − 1)) for j = 1, . . . , p. Thus, in the real case, the
determinant and, in the complex case, the absolute value of the determinant have struc-
tural representations in terms of products of independently distributed real scalar random
variables. The following is the summary of what has been discussed so far:

Distribution Parameters, real case Parameters, complex case
gamma (α − j−1

2 , λj ) (α − (j − 1), λj )

type-1 beta (α − j−1
2 , β) (α − (j − 1), β)

type-2 beta (α − j−1
2 , β − j−1

2 ) (α − (j − 1), β − (j − 1))

for j = 1, . . . , p. When we consider the determinant in the real case, the parameters differ
by 1

2 whereas the parameters differ by 1 in the complex domain. Whether in the real or
complex cases, the individual variables appearing in the structural representations are real
scalar variables that are independently distributed.

Example 5.3a.2. Even when p = 2, some of the poles will be of order 2 since the
gammas differ by integers in the complex case, and hence a numerical example will not
be provided for such an instance. Actually, when poles of order 2 or more are present, the
series representation will contain logarithms as well as psi and zeta functions. A simple
illustrative example is now considered. Let X̃ be 2 × 2 matrix having a complex matrix-
variate type-1 beta distribution with the parameters (α = 2, β = 2). Evaluate the density
of ũ = |det(X̃)|.
Solution 5.3a.2. Let us take the (s − 1)th moment of ũ which corresponds to the Mellin
transform of the density of ũ, with Mellin parameter s:

E[ũs−1] = Γ̃p(α + s − 1)

Γ̃p(α)

Γ̃p(α + β)

Γ̃p(α + β + s − 1)

= Γ (α + β)Γ (α + β − 1)

Γ (α)Γ (α − 1)

Γ (α + s − 1)Γ (α + s − 2)

Γ (α + β + s − 1)Γ (α + β + s − 2)

= Γ (4)Γ (3)

Γ (2)Γ (1)

Γ (1 + s)Γ (s)

Γ (3 + s)Γ (2 + s)
= 12

(2 + s)(1 + s)2s
.
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The inverse Mellin transform then yields the density of ũ, denoted by g̃(ũ), which is

g̃(ũ) = 12
1

2πi

∫ c+i∞

c−i∞
1

(2 + s)(1 + s)2s
u−sds (i)

where the c in the contour is any real number c > 0. There is a pole of order 1 at s = 0 and
another pole of order 1 at s = −2, the residues at these poles being obtained as follows:

lim
s→0

u−s

(2 + s)(1 + s)2
= 1

2
, lim

s→−2

u−s

(1 + s)2s
= −u2

2
.

The pole at s = −1 is of order 2 and hence the residue is given by

lim
s→−1

{ d

ds

u−s

s(2 + s)

}
= lim

s→−1

{(− ln u)u−s

s(2 + s)
− u−s

s2(2 + s)
− u−s

s(2 + s)2

}

= u ln u − u + u = u ln u.

Hence the density is the following:

g̃(ũ) = 6 − 6u2 + 12u ln u, 0 ≤ u ≤ 1,

and zero elsewhere, where u is real. It can readily be shown that g̃(ũ) ≥ 0 and
∫ 1

0 g̃(ũ)du =
1. This completes the computations.

Exercises 5.3

5.3.1. Evaluate the real p × p matrix-variate type-2 beta integral from first principles or
by direct evaluation by partitioning the matrix as in Sect. 5.3.3 (general partitioning).

5.3.2. Repeat Exercise 5.3.1 for the complex case.

5.3.3. In the 2 × 2 partitioning of a p × p real matrix-variate gamma density with shape
parameter α and scale parameter I , where the first diagonal block X11 is r × r, r < p,
compute the density of the rectangular block X12.

5.3.4. Repeat Exercise 5.3.3 for the complex case.

5.3.5. Let the p × p real matrices X1 and X2 have real matrix-variate gamma densities
with the parameters (α1, B > O) and (α2, B > O), respectively, B being the same for

both distributions. Compute the density of (1): U1 = X
− 1

2
2 X1X

− 1
2

2 , (2): U2 = X
1
2
1 X−1

2 X
1
2
1 ,

(3): U3 = (X1 + X2)
− 1

2 X2(X1 + X2)
− 1

2 , when X1 and X2 are independently distributed.
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5.3.6. Repeat Exercise 5.3.5 for the complex case.

5.3.7. In the transformation Y = I − X that was used in Sect. 5.3.1, the Jacobian is
dY = (−1)

p(p+1)
2 dX. What happened to the factor (−1)

p(p+1)
2 ?

5.3.8. Consider X in the (a) 2 × 2, (b) 3 × 3 real matrix-variate case. If X is real
matrix-variate gamma distributed, then derive the densities of the determinant of X in (a)
and (b) if the parameters are α = 5

2 , B = I . Consider X̃ in the (a) 2×2, (b) 3×3 complex
matrix-variate case. Derive the distributions of |det(X̃)| in (a) and (b) if X̃ is complex
matrix-variate gamma distributed with parameters (α = 2 + i, B = I ).

5.3.9. Consider the real cases (a) and (b) in Exercise 5.3.8 except that the distribution
is type-1 beta with the parameters (α = 5

2 , β = 5
2). Derive the density of the determinant

of X.

5.3.10. Consider X̃, (a) 2 × 2, (b) 3 × 3 complex matrix-variate type-1 beta distributed
with parameters α = 5

2 + i, β = 5
2 − i). Then derive the density of |det(X̃)| in the cases

(a) and (b).

5.3.11. Consider X, (a) 2 × 2, (b) 3 × 3 real matrix-variate type-2 beta distributed with
the parameters (α = 3

2 , β = 3
2). Derive the density of |X| in the cases (a) and (b).

5.3.12. Consider X̃, (a) 2 × 2, (b) 3 × 3 complex matrix-variate type-2 beta distributed
with the parameters (α = 3

2, β = 3
2). Derive the density of |det(X̃)| in the cases (a) and

(b).

5.4. The Densities of Some General Structures

Three cases were examined in Section 5.3: the product of real scalar gamma vari-
ables, the product of real scalar type-1 beta variables and the product of real scalar type-2
beta variables, where in all these instances, the individual variables were mutually inde-
pendently distributed. Let us now consider the corresponding general structures. Let xj

be a real scalar gamma variable with shape parameter αj and scale parameter 1 for con-
venience and let the xj ’s be independently distributed for j = 1, . . . , p. Then, letting
v1 = x1 · · · xp,

E[vh
1 ] =

p∏

j=1

Γ (αj + h)

Γ (αj )
, �(αj + h) > 0, �(αj ) > 0. (5.4.1)
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Now, let y1, . . . , yp be independently distributed real scalar type-1 beta random variables
with the parameters (αj , βj ), �(αj ) > 0, �(βj ) > 0, j = 1, . . . , p, and v2 = y1 · · · yp,

E[vh
2 ] =

p∏

j=1

Γ (αj + h)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + h)
(5.4.2)

for �(αj ) > 0, �(βj ) > 0, �(αj + h) > 0, j = 1, . . . , p. Similarly, let z1, . . . , zp,

be independently distributed real scalar type-2 beta random variables with the parameters
(αj , βj ), j = 1, . . . , p, and let v3 = z1 · · · zp. Then, we have

E[vh
3 ] =

p∏

j=1

Γ (αj + h)

Γ (αj )

Γ (βj − h)

Γ (βj )
(5.4.3)

for �(αj ) > 0, �(βj ) > 0, �(αj + h) > 0, �(βj − h) > 0, j = 1, . . . , p. The
corresponding densities of v1, v2, v3, respectively denoted by g1(v1), g2(v2), g3(v3), are
available from the inverse Mellin transforms by taking (5.4.1) to (5.4.3) as the Mellin
transforms of g1, g2, g3 with h = s − 1 for a complex variable s where s is the Mellin
parameter. Then, for suitable contours L, the densities can be determined as follows:

g1(v1) = 1

2πi

∫

L

E[vs−1
1 ]v−s

1 ds, i = √(−1),

=
{ p∏

j=1

1

Γ (αj )

} 1

2πi

∫

L

{ p∏

j=1

Γ (αj + s − 1)
}
v−s

1 ds

=
{ p∏

j=1

1

Γ (αj )

}
G

p,0
0,p[v1|αj−1, j=1,...,p], 0 ≤ v1 < ∞, (5.4.4)

where �(αj + s − 1) > 0, j = 1, . . . , p, and g1(v1) = 0 elsewhere. This last representa-
tion is expressed in terms of a G-function, which will be defined in Sect. 5.4.1.

g2(v2) = 1

2πi

∫

L

E[vs−1
2 ]v−s

2 ds, i = √(−1),

=
{ p∏

j=1

Γ (αj + βj )

Γ (αj )

} 1

2πi

∫

L

{ p∏

j=1

Γ (αj + s − 1)

Γ (αj + βj + s − 1)

}
v−s

2 ds

=
{ p∏

j=1

Γ (αj + βj )

Γ (αj )

}
Gp,0

p,p

[
v2
∣
∣αj+βj−1, j=1,...,p

αj−1, j=1,...,p

]
, 0 ≤ v2 ≤ 1, (5.4.5)
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where G
p,0
p,p is a G-function, �(αj + s − 1) > 0, �(αj ) > 0, �(βj ) > 0, j = 1, . . . , p,

and g2(v2) = 0 elsewhere.

g3(v3) = 1

2πi

∫

L

E[vs−1
3 ]v−s

3 ds, i = √(−1),

=
{ p∏

j=1

1

Γ (αj )Γ (βj )

} ∫

L

{ p∏

j=1

Γ (αj + s − 1)Γ (βj − s + 1)
}
v−s

3 ds

=
{ p∏

j=1

1

Γ (αj )Γ (βj )

}
Gp,p

p,p

[
v3
∣
∣−βj , j=1,...,p

αj−1, j=1,...,p

]
, 0 ≤ v3 < ∞, (5.4.6)

where �(αj ) > 0, �(βj ) > 0, �(αj + s − 1) > 0, �(βj − s + 1) > 0, j = 1, . . . , p,

and g3(v3) = 0 elsewhere.

5.4.1. The G-function

The G-function is defined in terms of the following Mellin-Barnes integral:

G(z) = Gm,n
p,q (z) = Gm,n

p,q

[
z
∣
∣a1,...,ap

b1,...,bq

]

= 1

2πi

∫

L

φ(s)z−sds, i = √(−1)

φ(s) = {∏m
j=1 Γ (bj + s)}{∏n

j=1 Γ (1 − aj − s)}
{∏q

j=m+1 Γ (1 − bj − s)}{∏p

j=n+1 Γ (aj + s)}
where the parameters aj , j = 1, . . . , p, bj , j = 1, . . . , q, can be complex numbers.
There are three general contours L, say L1, L2, L3 where L1 is a loop starting and ending
at −∞ that contains all the poles of Γ (bj + s), j = 1, . . . , m, and none of those of
Γ (1 − aj − s), j = 1, . . . , n. In general L will separate the poles of Γ (bj + s), j =
1, . . . , m, from those of Γ (1 − aj − s), j = 1, . . . , n, which lie on either side of the
contour. L2 is a loop starting and ending at +∞, which encloses all the poles of Γ (1 −
aj − s), j = 1, . . . , n. L3 is the straight line contour c − i∞ to c + i∞. The existence of
the contours, convergence conditions, explicit series forms for general parameters as well
as applications are available in Mathai (1993). G-functions can readily be evaluated with
symbolic computing packages such as MAPLE and Mathematica.

Example 5.4.1. Let x1, x2, x3 be independently distributed real scalar random variables,
x1 being real gamma distributed with the parameters (α1 = 3, β1 = 2), x2, real type-1 beta
distributed with the parameters (α2 = 3

2 + 2i, β2 = 1
2) and x3, real type-2 beta distributed
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with the parameters (α3 = 5
2 + i, β3 = 2 − i). Let u1 = x1x2x3, u2 = x1

x2x3
and u3 = x2

x1x3
with densities gj (uj ), j = 1, 2, 3, respectively. Derive the densities gj (uj ), j = 1, 2, 3,

and represent them in terms of G-functions.

Solution 5.4.1. Observe that E
[ 1
xj

]s−1=E[x−s+1
j ], j = 1, 2, 3, and that g1(u1), g2(u2)

and g3(u3) will share the same ‘normalizing constant’, say c, which is the product of the
parts of the normalizing constants in the densities of x1, x2 and x3 that do not cancel out
when determining the moments, respectively denoted by c1, c2 and c3, that is, c = c1 c2 c3.
Thus,

c = 1

Γ (α1)

Γ (α2 + β2)

Γ (α2)

1

Γ (α3)Γ (β3)

= 1

Γ (3)

Γ (2 + 2i)

Γ (3
2 + 2i)

1

Γ (5
2 + i)Γ (2 − i)

. (i)

The following are E[xs−1
j ] and E[x−s+1

j ] for j = 1, 2, 3:

E[xs−1
1 ] = c1 2s−1Γ (2 + s), E[x−s+1

1 ] = c1 2−s+1Γ (4 − s) (ii)

E[xs−1
2 ] = c2

Γ (1
2 + 2i + s)

Γ (1 + 2i + s)
, E[x−s+1

2 ] = c2
Γ (5

2 + 2i − s)

Γ (3 + 2i − s)
(iii)

E[xs−1
3 ] = c3 Γ (3/2 + i + s)Γ (3 − i − s), E[x−s+1

3 ] = c3 Γ (7/2 + i − s)Γ (1 − i + s).

(iv)

Then from (i)-(iv),

E[us−1
1 ] = c 2s−1Γ (2 + s)

Γ (1
2 + 2i + s)

Γ (1 + 2i + s)
Γ (3/2 + i + s)Γ (3 − i − s).

Taking the inverse Mellin transform and writing the density g1(u1) in terms of a
G-function, we have

g1(u1) = c

2
G

3,1
2,3

[
u1

2

∣
∣
∣
−2+i, 1+2i

2, 1
2 +2i, 3

2 +i

]

.

Using (i)-(iv) and rearranging the gamma functions so that those involving +s appear
together in the numerator, we have the following:

E[us−1
2 ] = c

2
2s Γ (2 + s)

Γ (1 − i + s)

Γ (3 + 2i − s)
Γ (5/2 + 2i − s)Γ (7/2 + i − s).

Taking the inverse Mellin transform and expressing the result in terms of a G-function, we
obtain the density g2(u2) as

g2(u2) = c

2
G

2,2
2,3

[
u2

2

∣
∣
∣
− 3

2 −2i, − 5
2 −i

2, 1−i, 5
2 +2i, −2−2i

]

.
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Using (i)-(iv) and conveniently rearranging the gamma functions involving +s, we have

E[us−1
3 ] = 2 c 2−sΓ (1/2 + 2i + s)Γ (1 − i + s)Γ (4 − s)

Γ (7
2 + i − s)

Γ (1 + 2i + s)
.

On taking the inverse Mellin transform, the following density is obtained:

g3(u3) = 2 c G
2,2
3,2

[

2u3

∣
∣
∣
−3, − 5

2 −i, 1+2i

1
2 +2i, 1−i

]

.

This completes the computations.

5.4.2. Some special cases of the G-function

Certain special cases of the G-function can be written in terms of elementary functions.
Here are some of them:

G
1,0
0,1(z|a) = zae−z, z 
= 0

G
1,1
1,1

[− z
∣
∣1−a

0

] = Γ (a)(1 − z)−a, |z| < 1

G
1,0
1,1

[
z
∣
∣α+β+1
α

] = 1

Γ (β + 1)
zα(1 − z)β, |z| < 1

G
1,1
1,1

[
azα
∣
∣β/α

β/α

] = aβ/α
[ zβ

1 + azα

]
, |azα| < 1

G
1,1
1,1

[
azα
∣
∣1−γ+β/α

β/α

]
= Γ (γ )aβ/α

[ zβ

(1 + azα)γ

]
, |azα| < 1

G
1,2
2,2

[

−z2
∣
∣1−a, 1

2 −a

0, 1
2

]

= Γ (2a)

22a
[(1 + z)−2a + (1 − z)−2a], |z| < 1

G
1,2
2,2

[

z
∣
∣

1
2 −a,1−a

0,−2a

]

= π
1
2

a
[1 + (1 + z)

1
2 ]−2a, |z| < 1

G
1,0
0,2

[z2

4

∣
∣

1
4 ,− 1

4

]
=
( 2

πz

) 1
2

sin z

G
1,0
0,2

[z2

4

∣
∣− 1

4 , 1
4

]
=
( 2

πz

) 1
2

cos z

G
1,0
0,2

[
− z2

4

∣
∣
0,− 1

2

]
= 2

zπ
1
2

sinhz

G
1,0
0,2

[
− z2

4

∣
∣
0, 1

2

]
= π− 1

2 coshz

G
1,2
2,2

[
± z
∣
∣1,1
1,0

]
= ln(1 ± z), |z| < 1
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G
1,p

p,q+1

[
z
∣
∣1−a1,...,1−ap

0,1−b1,...1−bq

]

=
[
Γ (a1) · · · Γ (ap)

Γ (b1) · · · Γ (bq)

]

pFq(a1, . . . , ap; b1, . . . , bq;−z)

for p ≤ q or p = q + 1 and |z| < 1.

5.4.3. The H-function

If we have a general structure corresponding to v1, v2 and v3 of Sect. 5.4, say w1, w2

and w3 of the form

w1 = x
δ1
1 x

δ2
2 · · · xδp

p (5.4.7)

w2 = y
δ1
1 y

δ2
2 · · · yδp

p (5.4.8)

w3 = z
δ1
1 z

δ2
2 · · · zδp

p (5.4.9)

for some δj > 0, j = 1, . . . , p the densities of w1, w2 and w3 are then available in
terms of a more general function known as the H-function. It is again a Mellin-Barnes
type integral defined and denoted as follows:

H(z) = Hm,n
p,q (z) = Hm,n

p,q

[
z
∣
∣(a1,α1),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

= 1

2πi

∫

L

ψ(s)z−sds, i = √(−1),

ψ(s) = {∏m
j=1 Γ (bj + βjs)}{∏n

j=1 Γ (1 − aj − αjs)}
{∏q

j=m+1 Γ (1 − bj − βjs)}{∏p

j=n+1 Γ (aj + αjs)} (5.4.10)

where αj > 0, j = 1, . . . , p, βj > 0, j = 1, . . . , q, are real and positive, aj , j =
1, . . . , p, and bj , j = 1, . . . , q, are complex numbers. Three main contours L1, L2, L3

are utilized, similarly to those described in connection with the G-function. Existence
conditions, properties and applications of this generalized hypergeometric function are
available from Mathai et al. (2010) among other monographs. Numerous special cases can
be expressed in terms of known elementary functions.

Example 5.4.2. Let x1 and x2 be independently distributed real type-1 beta random vari-
ables with the parameters (αj > 0, βj > 0), j = 1, 2, respectively. Let y1 = x

δ1
1 , δ1 > 0,

and y2 = x
δ2
2 , δ2 > 0. Compute the density of u = y1y2.
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Solution 5.4.2. Arbitrary moments of y1 and y2 are available from those of x1 and
x2.

E[xh
j ] = Γ (αj + h)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + h)
, �(αj + h) > 0, j = 1, 2,

E[yh
j ] = E[xδjh

j ] = Γ (αj + δjh)

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + δjh)
, �(αj + δjh) > 0,

E[us−1] = E[ys−1
1 ]E[ys−1

2 ]

=
2∏

j=1

Γ (αj + δj (s − 1))

Γ (αj )

Γ (αj + βj )

Γ (αj + βj + δj (s − 1))
. (5.4.11)

Accordingly, the density of u, denoted by g(u), is the following:

g(u) = C
1

2πi

∫

L

{ 2∏

j=1

Γ (αj − δj + δj s)

Γ (αj + βj − δj + δj s)

}
u−sds

= CH
2,0
2,2

[

u

∣
∣
∣
(α1+β1−δ1, δ1), (α2+β2−δ2, δ2)

(α1−δ1, δ1), (α2−δ2, δ2)

]

,

C =
2∏

j=1

Γ (αj + βj )

Γ (αj )
(5.4.12)

where 0 ≤ u ≤ 1, �(αj − δj + δj s) > 0, �(αj ) > 0, �(βj ) > 0, j = 1, 2 and g(u) = 0
elsewhere.

When α1 = 1 = · · · = αp, β1 = 1 = · · · = βq , the H-function reduces to a
G-function. This G-function is frequently referred to as Meijer’s G-function and the H-
function, as Fox’s H-function.

5.4.4. Some special cases of the H-function

Certain special cases of the H-function are listed next.

H
1,0
0,1 [x|(b,β)] = β−1x

b
β e−x

1
β ;

H
1,1
1,1

[
z|(1−ν,1)

(0,1)

] = Γ (ν)(1 + z)−ν = Γ (ν)1F0(ν; ;−z), |z| < 1;

H
1,0
0,2

[z2

4

∣
∣
∣
( a+ν

2 , a−ν
2 ,1)

]
= (

ν

2
)aJν(z)
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where the Bessel function

Jν(z) =
∞∑

k=0

(−1)k(z/2)ν+2k

k!Γ (ν + k + 1)
= (z/2)ν

Γ (ν + 1)
0F1( ; 1 + ν;−z2

4
);

H
1,1
1,2

[
z
∣
∣(1−a,1)

(0,1),(1−c,1)

]
= Γ (a)

Γ (c)
1F1(a; c;−z);

H
1,2
2,2

[
x
∣
∣(1−a,1),(1−b,1)

(0,1),(1−c,1)

]
= Γ (a)Γ (b)

Γ (c)
2F1(a, b; c;−z);

H
1,1
1,2

[
−z
∣
∣(1−γ,1)

(0,1),(1−β,α)

]
= Γ (γ )E

γ
α,β(z), �(γ ) > 0,

where the generalized Mittag-Leffler function

E
γ
α,β(z) =

∞∑

k=0

(γ )k

k!
zk

Γ (β + αk)
, �(α) > 0, �(β) > 0,

where Γ (γ ) is defined. For γ = 1, we have E1
α,β(z) = Eα,β(z); when γ = 1, β = 1,

E1
α,1(z) = Eα(z) and when γ = 1 = β = α, we have E1(z) = ez.

H
2,0
0,2

[
z
∣
∣
(0,1),( ν

ρ
, 1
ρ
)

]
= ρKν

ρ(z)

where Kν
ρ(z) is Krätzel function

Kν
ρ(z) =

∫ ∞

0
tν−1e−tρ− z

t dt, �(z) > 0.

H
1,0
1,1

[

x

∣
∣
∣
(α+ 1

2 ,1)

(α,1)

]

= π− 1
2 zα(1 − z)−

1
2 , |z| < 1;
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H
2,0
2,2

[

z

∣
∣
∣
(α+ 1

3 ,1),(α+ 2
3 ,1)

(α,1),(α,1)

]

= zα
2F1

(2

3
,

1

3
; 1; 1 − z

)
, |1 − z| < 1.

Exercises 5.4

5.4.1. Show that
zγ G

1,0
0,1

[
pzα|β/α

] = pβ/αzβ+γ e−pzα

.

5.4.2. Show that

e−z = G
1,1
1,2

[
z
∣
∣1/3
0,1/3

]
= G

2,1
2,3

[

z
∣
∣− 1

2 , 1
2

0, 1
2 ,− 1

2

]

.

5.4.3. Show that

z
1
3 (1 − z)−

5
6 = Γ (1/6)G

1,0
1,1

[

z
∣
∣

1
2
1
3

]

.

5.4.4. Show that
∫ ∞

0
xa−1(1 − x)b−c(1 + x − zx)−bdx

= Γ (a)Γ (c − a)

Γ (c)
2F1(a, b; c; z), |z| < 1, �(c − a) > 0.

5.4.5. Show that

(a1 − a2)H
m,n
p,q

[
z
∣
∣(a1,α1),(a2,α1),(a3,α3),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

= Hm,n
p,q

[
z
∣
∣(a1,α1),(a2−1,α1),(a3,α3),...,(ap,αp)

(b1,β1),...,(bq,βq)

]

− Hm,n
p,q

[
z
∣
∣(a1−1,α1),(a2,α1),(a3,α3),...,(ap,αp)

(b1,β1),...,(bq,βq)

]
, n ≥ 2.

5.5, 5.5a. The Wishart Density

A particular case of the real p × p matrix-variate gamma distribution, known as the
Wishart distribution, is the preeminent distribution in multivariate statistical analysis. In
the general p × p real matrix-variate gamma density with parameters (α, B > O), let
α = m

2 , B = 1
2Σ−1 and Σ > O; the resulting density is called a Wishart density with
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degrees of freedom m and parameter matrix Σ > O. This density, denoted by fw(W), is
given by

fw(W) = |W |m
2 −p+1

2

2
mp
2 |Σ |m

2 Γp(m
2 )

e− 1
2 tr(Σ−1W), W > O, Σ > O, (5.5.1)

for m ≥ p, and fw(W) = 0 elsewhere. This will be denoted as W ∼ Wp(m, Σ). Clearly,
all the properties discussed in connection with the real matrix-variate gamma density still
hold in this case. Algebraic evaluations of the marginal densities and explicit evaluations
of the densities of sub-matrices will be considered, some aspects having already been
discussed in Sects. 5.2 and 5.2.1.

In the complex case, the density is the following, denoted by f̃w(W̃ ):

f̃w(W̃ ) = |det(W̃ )|m−pe−tr(Σ−1W̃ )

| det(Σ)|mΓ̃p(m)
, W̃ > O, Σ > O, m ≥ p, (5.5a.1)

and f̃w(W̃ ) = 0 elsewhere. This will be denoted as W̃ ∼ W̃p(m, Σ).

5.5.1. Explicit evaluations of the matrix-variate gamma integral, real case

Is it possible to evaluate the matrix-variate gamma integral explicitly by using conven-
tional integration? We will now investigate some aspects of this question.

When the Wishart density is derived from samples coming from a Gaussian population,
the basic technique relies on the triangularization process. When Σ = I , that is, W ∼
Wp(m, I), can the integral of the right-hand side of (5.5.1) be evaluated by resorting to
conventional methods or by direct evaluation? We will address this problem by making
use of the technique of partitioning matrices. Let us partition

X =
[
X11 X12

X21 X22

]

where let X22 = xpp so that X21 = (xp1, . . . , xp p−1), X12 = X′
21. Then, on applying a

result from Sect. 1.3, we have

|X|α−p+1
2 = |X11|α−p+1

2 [xpp − X21X
−1
11 X12]α−p+1

2 . (5.5.2)

Note that when X is positive definite, X11 > O and xpp > 0, and the quadratic form
X21X

−1
11 X12 > 0. As well,

[xpp − X21X
−1
11 X12]α−p+1

2 = x
α−p+1

2
pp [1 − x

− 1
2

pp X21X
− 1

2
11 X

− 1
2

11 X12x
− 1

2
pp ]α−p+1

2 . (5.5.3)
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Letting Y = x
− 1

2
pp X21X

− 1
2

11 , then referring to Mathai (1997, Theorem 1.18) or Theo-

rem 1.6.4 of Chap. 1, dY = x
−p−1

2
pp |X11|− 1

2 dX21 for fixed X11 and xpp, . The integral
over xpp gives ∫ ∞

0
x

α+p−1
2 −p+1

2
pp e−xppdxpp = Γ (α), �(α) > 0.

If we let u = YY ′, then from Theorem 2.16 and Remark 2.13 of Mathai (1997) or using
Theorem 4.2.3, after integrating out over the Stiefel manifold, we have

dY = π
p−1

2

Γ (
p−1

2 )
u

p−1
2 −1du.

(Note that n in Theorem 2.16 of Mathai (1997) corresponds to p − 1 and p is 1). Then,
the integral over u gives

∫ 1

0
u

p−1
2 −1(1 − u)α−p+1

2 du = Γ (
p−1

2 )Γ (α − p−1
2 )

Γ (α)
, �(α) >

p − 1

2
.

Now, collecting all the factors, we have

|X11|α+ 1
2 −p+1

2 Γ (α)
π

p−1
2

Γ (
p−1

2 )

Γ (
p−1

2 )Γ (α − p−1
2 )

Γ (α)

= |X(1)
11 |α+ 1

2 −p+1
2 π

p−1
2 Γ (α − (p − 1)/2)

for �(α) >
p−1

2 . Note that |X(1)
11 | is (p − 1) × (p − 1) and |X11|, after the completion

of the first part of the operations, is denoted by |X(1)
11 |, the exponent being changed to

α + 1
2 − p+1

2 . Now repeat the process by separating xp−1,p−1, that is, by writing

X
(1)
11 =

[
X

(2)
11 X

(2)
12

X
(2)
21 xp−1,p−1

]

.

Here, X
(2)
11 is of order (p − 2) × (p − 2) and X

(2)
21 is of order 1 × (p − 2). As before,

letting u = YY ′ with Y = x
− 1

2
p−1,p−1X

(2)
21 [X(2)

11 ]− 1
2 , dY = x

−p−2
2

p−1,p−1|X(2)
11 |− 1

2 dX
(2)
21 . The

integral over the Stiefel manifold gives π
p−2

2

Γ (
p−2

2 )
u

p−2
2 −1du and the factor containing (1 − u)

is (1 − u)α+ 1
2 −p+1

2 , the integral over u yielding
∫ 1

0
u

p−2
2 −1(1 − u)α+ 1

2 −p+1
2 du = Γ (

p−2
2 )Γ (α − p−2

2 )

Γ (α)



338 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

and that over v = xp−1,p−1 giving

∫ 1

0
vα+ 1

2 +p−2
2 −p+1

2 e−vdv = Γ (α), �(α) > 0.

The product of these factors is then

|X(2)
11 |α+1−p+1

2 π
p−2

2 Γ (α − (p − 2)/2), �(α) >
p − 2

2
.

Successive evaluations carried out by employing the same procedure yield the exponent
of π as p−1

2 + p−2
2 + · · · + 1

2 = p(p−1)
4 and the gamma product, Γ (α − p−1

2 )Γ (α −
p−2

2 ) · · · Γ (α), the final result being Γp(α). The result is thus verified.

5.5a.1. Evaluation of matrix-variate gamma integrals in the complex case

The matrices and gamma functions belonging to the complex domain will be denoted
with a tilde. As well, in the complex case, all matrices appearing in the integrals will be
p×p Hermitian positive definite unless otherwise stated; as an example, for such a matrix
X, this will be denoted by X̃ > O. The integral of interest is

Γ̃p(α) =
∫

X̃>O

|det(X̃)|α−pe−tr(X̃)dX̃. (5.5a.2)

A standard procedure for evaluating the integral in (5.5a.2) consists of expressing the
positive definite Hermitian matrix as X̃ = T̃ T̃ ∗ where T̃ is a lower triangular matrix with
real and positive diagonal elements tjj > 0, j = 1, . . . , p, where an asterisk indicates the
conjugate transpose. Then, referring to (Mathai (1997, Theorem 3.7) or Theorem 1.6.7 of
Chap. 1, the Jacobian is seen to be as follows:

dX̃ = 2p
{ p∏

j=1

t
2(p−j)+1
jj

}
dT̃ (5.5a.3)

and then

tr(X̃) = tr(T̃ T̃ ∗)
= t2

11 + · · · + t2
pp + |t̃21|2 + · · · + |t̃p1|2 + · · · + |t̃pp−1|2

and

|det(X̃)|α−pdX̃ = 2p
{ p∏

j=1

t
2α−2j+1
jj

}
dT̃ .
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Now. integrating out over t̃jk for j > k,

∫

t̃jk

e−|t̃jk |2dt̃jk =
∫ ∞

−∞

∫ ∞

−∞
e−(t2

jk1+t2
jk2)dtjk1 ∧ dtjk2 = π

and ∏

j>k

π = π
p(p−1)

2 .

As well,

2
∫ ∞

0
t
2α−2j+1
jj e−t2

jj d tjj = Γ (α − j + 1), �(α) > j − 1,

for j = 1, . . . , p. Taking the product of all these factors then gives

π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1) = Γ̃p(α), �(α) > p − 1,

and hence the result is verified.

An alternative method based on partitioned matrix, complex case

The approach discussed in this section relies on the successive extraction of the diago-
nal elements of X̃, a p × p positive definite Hermitian matrix, all of these elements being
necessarily real and positive, that is, xjj > 0, j = 1, . . . , p. Let

X̃ =
[
X̃11 X̃12

X̃21 xpp

]

where X̃11 is (p − 1) × (p − 1) and

|det(X̃)|α−p = |det(X̃11)|α−p|xpp − X̃21X̃
−1
11 X̃12|α−p

and
tr(X̃) = tr(X̃11) + xpp.

Then,

|xpp − X̃21X̃
−1
11 X̃12|α−p = xα−p

pp |1 − x
− 1

2
pp X̃21X̃

− 1
2

11 X̃
− 1

2
11 X̃12x

− 1
2

pp |α−p.

Let

Ỹ = x
− 1

2
pp X̃21X̃

− 1
2

11 ⇒ dỸ = x−(p−1)
pp |det(X̃11)|−1 dX̃21,
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referring to Theorem 1.6a.4 or Mathai (1997, Theorem 3.2(c)) for fixed xpp and X11. Now,
the integral over xpp gives

∫ ∞

0
xα−p+(p−1)

pp e−xppdxpp = Γ (α), �(α) > 0.

Letting u = Ỹ Ỹ ∗, dỸ = up−2 πp−1

Γ (p−1)
du by applying Theorem 4.2a.3 or Corollaries 4.5.2

and 4.5.3 of Mathai (1997), and noting that u is real and positive, the integral over u gives

∫ ∞

0
u(p−1)−1(1 − u)α−(p−1)−1du = Γ (p − 1)Γ (α − (p − 1))

Γ (α)
, �(α) > p − 1.

Taking the product, we obtain

|det(X̃(1)
11 )|α+1−p Γ (α)

πp−1

Γ (p − 1)

Γ (p − 1)Γ (α − (p − 1))

Γ (α)

= πp−1Γ (α − (p − 1))|det(X̃(1)
11 )|α+1−p

where X̃
(1)
11 stands for X̃11 after having completed the first set of integrations. In the second

stage, we extract xp−1,p−1, the first (p − 2) × (p − 2) submatrix being denoted by X̃
(2)
11

and we continue as previously explained to obtain |det(X̃(2)
11 )|α+2−pπp−2Γ (α − (p − 2)).

Proceeding successively in this manner, we have the exponent of π as (p − 1)+ (p − 2)+
· · ·+ 1 = p(p − 1)/2 and the gamma product as Γ (α − (p − 1))Γ (α − (p − 2)) · · · Γ (α)

for �(α) > p − 1. That is,

π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − (p − 1)) = Γ̃p(α).

5.5.2. Triangularization of the Wishart matrix in the real case

Let W ∼ Wp(m, Σ), Σ > O be a p × p matrix having a Wishart distribution with
m degrees of freedom and parameter matrix Σ > O, that is, let W have a density of the
following form for Σ = I :

fw(W) = |W |m
2 −p+1

2 e− 1
2 tr(W)

2
mp
2 Γp(m

2 )
, W > O, m ≥ p, (5.5.4)

and fw(W) = 0 elsewhere. Let us consider the transformation W = T T ′ where T is a
lower triangular matrix with positive diagonal elements. Since W > O, the transformation



Matrix-Variate Gamma and Beta Distributions 341

W = T T ′ with the diagonal elements of T being positive is one-to-one. We have already
evaluated the associated Jacobian in Theorem 1.6.7, namely,

dW = 2p
{ p∏

j=1

t
p+1−j

jj

}
dT . (5.5.5)

Under this transformation,

f (W)dW = 1

2
mp
2 Γp(m

2 )

{ p∏

j=1

(t2
jj )

m
2 −p+1

2

}
e− 1

2

∑
i≥j t2

ij 2p
{ p∏

j=1

t
p+1−j

jj

}
d T

= 1

2
mp
2 Γp(m

2 )
2p
{ p∏

j=1

(t2
jj )

m
2 − j

2

}
e− 1

2

∑p
j=1 t2

jj− 1
2

∑
i>j t2

ij dT . (5.5.6)

In view of (5.5.6), it is evident that tjj , j = 1, . . . , p and the tij ’s, i > j are mutually

independently distributed. The form of the function containing tij , i > j, is e− 1
2 t2

ij , and
hence the tij ’s for i > j are mutually independently distributed real standard normal
variables. It is also seen from (5.5.6) that the density of t2

jj is of the form

cjy
m
2 − j−1

2 −1
j e− 1

2 yj , yj = t2
jj ,

which is the density of a real chisquare variable having m − (j − 1) degrees of freedom
for j = 1, . . . , p, where cj is the normalizing constant. Hence, the following result:

Theorem 5.5.1. Let the real p×p positive definite matrix W have a real Wishart density
as specified in (5.5.4) and let W = T T ′ where T = (tij ) is a lower triangular matrix
whose diagonal elements are positive. Then, the non-diagonal elements tij such that i > j

are mutually independently distributed as real standard normal variables, the diagonal
elements t2

jj , j = 1, . . . , p, are independently distributed as a real chisquare variables

having m − (j − 1) degrees of freedom for j = 1, . . . , p, and the t2
jj ’s and tij ’s are

mutually independently distributed.

Corollary 5.5.1. LetW ∼ Wp(n, σ 2I ), where σ 2 > 0 is a real scalar quantity. LetW =
T T ′ where T = (tij ) is a lower triangular matrix whose diagonal elements are positive.
Then, the tjj ’s are independently distributed for j = 1, . . . , p, the tij ’s, i > j, are
independently distributed, and all tjj ’s and tij ’s are mutually independently distributed,
where t2

jj /σ
2 has a real chisquare distribution with m − (j − 1) degrees of freedom for

j = 1, . . . , p, and tij , i > j, has a real scalar Gaussian distribution with mean value

zero and variance σ 2, that is, tij
iid∼ N(0, σ 2) for all i > j .
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5.5a.2. Triangularization of the Wishart matrix in the complex domain

Let W̃ have the following Wishart density in the complex domain:

f̃w(W̃ ) = 1

Γ̃p(m)
|det(W̃ )|m−pe−tr(W̃ ), W̃ > O, m ≥ p, (5.5a.4)

and f̃w(W̃ ) = 0 elsewhere, which is denoted W̃ ∼ W̃p(m, I). Consider the transformation
W̃ = T̃ T̃ ∗ where T̃ is lower triangular whose diagonal elements are real and positive.
The transformation W̃ = T̃ T̃ ∗ is then one-to-one and its associated Jacobian, as given in
Theorem 1.6a.7, is the following:

dW̃ = 2p
{ p∏

j=1

t
2(p−j)+1
jj

}
dT̃ . (5.5a.5)

Then we have

f̃ (W̃ )dW̃ = 1

Γ̃p(m)

{ p∏

j=1

(t2
jj )

m−p
}

e−∑i≥j |t̃ij |22p
{ p∏

j=1

t
2(p−j)+1
jj

}
dT̃

= 1

Γ̃p(m)
2p
{ p∏

j=1

(t2
jj )

m−j+ 1
2

}
e−∑p

j=1 t2
jj−

∑
i>j |t̃ij |2 dT̃ . (5.5a.6)

In light of (5.5a.6), it is clear that all the tjj ’s and t̃ij ’s are mutually independently dis-
tributed where t̃ij , i > j, has a complex standard Gaussian density and t2

jj has a complex
chisquare density with degrees of freedom m − (j − 1) or a real gamma density with the
parameters (α = m − (j − 1), β = 1), for j = 1, . . . , p. Hence, we have the following
result:

Theorem 5.5a.1. Let the complex Wishart density be as specified in (5.5a.4), that is,
W̃ ∼ W̃p(m, I). Consider the transformation W̃ = T̃ T̃ ∗ where T̃ = (t̃ij ) is a lower
triangular matrix in the complex domain whose diagonal elements are real and positive.
Then, for i > j, the t̃ij ’s are standard Gaussian distributed in the complex domain, that is,
t̃ij ∼ Ñ1(0, 1), i > j , t2

jj is real gamma distributed with the parameters (α = m − (j −
1), β = 1) for j = 1, . . . , p, and all the tjj ’s and t̃ij ’s, i > j, are mutually independently
distributed.

Corollary 5.5a.1. Let W̃ ∼ W̃p(m, σ 2I ) where σ 2 > 0 is a real positive scalar. Let
T̃ , tjj , t̃ij , i > j , be as defined in Theorem 5.5a.1. Then, t2

jj /σ
2 is a real gamma variable

with the parameters (α = m − (j − 1), β = 1) for j = 1, . . . , p, t̃ij ∼ Ñ1(0, σ 2) for all
i > j, and the tjj ’s and t̃ij ’s are mutually independently distributed.
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5.5.3. Samples from a p-variate Gaussian population and the Wishart density

Let the p × 1 real vector Xj be normally distributed, Xj ∼ Np(μ, Σ), Σ > O. Let
X1, . . . , Xn be a simple random sample of size n from this normal population and the
p × n sample matrix be denoted in bold face lettering as X = (X1, X2, . . . , Xn) where
X′

j = (x1j , x2j , . . . , xpj ). Let the sample mean be X̄ = 1
n
(X1 + · · · + Xn) and the matrix

of sample means be denoted by the bold face X̄ = (X̄, . . . , X̄). Then, the p × p sample
sum of products matrix S is given by

S = (X − X̄)(X − X̄)′ = (sij ), sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j )

where x̄r = ∑n
k=1 xrk/n, r = 1, . . . , p, are the averages on the components. It has

already been shown in Sect. 3.5 for instance that the joint density of the sample values
X1, . . . , Xn, denoted by L, can be written as

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ−1S)− n
2 (X̄−μ)′Σ−1(X̄−μ). (5.5.7)

But (X − X̄)J = O, J ′ = (1, . . . , 1), which implies that the columns of (X − X̄) are
linearly related, and hence the elements in (X − X̄) are not distinct. In light of equa-
tion (4.5.17), one can write the sample sum of products matrix S in terms of a p × (n − 1)

matrix Zn−1 of distinct elements so that S = Zn−1Z
′
n−1. As well, according to Theo-

rem 3.5.3 of Chap. 3, S and X̄ are independently distributed. The p × n matrix Z is
obtained through the orthonormal transformation XP = Z, PP ′ = I, P ′P = I where
P is n × n. Then dX = dZ, ignoring the sign. Let the last column of P be pn. We can
specify pn to be 1√

n
J so that Xpn = √

nX̄. Note that in light of (4.5.17), the deleted

column in Z corresponds to
√

nX̄. The following considerations will be helpful to those
who might need further confirmation of the validity of the above statement. Observe that
X − X̄ = X(I − B), with B = 1

n
JJ ′ where J is a n × 1 vector of unities. Since I − B is

idempotent and of rank n − 1, the eigenvalues are 1 repeated n − 1 times and a zero. An
eigenvector, corresponding to the eigenvalue zero, is J normalized or 1√

n
J . Taking this as

the last column pn of P , we have Xpn = √
nX̄. Note that the other columns of P , namely

p1, . . . , pn−1, correspond to the n − 1 orthonormal solutions coming from the equation
BY = Y where Y is a n×1 non-null vector. Hence we can write dZ = dZn−1 ∧dX̄. Now,
integrating out X̄ from (5.5.7), we have

L dZn−1 = c e− 1
2 tr(Σ−1Zn−1Z

′
n−1)dZn−1, S = Zn−1Z

′
n−1, (5.5.8)



344 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

where c is a constant. Since Zn−1 contains p(n − 1) distinct real variables, we may apply
Theorems 4.2.1, 4.2.2 and 4.2.3, and write dZn−1 in terms of dS as

dZn−1 = π
p(n−1)

2

Γp(n−1
2 )

|S| n−1
2 −p+1

2 dS, n − 1 ≥ p. (5.5.9)

Then, if the density of S is denoted by f (S),

f (S)dS = c1
|S| n−1

2 −p+1
2

Γp(n−1
2 )

e− 1
2 tr(Σ−1S)dS

where c1 is a constant. From a real matrix-variate gamma density, we have the normalizing
constant, thereby the value of c1. Hence

f (S)dS = |S| n−1
2 −p+1

2

2
(n−1)p

2 |Σ | n−1
2 Γp(n−1

2 )
e− 1

2 tr(Σ−1S)dS (5.5.10)

for S > O, Σ > O, n − 1 ≥ p and f (X) = 0 elsewhere, Γp(·) being the real matrix-
variate gamma given by

Γp(α) = π
p(p−1)

4 Γ (α)Γ (α − 1/2) · · · Γ (α − (p − 1)/2), �(α) > (p − 1)/2.

Usually the sample size is taken as N so that N −1 = n the number of degrees of freedom
associated with the Wishart density in (5.5.10). Since we have taken the sample size as n,
the number of degrees of freedom is n − 1 and the parameter matrix is Σ > O. Then S

in (5.5.10) is written as S ∼ Wp(m, Σ), with m = n − 1 ≥ p. Thus, the following result:

Theorem 5.5.2. Let X1, . . . , Xn be a simple random sample of size n from a
Np(μ, Σ), Σ > O. Let Xj, X, X̄, X̄, S be as defined in Sect. 5.5.3. Then, the den-
sity of S is a real Wishart density with m = n − 1 degrees of freedom and parameter
matrix Σ > O, as given in (5.5.10).

5.5a.3. Sample from a complex Gaussian population and the Wishart density

Let X̃j ∼ Ñp(μ̃, Σ), Σ > O, j = 1, . . . , n be independently distributed. Let X̃ =
(X̃1, . . . , X̃n),

¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = (
¯̃
X, . . . ,

¯̃
X) and let S̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗

where a * indicates the conjugate transpose. We have already shown in Sect. 3.5a that the
joint density of X̃1, . . . , X̃n, denoted by L̃, can be written as

L̃ = 1

πnp|det(Σ)|n e− tr(Σ−1S̃)−n(
¯̃
X−μ̃)∗Σ−1(

¯̃
X−μ̃). (5.5a.7)
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Then, following steps parallel to (5.5.7) to (5.5.10), we obtain the density of S̃, denoted by
f̃ (S̃), as the following:

f̃ (S̃)dS̃ = |det(S)|m−p

|det(Σ)|mΓ̃p(m)
e−tr(Σ−1S) dS̃, m = n − 1 ≥ p, (5.5a.8)

for S̃ > O, Σ > O, n − 1 ≥ p, and f̃ (S̃) = 0 elsewhere, where the complex matrix-
variate gamma function being given by

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1.

Hence, we have the following result:

Theorem 5.5a.2. Let X̃j ∼ Ñp(μ, Σ), Σ > O, j = 1, . . . , n, be independently and

identically distributed. Let X̃,
¯̃
X,

¯̃X, S̃ be as previously defined. Then, S̃ has a complex
matrix-variate Wishart density with m = n − 1 degrees of freedom and parameter matrix
Σ > O, as given in (5.5a.8).

5.5.4. Some properties of the Wishart distribution, real case

If we have statistically independently distributed Wishart matrices with the same pa-
rameter matrix Σ , then it is easy to see that the sum is again a Wishart matrix. This can
be noted by considering the Laplace transform of matrix-variate random variables dis-
cussed in Sect. 5.2. If Sj ∼ Wp(mj , Σ), j = 1, . . . , k, with the same parameter matrix
Σ > O and the Sj ’s are statistically independently distributed, then from equation (5.2.6),
the Laplace transform of the density of Sj is

LSj
(∗T ) = |I + 2Σ∗T |−

mj
2 , I + 2Σ∗T > O, j = 1, . . . , k, (5.5.11)

where ∗T is a symmetric parameter matrix T = (tij ) = T ′ > O with off-diagonal ele-
ments weighted by 1

2 . When Sj ’s are independently distributed, then the Laplace transform
of the sum S = S1 + · · · + Sk is the product of the Laplace transforms:

k∏

j=1

|I+2Σ∗T |−
mj
2 = |I+2Σ∗T |− 1

2 (m1+···+mk) ⇒ S ∼ Wp(m1+· · ·+mk, Σ). (5.5.12)

Hence, the following result:
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Theorems 5.5.3, 5.5a.3. Let Sj ∼ Wp(mj , Σ), Σ > O, j = 1, . . . , k, be statisti-
cally independently distributed real Wishart matrices with m1, . . . , mk degrees of free-
doms and the same parameter matrix Σ > O. Then the sum S = S1 + · · · + Sk is real
Wishart distributed with degrees of freedom m1 + · · · + mk and the same parameter ma-
trix Σ > O, that is, S ∼ Wp(m1 + · · · + mk, Σ), Σ > O. In the complex case, let
S̃j ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O, j = 1, . . . , k, be independently distributed with the
same Σ̃ . Then, the sum S̃ = S̃1 + · · · + S̃k ∼ W̃p(m1 + · · · + mk, Σ̃).

We now consider linear functions of independent Wishart matrices. Let Sj ∼
Wp(mj , Σ), Σ > O, j = 1, . . . k, be independently distributed and Sa = a1S1 + · · · +
akSk where a1, . . . , ak are real scalar constants, then the Laplace transform of the density
of Sa is

LSa
(∗T ) =

k∏

j=1

|I + 2ajΣ∗T |−
mj
2 , I + 2ajΣ∗T > O, j = 1, . . . , k. (i)

The inverse is quite complicated and the corresponding density cannot be easily deter-
mined; moreover, the density is not a Wishart density unless a1 = · · · = ak. The types
of complications occurring can be apprehended from the real scalar case p = 1 which is
discussed in Mathai and Provost (1992). Instead of real scalars, we can also consider p×p

constant matrices as coefficients, in which case the inversion of the Laplace transform will
be more complicated. We can also consider Wishart matrices with different parameter ma-
trices. Let Uj ∼ Wp(mj , Σj), Σj > O, j = 1, . . . , k, be independently distributed and
U = U1 +· · ·+Uk. Then, the Laplace transform of the density of U , denoted by LU(∗T ),
is the following:

LU(∗T ) =
k∏

j=1

|I + 2Σj ∗T |−
mj
2 , I + 2Σj ∗T > O, j = 1, . . . , k. (ii)

This case does not yield a Wishart density as an inverse Laplace transform either, unless
Σ1 = · · · = Σk. In both (i) and (ii), we have linear functions of independent Wishart
matrices; however, these linear functions do not have Wishart distributions.

Let us consider a symmetric transformation on a Wishart matrix S. Let S ∼
Wp(m, Σ), Σ > O and U = ASA′ where A is a p × p nonsingular constant matrix.
Let us take the Laplace transform of the density of U :
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LU(∗T ) = E[e−tr(∗T ′U)] = E[e−tr(∗T ′ASA′)] = E[e−tr(A′∗T AS)]
= E[e−tr[(A′∗T A)′S]] = LS(A′∗T A) = |I + 2Σ(A′∗T A|−m

2

= |I + 2(AΣA′)∗T |−m
2

⇒ U ∼ Wp(m, AΣA′), Σ > O, |A| 
= 0.

Hence we have the following result:

Theorems 5.5.4, 5.5a.4. Let S ∼ Wp(m, Σ > O) and U = ASA′, |A| 
= 0. Then, U ∼
Wp(m, AΣA′), Σ > O, |A| 
= 0, that is, when U = ASA′ where A is a nonsingular
p × p constant matrix, then U is Wishart distributed with degrees of freedom m and
parameter matrix AΣA′. In the complex case, the constant p × p nonsingular matrix
A can be real or in the complex domain. Let S̃ ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O. Then
Ũ = AS̃A∗ ∼ W̃p(m, AΣ̃A∗).

If A is not a nonsingular matrix, is there a corresponding result? Let B be a constant
q×p matrix, q ≤ p, which is of full rank q. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n,
be iid so that we have a simple random sample of size n from a real p-variate Gaussian
population. Let the q × 1 vectors Yj = BXj, j = 1, . . . , n, be iid. Then E[Yj ] =
Bμ, Cov(Yj ) = E[(Yj −E(Yj ))(Yj −E(Yj ))

′] = BE[(Xj −E(Xj))(Xj −E(Xj))
′B ′ =

BΣB ′ which is q × q. As well, Yj ∼ Nq(Bμ, BΣB ′), BΣB ′ > O. Consider the
sample matrix formed from the Yj ’s, namely the q × n matrix Y = (Y1, . . . , Yn) =
(BX1, . . . , BXn) = B(X1, . . . , Xn) = BX where X is the p × n sample matrix from
Xj . Then, the sample sum of products matrix in Y is (Y − Ȳ)(Y − Ȳ)′ = Sy , say, where
the usual notation is utilized, namely, Ȳ = 1

n
(Y1 + · · · + Yn) and Ȳ = (Ȳ , . . . , Ȳ ). Now,

the problem is equivalent to taking a simple random sample of size n from a q-variate real
Gaussian population with mean value vector Bμ and positive definite covariance matrix
BΣB ′ > O. Hence, the following result:

Theorems 5.5.5, 5.5a.5. Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, be iid, and S

be the sample sum of products matrix in this p-variate real Gaussian population. Let B

be a q × p constant matrix, q ≤ p, which has full rank q. Then BSB ′ is real Wishart
distributed with degrees of freedom m = n − 1, n being equal to the sample size, and
parameter matrix BΣB ′ > O, that is, BSB ∼ Wq(m, BΣB ′). Similarly, in the complex
case, let B be a q × p, q ≤ p, constant matrix of full rank q, where B may be in the real
or complex domain. Then, BS̃B∗ is Wishart distributed with degrees of freedom m and
parameter matrix BΣ̃B∗, that is, BS̃B∗ ∼ W̃q(m, BΣ̃B∗).
5.5.5. The generalized variance

Let Xj, X′
j = (x1j , . . . , xpj ), be a real p×1 vector random variable for j = 1, . . . , n,

and the Xj ’s be iid (independently and identically distributed) as Xj . Let the covariance
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matrix associated with Xj be Cov(Xj ) = E[(Xj −E(Xj))(Xj −E(Xj))
′] = Σ, Σ ≥ O,

for j = 1, . . . , n in the real case and Σ̃ = E[(X̃j − E(X̃j ))(X̃j − E(X̃j ))
∗] in the

complex case, where an asterisk indicates the conjugate transpose. Then, the diagonal
elements in Σ represent the squares of a measure of scatter or variances associated with
the elements x1j , . . . , xpj and the off-diagonal elements in Σ provide the corresponding
measure of joint dispersion or joint scatter in the pair (xrj , xsj ) for all r 
= s. Thus, Σ gives
a configuration of individual and joint squared scatter in all the elements x1j , . . . , xpj . If
we wish to have a single number or single scalar quantity representing this configuration
of individual and joint scatter in the elements x1j , . . . , xpj what should be that measure?
Wilks had taken the determinant of Σ , |Σ |, as that measure and called it the generalized
variance or square of the scatter representing the whole configuration of scatter in all
the elements x1j , . . . , xpj . If there is no scatter in one or in a few elements but there is
scatter or dispersion in all other elements, then the determinant is zero. If the matrix is
singular then the determinant is zero, but this does not mean that there is no scatter in
these elements. Thus, determinant as a measure of scatter or dispersion, violates a very
basic condition that if the proposed measure is zero then there should not be any scatter
in any of the elements or Σ should be a null matrix. Hence, the first author suggested to
take a norm of Σ , ‖Σ‖, as a single measure of scatter in the whole configuration, such
as ‖Σ‖1 = maxi

∑
j |σij | or ‖Σ‖2 = largest eigenvalue of Σ since Σ is at least positive

semi-definite. Note that normality is not assumed in the above discussion.
If S ∼ Wp(m, Σ), Σ > O, what is then the distribution of Wilks’ generalized vari-

ance in S, namely |S|, which can be referred to as the sample generalized variance? Let
us determine the h-th moment of the sample generalized variance |S| for an arbitrary h.
This has already been discussed for real and complex matrix-variate gamma distributions
in Sect. 5.4.1 and can be obtained from the normalizing constant in the Wishart density:

E[|S|h] =
∫
X>O

|S|m
2 +h−p+1

2 e− 1
2 tr(Σ−1S)

2
mp
2 Γp(m

2 )|Σ |m
2

dS

= 2ph|Σ |hΓp(m
2 + h)

Γp(m
2 )

, �(
m

2
+ h) >

p − 1

2
. (5.5.13)

Then

E[|(2Σ)−1S|h] = Γp(m
2 + h)

Γp(m
2 )

=
p∏

j=1

Γ (m
2 + h − j−1

2 )

Γ (m
2 − j−1

2 )

= E[yh
1 ]E[yh

2 ] · · · E[yh
p] (5.5.14)

where y1, · · · , yp are independently distributed real scalar gamma random variables with
the parameters (m

2 − j−1
2 , 1), j = 1, . . . , p. In the complex case
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E[|det((Σ̃)−1S̃)]h] = Γ̃p(m + h)

Γ̃p(m)
=

p∏

j=1

Γ̃ (m − (j − 1) + h)

Γ̃ (m − (j − 1))

= E[ỹh
1 ] · · · E[ỹh

p] (5.5a.9)

where ỹ1, . . . , ỹp and independently distributed real scalar gamma random variables with
the parameters (m − (j − 1), 1), j = 1, . . . , p. Note that if we consider E[|Σ−1S|h]
instead of E[|(2Σ)−1S|h] in (5.5.14), then the yj ’s are independently distributed as real
chisquare random variables having m− (j −1) degrees of freedom for j = 1, . . . , p. This
can be stated as a result.

Theorems 5.5.6, 5.5a.6. Let S ∼ Wp(m, Σ), Σ > O, and |S| be the generalized vari-
ance associated with this Wishart matrix or the sample generalized variance in the cor-
responding p-variate real Gaussian population. Then, E[|(2Σ)−1S|h] = E[yh

1 ] · · · E[yh
p]

so that |(2Σ)−1S| has the structural representation |(2Σ)−1S| = y1 · · · yp where the
yj ’s are independently distributed real gamma random variables with the parameters
(m

2 − j−1
2 , 1), j = 1, . . . , p. Equivalently, E[|Σ−1S|h] = E[zh

1] · · · E[zp]h] where
the zj ’s are independently distributed real chisquare random variables having m − (j −
1), j = 1, . . . , p, degrees of freedom. In the complex case, if we let S̃ ∼ W̃p(m, Σ̃), Σ̃ =
Σ̃∗ > O, and |det(S̃)| be the generalized variance, then | det((Σ̃)−1S̃)| has the structural
representation |det((Σ̃)−1S̃)| = ỹ1 · · · ỹp where the ỹj ’s are independently distributed
real scalar gamma random variables with the parameters (m− (j −1), 1), j = 1, . . . , p

or chisquare random variables in the complex domain having m− (j − 1), j = 1, . . . , p,

degrees of freedom.

5.5.6. Inverse Wishart distribution

When S ∼ Wp(m, Σ), Σ > O, what is then the distribution of S−1? Since S has
a real matrix-variate gamma distribution, that of its inverse is directly available from the
transformation U = S−1. In light of Theorem 1.6.6, we have dS = |U |−(p+1)dU for the
real case and dX̃ = |det(Ũ Ũ∗)|−pdŨ in the complex domain. Thus, denoting the density
of U by g(U), we have the following result:

Theorems 5.5.7, 5.5a.7. Let the real Wishart matrix S ∼ Wp(m, Σ), Σ > O, and the
Wishart matrix in the complex domain S̃ ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O. Let U = S−1 and
Ũ = S̃−1. Letting the density of S be denoted by g(U) and that of Ũ be denoted by g̃(Ũ ),

g(U) = |U |−m
2 −p+1

2

2
mp
2 Γp(m

2 )|Σ |m
2
e− 1

2 tr(Σ
−1U−1), U > O, Σ > O, (5.5.15)
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and zero elsewhere, and

g̃(Ũ ) = |det(Ũ )|−m−p

Γ̃p(m)|det(Σ̃)|m e− tr(Σ̃−1Ũ−1), Ũ = Ũ∗ > O, Σ̃ = Σ̃∗ > O, (5.5a.10)

and zero elsewhere.

5.5.7. Marginal distributions of a Wishart matrix

At the beginning of this chapter, we had explicitly evaluated real and complex matrix-
variate gamma integrals and determined that the diagonal blocks are again real and com-
plex matrix-variate gamma integrals. Hence, the following results are already available
from the discussion on the matrix-variate gamma distribution. We will now establish the
results via Laplace transforms. Let S be Wishart distributed with degrees of freedom m

and parameter matrix Σ > O, that is, S ∼ Wp(m, Σ), Σ > O, m ≥ p. Let us partition S

and Σ as follows:

S =
[
S11 S12

S21 S22

]

and Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, (i)

(referred to as a 2×2 partitioning) S11, Σ11 being r×r and S22, Σ22 being (p−r)×(p−r)

– refer to Sect. 1.3 for results on partitioned matrices. Let ∗T be a similarly partitioned
p × p parameter matrix with ∗T 11 being r × r where

∗T =
[

∗T 11 O

O O

]

, ∗T 11 = ∗T ′
11 > O. (ii)

Observe that ∗T is a slightly modified parameter matrix T = (tij ) = T ′ where the tij ’s are
weighted with 1

2 for i 
= j to obtain ∗T . Noting that tr(∗T ′S) = tr(∗T ′
11S11), the Laplace

transform of the Wishart density Wp(m, Σ), Σ > O, with ∗T as defined above, is given
by

|I + 2Σ∗T |−m
2 =

∣
∣
∣
∣
Ir + 2Σ11∗T 11 O

2Σ21∗T 11 Ip−r

∣
∣
∣
∣

−m
2 = |Ir + 2Σ11∗T 11|−m

2 . (5.5.16)

Thus, S11 has a Wishart distribution with m degrees of freedom and parameter matrix Σ11.
It can be similarly established that S22 is Wishart distributed with degrees of freedom m

and parameter matrix Σ22. Hence, the following result:

Theorems 5.5.8, 5.5a.8. Let S ∼ Wp(m, Σ), Σ > O. Let S and Σ be partitioned into
a 2 × 2 partitioning as above. Then, the sub-matrices S11 ∼ Wr(m, Σ11), Σ11 > O,

and S22 ∼ Wp−r (m, Σ22), Σ22 > O. In the complex case, let S̃ ∼ W̃p(m, Σ̃), Σ̃ =
Σ̃∗ > O. Letting S̃ be partitioned as in the real case, S̃11 ∼ W̃r(m, Σ̃11) and S̃22 ∼
W̃p−r (m, Σ̃22).
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Corollaries 5.5.2, 5.5a.2. Let S ∼ Wp(m, Σ), Σ > O. Suppose that Σ12 = O in
the 2 × 2 partitioning of Σ . Then S11 and S22 are independently distributed with S11 ∼
Wr(m, Σ11) and S22 ∼ Wp−r (m, Σ22). Consider a k × k partitioning of S and Σ , the
order of the diagonal blocks Sjj and Σjj being pj × pj , p1 + · · · + pk = p. If Σij = O

for all i 
= j, then the Sjj ’s are independently distributed as Wishart matrices on pj

components, with degrees of freedom m and parameter matrices Σjj > O, j = 1, . . . , k.
In the complex case, consider the same type of partitioning as in the real case. Then, if
Σ̃ij = O for all i 
= j , S̃jj , j = 1, . . . , k, are independently distributed as S̃jj ∼
W̃pj

(m, Σ̃jj ), j = 1, . . . , k, p1 + · · · + pk = p.

Let S be a p × p real Wishart matrix with m degrees of freedom and parameter matrix
Σ > O. Consider the following 2 × 2 partitioning of S and Σ−1:

S =
[
S11 S12

S21 S22

]

, S11 being r × r, Σ−1 =
[
Σ11 Σ12

Σ21 Σ22

]

.

Then, the density, denoted by f (S), can be written as

f (S) = |S|m
2 −p+1

2

2
mp
2 Γp(m

2 )|Σ |m
2

e− 1
2 tr(Σ−1S)

= |S11|m
2 −p+1

2 |S22 − S21S
−1
11 S12|m

2 −p+1
2

2
mp
2 Γp(m

2 )|Σ |m
2

× e− 1
2 [tr(Σ11S11)+tr(Σ22S22)+tr(Σ12S21)+ tr(Σ21S12)].

In this case, dS = dS11 ∧ dS22 ∧ dS12. Let U2 = S22 − S21S
−1
11 S12. Referring to Sect. 1.3,

the coefficient of S11 in the exponent is Σ11 = (Σ11 − Σ12Σ
−1
22 Σ21)

−1. Let U2 = S22 −
S21S

−1
11 S12 so that S22 = U2 +S21S

−1
11 S12 and dS22 = dU2 for fixed S11 and S12. Then, the

function of U2 is of the form

|U2|m
2 −p+1

2 e− 1
2 tr(Σ22U2).

However, U2 is (p−r)×(p−r) and we can write m
2 −p+1

2 = m−r
2 −p−r+1

2 . Therefore U2 ∼
Wp−r (m − r, Σ22 − Σ21Σ

−1
11 Σ12) as Σ22 = (Σ22 − Σ21Σ

−1
11 Σ12)

−1. From symmetry,
U1 = S11 −S12S

−1
22 S21 ∼ Wr(m−(p−r), Σ11 −Σ12Σ

−1
22 Σ21). After replacing S22 in the

exponent by U2 + S21S
−1
11 S12, the exponent, excluding −1

2 , can be written as tr[Σ11S11]+
tr[Σ22S12S

−1
22 S21] + tr[Σ12S21] + tr[Σ21S12]. Let us try to integrate out S12. To this end,

let V = S
− 1

2
11 S12 ⇒ dS12 = |S11|p−r

2 dV for fixed S11. Then the determinant of S11 in f (X)
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becomes |S11|m
2 −p+1

2 × |S11|p−r
2 = |S11|m

2 − r+1
2 . The exponent, excluding −1

2 becomes the
following, denoting it by ρ:

ρ = tr(Σ12V ′S
1
2
11) + tr(Σ21S

1
2
11V ) + tr(Σ22V ′V ). (i)

Note that tr(Σ22V ′V ) = tr(V Σ22V ′) and

(V + C)Σ22(V + C)′ = V Σ22V ′ + V Σ22C′ + CΣ22V + CΣ22C′. (ii)

On comparing (i) and (ii), we have C′ = (Σ22)−1Σ21S
1
2
11. Substituting for C and C′ in

ρ, the term containing S11 in the exponent becomes −1
2 tr(S11(Σ

11 −Σ12(Σ22)−1Σ21) =
−1

2 tr(S11Σ
−1
11 ). Collecting the factors containing S11, we have S11 ∼ Wr(m, Σ11) and

from symmetry, S22 ∼ Wp−r (m, Σ22). Since the density f (S) splits into a function of

U2, S11 and S
− 1

2
11 S12, these quantities are independently distributed. Similarly, U1, S22 and

S
− 1

2
22 S21 are independently distributed. The exponent of |U1| is m

2 −p+1
2 = (m

2 −p−r
2 )− r+1

2 .
Observing that U1 is r × r , we have the density of U1 = S11 −S12S

−1
22 S21 as a real Wishart

density on r components, with degrees of freedom m − (p − r) and parameter matrix
Σ11 − Σ12Σ

−1
22 Σ21 whose the density, denoted by f1(U), is the following:

f1(U1) = |U1|m−(p−r)
2 − r+1

2

2
r(m−(p−r))

2 Γr(
m−(p−r)

2 )|Σ11 − Σ12Σ
−1
22 Σ21|m−(p−r)

2

e− 1
2 tr[U1(Σ11−Σ12Σ

−1
22 Σ21)

−1].

(iii)
A similar expression can be obtained for the density of U2. Thus, the following result:

Theorems 5.5.9, 5.5a.9. Let S ∼ Wp(m, Σ), Σ > O, m ≥ p. Consider the 2 × 2
partitioning of S as specified above, S11 being r × r . Let U1 = S11 − S12S

−1
22 S21. Then,

U1 ∼ Wr(m − (p − r), Σ11 − Σ12Σ
−1
22 Σ21). (5.5.17)

In the complex case, let S̃ ∼ W̃p(m, Σ̃), Σ̃ = Σ̃∗ > O. Consider the same partitioning
as in the real case and let S̃11 be r × r . Then, letting Ũ1 = S̃11 − S̃12S̃

−1
22 S̃21, Ũ1 is Wishart

distributed as
Ũ1 ∼ W̃r(m − (p − r), Σ̃11 − Σ̃12Σ̃

−1
22 Σ̃21). (5.5a.11)

A similar density is obtained for Ũ2 = S̃22 − S̃21S̃
−1
11 S̃12.
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Example 5.5.1. Let the 3 × 3 matrix S ∼ W3(5, Σ), Σ > O. Determine the distribu-
tions of Y1 = S22 − S21S

−1
11 S12, Y2 = S22 and Y3 = S11 where

Σ =
⎡

⎣
2 −1 0

−1 3 1
0 1 3

⎤

⎦ =
[
Σ11 Σ12

Σ21 Σ22

]

, Σ11 =
[

2 −1
−1 3

]

, S =
[
S11 S12

S21 S22

]

with S11 being 2 × 2.

Solution 5.5.1. Let the densities of Yj be denoted by fj (Yj ), j = 1, 2, 3. We need the
following matrix, denoted by B:

B = Σ22 − Σ21Σ
−1
11 Σ12 = 3 − [0, 1]

[1

5

] [3 1
1 2

] [
0
1

]

= 3 − 2

5
= 13

5
.

From our usual notations, Y1 ∼ Wp−r (m − r, B). Observing that Y1 is a real scalar, we
denote it by y1, its density being given by

f1(y1) = y
m−r

2 − (p−r)+1
2

1

2
(m−r)(p−r)

2 |B|m−r
2 Γ (m−r

2 )
e− 1

2 tr(B−1y1)

= y
3
2 −1
1 e− 5

26 y1

2
3
2 (13/5)

3
2 Γ (3

2)
, 0 ≤ y1 < ∞,

and zero elsewhere. Now, consider Y2 which is also a real scalar that will be denoted by y2.
As per our notation, Y2 = S22 ∼ Wp−r (m, Σ22). Its density is then as follows, observing
that Σ22 = (3), |Σ22| = 3 and Σ−1

22 = (1
3):

f2(y2) = y
m
2 − (p−r)+1

2
2 e− 1

2 tr(Σ−1
22 y2)

2
m(p−r)

2 Γp−r (
m
2 )|Σ22|m

2

= y
5
2 −1
2 e− 1

6 y2

2
5
2 Γ (5

2)3
5
2

, 0 ≤ y2 < ∞,

and zero elsewhere. Note that Y3 = S11 is 2 × 2. With our usual notations, p = 3, r =
2, m = 5 and |Σ11| = 5; as well,

S11 =
[
s11 s12

s12 s22

]

, Σ−1
11 = 1

5

[
3 1
1 2

]

, tr(Σ−1
11 S11) = 1

5
[3s11 + 2s12 + 2s22].
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Thus, the density of Y3 is

f3(Y3) = |S11|m
2 − r+1

2 e− 1
2 tr(Σ−1

11 S11)

2
mr
2 Γr(

m
2 )|Σ11|m

2

= [s11s22 − s2
12]e− 1

10 (3s11+2s12+2s22)

(3)(23)(5)
5
2 π

, Y3 > O,

and zero elsewhere. This completes the calculations.

Example 5.5a.1. Let the 3 × 3 Hermitian positive definite matrix S̃ have a complex
Wishart density with degrees of freedom m = 5 and parameter matrix Σ > O. Determine
the densities of Ỹ1 = S̃22 − S̃21S̃

−1
11 S̃12, Ỹ2 = S̃22 and Ỹ3 = S̃11 where

S̃ =
[
S̃11 S̃12

S̃21 S̃22

]

, Σ =
[
Σ11 Σ12

Σ21 Σ22

]

=
⎡

⎣
3 −i 0
i 2 i

0 −i 2

⎤

⎦

with S11 and Σ11 being 2 × 2.

Solution 5.5a.1. Observe that Σ is Hermitian positive definite. We need the following
numerical results:

B ≡ Σ22 − Σ21Σ
−1
11 Σ12 = 2 − [0, −i]

[1

5

] [ 2 i

−i 3

] [
0
i

]

= 2 − 3

5
= 7

5
;

B−1 = 5

7
, |B| = 7

5
, Σ−1

11 = 1

5

[
2 i

−i 3

]

.

Note that Ỹ1 and Ỹ2 are real scalar quantities which will be denoted as y1 and y2, respec-
tively. Let the densities of y1 and y2 be fj (yj ), j = 1, 2. Then, with our usual notations,
f1(y1) is

f1(y1) = |det(ỹ1)|(m−r)−(p−r)e−tr(B−1ỹ1)

|det(B)|m−r Γ̃p−r (m − r)

= y2
1 e− 5

7 y1

(7
5)3Γ (3)

, 0 ≤ y1 < ∞,
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and zero elsewhere, and the density of ỹ2, is

f2(y2) = |det(ỹ2)|m−(p−r)e−tr(Σ−1
22 ỹ2)

|det(Σ22)|mΓ̃p−r (m)

= y4
2 e− 1

2 y2

25Γ (5)
, 0 ≤ y2 < ∞,

and zero elsewhere. Note that Ỹ3 = S̃11 is 2 × 2. Letting

S̃11 =
[
s11 s̃12

s̃∗
12 s22

]

, tr(Σ−1
11 S̃11) = 1

5
[2s11 + 3s22 + is̃∗

12 − is̃12]

and |det(Ỹ3)| = [s11s22 − s̃∗
12s̃12]. With our usual notations, the density of Ỹ3, denoted by

f̃3(Ỹ3), is the following:

f̃3(Ỹ3) = |det(Ỹ3)|m−re−tr(Σ−1
11 Ỹ3)

| det(Σ11)|mΓ̃r(m)

= [s11s22 − s̃12s̃
∗
12]3e− 1

5 [2s11+3s22+is̃∗
12−is̃12]

55Γ̃2(5)
, Ỹ3 > O,

and zero elsewhere, where 55Γ̃2(5) = 3125(144)π . This completes the computations.

5.5.8. Connections to geometrical probability problems

Consider the representation of the Wishart matrix S = Zn−1Z
′
n−1 given in (5.5.8)

where the p rows are linearly independent 1 × (n − 1) vectors. Then, these p linearly
independent rows, taken in order, form a convex hull and determine a p-parallelotope in
that hull, which is determined by the p points in the (n− 1)-dimensional Euclidean space,
n − 1 ≥ p. Then, as explained in Mathai (1999), the volume content of this parallelotope
is v = |Zn−1Z

′
n−1|

1
2 = |S| 1

2 , where S ∼ Wp(n − 1, Σ), Σ > O. Thus, the volume
content of this parallelotope is the positive square root of the generalized variance |S|. The
distributions of this random volume when the p random points are uniformly, type-1 beta,
type-2 beta and gamma distributed are provided in Chap. 4 of Mathai (1999).

5.6. The Distribution of the Sample Correlation Coefficient

Consider the real Wishart density or matrix-variate gamma in (5.5.10) for p = 2. For
convenience, let us take the degrees of freedom parameter n − 1 = m. Then for p = 2,
f (S) in (5.5.10), denoted by f2(S), is the following, observing that |S| = s11s22(1 − r2)

where r is the sample correlation coefficient:
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f2(S) = f2(s11, s22, r) = [s11s22(1 − r2)]m
2 − 3

2 e− 1
2 tr(Σ−1S)

2m[σ11σ22(1 − ρ2)]m
2 Γ2(

m
2 )

(5.6.1)

where ρ = the population correlation coefficient, |Σ | = σ11σ22 − σ 2
12 = σ11σ22(1 − ρ2),

Γ2(
m
2 ) = π

1
2 Γ (m

2 )Γ (m−1
2 ), − 1 < ρ < 1,

Σ−1 = 1

|Σ |Cof(Σ) = 1

σ11σ22(1 − ρ2)

[
σ22 −σ12

−σ12 σ11

]

= 1

1 − ρ2

[
1

σ11
− ρ√

σ11σ22

− ρ√
σ11σ22

1
σ22

]

, σ12 = ρ
√

σ11σ22 , (i)

tr(Σ−1S) = 1

1 − ρ2

{ s11

σ11
− 2ρ

s12√
σ11σ22

+ s22

σ22

}

= 1

1 − ρ2

{ s11

σ11
− 2ρr

√
s11s22√
σ11σ22

+ s22

σ22

}
. (ii)

Let us make the substitution x1 = s11
σ11

, x2 = s22
σ22

. Note that dS = ds11 ∧ ds22 ∧ ds12.
But ds12 = √

s11s22 dr for fixed s11 and s22. In order to obtain the density of r , we must
integrate out x1 and x2, observing that

√
s11s22 is coming from ds12:

∫

s11,s22

f2(S) ds11 ∧ ds22 =
∫

x1>0

∫

x2>0

1

2m(σ11σ22)
m
2 (1 − ρ2)

m
2 π

1
2 Γ (m

2 )Γ (m−1
2 )

× (1 − r2)
m−3

2 (σ11σ22x1x2)
m
2 −1e

− 1
2(1−ρ2)

{x1−2rρ
√

x1x2+x2}
σ11σ22 dx1 ∧ dx2. (iii)

For convenience, let us expand

e
− 1

2(1−ρ2)
(−2rρ

√
x1x2) =

∞∑

k=0

( rρ

1 − ρ2

)k x
k
2
1 x

k
2
2

k! . (iv)

Then the part containing x1 gives the integral
∫ ∞

x1=0
x

m
2 −1+ k

2
1 e

− x1
2(1−ρ2) dx1 = [2(1 − ρ2)]m

2 + k
2 Γ (

m

2
+ k

2
), m ≥ 2. (v)

By symmetry, the integral over x2 gives [2(1 − ρ2)]m
2 + k

2 Γ (m+k
2 ), m ≥ 2. Collecting all

the constants we have

(σ11σ22)
m
2 2m+k(1 − ρ2)m+kΓ 2(m+k

2 )

2m(σ11σ22)
m
2 (1 − ρ2)

m
2 π

1
2 Γ (m

2 )Γ (m−1
2 )

= (1 − ρ2)
m
2 +k2kΓ 2(m+k

2 )

π
1
2 Γ (m

2 )Γ (m−1
2 )

. (vi)
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We can simplify Γ (m
2 )Γ (m

2 −1
2) by using the duplication formula for gamma functions,

namely

Γ (2z) = π− 1
2 22z−1Γ (z)Γ

(
z + 1

2

)
, z = m − 1

2
, (5.6.2)

Then,

Γ
(m

2

)
Γ
(m − 1

2

)
= Γ (m − 1)π

1
2

2m−2
. (vii)

Hence the density of r , denoted by fr(r), is the following:

fr(r) = 2m−2(1 − ρ2)
m
2

Γ (m − 1)π
(1 − r2)

1
2 (m−3)

∞∑

k=0

(2rρ)k

k! Γ 2
(m + k

2

)
, − 1 ≤ r ≤ 1, (5.6.3)

and zero elsewhere, m = n − 1, n being the sample size.

5.6.1. The special case ρ = 0

In this case, (5.6.3) becomes

fr(r) = 2m−2Γ 2(m
2 )

Γ (m − 1)π
(1 − r2)

m−1
2 −1, − 1 ≤ r ≤ 1, m = n − 1 (5.6.4)

= Γ (m
2 )√

πΓ (m−1
2 )

(1 − r2)
m−1

2 −1, − 1 ≤ r ≤ 1, (5.6.5)

zero elsewhere, m = n − 1 ≥ 2, n being the sample size. The simplification is made
by using the duplication formula and writing Γ (m − 1) = π− 1

2 2m−2Γ (m−1
2 )Γ (m

2 ). For
testing the hypothesis Ho : ρ = 0, the test statistic is r and the null distribution, that
is, the distribution under the null hypothesis Ho is given in (5.6.5). Numerical tables of
percentage points obtained from (5.6.5) are available. If ρ 
= 0, the non-null distribution is
available from (5.6.3); so, if we wish to test the hypothesis Ho : ρ = ρo where ρo is a given
quantity, we can compute the percentage points from (5.6.3). It can be shown from (5.6.5)
that for ρ = 0, tm = √

m r√
1−r2

is distributed as a Student-t with m degrees of freedom,

and hence for testing Ho : ρ = 0 against H1 : ρ 
= 0, the null hypothesis can be rejected
if |tm| = √

m
∣
∣ r√

1−r2

∣
∣ ≥ tm,α

2
where Pr{|tm| ≥ tm,α

2
} = α. For tests that make use of the

Student-t statistic, refer to Mathai and Haubold (2017b). Since the density given in (5.6.5)
is an even function, when ρ = 0, all odd order moments are equal to zero and the even
order moments can easily be evaluated from type-1 beta integrals.
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5.6.2. The multiple and partial correlation coefficients

Let the p × 1 real vector Xj with X′
j = (x1j , . . . , xpj ) have a p-variate distribution

whose mean value E(Xj) = μ and covariance matrix Cov(Xj ) = Σ, Σ > O, where μ is
p × 1 and Σ is p × p, for j = 1, . . . , n, the Xj ’s being iid (independently and identically
distributed). Consider the following partitioning of Σ :

Σ =
[

σ11 Σ12

Σ21 Σ22

]

, σ11 > 0 is 1 × 1, Σ22 > O is (p − 1) × (p − 1), Σ ′
12 = Σ21.

Let

ρ2
1.(2...p) = Σ12Σ

−1
22 Σ21

σ11
. (5.6.6)

Then, ρ1.(2...p) is called the multiple correlation coefficient of x1j on x2j , . . . , xpj . The
sample value corresponding to ρ2

1.(2...p) which is denoted by r2
1.(2...p) and referred to as the

square of the sample multiple correlation coefficient, is given by

r2
1.(2...p) = S12S

−1
22 S21

s11
with S =

[
s11 S12

S21 S22

]

(5.6.7)

where s11 is 1×1, S22 is (p−1)×(p−1), S = (X−X̄)(X−X̄)′, X = (X1, . . . , Xn) is the
p×n sample matrix, n being the sample size, X̄ = 1

n
(X1 +· · ·+Xn), X̄ = (X̄, . . . , X̄) is

p × n, the Xj ’s, j = 1, . . . , n, being iid according to a given p-variate population having
mean value vector μ and covariance matrix Σ > O, which need not be Gaussian.

5.6.3. Different derivations of ρ1.(2...p)

Consider a prediction problem involving real scalar variables where x1 is predicted by
making use of x2, . . . , xp or linear functions thereof. Let A′

2 = (a2, . . . , ap) be a constant
vector where aj , j = 2, . . . , p are real scalar constants. Letting X′

(2) = (x2, . . . , xp), a
linear function of X(2) is u = A′

2X(2) = a2x2 +· · ·+apxp. Then, the mean value and vari-
ance of this linear function are E[u] = E[A′

2X(2)] = A′
2μ(2) and Var(u) = Var(A′

2X(2)) =
A′

2Σ22A2 where μ′
(2) = (μ2, . . . , μp) = E[X(2)] and Σ22 is the covariance matrix asso-

ciated with X(2), which is available from the partitioning of Σ specified in the previous
subsection. Let us determine the correlation between x1, the variable being predicted, and
u, a linear function of the variables being utilized to predict x1, denoted by ρ1,u, that is,

ρ1,u = Cov(x1, u)√
Var(x1)Var(u)

,
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where Cov(x1, u) = E[(x1−E(x1))(u−E(u))] = E[(x1−E(x1))(X(2)−E(X(2)))
′A2] =

Cov(x1, X(2))A2 = Σ12A2, Var(x1) = σ11, Var(u) = A′
2Σ22A2 > O. Letting Σ

− 1
2

22 be

the positive definite square root of Σ22, we can write Σ12A2 = (Σ12Σ
− 1

2
22 )(Σ

1
2

22A2). Then,

on applying Cauchy-Schwartz’ inequality, we may write Σ12A2 = (Σ12Σ
− 1

2
22 ) (Σ

1
2

22A2) ≤√
(Σ12Σ

−1
22 Σ21)(A

′
2Σ22A2). Thus,

ρ1,u ≤
√

(Σ12Σ
−1
22 Σ21)(A

′
2Σ22A2)

√
(σ11)(A

′
2Σ22A2)

=
√

Σ12Σ
−1
22 Σ21√

σ11
, that is,

ρ2
1,u ≤ Σ12Σ

−1
22 Σ21

σ11
= ρ2

1.(2...p). (5.6.8)

This establishes the following result:

Theorem 5.6.1. The multiple correlation coefficient ρ1.(2...p) of x1 on x2, . . . , xp repre-
sents the maximum correlation between x1 and an arbitrary linear function of x2, . . . , xp.

This shows that if we consider the joint variation of x1 and (x2, . . . , xp), this scale-free
joint variation, namely the correlation, is maximum when the scale-free covariance, which
constitutes a scale-free measure of joint variation, is the multiple correlation coefficient.
Correlation measures a scale-free joint scatter in the variables involved, in this case x1 and
(x2, . . . , xp). Correlation does not measure general relationships between the variables;
counterexamples are provided in Mathai and Haubold (2017b). Hence “maximum corre-
lation” should be interpreted as maximum joint scale-free variation or joint scatter in the
variables.

For the next property, we will use the following two basic results on conditional ex-
pectations, referring also to Mathai and Haubold (2017b). Let x and y be two real scalar
random variables having a joint distribution. Then,

E[y] = E[E(y|x)] (i)

whenever the expected values exist, where the inside expectation is taken in the conditional
space of y, given x, for all x, that is, Ey|x(y|x), and the outside expectation is taken in the
marginal space of x, that is Ex(x). The other result states that

Var(y) = Var(E[y|x]) + E[Var(y|x)] (ii)

where it is assumed that the expected value of the conditional variance and the
variance of the conditional expectation exist. Situations where the results stated in
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(i) and (ii) are applicable or not applicable are described and illustrated in Mathai
and Haubold (2017b). In result (i), x can be a scalar, vector or matrix variable.
Now, let us examine the problem of predicting x1 on the basis of x2, . . . , xp. What is
the “best” predictor function of x2, . . . , xp for predicting x1, “best” being construed as in
the minimum mean square sense. If φ(x2, . . . , xp) is an arbitrary predictor, then at given
values of x2, . . . , xp, φ is a constant. Consider the squared distance (x1 − b)2 between x1
and b = φ(x2, . . . , xp|x2, . . . , xp) or b is φ at given values of x2, . . . , xp. Then, “mini-
mum in the mean square sense” means to minimize the expected value of (x1 − b)2 over
all b or min E(x1 − b)2. We have already established in Mathai and Haubold (2017b) that
the minimizing value of b is b = E[x1] at given x2, . . . , xp or the conditional expecta-
tion of x1, given x2, . . . , xp or b = E[x1|x2, . . . , xp]. Hence, this “best” predictor is also
called the regression of x1 on (x2, . . . , xp) or E[x1|x2, . . . , xp] = the regression of x1 on
x2, . . . , xp, or the best predictor of x1 based on x2, . . . , xp. Note that, in general, for any
scalar variable y and a constant a,

E[y − a]2 = E[y − E(y) + E(y) − a]2 = E[(y − E(y)]2 − 2E[(y − E(y))(E(y) − a)]
+ E[(E(y) − a)2] = Var(y) + 0 + [E(y) − a]2. (iii)

As the only term on the right-hand side containing a is [E(y) − a]2, the minimum is
attained when this term is zero since it is a non-negative constant, zero occurring when
a = E[y]. Thus, E[y − a]2 is minimized when a = E[y]. If a = φ(X(2)) at given value
of X(2), then the best predictor of x1, based on X(2) is E[x1|X(2)] or the regression of
x1 on X(2). Let us determine what happens when E[x1|X(2)] is a linear function in X(2).
Let the linear function be b0 + b2x2 + · · · + bpxp = b0 + B ′

2X(2), B ′
2 = (b2, . . . , bp),

where b0, b2, . . . , bp are real constants [Note that only real variables and real constants
are considered in this section]. That is, for some constant b0,

E[x1|X(2)] = b0 + b2x2 + · · · + bpxp. (iv)

Taking expectation with respect to x1, x2, . . . , xp in (iv), it follows from (i) that the left-
hand side becomes E[x1], the right side being b0 + b2E[x2] + · · · + bpE[xp]; subtracting
this from (iv), we have

E[x1|X(2)] − E[x1] = b2(x2 − E[x2]) + · · · + bp(xp − E[xp]). (v)

Multiplying both sides of (v) by xj − E[xj ] and taking expectations throughout, the
right-hand side becomes b2σ2j + · · · + bpσpj where σij = Cov(xi, xj ), i 
= j, and it
is the variance of xj when i = j . The left-hand side is E[(xj − E(xj ))(E[x1|x(2)] −
E(x1))] = E[E(x1xj |X(2))] − E(xj )E(x1) = E[x1xj ] − E(x1)E(xj ) = Cov(x1, xj ).
Three properties were utilized in the derivation, namely (i), the fact that Cov(u, v) =
E[(u − E(u))(v − E(v))] = E[u(v − E(v))] = E[v(u − E(u))] and Cov(u, v) =
E(uv) − E(u)E(v). As well, Var(u) = E[u − E(u)]2 = E[u(u − E(u))] as long as the
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second order moments exist. Thus, we have the following by combining all the linear
equations for j = 2, . . . , p:

Σ21 = Σ22b ⇒ b = Σ−1
22 Σ21 or b′ = Σ12Σ

−1
22 (5.6.9)

when Σ22 is nonsingular, which is the case as it was assumed that Σ22 > O. Now, the best
predictor of x1 based on a linear function of X(2) or the best predictor in the class of all
linear functions of X(2) is

E[x1|X(2)] = b′X(2) = Σ12Σ
−1
22 X(2). (5.6.10)

Let us consider the correlation between x1 and its best linear predictor based on
X(2) or the correlation between x1 and the linear regression of x1 on X(2). Observe
that Cov(x1, Σ12Σ

−1
22 X(2)) = Σ12Σ

−1
22 Cov(X(2), x1) = Σ12Σ

−1
22 Σ21, Σ21 = Σ ′

12.
Consider the variance of the best linear predictor: Var(b′X(2)) = b′Cov(X(2))b =
Σ12Σ

−1
22 Σ22Σ

−1
22 Σ21 = Σ12Σ

−1
22 Σ21. Thus, the square of the correlation between x1 and

its best linear predictor or the linear regression on X(2), denoted by ρ2
x1,b′X(2)

, is the fol-
lowing:

ρ2
x1,b′X(2)

= [Cov(x1, b
′X(2))]2

Var(x1) Var(b′X(2))
= Σ12Σ

−1
22 Σ21

σ11
= ρ2

1.(2...p). (5.6.11)

Hence, the following result:

Theorem 5.6.2. The multiple correlation ρ1.(2...p) between x1 and x2, . . . , xp is also the
correlation between x1 and its best linear predictor or x1 and its linear regression on
x2, . . . , xp.

Observe that normality has not been assumed for obtaining all of the above properties.
Thus, the results hold for any population for which moments of order two exist. However,
in the case of a nonsingular normal population, that is, Xj ∼ Np(μ, Σ), Σ > O, it
follows from equation (3.3.5), that for r = 1, E[x1|X(2)] = Σ12Σ

−1
22 X(2) when E[X(2)] =

μ(2) = O and E(x1) = μ1 = 0; otherwise, E[x1|X(2)] = μ1 + Σ12Σ
−1
22 (X(2) − μ(2)).

5.6.4. Distributional aspects of the sample multiple correlation coefficient

From (5.6.7), we have

1 − r2
1.(2...p) = 1 − S12S

−1
22 S21

s11
= s11 − S12S

−1
22 S21

s11
= |S|

|S22|s11
, (5.6.12)
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which can be established from the expansion of the determinant |S| = |S22| |S11 −
S12S

−1
22 S21|, which is available from Sect. 1.3. In our case S11 is 1 × 1 and hence we

denote it as s11 and then |S11 − S12S
−1
22 S21| is s11 − S12S

−1
22 S21 which is 1 × 1. Let

u = 1 − r2
1.(2...p) = |S|

|S22|s11
. We can compute arbitrary moments of u by integrating out

over the density of S, namely the Wishart density with m = n − 1 degrees of freedom
when the population is Gaussian, where n is the sample size. That is, for arbitrary h,

E[uh] = 1

2
mp
2 |Σ |m

2 Γp(m
2 )

∫

S>O

uh|S|m
2 −p+1

2 e− 1
2 tr(Σ−1S)dS. (i)

Note that uh = |S|h|S22|−hs−h
11 . Among the three factors |S|h, |S22|−h and s−h

11 , |S22|−h

and s−h
11 are creating problems. We will replace these by equivalent integrals so that the

problematic part be shifted to the exponent. Consider the identities

s−h
11 = 1

Γ (h)

∫ ∞

x=0
xh−1e−s11xdx, x > 0, s11 > 0, �(h) > 0 (ii)

|S22|−h = 1

Γp2(h)

∫

X2>O

|X2|h−p2+1
2 e−tr(S22X2)dX2, (iii)

for X2 > O, S22 > O, �(h) >
p2−1

2 where X2 > O is a p2 × p2 real positive definite
matrix, p2 = p − 1, p1 = 1, p1 + p2 = p. Then, excluding −1

2 , the exponent in (i)
becomes the following:

tr(Σ−1S) + 2s11x + 2tr(S22X2) = tr[S(Σ−1 + 2Z)], Z =
[

x O

O X2

]

. (iv)

Noting that (Σ−1 + 2Z) = Σ−1(I + 2ΣZ), we are now in a position to integrate out S

from (i) by using a real matrix-variate gamma integral, denoting the constant part in (i)
as c1:

E[uh] = c1
1

Γ (h)Γp2(h)

∫ ∞

x=0
xh−1

∫

X2>O

|X2|h−p2+1
2

×
[ ∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr[S(Σ−1+2Z)]dS

]
dx ∧ dX2

= c12p(m
2 +h)Γp(m/2 + h)

∫ ∞

x=0

∫

X2>O

xh−1|X2|h−p2+1
2 |Σ−1 + 2Z|−(m

2 +h)dx ∧ dX2

= c12p(m
2 +h)

Γ (h)Γp2(h)
Γp(m/2 + h)|Σ |m

2 +h

∫ ∞

x=0

∫

X2>O

xh−1|X2|h−p2+1
2

× |I + 2ΣZ|−(m
2 +h)dx ∧ dX2. (5.6.13)
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The integral in (5.6.13) can be evaluated for a general Σ, which will produce the non-
null density of 1 − r2

1.(2...p)—non-null in the sense that the population multiple correlation
ρ1.(2...p) 
= 0. However, if ρ1.(2...p) = 0, which we call the null case, the determinant part
in (5.6.13) splits into two factors, one depending only on x and the other only involving
X2. So letting Ho: ρ1.(2...p) = 0,

E[uh|Ho] = c12p(m
2 +h)

Γ (h)Γp2(h)
Γp(m/2 + h)|Σ |m

2 +h

∫ ∞

0
xh−1[1 + 2σ11x]−(m

2 +h)dx

×
∫

X2>O

|X2|h−p2+1
2 |I + 2Σ22X2|−(m

2 +h)dX2. (v)

But the x-integral gives
Γ (h)Γ (m

2 )

Γ (m
2 +h)

(2σ11)
−h for �(h) > 0 and the X2-integral gives

Γp2(h)Γp2(m
2 )

Γp2(m
2 +h)

|2Σ22|−h for �(h) >
p2−1

2 . Substituting all these in (v), we note that all the

factors containing 2 and Σ, σ11, Σ22 cancel out, and then by using the fact that

Γp(m
2 + h)

Γ (m
2 + h)Γp−1(

m
2 + h)

= π
p−1

2
Γ (m

2 − p−1
2 + h)

Γ (m
2 + h)

,

we have the following expression for the h-th null moment of u:

E[uh|Ho] = Γ (m
2 )

Γ (m
2 − p−1

2 )

Γ (m
2 − p−1

2 + h)

Γ (m
2 + h)

, �(h) > −m

2
+ p − 1

2
, (5.6.14)

which happens to be the h-th moment of a real scalar type-1 beta random variable with the
parameters (m

2 − p−1
2 ,

p−1
2 ). Since h is arbitrary, this h-th moment uniquely determines

the distribution, thus the following result:

Theorem 5.6.3. When the population has a p-variate Gaussian distribution with the pa-
rameters μ and Σ > O, and the population multiple correlation coefficient ρ1.(2...p) = 0,
the sample multiple correlation coefficient r1.(2...p) is such that u = 1 − r2

1.(2...p) is dis-

tributed as a real scalar type-1 beta random variable with the parameters (m
2 − p−1

2 ,
p−1

2 ),

and thereby v = u
1−u

= 1−r2
1.(2...p)

r2
1.(2...p)

is distributed as a real scalar type-2 beta random vari-

able with the parameters (m
2 − p−1

2 ,
p−1

2 ) and w = 1−u
u

= r2
1.(2...p)

1−r2
1.(2...p)

is distributed as

a real scalar type-2 beta random variable with the parameters (
p−1

2 , m
2 − p−1

2 ) whose
density is

fw(w) = Γ (m
2 )

Γ (m
2 − p−1

2 )Γ (
p−1

2 )
w

p−1
2 −1(1 + w)−(m

2 ), 0 ≤ w < ∞, (5.6.15)

and zero elsewhere.
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As F -tables are available, we may conveniently express the above real scalar type-2
beta density in terms of an F -density. It suffices to make the substitution w = p−1

m−p+1F

where F is a real F random variable having p − 1 and m−p + 1 degrees of freedom, that
is, an Fp−1,m−p+1 random variable, with m = n− 1, n being the sample size. The density
of this F random variable, denoted by fF (F ), is the following:

fF (F ) = Γ (m
2 )

Γ (
p−1

2 )Γ (m
2 − p−1

2 )

( p − 1

m − p + 1

)p−1
2

F
p−1

2 −1
(

1 + p − 1

m − p + 1
F
)−m

2
,

(5.6.16)
whenever 0 ≤ F < ∞, and zero elsewhere. In the above simplification, observe that
(p−1)/2
(m

2 −p−1
2 )

= p−1
m−p+1 . Then, for taking a decision with respect to testing the hypothesis

Ho : ρ1.(2...p) = 0, first compute Fp−1,m−p+1 = m−p+1
p−1 w, w = r2

1.(2...p)

1−r2
1.(2...p)

. Then, reject

Ho if the observed Fp−1,m−p+1 ≥ Fp−1,m−p+1,α for a given α. This will be a test at
significance level α or, equivalently, a test whose critical region’s size is α. The non-null
distribution for evaluating the power of this likelihood ratio test can be determined by
evaluating the integral in (5.6.13) and identifying the distribution through the uniqueness
property of arbitrary moments.

Note 5.6.1. By making use of Theorem 5.6.3 as a starting point and exploiting various
results connecting real scalar type-1 beta, type-2 beta, F and gamma variables, one can
obtain numerous results on the distributional aspects of certain functions involving the
sample multiple correlation coefficient.

5.6.5. The partial correlation coefficient

Partial correlation is a concept associated with the correlation between residuals in
two variables after removing the effects of linear regression on a set of other variables.
Consider the real vector X′ = (x1, x2, x3, . . . , xp) = (x1, x2, X

′
3), X′

3 = (x3, . . . , xp)

where x1, . . . , xp are all real scalar variables. Let the covariance matrix of X be Σ > O

and let it be partitioned as follows:

X =
⎡

⎣
x1

x2

X(3)

⎤

⎦ , Σ =
⎡

⎣
σ11 σ12 Σ13

σ21 σ22 Σ23

Σ31 Σ32 Σ33

⎤

⎦ , X(3) being (p − 2) × 1,

where σ11, σ12, σ21, σ22 are 1×1, Σ13 and Σ23 are 1×(p−2), Σ31 = Σ ′
13, Σ32 = Σ ′

23
and Σ33 is (p − 2) × (p − 2). Let E[X] = O without any loss of generality. Consider
the problem of predicting x1 by using a linear function of X(3). Then, the regression of x1

on X(3) is E[x1|X(3)] = Σ13Σ
−1
33 X(3) from (5.6.10), and the residual part, after removing
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this regression from x1 is e1 = x1 − Σ13Σ
−1
33 X(3). Similarly, the linear regression of x2

on X(3) is E[x2|X(3)] = Σ23Σ
−1
33 X(3) and the residual in x2 after removing the effect of

X(3) is e2 = x2 − Σ13Σ
−1
33 X(3). What are then the variances of e1 and e2, the covariance

between e1 and e2, and the scale-free covariance, namely the correlation between e1 and
e2? Since e1 and e2 are all linear functions of the variables involved, we can utilize the
expressions for variances of linear functions and covariance between linear functions, a
basic discussion of such results being given in Mathai and Haubold (2017b). Thus,

Var(e1) = Var(x1) + Var(Σ13Σ
−1
33 X(3)) − 2 Cov(x1, Σ13Σ

−1
33 X(3))

= σ11 + Σ13Σ
−1
33 Cov(X(3))Σ

−1
33 Σ31 − 2 Cov(x1, Σ−1

33 X(3))

= σ11 + Σ13Σ
−1
33 Σ31 − 2 Σ13Σ

−1
33 Σ31 = σ11 − Σ13Σ

−1
33 Σ31. (i)

It can be similarly shown that

Var(e2) = σ22 − Σ23Σ
−1
33 Σ32 (ii)

Cov(e1, e2) = σ12 − Σ13Σ
−1
33 Σ32. (iii)

Then, the correlation between the residuals e1 and e2, which is called the partial correlation
between x1 and x2 after removing the effects of linear regression on X(3) and is denoted
by ρ12.(3...p), is such that

ρ2
12.(3...p) = [σ12 − Σ13Σ

−1
33 Σ32]2

[σ11 − Σ13Σ
−1
33 Σ31][σ22 − Σ23Σ

−1
33 Σ32]

. (5.6.17)

In the above simplifications, we have for instance used the fact that Σ13Σ
−1
33 Σ32 =

Σ23Σ
−1
33 Σ31 since both are real 1 × 1 and one is the transpose of the other.

The corresponding sample partial correlation coefficient between x1 and x2 after re-
moving the effects of linear regression on X(3), denoted by r12.(3...p), is such that:

r2
12.(3...p) = [s12 − S13S

−1
33 S32]2

[s11 − S13S
−1
33 S31][s22 − S23S

−1
33 S32]

(5.6.18)

where the sample sum of products matrix S is partitioned correspondingly, that is,

S =
⎡

⎣
s11 s12 S13

s21 s22 S23

S31 S32 S33

⎤

⎦ , S33 being (p − 2) × (p − 2), (5.6.19)
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and s11, s12, s21, s22 being 1×1. In all the above derivations, we did not use any assump-
tion of an underlying Gaussian population. The results hold for any general population
as long as product moments up to second order exist. However, if we assume a p-variate
nonsingular Gaussian population, then we can obtain some interesting results on the dis-
tributional aspects of the sample partial correlation, as was done in the case of the sample
multiple correlation. Such results will not be herein considered.

Exercises 5.6

5.6.1. Let the p × p real positive definite matrix W be distributed as W ∼ Wp(m, Σ)

with Σ = I . Consider the partitioning W =
[
W11 W12

W21 W22

]

where W11 is r × r, r < p.

Evaluate explicitly the normalizing constant in the density of W by first integrating out
(1): W11, (2): W22, (3): W12.

5.6.2. Repeat Exercise 5.6.1 for the complex case.

5.6.3. Let the p × p real positive definite matrix W have a real Wishart density with
degrees of freedom m ≥ p and parameter matrix Σ > O. Consider the transformation
W = T T ′ where T is lower triangular with positive diagonal elements. Evaluate the den-
sities of the tjj ’s and the tij ’s, i > j if (1): Σ = diag(σ11, . . . , σpp), (2): Σ > O is a
general matrix.

5.6.4. Repeat Exercise 5.6.3 for the complex case. In the complex case, the diagonal
elements in T are real and positive.

5.6.5. Let S ∼ Wp(m, Σ), Σ > O. Compute the density of S−1 in the real case, and
repeat for the complex case.

5.7. Distributions of Products and Ratios of Matrix-variate Random Variables

In the real scalar case, one can easily interpret products and ratios of real scalar vari-
ables, whether these are random or mathematical variables. However, when it comes to
matrices, products and ratios are to be carefully defined. Let X1 and X2 be independently
distributed p × p real symmetric and positive definite matrix-variate random variables
with density functions f1(X1) and f2(X2), respectively. By definition, f1 and f2 are re-
spectively real-valued scalar functions of the matrices X1 and X2. Due to statistical inde-
pendence of X1 and X2, their joint density, denoted by f (X1, X2), is the product of the
marginal densities, that is, f (X1, X2) = f1(X1)f2(X2). Let us define a ratio and a product

of matrices. Let U2 = X
1
2
2 X1X

1
2
2 and U1 = X

1
2
2 X−1

1 X
1
2
2 be called the symmetric product
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and symmetric ratio of the matrices X1 and X2, where X
1
2
2 denotes the positive definite

square root of the positive definite matrix X2. Let us consider the product U2 first. We
could have also defined a product by interchanging X1 and X2. When it comes to ratios,
we could have considered the ratios X1 to X2 as well as X2 to X1. Nonetheless, we will
start with U1 and U2 as defined above.

5.7.1. The density of a product of real matrices

Consider the transformation U2 = X
1
2
2 X1X

1
2
2 , V = X2. Then, it follows from Theo-

rem 1.6.5 that:

dX1 ∧ dX2 = |V |−p+1
2 dU2 ∧ dV. (5.7.1)

Letting the joint density of U2 and V be denoted by g(U2, V ) and the marginal density of
U2, by g2(U2), we have

f1(X1)f2(X2) dX1 ∧ dX2 = |V |−p+1
2 f1(V

− 1
2 U2V

− 1
2 )f2(V ) dU2 ∧ dV

g2(U2) =
∫

V

|V |−p+1
2 f1(V

− 1
2 U2V

− 1
2 )f2(V )dV, (5.7.2)

g2(U2) being referred to as the density of the symmetric product U2 of the matrices X1 and
X2. For example, letting X1 and X2 be independently distributed two-parameter matrix-
variate gamma random variables with the densities

f3j (Xj ) = |Bj |αj

Γp(αj )
|Xj |αj−p+1

2 e−tr(BjXj ), j = 1, 2, (i)

for Bj > O, Xj > O, �(αj ) >
p−1

2 , j = 1, 2, and zero elsewhere, we have

g2(U2) = c|U2|α1−p+1
2

∫

V >O

|V |α2−α1−p+1
2 e−tr(B2V +B1V

− 1
2 U2V

− 1
2 ) dV, (5.7.3)

where c is the product of the normalizing constants of the densities specified in (i). On
comparing (5.7.3) with the Krätzel integral defined in the real scalar case in Chap. 2,
as well as in Mathai (2012) and Mathai and Haubold (1988, 2011a, 2017,a), it is seen
that (5.7.3) can be regarded as a real matrix-variate analogue of Krätzel’s integral. One
could also obtain the real matrix-variate version of the inverse Gaussian density from the
integrand.



368 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

As another example, let f1(X1) be a real matrix-variate type-1 beta density as pre-
viously defined in this chapter, whose parameters are (γ + p+1

2 , α) with �(α) >
p−1

2 , �(γ ) > −1, its density being given by

f4(X1) = Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )Γp(α)

|X1|γ |I − X1|α−p+1
2 (ii)

for O < X1 < I, �(γ ) > −1, �(α) >
p−1

2 , and zero elsewhere. Letting f2(X2) =
f (X2) be any other density, the density of U2 is then

g2(U2) =
∫

V

|V |−p+1
2 f1(V

− 1
2 U2V

− 1
2 )f2(V )dV

= Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )Γp(α)

∫

V

|V |−p+1
2 |V − 1

2 U2V
− 1

2 |γ |I − V − 1
2 U2V

− 1
2 |α−p+1

2 f (V )dV

= Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )

|U2|γ
Γp(α)

∫

V >U2>O

|V |−α−γ |V − U2|α−p+1
2 f (V )dV

= Γp(γ + p+1
2 + α)

Γp(γ + p+1
2 )

K−α
2,U2,γ

f (5.7.4)

where

K−α
2,U2,γ

f = |U2|γ
Γp(α)

∫

V >U2>O

|V |−α−γ |V − U2|α−p+1
2 f (V )dV, �(α) >

p − 1

2
, (5.7.5)

is called the real matrix-variate Erdélyi-Kober right-sided or second kind fractional in-
tegral of order α and parameter γ as for p = 1, that is, in the real scalar case, (5.7.5)
corresponds to the Erdélyi-Kober fractional integral of the second kind of order α and pa-
rameter γ . This connection of the density of a symmetric product of matrices to a fractional
integral of the second kind was established by Mathai (2009, 2010) and further papers.

5.7.2. M-convolution and fractional integral of the second kind

Mathai (1997) referred to the structure in (5.7.2) as the M-convolution of a product
where f1 and f2 need not be statistical densities. Actually, they could be any function pro-
vided the integral exists. However, if f1 and f2 are statistical densities, this M-convolution
of a product can be interpreted as the density of a symmetric product. Thus, a physical
interpretation to an M-convolution of a product is provided in terms of statistical den-
sities. We have seen that (5.7.2) is connected to a fractional integral when f1 is a real
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matrix-variate type-1 beta density and f2 is an arbitrary density. From this observation,
one can introduce a general definition for a fractional integral of the second kind in the
real matrix-variate case. Let

f1(X1) = φ1(X1)
|I − X1|α−p+1

2

Γp(α)
, �(α) >

p − 1

2
, (iii)

and f2(X2) = φ2(X2)f (X2) where φ1 and φ2 are specified functions and f is an arbitrary
function. Then, consider the M-convolution of a product, again denoted by g2(U2):

g2(U2) =
∫

V

|V |−p+1
2 φ1(V

− 1
2 U2V

− 1
2 )

|I − V − 1
2 U2V

− 1
2 |α−p+1

2

Γp(α)

× φ2(V )f (V )dV, �(α) >
p − 1

2
. (5.7.6)

The right-hand side (5.7.6) will be called a fractional integral of the second kind of order α

in the real matrix-variate case. By letting p = 1 and specifying φ1 and φ2, one can obtain
all the fractional integrals of the second kind of order α that have previously been defined
by various authors. Hence, for a general p, one has the corresponding real matrix-variate
cases. For example, on letting φ1(X1) = |X1|γ and φ2(X2) = 1, one has Erdélyi-Kober
fractional integral of the second kind of (5.7.5) in the real matrix-variate case as for p = 1,
it is the Erdélyi-Kober fractional integral of the second kind of order α. Letting φ1(X1) = 1
and φ2(X2) = |X2|α, (5.7.6) simplifies to the following integral, again denoted by g2(U2):

g2(U2) = 1

Γp(α)

∫

V >U2>O

|V − U2|α−p+1
2 f (V )dV. (5.7.7)

For p = 1, (5.7.7) is Weyl fractional integral of the second kind of order α. Accord-
ingly, (5.7.7) is Weyl fractional integral of the second kind in the real matrix-variate
case. For p = 1, (5.7.7) is also the Riemann-Liouville fractional integral of the second
kind of order α in the real scalar case, if there exists a finite upper bound for V . If V is
bounded above by a real positive definite constant matrix B > O in the integral in (5.7.7),
then (5.7.7) is Riemann-Liouville fractional integral of the second kind of order α for the
real matrix-variate case. Connections to other fractional integrals of the second kind can
be established by referring to Mathai and Haubold (2017).

The appeal of fractional integrals of the second kind resides in the fact that they can
be given physical interpretations as the density of a symmetric product when f1 and f2
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are densities or as an M-convolution of products, whether in the scalar variable case or the
matrix-variate case, and that in both the real and complex domains.

5.7.3. A pathway extension of fractional integrals

Consider the following modification to the general definition of a fractional integral of
the second kind of order α in the real matrix-variate case given in (5.7.6). Let

f1(X1) = φ1(X1)
1

Γp(α)
|I − a(1 − q)X1|

η
1−q

−p+1
2 , f2(X2) = φ2(X2)f (X2), (iv)

where �(α) >
p−1

2 and q < 1, and a > 0, η > 0 are real scalar constants. For all q <

1, g2(U2) corresponding to f1(X1) and f2(X2) of (iv) will define a family of fractional
integrals of the second kind. Observe that when X1 and I − a(1 − q)X1 > O, then
O < X1 < 1

a(1−q)
I . However, by writing (1 − q) = −(q − 1) for q > 1, one can switch

into a type-2 beta form, namely, I + a(q − 1)X1 > O for q > 1, which implies that
X1 > O and the fractional nature is lost. As well, when q → 1,

|I + a(q − 1)X1|−
η

q−1 → e−a η tr(X1)

which is the exponential form or gamma density form. In this case too, the fractional nature
is lost. Thus, through q, one can obtain matrix-variate type-1 and type-2 beta families and
a gamma family of functions from (iv). Then q is called the pathway parameter which
generates three families of functions. However, the fractional nature of the integrals is lost
for the cases q > 1 and q → 1. In the real scalar case, x1 may have an exponent and
making use of [1 − (1 − q)xδ

1]α−1 can lead to interesting fractional integrals for q < 1.
However, raising X1 to an exponent δ in the matrix-variate case will fail to produce results
of interest as Jacobians will then take inconvenient forms that cannot be expressed in terms
of the original matrices; this is for example explained in detail in Mathai (1997) for the
case of a squared real symmetric matrix.

5.7.4. The density of a ratio of real matrices

One can define a symmetric ratio in four different ways: X
1
2
2 X−1

1 X
1
2
2 with V = X2 or

V = X1 and X
1
2
1 X−1

2 X
1
2
1 with V = X2 or V = X1. All these four forms will produce

different structures on f1(X1)f2(X2). Since the form U1 that was specified in Sect. 5.7

in terms of X
1
2
2 X−1

1 X
1
2
2 with V = X2 provides connections to fractional integrals of the

first kind, we will consider this one whose density, denoted by g1(U1), is the following

observing that dX1 ∧ dX2 = |V |p+1
2 |U1|−(p+1)dU1 ∧ dV :

g1(U1) =
∫

V

|V |p+1
2 |U1|−(p+1)f1(V

1
2 U−1

1 V
1
2 )f2(V )dV (5.7.8)
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provided the integral exists. As in the fractional integral of the second kind in real matrix-
variate case, we can give a general definition for a fractional integral of the first kind in
the real matrix-variate case as follows: Let f1(X1) and f2(X2) be taken as in the case of
fractional integral of the second kind with φ1 and φ2 as preassigned functions. Then

g1(U1) =
∫

V

|V |p+1
2 |U1|−(p+1)φ1(V

1
2 U−1

1 V
1
2 )

× 1

Γp(α)
|I − V

1
2 U−1

1 V
1
2 |α−p+1

2 φ2(V )f (V )dV, �(α) >
p − 1

2
. (5.7.9)

As an example, letting

φ1(X1) = Γp(γ + α)

Γp(γ )
|X1|γ−p+1

2 and φ2(X2) = 1, �(γ ) >
p − 1

2
,

we have

g1(U1) = Γp(γ + α)

Γp(γ )

|U1|−α−γ

Γp(α)

∫

V <U1

|V |γ |U1 − V |α−p+1
2 f (V )dV

= Γp(γ + α)

Γp(γ )
K−α

1,U1,γ
f (5.7.10)

for �(α) >
p−1

2 , �(γ ) >
p−1

2 , where

K−α
1,U1,γ

f = |U1|−α−γ

Γp(α)

∫

V <U1

|V |γ |U1 − V |α−p+1
2 f (V )dV (5.7.11)

for �(α) >
p−1

2 , �(γ ) >
p−1

2 , is Erdélyi-Kober fractional integral of the first kind of
order α and parameter γ in the real matrix-variate case. Since for p = 1 or in the real
scalar case, K−α

1,u1,γ
f is Erdélyi-Kober fractional integral of order α and parameter γ , the

first author referred to K−α
1,U1,γ

f in (5.7.11) as Erdélyi-Kober fractional integral of the first
kind of order α in the real matrix-variate case.

By specializing φ1 and φ2 in the real scalar case, that is, for p = 1, one can obtain
all the fractional integrals of the first kind of order α that have been previously introduced
in the literature by various authors. One can similarly derive the corresponding results on
fractional integrals of the first kind in the real matrix-variate case. Before concluding this
section, we will consider one more special case. Let

φ1(X1) = |X1|−α−p+1
2 and φ2(X2) = |X2|α.
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In this case, g1(U1) is not a statistical density but it is the M-convolution of a ratio. Under
the above substitutions, g1(U1) of (5.7.9) becomes

g1(U1) = 1

Γp(α)

∫

V <U1

|U1 − V |α−p+1
2 f (V )dV, �(α) >

p − 1

2
. (5.7.12)

For p = 1, (5.7.12) is Weyl fractional integral of the first kind of order α; accordingly
the first author refers to (5.7.12) as Weyl fractional integral of the first kind of order α in
the real matrix-variate case. Since we are considering only real positive definite matrices
here, there is a natural lower bound for the integral or the integral is over O < V < U1.
When there is a specific lower bound, such as O < V , then for p = 1, (5.7.12) is called
the Riemann-Liouville fractional integral of the first kind of order α. Hence (5.7.12) will
be referred to as the Riemann-Liouville fractional integral of the first kind of order α in
the real matrix-variate case.

Example 5.7.1. Let X1 and X2 be independently distributed p × p real positive definite
gamma matrix-variate random variables whose densities are

fj (Xj ) = 1

Γp(αj )
|Xj |αj−p+1

2 e−tr(Xj ), Xj > O, �(αj ) >
p − 1

2
, j = 1, 2,

and zero elsewhere. Show that the densities of the symmetric ratios of matrices U1 =
X

− 1
2

1 X2X
− 1

2
1 and U2 = X

1
2
2 X−1

1 X
1
2
2 are identical.

Solution 5.7.1. Observe that for p = 1 that is, in the real scalar case, both U1 and
U2 are the ratio of real scalar variables x2

x1
but in the matrix-variate case U1 and U2 are

different matrices. Hence, we cannot expect the densities of U1 and U2 to be the same.
They will happen to be identical because of a property called functional symmetry of
the gamma densities. Consider U1 and let V = X1. Then, X2 = V

1
2 U1V

1
2 and dX1 ∧

dX2 = |V |p+1
2 dV ∧ dU1. Due to the statistical independence of X1 and X2, their joint

density is f1(X1)f2(X2) and the joint density of U1 and V is |V |p+1
2 f1(V )f2(V

1
2 U1V

1
2 ),

the marginal density of U1, denoted by g1(U1), being the following:

g1(U1) = |U1|α2−p+1
2

Γp(α1)Γp(α2)

∫

V >O

|V |α1+α2−p+1
2 e− tr(V +V

1
2 U1V

1
2 )dV.

The exponent of e can be written as follows:

−tr(V )−tr(V
1
2 U1V

1
2 )=−tr(V )−tr(V U1)=−tr(V (I+U1))=− tr[(I+U1)

1
2 V (I+U1)

1
2 ].
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Letting Y = (I + U1)
1
2 V (I + U1)

1
2 ⇒ dY = |I + U1|p+1

2 dV. Then carrying out the
integration in g1(U1), we obtain the following density function:

g1(U1) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U1|α2−p+1

2 |I + U1|−(α1+α2), (i)

which is a real matrix-variate type-2 beta density with the parameters (α2, α1). The original
conditions �(αj ) >

p−1
2 , j = 1, 2, remain the same, no additional conditions being

needed. Now, consider U2 and let V = X2 so that X1 = V
1
2 U−1

2 V
1
2 ⇒ dX1 ∧ dX2 =

|V |p+1
2 |U2|−(p+1)dV ∧ dU2. The marginal density of U2 is then:

g2(U2) = |U2|−α1+p+1
2 |U2|−(p+1)

Γp(α1)Γp(α2)

∫

V >O

|V |α1+α2−p+1
2 e−tr[V +V

1
2 U−1

2 V
1
2 ] (ii)

As previously explained, the exponent in (ii) can be simplified to −tr[(I + U−1
2 )

1
2 V (I +

U−1
2 )

1
2 ], which once integrated out yields Γp(α1 + α2)|I + U−1

2 |−(α1+α2). Then,

|U2|−α1+p+1
2 |U2|−(p+1)|I + U−1

2 |−(α1+α2) = |U2|α2−p+1
2 |I + U2|−(α1+α2). (iii)

It follows from (i),(ii) and (iii) that g1(U1) = g2(U2). Thus, the densities of U1 and U2 are
indeed one and the same, as had to be proved.

5.7.5. A pathway extension of first kind integrals, real matrix-variate case

As in the case of fractional integral of the second kind, we can also construct a pathway
extension of the first kind integrals in the real matrix-variate case. Let

f1(X1) = φ1(X1)

Γp(α)
|I − a(1 − q)X1|α−p+1

2 , α = η

1 − q
, �(α) >

p − 1

2
, (5.7.13)

and f2(X2) = φ2(X2)f (X2) for the scalar parameters a > 0, η > 0, q < 1. When
q < 1, (5.7.13) remains in the generalized type-1 beta family of functions. However,
when q > 1, f1 switches to the generalized type-2 beta family of functions and when
q → 1, (5.6.13) goes into a gamma family of functions. Since X1 > O for q > 1 and
q → 1, the fractional nature is lost in those instances. Hence, only the case q < 1 is
relevant in this subsection.

For various values of q < 1, one has a family of fractional integrals of the first kind com-
ing from (5.7.13). For details on the concept of pathway, the reader may refer to Mathai
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(2005) and later papers. With the function f1(X1) as specified in (5.7.13) and the cor-
responding f2(X2) = φ2(X2)f (X2), one can write down the M-convolution of a ratio,
g1(U1), corresponding to (5.7.8). Thus, we have the pathway extended form of g1(U1).

5.7a. Density of a Product and Integrals of the Second Kind

The discussion in this section parallels that in the real matrix-variate case. Hence, only
a summarized treatment will be provided. With respect to the density of a product when
f̃1 and f̃2 are matrix-variate gamma densities in the complex domain, the results are paral-
lel to those obtained in the real matrix-variate case. Hence, we will consider an extension
of fractional integrals to the complex matrix-variate cases. Matrices in the complex do-
main will be denoted with a tilde. Let X̃1 and X̃2 be independently distributed Hermitian
positive definite complex matrix-variate random variables whose densities are f̃1(X̃1) and

f̃2(X̃2), respectively. Let Ũ2 = X̃
1
2
2 X̃1X̃

1
2
2 and Ũ1 = X̃

1
2
2 X̃−1

1 X̃
1
2
2 where X̃

1
2
2 denotes the

Hermitian positive definite square root of the Hermitian positive definite matrix X̃2. Sta-
tistical densities are real-valued scalar functions whether the argument matrix is in the real
or complex domain.

5.7a.1. Density of a product and fractional integral of the second kind, complex case

Let us consider the transformation (X̃1, X̃2) → (Ũ2, Ṽ ) and (X̃1, X̃2) → (Ũ1, Ṽ ),
the Jacobians being available from Chap. 1 or Mathai (1997). Then,

dX̃1 ∧ dX̃2 =
{

|det(Ṽ )|−pdŨ2 ∧ dṼ

|det(Ṽ )|p|det(Ũ1)|−2pdŨ1 ∧ dṼ .
(5.7a.1)

When f1 and f2 are statistical densities, the density of the product, denoted by g̃2(Ũ2), is
the following:

g̃2(Ũ2) =
∫

Ṽ

|det(Ṽ )|−pf1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )f2(Ṽ ) dṼ (5.7a.2)

where |det(·)| is the absolute value of the determinant of (·). If f1 and f2 are not statistical
densities, (5.7a.1) will be called the M-convolution of the product. As in the real matrix-
variate case, we will give a general definition of a fractional integral of order α of the
second kind in the complex matrix-variate case. Let

f̃1(X̃1) = φ1(X̃1)
1

Γ̃p(α)
|det(I − X̃1)|α−p, �(α) > p − 1,



Matrix-Variate Gamma and Beta Distributions 375

and f2(X̃2) = φ2(X̃2)f̃ (X̃2) where φ1 and φ2 are specified functions and f is an arbitrary
function. Then, (5.7a.2) becomes

g̃2(Ũ2) =
∫

Ṽ

|det(Ṽ )|−pφ1(Ṽ
− 1

2 Ũ2Ṽ
− 1

2 )

× 1

Γ̃p(α)
| det(I − Ṽ − 1

2 Ũ2Ṽ
− 1

2 )|α−pφ2(Ṽ )f (Ṽ ) dṼ (5.7a.3)

for �(α) > p − 1. As an example, let

φ1(X̃1) = Γ̃p(γ + p + α)

Γ̃p(γ + p)
|det(X̃1)|γ and φ2(X̃2) = 1.

Observe that f̃1(X̃1) has now become a complex matrix-variate type-1 beta density with
the parameters (γ + p, α) so that (5.7a.3) can be expressed as follows:

g̃2(Ũ2) = Γ̃p(γ + p + α)

Γ̃p(γ + p)

| det(Ũ2)|γ
Γ̃p(α)

∫

Ṽ >Ũ2>O

|det(Ṽ )|−α−γ | det(Ṽ − Ũ2)|α−pf̃ (Ṽ ) dṼ

= Γ̃p(γ + p + α)

Γ̃p(γ + p)
K̃−α

2,Ũ2,γ
f (5.7a.4)

where

K̃−α

2,Ũ2,γ
f = |det(Ũ2)|γ

Γ̃p(α)

∫

Ṽ >Ũ2>O

| det(Ṽ )|−α−γ |det(Ṽ − Ũ2)|α−pf (Ṽ ) dṼ (5.7a.5)

is Erdélyi-Kober fractional integral of the second kind of order α in the complex matrix-
variate case, which is defined for �(α) > p − 1, �(γ ) > −1. The extension of fractional
integrals to complex matrix-variate cases was introduced in Mathai (2013). As a second
example, let

φ1(X̃1) = 1 and φ2(X̃2) = |det(Ṽ )|α.

In that case, (5.7a.3) becomes

g̃2(Ũ2) =
∫

Ṽ >Ũ2>O

|det(Ṽ − Ũ2)|α−pf (V ) dṼ , �(α) > p − 1. (5.7a.6)

The integral (5.7a.6) is Weyl fractional integral of the second kind of order α in the com-
plex matrix-variate case. If V is bounded above by a Hermitian positive definite constant
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matrix B > O, then (5.7a.6) is a Riemann-Liouville fractional integral of the second kind
of order α in the complex matrix-variate case.

A pathway extension parallel to that developed in the real matrix-variate case can be
similarly obtained. Accordingly, the details of the derivation are omitted.

5.7a.2. Density of a ratio and fractional integrals of the first kind, complex case

We will now derive the density of the symmetric ratio Ũ1 defined in Sect. 5.7a. If f̃1

and f̃2 are statistical densities, then the density of Ũ1, denoted by g̃1(Ũ1), is given by

g̃1(Ũ1) =
∫

Ṽ

|det(Ṽ )|p| det(Ũ1)|−2pf̃1(Ṽ
1
2 Ũ−1Ṽ

1
2 )f̃2(Ṽ ) dṼ , (5.7a.7)

provided the integral is convergent. For the general definition, let us take

f̃1(X̃1) = φ1(X̃1)
1

Γ̃p(α)
|det(I − X̃1)|α−p, �(α) > p − 1,

and f̃2(X̃2) = φ2(X̃2)f̃ (X̃2) where φ1 and φ2 are specified functions and f̃ is an arbitrary
function. Then g̃1(Ũ1) is the following:

g̃1(Ũ1) =
∫

Ṽ

|det(Ṽ )|p| det(Ũ1)|−2p 1

Γ̃p(α)
φ1(Ṽ

1
2 Ũ−1

1 Ṽ
1
2 )

× |det(I − Ṽ
1
2 Ũ−1

1 Ṽ
1
2 )|α−pφ2(Ṽ )f (Ṽ ) dṼ . (5.7a.8)

As an example, let

φ1(X̃1) = Γ̃p(γ + α)

Γ̃p(γ )
|det(X̃1)|γ−p

and φ2 = 1. Then,

g̃1(Ũ1) = Γ̃p(γ + α)

Γ̃p(γ )

|det(Ũ1)|−α−γ

Γ̃p(α)

∫

O<Ṽ <Ũ1

|det(Ṽ )|γ

× |det(Ũ1 − Ṽ )|α−pf (Ṽ ) dṼ , �(α) > p − 1

= Γ̃p(γ + α)

Γ̃p(γ )
K−α

1,Ũ1,γ
f (5.7a.9)
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where

K−α

1,Ũ1,γ
f = |det(Ũ1)|−α−γ

Γ̃p(α)

∫

V <Ũ1

| det(Ṽ )|γ |det(Ũ1 − Ṽ )|α−pf (Ṽ ) dṼ (5.7a.10)

for �(α) > p − 1, is the Erdélyi-Kober fractional integral of the first kind of order α and
parameter γ in the complex matrix-variate case. We now consider a second example. On
letting φ1(X̃1) = |det(X̃1)|−α−p and φ2(X̃2) = |det(X̃2)|α, the density of Ũ1 is

g̃1(Ũ1) = 1

Γ̃p(α)

∫

Ṽ <Ũ1

|det(Ũ1 − Ṽ )|α−pf (Ṽ )dṼ , �(α) > p − 1. (5.7a.11)

The integral in (5.7a.11) is Weyl’s fractional integral of the first kind of order α in the
complex matrix-variate case, denoted by W̃−α

1,Ũ1
f . Observe that we are considering only

Hermitian positive definite matrices. Thus, there is a lower bound, the integral being over
O < Ṽ < Ũ1. Hence (5.7a.11) can also represent a Riemann-Liouville fractional integral
of the first kind of order α in the complex matrix-variate case with a null matrix as its
lower bound. For fractional integrals involving several matrices and fractional differential
operators for functions of matrix argument, refer to Mathai (2014a, 2015); for pathway
extensions, see Mathai and Haubold (2008, 2011).

Exercises 5.7

All the matrices appearing herein are p × p real positive definite, when real, and Her-
mitian positive definite, when in the complex domain. The M-transform of a real-valued
scalar function f (X) of the p × p real matrix X, with the M-transform parameter ρ, is
defined as

Mf (ρ) =
∫

X>O

|X|ρ−p+1
2 f (X) dX, �(ρ) >

p − 1

2
,

whenever the integral is convergent. In the real case, the M-convolution of a product U2 =
X

1
2
2 X1X

1
2
2 with the corresponding functions f1(X1) and f2(X2), respectively, is

g2(U2) =
∫

V

|V |−p+1
2 f1(V

− 1
2 U2V

− 1
2 )f2(V ) dV

whenever the integral is convergent. The M-convolution of a ratio in the real case is
g1(U1). The M-convolution of a product and a ratio in the complex case are g̃2(Ũ2) and
g̃1(Ũ1), respectively, as defined earlier in this section. If α is the order of a fractional in-
tegral operator operating on f , denoted by A−αf , then the semigroup property is that
A−αA−βf = A−(α+β)f = A−βA−αf .



378 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

5.7.1. Show that the M-transform of the M-convolution of a product is the product of the
M-transforms of the individual functions f1 and f2, both in the real and complex cases.

5.7.2. What are the M-transforms of the M-convolution of a ratio in the real and complex
cases? Establish your assertions.

5.7.3. Show that the semigroup property holds for Weyl’s fractional integral of the (1):
first kind, (2): second kind, in the real matrix-variate case.

5.7.4. Do (1) and (2) of Exercise 5.7.3 hold in the complex matrix-variate case? Prove
your assertion.

5.7.5. Evaluate the M-transforms of the Erdélyi-Kober fractional integral of order α of
(1): the first kind, (2): the second kind and state the conditions for their existence.

5.7.6. Repeat Exercise 5.7.5 for (1) Weyl’s fractional integral of order α, (2) the Riemann-
Liouville fractional integral of order α.

5.7.7. Evaluate the Weyl fractional integral of order α of (a): the first kind, (b): the second
kind, in the real matrix-variate case, if possible, if the arbitrary function is (1): e−tr(X), (2):
etr(X) and write down the conditions wherever it is evaluated.

5.7.8. Repeat Exercise 5.7.7 for the complex matrix-variate case.

5.7.9. Evaluate the Erdélyi-Kober fractional integral of order α and parameter γ of the
(a): first kind, (b): second kind, in the real matrix-variate case, if the arbitrary function is
(1): |X|δ, (2): |X|−δ, wherever possible, and write down the necessary conditions.

5.7.10. Repeat Exercise 5.7.9 for the complex case. In the complex case, |X| = determi-
nant of X, is to be replaced by | det(X̃)|, the absolute value of the determinant of X̃.

5.8. Densities Involving Several Matrix-variate Random Variables, Real Case

We will start with real scalar variables. The most popular multivariate distribution,
apart from the normal distribution, is the Dirichlet distribution, which is a generalization
of the type-1 and type-2 beta distributions.

5.8.1. The type-1 Dirichlet density, real scalar case

Let x1, . . . , xk be real scalar random variables having a joint density of the form

f1(x1, . . . , xk) = ck x
α1−1
1 · · · xαk−1

k (1 − x1 − · · · − xk)
αk+1−1 (5.8.1)

for ω = {(x1, . . . , xk)|0 ≤ xj ≤ 1, j = 1, . . . , k, 0 ≤ x1 + · · · + xk ≤ 1}, �(αj ) >

0, j = 1, . . . , k + 1 and f1 = 0 elsewhere. This is type-1 Dirichlet density where ck is
the normalizing constant. Note that ω describes a simplex and hence the support of f1 is



Matrix-Variate Gamma and Beta Distributions 379

the simplex ω. Evaluation of the normalizing constant can be achieved in differing ways.
One method relies on the direct integration of the variables, one at a time. For example,
integration over x1 involves two factors x

α1−1
1 and (1 − x1 − · · · − xk)

αk+1−1. Let I1 be the
integral over x1. Observe that x1 varies from 0 to 1 − x2 − · · · − xk. Then

I1 =
∫ 1−x2−···−xk

x1=0
x

α1−1
1 (1 − x1 − · · · − xk)

αk+1−1dx1.

But

(1 − x1 − · · · − xk)
αk+1−1 = (1 − x2 − · · · − xk)

αk+1−1
[

1 − x1

1 − x2 − · · · − xk

]αk+1−1

.

Make the substitution y = x1
1−x2−···−xk

⇒ dx1 = (1 − x2 − · · · − xk)dy, which enable one
to integrate out y by making use of a real scalar type-1 beta integral giving

∫ 1

0
yα1−1(1 − y)αk+1−1dy = Γ (α1)Γ (αk+1)

Γ (α1 + αk+1)

for �(α1) > 0, �(αk+1) > 0. Now, proceed similarly by integrating out x2 from
x

α2−1
2 (1 − x2 − · · · − xk)

α1+αk+1 , and continue in this manner until xk is reached. Fi-
nally, after canceling out all common gamma factors, one has Γ (α1) · · · Γ (αk+1)/Γ (α1 +
· · · + αk+1) for �(αj ) > 0, j = 1, . . . , k + 1. Thus, the normalizing constant is given by

ck = Γ (α1 + · · · + αk+1)

Γ (α1) · · · Γ (αk+1)
, �(αj ) > 0, j = 1, . . . , k + 1. (5.8.2)

Another method for evaluating the normalizing constant ck consists of making the follow-
ing transformation:

x1 = y1

x2 = y2(1 − y1)

xj = yj (1 − y1)(1 − y2) · · · (1 − yj−1), j = 2, . . . , k (5.8.3)

It is then easily seen that

dx1 ∧ . . . ∧ dxk = (1 − y1)
k−1(1 − y2)

k−2 · · · (1 − yk−1) dy1 ∧ . . . ∧ dyk. (5.8.4)

Under this transformation, one has

1 − x1 = 1 − y1

1 − x1 − x2 = (1 − y1)(1 − y2)

1 − x1 − · · · − xk = (1 − y1)(1 − y2) · · · (1 − yk).
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Then, we have

x
α1−1
1 · · · xαk−1

k (1 − x1 − · · · − xk)
αk+1−1dx1 ∧ . . . ∧ dxk

= y
α1−1
1 · · · yαk−1

k (1 − y1)
α2+···+αk+1−1

× (1 − y2)
α3+···+αk+1−1 · · · (1 − yk)

αk+1−1dy1 ∧ . . . ∧ dyk.

Now, all the yj ’s are separated and each one can be integrated out by making use of a
type-1 beta integral. For example, the integrals over y1, y2, . . . , yk give the following:

∫ 1

0
y

α1−1
1 (1 − y1)

α2+···+αk+1−1 dy1 = Γ (α1)Γ (α2 + · · · + αk+1)

Γ (α1 + · · · + αk+1)
∫ 1

0
y

α2−1
2 (1 − y2)

α3+···+αk+1−1 dy2 = Γ (α2)Γ (α3 + · · · + αk+1)

Γ (α2 + · · · + αk+1)

...
∫ 1

0
y

αk−1
k (1 − yk)

αk+1−1dyk = Γ (αk)Γ (αk+1)

Γ (αk + αk+1)

for �(αj ) > 0, j = 1, . . . , k + 1. Taking the product produces c−1
k .

5.8.2. The type-2 Dirichlet density, real scalar case

Let x1 > 0, . . . , xk > 0 be real scalar random variables having the joint density

f2(x1, . . . , xk) = ckx
α1−1
1 · · · xαk−1

k (1 + x1 + · · · + xk)
−(α1+···+αk+1) (5.8.5)

for xj > 0, j = 1, . . . , k, �(αj ) > 0, j = 1, . . . , k + 1 and f2 = 0 elsewhere, where ck

is the normalizing constant. This density is known as a type-2 Dirichlet density. It can be
shown that the normalizing constant ck is the same as the one obtained in (5.8.2) for the
type-1 Dirichlet distribution. This can be established by integrating out the variables one
at a time, starting with xk or x1. This constant can also be evaluated with the help of the
following transformation:

x1 = y1

x2 = y2(1 + y1)

xj = yj (1 + y1)(1 + y2) · · · (1 + yj−1), j = 2, . . . , k, (5.8.6)

whose Jacobian is given by

dx1 ∧ . . . ∧ dxk = (1 + y1)
k−1(1 + y2)

k−2 · · · (1 + yk−1) dy1 ∧ . . . ∧ dyk. (5.8.7)
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5.8.3. Some properties of Dirichlet densities in the real scalar case

Let us determine the h-th moment of (1 − x1 − · · · − xk) in a type-1 Dirichlet density:

E[1 − x1 − · · · − xk]h =
∫

ω

(1 − x1 − · · · − xk)
hf1(x1, . . . , xk) dx1 ∧ . . . ∧ dxk.

In comparison with the total integral, the only change is that the parameter αk+1 is replaced
by αk+1 + h; thus the result is available from the normalizing constant. That is,

E[1 − x1 − · · · − xk]h = Γ (αk+1 + h)

Γ (αk+1)

Γ (α1 + · · · + αk+1)

Γ (α1 + · · · + αk+1 + h)
. (5.8.8)

The additional condition needed is �(αk+1 + h) > 0. Considering the structure of the
moment in (5.8.8), u = 1 − x1 − · · · − xk is manifestly a real scalar type-1 beta variable
with the parameters (αk+1, α1 + · · · + αk). This is stated in the following result:

Theorem 5.8.1. Let x1, . . . , xk have a real scalar type-1 Dirichlet density with the pa-
rameters (α1, . . . , αk;αk+1). Then, u = 1 − x1 − · · · − xk has a real scalar type-1 beta
distribution with the parameters (αk+1, α1 + · · · + αk), and 1 − u = x1 + · · · + xk has a
real scalar type-1 beta distribution with the parameters (α1 + · · · + αk, αk+1).

Some parallel results can also be obtained for type-2 Dirichlet variables. Consider
a real scalar type-2 Dirichlet density with the parameters (α1, . . . , αk;αk+1). Let v =
(1 + x1 + · · · + xk)

−1. Then, when taking the h-th moment of v, that is E[vh], we see that
the only change is that αk+1 becomes αk+1 + h. Accordingly, v has a real scalar type-1
beta distribution with the parameters (αk+1, α1 + · · · + αk). Thus, 1 − v = x1+···+xk

1+x1+···+xk

is a type-1 beta random variables with the parameters interchanged. Hence the following
result:

Theorem 5.8.2. Let x1, . . . , xk have a real scalar type-2 Dirichlet density with the pa-
rameters (α1, . . . , αk;αk+1). Then v = (1+x1 +· · ·+xk)

−1 has a real scalar type-1 beta
distribution with the parameters (αk+1, α1 + · · ·+αk) and 1 − v = x1+···+xk

1+x1+···+xk
has a real

scalar type-1 beta distribution with the parameters (α1 + · · · + αk, αk+1).

Observe that the joint product moments E[xh1
1 · · · xhk

k ] can be determined both in the
cases of real scalar type-1 Dirichlet and type-2 Dirichlet densities. This can be achieved by
considering the corresponding normalizing constants. Since an arbitrary product moment
will uniquely determine the corresponding distribution, one can show that all subsets of
variables from the set {x1, . . . , xk} are again real scalar type-1 Dirichlet and real scalar
type-2 Dirichlet distributed, respectively; to identify the marginal joint density of a subset
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under consideration, it suffices to set the complementary set of hj ’s equal to zero. Type-1
and type-2 Dirichlet densities enjoy many properties, some of which are mentioned in the
exercises. As well, there exist several types of generalizations of the type-1 and type-2
Dirichlet models. The first author and his coworkers have developed several such models,
one of which was introduced in connection with certain reliability problems.

5.8.4. Some generalizations of the Dirichlet models

Let the real scalar variables x1, . . . , xk have a joint density of the following type, which
is a generalization of the type-1 Dirichlet density:

g1(x1, . . . , xk) = bk x
α1−1
1 (1 − x1)

β1x
α2−1
2 (1 − x1 − x2)

β2 · · ·
× x

αk−1
k (1 − x1 − · · · − xk)

βk+αk+1−1 (5.8.9)

for (x1, . . . , xk) ∈ ω, �(αj ) > 0, j = 1, . . . , k + 1, as well as other necessary con-
ditions to be stated later, and g1 = 0 elsewhere, where bk denotes the normalizing con-
stant. This normalizing constant can be evaluated by integrating out the variables one
at a time or by making the transformation (5.8.3) and taking into account its associ-
ated Jacobian as specified in (5.8.4). Under the transformation (5.8.3), y1, . . . , yk will
be independently distributed with yj having a type-1 beta density with the parameters
(αj , γj ), γj = αj+1 + · · · + αk+1 + βj + · · · + βk, j = 1, . . . , k, which yields the
normalizing constant

bk =
k∏

j=1

Γ (αj + γj )

Γ (αj )Γ (γj )
(5.8.10)

for �(αj ) > 0, j = 1, . . . , k + 1, �(γj ) > 0, j = 1, . . . , k, where

γj = αj+1 + · · · + αk+1 + βj + · · · + βk, j = 1, . . . , k. (5.8.11)

Arbitrary moments E[xh1
1 · · · xhk

k ] are available from the normalizing constant bk by re-
placing αj by αj + hj for j = 1, . . . , k and then taking the ratio. It can be observed from
this arbitrary moment that all subsets of the type (x1, . . . , xj ) have a density of the type
specified in (5.8.9). For other types of subsets, one has initially to rearrange the variables
and the corresponding parameters by bringing them to the first j positions and then utilize
the previous result on subsets.

The following model corresponding to (5.8.9) for the type-2 Dirichlet model was in-
troduced by the first author:

g2(x1, . . . , xk) = akx
α1−1
1 (1 + x1)

−β1x
α2−1
2 (1 + x1 + x2)

−β2 · · ·
× x

αk−1
k (1 + x1 + · · · + xk)

−(α1+···+αk+1)−βk (5.8.12)
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for xj > 0, j = 1, . . . , k, �(αj ) > 0, j = 1, . . . , k + 1, as well as other necessary
conditions to be stated later, and g2 = 0 elsewhere. In order to evaluate the normaliz-
ing constant ak, one can use the transformation (5.8.6) and its associated Jacobian given
in (5.8.7). Then, y1, . . . , yk become independently distributed real scalar type-2 beta vari-
ables with the parameters (αj , δj ), where

δj = α1 + · · · + αj−1 + αk+1 + βj + · · · + βk (5.8.13)

for �(αj ) > 0, j = 1, . . . , k + 1, �(δj ) > 0, j = 1, . . . , k. Other generalizations are
available in the literature.

5.8.5. A pseudo Dirichlet model

In the type-1 Dirichlet model, the support is the previously described simplex ω. We
will now consider a model, which was recently introduced by the first author, wherein the
variables can vary freely in a hypercube. Let us begin with the case k = 2. Consider the
model

g12(x1, x2) = c12 x
α1
2 (1−x1)

α1−1(1−x2)
α2−1(1−x1x2)

−(α1+α2−1), 0 ≤ xj ≤ 1, (5.8.14)

for �(αj ) > 0, j = 1, 2, and g12 = 0 elsewhere. In this case, the variables are free to
vary within the unit square. Let us evaluate the normalizing constant c12. For this purpose,
let us expand the last factor by making use of the binomial expansion since 0 < x1x2 < 1.
Then,

(1 − x1x2)
−(α1+α2−1) =

∞∑

k=0

(α1 + α2 − 1)k

k! xk
1xk

2 (i)

where for example the Pochhmmer symbol (a)k stands for

(a)k = a(a + 1) · · · (a + k − 1), a 
= 0, (a)0 = 1.

Integral over x1 gives

∫ 1

0
xk

1(1 − x1)
α1−1dx1 = Γ (k + 1)Γ (α1)

Γ (α1 + k + 1)
, �(α1) > 0, (ii)

and the integral over x2 yields

∫ 1

0
x

α1+k
2 (1 − x2)

α2−1dx2 = Γ (α1 + k + 1)Γ (α2)

Γ (α1 + α2 + 1)
. (iii)
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Taking the product of the right-hand side expressions in (ii) and (iii) and observing that
Γ (α1 + α2 + k + 1) = Γ (α1 + α2 + 1)(α1 + α2 + 1)k and Γ (k + 1) = (1)k, we obtain
the following total integral:

Γ (α1)Γ (α2)

Γ (α1 + α2 + 1)

∞∑

k=0

(1)k(α1 + α2 − 1)k

k!(α1 + α2 + 1)k

= Γ (α1)Γ (α2)

Γ (α1 + α2 + 1)
2F1(1, α1 + α2 − 1;α1 + α2 + 1; 1)

= Γ (α1)Γ (α2)

Γ (α1 + α2 + 1)

Γ (α1 + α2 + 1)Γ (1)

Γ (α1 + α2)Γ (2)

= Γ (α1)Γ (α2)

Γ (α1 + α2)
, �(α1) > 0, �(α2) > 0, (5.8.15)

where the 2F1 hypergeometric function with argument 1 is evaluated with the following
identity:

2F1(a, b; c; 1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
(5.8.16)

whenever the gamma functions are defined. Observe that (5.8.15) is a surprising result as
it is the total integral coming from a type-1 real beta density with the parameters (α1, α2).
Now, consider the general model

g1k(x1, . . . , xk) = c1k(1 − x1)
α1−1 · · · (1 − xk)

αk−1x
α1
2 · · ·

× x
α1+···+αk−1
k (1 − x1 . . . xk)

−(α1+···+αk−1), 0 ≤ xj ≤ 1, j = 1, . . . , k.

(5.8.17)

Proceeding exactly as in the case of k = 2, one obtains the total integral as

[c1k]−1 = Γ (α1) . . . Γ (αk)

Γ (α1 + · · · + αk)
, �(αj ) > 0, j = 1, . . . , k. (5.8.18)

This is the total integral coming from a (k − 1)-variate real type-1 Dirichlet model. Some
properties of this distribution are pointed out in some of the assigned problems.

5.8.6. The type-1 Dirichlet model in real matrix-variate case

Direct generalizations of the real scalar variable Dirichlet models to real as well as
complex matrix-variate cases are possible. The type-1 model will be considered first. Let
the p × p real positive definite matrices X1, . . . , Xk be such that Xj > O, I − Xj > O,
that is Xj as well as I − Xj are positive definite, for j = 1, . . . , k, and, in addition,
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I − X1 − · · · − Xk > O. Let Ω = {(X1, . . . , Xk)|O < Xj < I, j = 1, . . . , k, I − X1 −
· · · − Xk > O}. Consider the model

G1(X1, . . . , Xk) = Ck|X1|α1−p+1
2 · · · |Xk|αk−p+1

2

× |I − X1 − · · · − Xk|αk+1−p+1
2 , (X1, . . . , Xk) ∈ Ω, (5.8.19)

for �(αj ) >
p−1

2 , j = 1, . . . , k + 1, and G1 = 0 elsewhere. The normalizing constant
Ck can be determined by using real matrix-variate type-1 beta integrals to integrate the
matrices one at the time. We can also evaluate the total integral by means of the following
transformation:

X1 = Y1

X2 = (I − Y1)
1
2 Y2(I − Y1)

1
2

Xj = (I − Y1)
1
2 · · · (I − Yj−1)

1
2 Yj (I − Yj−1)

1
2 · · · (I − Y1)

1
2 , j = 2, . . . , k. (5.8.20)

The associated Jacobian can then be determined by making use of results on matrix trans-
formations that are provided in Sect. 1.6. Then,

dX1 ∧ . . . ∧ dXk = |I − Y1|(k−1)(
p+1

2 ) · · · |I − Yk−1|p+1
2 dY1 ∧ . . . ∧ dYk. (5.8.21)

It can be seen that the Yj ’s are independently distributed as real matrix-variate type-1 beta
random variables and the product of the integrals gives the following final result:

Ck = Γp(α1 + · · · + αk+1)

Γp(α1) · · · Γp(αk+1)
, �(αj ) >

p − 1

2
, j = 1, . . . , k + 1. (5.8.22)

By integrating out the variables one at a time, we can show that the marginal densities of
all subsets of {X1, . . . , Xk} also belong to the same real matrix-variate type-1 Dirichlet
distribution and single matrices are real matrix-variate type-1 beta distributed. By tak-
ing the product moment of the determinants, E[|X1|h1 · · · |Xk|hk ], one can anticipate the
results; however, arbitrary moments of determinants need not uniquely determine the den-
sities of the corresponding matrices. In the real scalar case, one can uniquely identify
the density from arbitrary moments, very often under very mild conditions. The result
I − X1 − · · · − Xk has a real matrix-variate type-1 beta distribution can be seen by taking
arbitrary moments of the determinant, that is, E[|I − X1 − · · · − Xk|h], but evaluating
the h-moment of a determinant and then identifying it as the h-th moment of the determi-
nant from a real matrix-variate type-1 beta density is not valid in this case. If one makes
a transformation of the type Y1 = X1, . . . , Yk−1 = Xk−1, Yk = I − X1 − · · · − Xk,
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it is seen that Xk = I − Y1 − · · · − Yk and that the Jacobian in absolute value is 1.
Hence, we end up with a real matrix-variate type-1 Dirichlet density of the same format but
whose parameters αk and αk+1 are interchanged. Then, integrating out Y1, . . . , Yk−1, we
obtain a real matrix-variate type-1 beta density with the parameters (αk+1, α1 +· · ·+αk).
Hence the result. When Yk has a real matrix-variate type-1 beta distribution, we have that
I − Yk = X1 + · · · + Xk is also a type-1 beta random variable with the parameters inter-
changed.

The first author and his coworkers have proposed various types of generalizations to
the matrix-variate type-1 and type-2 Dirichlet models in the real and complex cases. One
of those extensions which is defined in the real domain, is the following:

G2(X1, . . . , Xk) = C1k|X1|α1−p+1
2 |I − X1|β1|X2|α2−p+1

2

× |I − X1 − X2|β2 · · · |Xk|αk−p+1
2

× |I − X1 − · · · − Xk|αk+1+βk−p+1
2 , (5.8.23)

for (X1, . . . , Xk) ∈ Ω , �(αj ) >
p−1

2 , j = 1, . . . , k + 1, and G2 = 0 elsewhere. The
normalizing constant C1k can be evaluated by integrating variables one at a time or by
using the transformation (5.8.20). Under this transformation, the real matrices Yj ’s are
independently distributed as real matrix-variate type-1 beta variables with the parameters
(αj , γj ), γj = αj+1 + · · · + αk+1 + βj + · · · + βk. The conditions will then be �(αj ) >
p−1

2 , j = 1, . . . , k + 1, and �(γj ) >
p−1

2 , j = 1, . . . , k. Hence

C1k =
k∏

j=1

Γp(αj + γj )

Γp(αj )Γp(γj )
. (5.8.24)

5.8.7. The type-2 Dirichlet model in the real matrix-variate case

The type-2 Dirichlet density in the real matrix-variate case is the following:

G3(X1, . . . , Xk) = Ck|X1|α1−p+1
2 · · · |Xk|αk−p+1

2

× |I + X1 + · · · + Xk|−(α1+···+αk+1), Xj > O, j = 1, . . . , k, (5.8.25)

for �(αj ) >
p−1

2 , j = 1, . . . , k + 1 and G3 = 0 elsewhere, the normalizing constant Ck

being the same as that appearing in the type-1 Dirichlet case. This can be verified, either by
integrating matrices one at a time from (5.8.25) or by making the following transformation:

X1 = Y1

X2 = (I + Y1)
1
2 Y2(I + Y1)

1
2

Xj = (I + Y1)
1
2 · · · (I + Yj−1)

1
2 Yj (I + Yj−1)

1
2 · · · (I + Y1)

1
2 , j = 2, . . . , k. (5.8.26)
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Under this transformation, the Jacobian is as follows:

dX1 ∧ . . . ∧ dXk = |I + Y1|(k−1)(
p+1

2 ) · · · |I + Yk−1|p+1
2 dY1 ∧ . . . ∧ dYk. (5.8.27)

Thus, the Yj ’s are independently distributed real matrix-variate type-2 beta variables
and the product of the integrals produces [Ck]−1. By integrating matrices one at a time, we
can see that all subsets of matrices belonging to {X1, . . . , Xk} will have densities of the
type specified in (5.8.25). Several properties can also be established for the model (5.8.25);
some of them are included in the exercises.

Example 5.8.1. Evaluate the normalizing constant c explicitly if the function f (X1, X2)

is a statistical density where the p × p real matrices Xj > O, I − Xj > O, j = 1, 2,

and I − X1 − X2 > O where

f (X1, X2) = c |X1|α1−p+1
2 |I − X1|β1|X2|α2−p+1

2 |I − X1 − X2|β2−p+1
2 .

Solution 5.8.1. Note that

|I − X1 − X2|β2−p+1
2 = |I − X1|β2−p+1

2 |I − (I − X1)
− 1

2 X2(I − X1)
− 1

2 |β2−p+1
2 .

Now, letting Y = (I − X1)
− 1

2 X2(I − X1)
− 1

2 ⇒ dY = |I − X1|−p+1
2 dX2, and the integral

over X2 gives the following:

|I−X1|α2+β2−p+1
2

∫

O<Y<I

|Y |α2−p+1
2 |I−Y |β2−p+1

2 dY = |I−X1|α2+β2−p+1
2

Γp(α2)Γp(β2)

Γp(α2 + β2)

for �(α2) >
p−1

2 , �(β2) >
p−1

2 . Then, the integral over X1 can be evaluated as follows:

∫

O<X1<I

|X1|α1−p+1
2 |I − X1|β1+β2+α2−p+1

2 dX1 = Γp(α1)Γp(β1 + β2 + α2)

Γp(α1 + α2 + β1 + β2)

for �(α1) >
p−1

2 , �(β1 + β2 + α2) >
p−1

2 . Collecting the results from the integrals over
X2 and X1 and using the fact that the total integral is 1, we have

c = Γp(α2 + β2)Γp(α1 + α2 + β1 + β2)

Γp(α2)Γp(β2)Γp(α1)Γp(α2 + β1 + β2)

for �(αj ) >
p−1

2 , j = 1, 2, �(β2) >
p−1

2 , and �(β1 + β2 + α2) >
p−1

2 .
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The first author and his coworkers have established several generalizations to the type-
2 Dirichlet model in (5.8.25). One such model is the following:

G4(X1, . . . , Xk) = C2k|X1|α1−p+1
2 |I + X1|−β1|X2|α2−p+1

2

× |I + X1 + X2|−β2 · · · |Xk|αk−p+1
2

× |I + X1 + · · · + Xk|−(α1+···+αk+1+βk) (5.8.28)

for �(αj ) >
p−1

2 , j = 1, . . . , k + 1, Xj > O, j = 1, . . . , k, as well as other necessary
conditions to be stated later, and G4 = 0 elsewhere. The normalizing constant C2k can be
evaluated by integrating matrices one at a time or by making the transformation (5.8.26).
Under this transformation, the Yj ’s are independently distributed real matrix-variate type-2
beta variables with the parameters (αj , δj ), where

δj = α1 + · · · + αj−1 + βj + · · · + βk. (5.8.29)

The normalizing constant is then

G2k =
k∏

j=1

Γp(αj + δj )

Γp(αj )Γp(δj )
(5.8.30)

where the δj is given in (5.8.29). The marginal densities of the subsets, if taken in the
order X1, {X1, X2}, and so on, will belong to the same family of densities as that specified
by (5.8.28). Several properties of the model (5.8.28) are available in the literature.

5.8.8. A pseudo Dirichlet model

We will now discuss the generalization of the model introduced in Sect. 5.8.5. Consider
the density

G1k(X1, . . . , Xk) = C1k|I − X1|α1−p+1
2 · · · |I − Xk|αk−p+1

2

× |X2|α1|X3|α1+α2 · · · |Xk|α1+···+αk−1

× |I − X
1
2
k · · · X

1
2
2 X1X

1
2
2 · · · X

1
2
k |−(α1+···+αk−p+1

2 ). (5.8.31)

Then, by following steps parallel to those used in the real scalar variable case, one can
show that the normalizing constant is given by

C1k = Γp(α1 + · · · + αk)

Γp(α1) · · · Γp(αk)

Γp(p + 1)

[Γp(
p+1

2 )]2
. (5.8.32)

The binomial expansion of the last factor determinant in (5.8.31) is somewhat complicated
as it involves zonal polynomials; this expansion is given in Mathai (1997). Compared to
the real scalar case, the only change is the appearance of the constant Γp(p+1)

[Γp(
p+1

2 )]2
which
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is 1 when p = 1. Apart from this constant, the rest is the normalizing constant in a real
matrix-variate type-1 Dirichlet model in k − 1 variables instead of k variables.

5.8a. Dirichlet Models in the Complex Domain

All the matrices appearing in the remainder of this chapter are p×p Hermitian positive
definite, that is, X̃j = X̃∗

j where an asterisk indicates the conjugate transpose. Complex

matrix-variate random variables will be denoted with a tilde. For a complex matrix X̃,
the determinant will be denoted by det(X̃) and the absolute value of the determinant, by
|det(X̃)|. For example, if det(X̃) = a + ib, a and b being real and i = √

(−1), the
absolute value is |det(X̃)| = +(a2 + b2)

1
2 . The type-1 Dirichlet model in the complex

domain, denoted by G̃1, is the following:

G̃1(X1, . . . , Xk) = C̃k|det(X̃1)|α1−p · · · |det(X̃k)|αk−p

× |det(I − X̃1 − · · · − X̃k)|αk+1−p (5.8a.1)

for (X̃1, . . . , X̃k) ∈ Ω̃, Ω̃ = {(X̃1, . . . , X̃k)|O < X̃j < I, j = 1, . . . , k, O < X̃1 +
· · ·+X̃k < I }, �(αj ) > p−1, j = 1, . . . , k+1, and G̃1 = 0 elsewhere. The normalizing
constant C̃k can be evaluated by integrating out matrices one at a time with the help of
complex matrix-variate type-1 beta integrals. One can also employ a transformation of the
type given in (5.8.20) where the real matrices are replaced by matrices in the complex
domain and Hermitian positive definite square roots are used. The Jacobian is then as
follows:

dX̃1 ∧ . . . ∧ dX̃k = |det(I − Ỹ1)|(k−1)p · · · |det(I − Yk−1)|pdỸ1 ∧ . . . ∧ dỸk. (5.8a.2)

Then Ỹj ’s are independently distributed as complex matrix-variate type-1 beta variables.
On taking the product of the total integrals, one can verify that

C̃k = Γ̃p(α1 + · · · + αk+1)

Γ̃p(α1) · · · Γ̃p(αk+1)
(5.8a.3)

where for example Γ̃p(α) is the complex matrix-variate gamma given by

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1. (5.8a.4)

The first author and his coworkers have also discussed various types of generalizations to
Dirichlet models in complex domain.
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5.8a.1. A type-2 Dirichlet model in the complex domain

One can have a model parallel to the type-2 Dirichlet model in the real matrix-variate
case. Consider the model

G̃2 = C̃k|det(X̃1)|α1−p · · · |det(X̃k)|αk−p

× |det(I + X̃1 + · · · + X̃k)|−(α1+···+αk+1) (5.8a.5)

for X̃j > O, j = 1, . . . , k, �(αj ) > p−1, j = 1, . . . , k+1, and G̃2 = 0 elsewhere. By
integrating out matrices one at a time with the help of complex matrix-variate type-2 inte-
grals or by using a transformation parallel to that provided in (5.7.26) and then integrating
out the independently distributed complex type-2 beta variables Ỹj ’s, we can show that
the normalizing constant C̃k is the same as that obtained in the complex type-1 Dirichlet
case. The first author and his coworkers have given various types of generalizations to the
complex type-2 Dirichlet density as well.

Exercises 5.8

5.8.1. By integrating out variables one at a time derive the normalizing constant in the
real scalar type-2 Dirichlet case.

5.8.2. By using the transformation (5.8.3), derive the normalizing constant in the real
scalar type-1 Dirichlet case.

5.8.3. By using the transformation in (5.8.6), derive the normalizing constant in the real
scalar type-2 Dirichlet case.

5.8.4. Derive the normalizing constants for the extended Dirichlet models in (5.8.9)
and (5.8.12).

5.8.5. Evaluate E[xh1
1 · · · xhk

k ] for the model specified in (5.8.12) and state the conditions
for its existence.

5.8.6. Derive the normalizing constant given in (5.8.18).

5.8.7. With respect to the pseudo Dirichlet model in (5.8.17), show that the product u =
x1 · · · xk is uniformly distributed.

5.8.8. Derive the marginal distribution of (1): x1; (2): (x1, x2); (3): (x1, . . . , xr), r < k,
and the conditional distribution of (x1, . . . , xr) given (xr+1, . . . , xk) in the pseudo Dirich-
let model in (5.8.17).

5.8.9. Derive the normalizing constant in (5.8.22) by completing the steps in (5.8.22) and
then by integrating out matrices one by one.
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5.8.10. From the outline given after equation (5.8.22), derive the density of I −X1−· · ·−
Xk and therefrom the density of X1 + · · · + Xk when (X1, . . . , Xk) has a type-1 Dirichlet
distribution.

5.8.11. Complete the derivation of C1k in (5.8.24) and verify it by integrating out matrices
one at a time from the density given in (5.8.23).

5.8.12. Show that U = (I + X1 + · · · + Xk)
−1 in the type-2 Dirichlet model in (5.8.25)

is a real matrix-variate type-1 beta distributed. As well, specify its parameters.

5.8.13. Evaluate the normalizing constant Ck in (5.8.25) by using the transformation pro-
vided in (5.8.26) as well as by integrating out matrices one at a time.

5.8.14. Derive the δj in (5.8.29) and thus the normalizing constant C2k in (5.8.28).

5.8.15. For the following model in the complex domain, evaluate C:

f (X̃) = C|det(X̃1)|α1−p|det(I − X̃1)|β1|det(X̃2)|α2−p| det(I − X̃1 − X̃2)|β2 · · ·
× |det(I − X̃1 − · · · − X̃k)|αk+1−p+βk .

5.8.16. Evaluate the normalizing constant in the pseudo Dirichlet model in (5.8.31).

5.8.17. In the pseudo Dirichlet model specified in (5.8.31), show that U = X
1
2
k · · · X

1
2
2

X1X
1
2
2 · · · X

1
2
k is uniformly distributed.

5.8.18. Show that the normalizing constant in the complex type-2 Dirichlet model speci-
fied in (5.8a.5) is the same as the one in the type-1 Dirichlet case. Establish the result by
integrating out matrices one by one.

5.8.19. Show that the normalizing constant in the type-2 Dirichlet case in (5.8a.5) is the
same as that in the type-1 case. Establish this by using a transformation parallel to (5.8.26)
in the complex domain.

5.8.20. Construct a generalized model for the type-2 Dirichlet case for k = 3 parallel to
the case in (5.8.28) in the complex domain.
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Chapter 6
Hypothesis Testing and Null Distributions

6.1. Introduction

It is assumed that the readers are familiar with the concept of testing statistical hy-
potheses on the parameters of a real scalar normal density or independent real scalar nor-
mal densities. Those who are not or require a refresher may consult the textbook: Mathai
and Haubold (2017) on basic “Probability and Statistics” [De Gruyter, Germany, 2017, free
download]. Initially, we will only employ the likelihood ratio criterion for testing hypothe-
ses on the parameters of one or more real multivariate Gaussian (or normal) distributions.
All of our tests will be based on a simple random sample of size n from a p-variate nonsin-
gular Gaussian distribution, that is, the p × 1 vectors X1, . . . , Xn constituting the sample
are iid (independently and identically distributed) as Xj ∼ Np(μ, Σ), Σ > O, j =
1, . . . , n, when a single real Gaussian population is involved. The corresponding test cri-
terion for the complex Gaussian case will also be mentioned in each section.

In this chapter, we will utilize the following notations. Lower-case letters such as x, y

will be used to denote real scalar mathematical or random variables. No distinction will be
made between mathematical and random variables. Capital letters such as X, Y will denote
real vector/matrix-variate variables, whether mathematical or random. A tilde placed on
a letter as for instance x̃, ỹ, X̃ and Ỹ will indicate that the variables are in the complex
domain. No tilde will be used for constant matrices unless the point is to be stressed that
the matrix concerned is in the complex domain. The other notations will be identical to
those utilized in the previous chapters.

First, we consider certain problems related to testing hypotheses on the parameters of
a p-variate real Gaussian population. Only the likelihood ratio criterion, also referred to as
λ-criterion, will be utilized. Let L denote the joint density of the sample values in a simple
random sample of size n, namely, X1, . . . , Xn, which are iid Np(μ, Σ), Σ > O. Then,
as was previously established,

© The Author(s) 2022, corrected publication 2022
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L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= e− 1
2 tr(Σ−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
, (6.1.1)

where S = ∑n
j=1(Xj − X̄)(Xj − X̄)′ is the sample sum of products matrix and X̄ =

1
n
(X1 +· · ·+Xn) is the sample average, n being the sample size. As well, we have already

determined that the maximum likelihood estimators (MLE’s) of μ and Σ are μ̂ = X̄ and
Σ̂ = 1

n
S, the sample covariance matrix. Consider the parameter space

� = {(μ, Σ)|Σ > O, μ′ = (μ1, . . . , μp), − ∞ < μj < ∞, j = 1, . . . , p}.
The maximum value of L within � is obtained by substituting the MLE’s of the parameters
into L, and since (X̄ − μ̂) = (X̄ − X̄) = O and tr(Σ̂−1S) = tr(nIp) = np,

max
�

L = e− np
2

(2π)
np
2 | 1

n
S| n

2
= e− np

2 n
np
2

(2π)
np
2 |S| n

2
. (6.1.2)

Under any given hypothesis on μ or Σ , the parameter space is reduced to a subspace ω in
� or ω ⊂ �. For example, if Ho : μ = μo where μo is a given vector, then the parameter
space under this null hypothesis reduces to ω = {(μ, Σ)|μ = μo, Σ > O} ⊂ �,
“null hypothesis” being a technical term used to refer to the hypothesis being tested. The
alternative hypothesis against which the null hypothesis is tested, is usually denoted by H1.
If μ = μo specifies Ho, then a natural alternative is H1 : μ 
= μo. One of two things can
happen when considering the maximum of the likelihood function under Ho. The overall
maximum may occur in ω or it may be attained outside of ω but inside �. If the null
hypothesis Ho is actually true, then ω and � will coincide and the maxima in ω and in �

will agree. If there are several local maxima, then the overall maximum or supremum is
taken. The λ-criterion is defined as follows:

λ = supωL

sup�L
, 0 < λ ≤ 1. (6.1.3)

If the null hypothesis is true, then λ = 1. Accordingly, an observed value of λ that is close
to 0 in a testing situation indicates that the null hypothesis Ho is incorrect and should then
be rejected. Hence, the test criterion under the likelihood ratio test is to “reject Ho for
0 < λ ≤ λo”, that is, for small values of λ, so that, under Ho, the coverage probability
over this interval is equal to the significance level α or the probability of rejecting Ho

when Ho is true, that is, Pr{0 < λ ≤ λo |Ho} = α for a pre-assigned α, which is also
known as the size of the critical region or the size of the type-1 error. However, rejecting
Ho when it is not actually true or when the alternative H1 is true is a correct decision
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whose probability is known as the power of the test and written as 1 − β where β is the
probability of committing a type-2 error or the error of not rejecting Ho when Ho is not
true. Thus we have

Pr{0 < λ ≤ λo |Ho} = α and Pr{0 < λ ≤ λo |H1} = 1 − β. (6.1.4)

When we preassign α = 0.05, we are allowing a tolerance of 5% for the probability of
committing the error of rejecting Ho when it is actually true and we say that we have a test
at the 5% significance level. Usually, we set α as 0.05 or 0.01. Alternatively, we can allow
α to vary and calculate what is known as the p-value when carrying out a test. Such is the
principle underlying the likelihood ratio test, the resulting test criterion being referred to
as the λ-criterion.

In the complex case, a tilde will be placed above λ and L, (6.1.3) and (6.1.4) remaining
essentially the same:

λ̃ = supωL̃

sup�L̃
, 0 < |λ̃| ≤ 1, (6.1a.1)

and
Pr{0 < |λ̃| ≤ λo |Ho} = α, P r{0 < |λ̃| ≤ λo |H1} = 1 − β (6.1a.2)

where α is the size or significance level of the test and 1 − β, the power of the test.

6.2. Testing Ho : μ = μ0 (Given) When Σ is Known, the Real Np(μ, Σ) Case

When Σ is known, the only parameter to estimate is μ, its MLE being X̄. Hence, the
maximum in � is the following:

sup�L = e− 1
2 tr(Σ−1S)

(2π)
np
2 |Σ | n

2
. (6.2.1)

In this case, μ is also specified under the null hypothesis Ho, so that there is no parameter
to estimate. Accordingly,

supωL = e− 1
2

∑n
j=1(Xj−μo)

′Σ−1(Xj−μo)

(2π)
np
2 |Σ | n

2

= e− 1
2 tr(Σ−1S)− n

2 (X̄−μo)
′Σ−1(X̄−μo)

(2π)
np
2 |Σ | n

2
. (6.2.2)

Thus,

λ = supωL

sup�L
= e− n

2 (X̄−μo)
′Σ−1(X̄−μo), (6.2.3)
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and small values of λ correspond to large values of n
2 (X̄ − μo)

′Σ−1(X̄ − μo). When
Xj ∼ Np(μ, Σ), Σ > O, it has already been established that X̄ ∼ Np(μ, 1

n
Σ), Σ > O.

As well, n(X̄ −μo)
′Σ−1(X̄ −μo) is the exponent in a p-variate real normal density under

Ho, which has already been shown to have a real chisquare distribution with p degrees of
freedom or

n(X̄ − μo)
′Σ−1(X̄ − μo) ∼ χ2

p.

Hence, the test criterion is

Reject Ho if n(X̄ − μo)
′Σ−1(X̄ − μo) ≥ χ2

p,α, with Pr{χ2
p ≥ χ2

p, α} = α. (6.2.4)

Under the alternative hypothesis, the distribution of the test statistic is a noncen-
tral chisquare with p degrees of freedom and non-centrality parameter λ = n

2 (μ −
μo)

′Σ−1(μ − μo).

Example 6.2.1. For example, suppose that we have a sample of size 5 from a population
that has a trivariate normal distribution and let the significance level α be 0.05. Let μo, the
hypothesized mean value vector specified by the null hypothesis, the known covariance
matrix Σ , and the five observation vectors X1, . . . , X5 be the following:

μo =
⎡

⎣
1
0

−1

⎤

⎦ , Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦⇒ Σ−1 =
⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ ,

X1 =
⎡

⎣
1
0
1

⎤

⎦ , X2 =
⎡

⎣
2

−1
4

⎤

⎦ , X3 =
⎡

⎣
0

−1
−2

⎤

⎦ , X4 =
⎡

⎣
2
4
1

⎤

⎦ , X5 =
⎡

⎣
4
2

−1

⎤

⎦ ,

the inverse of Σ having been evaluated via elementary transformations. The sample aver-
age, 1

5(X1 + · · · + X5) denoted by X̄, is

X̄ = 1

5

⎧
⎨

⎩

⎡

⎣
1
0
1

⎤

⎦+
⎡

⎣
2

−1
4

⎤

⎦+
⎡

⎣
0

−1
−2

⎤

⎦+
⎡

⎣
2
4
1

⎤

⎦+
⎡

⎣
4
2

−1

⎤

⎦

⎫
⎬

⎭
= 1

5

⎡

⎣
9
4
3

⎤

⎦ ,

and

X̄ − μo = 1

5

⎡

⎣
9
4
3

⎤

⎦−
⎡

⎣
1
0

−1

⎤

⎦ = 1

5

⎡

⎣
4
4
8

⎤

⎦ .



Hypothesis Testing and Null Distributions 399

For testing Ho, the following test statistic has to be evaluated:

n(X̄ − μo)
′Σ−1(X̄ − μo) = 5

52

[
4 4 8

]
⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦

⎡

⎣
4
4
8

⎤

⎦ = 40

5
= 8.

As per our criterion, Ho should be rejected if 8 ≥ χ2
p,α. Since χ2

p,α = χ2
3, 0.05 = 7.81, this

critical value being available from a chisquare table, Ho : μ = μo should be rejected at the
specified significance level. Moreover, in this case, the p-value is Pr{χ2

3 ≥ 8} ≈ 0.035,

which can be evaluated by interpolation from the percentiles provided in a chi-square table
or by making use of statistical packages such as R.

6.2.1. Paired variables and linear functions

Let Y1, . . . , Yk be p × 1 vectors having their own p-variate distributions which are
not known. However, suppose that a certain linear function X = a1Y1 + · · · + akYk is
known to have a p-variate real Gaussian distribution with mean value vector E[X] =
μ and covariance matrix Cov(X) = Σ, Σ > O, that is, X = a1Y1 + · · · + akYk ∼
Np(μ, Σ), Σ > O, where a1, . . . , ak are fixed known scalar constants. An example
of this type is X = Y1 − Y2 where Y1 consists of measurements on p attributes before
subjecting those attributes to a certain process, such as administering a drug to a patient,
and Y2 consists of the measurements on the same attributes after the process is completed.
We would like to examine the difference Y1 − Y2 to study the effect of the process on
these characteristics. If it is reasonable to assume that this difference X = Y1 − Y2 is
Np(μ, Σ), Σ > O, then we could test hypotheses on E[X] = μ. When Σ is known,
the general problem reduces to that discussed in Sect. 6.2. Assuming that we have iid
variables on Y1, . . . , Yk, we would evaluate the corresponding values of X, which produces
iid variables on X, that is, a simple random sample of size n from X = a1Y1 + · · ·+ akYk.
Thus, when Σ is known, letting u = n(X̄ − μo)

′Σ−1(X̄ − μo) ∼ χ2
p where X̄ denote the

sample average, the test would be carried out as follows at significance level α:

Reject Ho : μ = μo (specified) when u ≥ χ2
p, α, with Pr{χ2

p ≥ χ2
p, α} = α, (6.2.5)

the non-null distribution of the test statistic u being a non-central chisquare.

Example 6.2.2. Three variables x1 = systolic pressure, x2 = diastolic pressure and
x3 = weight are monitored after administering a drug for the reduction of all these p = 3
variables. Suppose that a sample of n = 5 randomly selected individuals are given the
medication for one week. The following five pairs of observations on each of the three
variables were obtained before and after the administration of the medication:
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⎡

⎣
150, 140
90, 90
70, 68

⎤

⎦ ,

⎡

⎣
180, 150
95, 90
75, 70

⎤

⎦ ,

⎡

⎣
160, 160
85, 80
70, 65

⎤

⎦ ,

⎡

⎣
140, 138
85, 90
70, 71

⎤

⎦ ,

⎡

⎣
130, 128

85, 85
75, 74

⎤

⎦ .

Let X denote the difference, that is, X is equal to the reading before the medication was
administered minus the reading after the medication could take effect. The observation
vectors on X are then

X1 =
⎡

⎣
150 − 140
90 − 90
70 − 68

⎤

⎦ =
⎡

⎣
10
0
2

⎤

⎦ , X2 =
⎡

⎣
30
5
5

⎤

⎦ , X3 =
⎡

⎣
0
5
5

⎤

⎦ , X4 =
⎡

⎣
2

−5
−1

⎤

⎦ , X5 =
⎡

⎣
2
0
1

⎤

⎦ .

In this case, X1, . . . , X5 are observations on iid variables. We are going to assume that
these iid variables are coming from a population whose distribution is N3(μ, Σ), Σ > O,

where Σ is known. Let the sample average X̄ = 1
5(X1 +· · ·+X5), the hypothesized mean

value vector specified by the null hypothesis Ho : μ = μo, and the known covariance
matrix Σ be as follows:

X̄ = 1

5

⎡

⎣
44
5
12

⎤

⎦ , μo =
⎡

⎣
8
0
2

⎤

⎦ , Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦⇒ Σ−1 =
⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ .

Let us evaluate X̄ − μo and n(X̄ − μo)
′Σ−1(X̄ − μo) which are needed for testing the

hypothesis Ho : μ = μo:

X̄ − μo = 1

5

⎡

⎣
44
5
12

⎤

⎦−
⎡

⎣
8
0
2

⎤

⎦ = 1

5

⎡

⎣
4
5
2

⎤

⎦

n(X̄ − μo)
′Σ−1(X̄ − μo) = 5

52

[
4 5 2

]
⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦

⎡

⎣
4
5
2

⎤

⎦ = 8.4.

Let us test Ho at the significance level α = 0.05. The critical value which can readily be
found in a chisquare table is χ2

p, α = χ2
3, 0.05 = 7.81. As per our criterion, we reject Ho if

8.4 ≥ χ2
p, α; since 8.4 > 7.81, we reject Ho. The p-value in this case is Pr{χ2

p ≥ 8.4} =
Pr{χ2

3 ≥ 8.4} ≈ 0.04.

6.2.2. Independent Gaussian populations

Let Yj ∼ Np(μ(j), Σj ), Σj > O, j = 1, . . . , k, and let these k populations
be independently distributed. Assume that a simple random sample of size nj from Yj

is available for j = 1, . . . , k; then these samples can be represented by the p-vectors
Yjq, q = 1, . . . , nj , which are iid as Yj1, for j = 1, . . . , k. Consider a given linear
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function X = a1Y1 + · · · + akYk where X is p × 1 and the Yj ’s are taken in a given
order. Let U = a1Ȳ1 + · · · + akȲk where Ȳj = 1

nj

∑nj

q=1 Yjq for j = 1, . . . , k. Then
E[U ] = a1μ(1) +· · ·+akμ(k) = μ (say), where a1, . . . , ak are given real scalar constants.

The covariance matrix in U is Cov(U) = a2
1

n1
Σ1 + · · · + a2

k

nk
Σk = 1

n
Σ (say), where n is

a symbol. Consider the problem of testing hypotheses on μ when Σ is known or when
aj , Σj , j = 1, . . . , k, are known. Let Ho : μ = μo (specified), in the sense μ(j) is a
known vector for j = 1, . . . , k, when Σ is known. Then, under Ho, all the parameters are
known and the standardized U is observable, the test statistic being

k∑

j=1

ajnj (Ȳ1 − μ(j))
′Σ−1

j (Ȳj − μ(j)) ∼
k∑

j=1

ajχ
2(j)
p (6.2.6)

where χ
2(j)
p , j = 1, . . . , k, denote independent chisquares random variables, each having

p degrees of freedom. However, since this is a linear function of independent chisquare
variables, even the null distribution is complicated. Thus, only the case of two independent
populations will be examined.

Consider the problem of testing the hypothesis μ1 − μ2 = δ (a given vector) when
there are two independent normal populations sharing a common covariance matrix Σ

(known). Then U is U = Ȳ1 − Ȳ2 with E[U ] = μ1 − μ2 = δ (given) under Ho and
Cov(U) = ( 1

n1
+ 1

n2
)Σ = n1+n2

n1n2
Σ, the test statistic, denoted by v, being

v = n1n2

n1 + n2
(U−δ)′Σ−1(U−δ) = n1n2

n1 + n2
(Ȳ1−Ȳ2−δ)′Σ−1(Ȳ1−Ȳ2−δ) ∼ χ2

p. (6.2.7)

The resulting test criterion is

Reject Ho if the observed value of v ≥ χ2
p, α with Pr{χ2

p ≥ χ2
p,α} = α. (6.2.8)

Example 6.2.3. Let Y1 ∼ N3(μ(1), Σ) and Y2 ∼ N3(μ(2), Σ) represent independently
distributed normal populations having a known common covariance matrix Σ . The null
hypothesis is Ho : μ(1) − μ(2) = δ where δ is specified. Denote the observation vectors on
Y1 and Y2 by Y1j , j = 1, . . . , n1 and Y2j , j = 1, . . . , n2, respectively, and let the sample
sizes be n1 = 4 and n2 = 5. Let those observation vectors be

Y11 =
⎡

⎣
2
1
5

⎤

⎦ , Y12 =
⎡

⎣
5
5
3

⎤

⎦ , Y13 =
⎡

⎣
7
8
7

⎤

⎦ , Y14 =
⎡

⎣
8
10
12

⎤

⎦ and

Y21 =
⎡

⎣
2
1
3

⎤

⎦ , Y22 =
⎡

⎣
4
3
2

⎤

⎦ , Y23 =
⎡

⎣
7
10
8

⎤

⎦ , Y24 =
⎡

⎣
6
5
6

⎤

⎦ , Y25 =
⎡

⎣
1
1
2

⎤

⎦ ,
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and the common covariance matrix Σ be

Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦⇒ Σ−1 =
⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ .

Let the hypothesized vector under Ho : μ(1) − μ(2) = δ be δ′ = (1, 1, 2). In order to test
this null hypothesis, the following quantities must be evaluated:

Ȳ1 = 1

n1
(Y11 + · · · + Y1n1) = 1

4
(Y11 + Y12 + Y13 + Y14),

Ȳ2 = 1

n2
(Y21 + · · · + Y2n2) = 1

5
(Y21 + · · · + Y25),

U = Ȳ1 − Ȳ2, v = n1n2

n1 + n2
(U − δ)′Σ−1(U − δ).

They are

Ȳ1 = 1

4

⎧
⎨

⎩

⎡

⎣
2
1
5

⎤

⎦+
⎡

⎣
5
5
3

⎤

⎦+
⎡

⎣
7
8
7

⎤

⎦+
⎡

⎣
8
10
12

⎤

⎦

⎫
⎬

⎭
= 1

4

⎡

⎣
22
24
27

⎤

⎦ ,

Ȳ2 = 1

5

⎧
⎨

⎩

⎡

⎣
2
1
3

⎤

⎦+
⎡

⎣
4
3
2

⎤

⎦+
⎡

⎣
7
10
8

⎤

⎦+
⎡

⎣
6
5
6

⎤

⎦+
⎡

⎣
1
1
2

⎤

⎦

⎫
⎬

⎭
= 1

5

⎡

⎣
20
20
21

⎤

⎦ ,

U = Ȳ1 − Ȳ2 = 1

4

⎡

⎣
22
24
27

⎤

⎦− 1

5

⎡

⎣
20
20
21

⎤

⎦ =
⎡

⎣
1.50
2.00
2.55

⎤

⎦ .

Then,

U − δ =
⎡

⎣
1.50
2.00
2.55

⎤

⎦−
⎡

⎣
1
1
2

⎤

⎦ =
⎡

⎣
0.50
1.00
0.55

⎤

⎦ .

v = n1n2

n1 + n2
(U − δ)′Σ−1(U − δ)

= (4)(5)

9

[
0.50 1.00 0.55

]
⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦

⎡

⎣
0.50
1.00
0.55

⎤

⎦

= 1.3275 × 20

9
= 2.95.
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Let us test Ho at the significance level α = 0.05. The critical value which is available
from a chisquare table is χ2

p, α = χ2
3, 0.05 = 7.81. As per our criterion, we reject Ho if

2.95 ≥ χ2
p, α; however, since 2.95 < 7.81, we cannot reject Ho. The p-value in this case

is Pr{χ2
p ≥ 2.95} = Pr{χ2

3 ≥ 2.95} ≈ 0.096, which can be determined by interpolation.

6.2a. Testing Ho : μ = μo (given) When Σ is Known, Complex Gaussian Case

The derivation of the λ-criterion in the complex domain is parallel to that provided for
the real case. In the parameter space,

sup�L̃ = e−tr(Σ−1S̃)

πnp|det(Σ)|n (6.2a.1)

and under Ho : μ = μo, a given vector,

supωL̃ = e−tr(Σ−1S̃)−n(
¯̃
X−μo)

∗Σ−1(
¯̃
X−μo)

πnp|det(Σ)|n . (6.2a.2)

Accordingly,

λ̃ = supωL̃

sup�L̃
= e−n(

¯̃
X−μo)

∗Σ−1(
¯̃
X−μo). (6.2a.3)

Here as well, small values of λ̃ correspond to large values of ỹ ≡ n(
¯̃
X−μo)

∗Σ−1(
¯̃
X−μo),

which has a real gamma distribution with the parameters (α = p, β = 1) or a chisquare
distribution with p degrees of freedom in the complex domain as described earlier so that
2ỹ has a real chisquare distribution having 2p degrees of freedom. Thus, a real chisquare
table can be utilized for testing the null hypothesis Ho, the criterion being

Reject Ho if 2n(
¯̃
X − μo)

∗Σ−1(
¯̃
X − μo) ≥ χ2

2p,α, with Pr{χ2
2p ≥ χ2

2p,α} = α. (6.2a.4)

The test criteria as well as the decisions are parallel to those obtained for the real case in
the situations of paired values and in the case of independent populations. Accordingly,
such test criteria and associated decisions will not be further discussed.

Example 6.2a.1. Let p = 2 and the 2 × 1 complex vector X̃ ∼ Ñ2(μ̃, Σ̃), Σ̃ = Σ̃∗ >

O, with Σ̃ assumed to be known. Consider the null hypothesis Ho : μ̃ = μ̃o where μ̃o is
specified. Let the known Σ̃ and the specified μ̃o be the following where i = √

(−1):

μ̃o =
[

1 + i

1 − 2i

]

, Σ̃ =
[

2 1 + i

1 − i 3

]

⇒ Σ̃−1 = 1

4

[
3 −(1 + i)

−(1 − i) 2

]

, Σ̃ = Σ̃∗ > O.
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Let the general μ̃ and general X̃ be represented as follows for p = 2:

μ̃ =
[
μ1 + iν1

μ2 + iν2

]

, X̃ =
[
x1 + iy1

x2 + iy2

]

so that, for the given Σ̃ ,

det(Σ̃) = (2)(3) − (1 + i)(1 − i) = 6 − (12 + 12) = 4 = det(X̃∗) = |det(X̃)|.
The exponent of the general density for p = 2, excluding −1, is the form (X̃ −
μ̃)∗Σ̃−1(X̃ − μ̃). Further,

[(X̃ − μ̃)∗Σ̃−1(X̃ − μ̃)]∗ = (X̃ − μ̃)∗Σ̃−1(X̃ − μ̃)

since both Σ̃ and Σ̃−1 are Hermitian. Thus, the exponent, which is 1 × 1, is real and
negative definite. The explicit form, excluding −1, for p = 2 and the given covariance
matrix Σ̃ , is the following:

Q = 1

4
{3[(x1 − μ1)

2 + (y1 − ν2
1)] + 2[(x2 − μ2)

2 + (y2 − ν2)
2]

+ 2[(x1 − μ1)(x2 − μ2) + (y1 − ν1)(y2 − ν2)]},
and the general density for p = 2 and this Σ̃ is of the following form:

f (X̃) = 1

4π2
e−Q

where the Q is as previously given. Let the following be an observed sample of size n = 4
from a Ñ2(μ̃o, Σ̃) population whose associated covariance matrix Σ̃ is as previously
specified:

X̃1 =
[

1
1 + i

]

, X̃2 =
[

2 − 3i

i

]

, X̃3 =
[

2 + i

3

]

, X̃4 =
[

i

2 − i

]

.

Then,

¯̃
X = 1

4

{[
1

1 + i

]

+
[

2 − 3i

i

]

+
[

2 + i

3

]

+
[

i

2 − i

]}

= 1

4

[
5 − i

6 + i

]

¯̃
X − μ̃o = 1

4

[
5 − i

6 + i

]

−
[

1 + i

1 − 2i

]

= 1

4

[
1 − 5i

2 + 9i

]

,
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2n(
¯̃
X − μ̃o)

∗Σ̃−1(
¯̃
X − μ̃o)

= (2)(4)
1

42

[
1 + 5i 2 − 9i

] 1

4

[
3 −(1 + i)

−(1 − i) 2

] [
1 − 5i

2 + 9i

]

= 1

8
{3(1 + 5i)(1 − 5i) + 2(2 − 9i)(2 + 9i) − (1 + i)(1 + 5i)(2 + 9i)

− (1 − i)(2 − 9i)(1 − 5i)}
= 1

8
{3 × 26 + 2 × 85 + 2 × 62} = 46.5.

Let us test the stated null hypothesis at the significance level α = 0.05. Since χ2
2p, α =

χ2
4, 0.05 = 9.49 and 46.5 > 9.49, we reject Ho. In this case, the p-value is Pr{χ2

2p ≥
46.5} = Pr{χ2

4 ≥ 46.5} ≈ 0.

6.2.3. Test involving a subvector of a mean value vector when Σ is known

Let the p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the Xj ’s be
independently distributed. Let the joint density of Xj, j = 1, . . . , n, be denoted by L.
Then, as was previously established,

L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= e− 1
2 tr(Σ−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
(i)

where X̄ = 1
n
(X1 + · · · + Xn) and, letting X = (X1, . . . , Xn) of dimension p × n and

X̄ = (X̄, . . . , X̄), S = (X − X̄)(X − X̄)′. Let X̄, Σ−1 and μ be partitioned as follows:

X̄ =
[
X̄(1)

X̄(2)

]

,

[
Σ11 Σ12

Σ21 Σ22

]

, μ =
[
μ(1)

μ(2)

]

where X̄(1) and μ(1) are r × 1, r < p, and Σ11 is r × r . Consider the hypothesis μ(1) =
μ

(1)
o (specified) with Σ known. Thus, this hypothesis concerns only a subvector of the

mean value vector, the population covariance matrix being assumed known. In the entire
parameter space �, μ is estimated by X̄ where X̄ is the maximum likelihood estimator
(MLE) of μ. The maximum of the likelihood function in the entire parameter space is then

max
�

L = e− 1
2 tr(Σ−1S)

(2π)
np
2 |Σ | n

2
. (ii)
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Let us now determine the MLE of μ(2), which is the only unknown quantity under the null
hypothesis. To this end, we consider the following expansion:

(X̄ − μ)′Σ−1(X̄ − μ) = [(X̄(1) − μ(1)
o )′, (X̄(2) − μ(2))′]

[
Σ11 Σ12

Σ21 Σ22

] [
X̄(1) − μ(1)

X̄(2) − μ(2)

]

= (X̄(1) − μ(1)
o )′Σ11(X̄(1) − μ(1)

o ) + (X̄(2) − μ(2))′Σ22(X̄(2) − μ(2))

+ 2(X̄(2) − μ(2))′Σ21(X̄(1) − μ(1)
o ). (iii)

Noting that there are only two terms involving μ(2) in (iii), we have

∂

∂μ(2)
ln L = O ⇒ O − 2Σ22(X̄(2) − μ(2)) − 2Σ21(X̄(1) − μ(1)

o ) = O

⇒ μ̂(2) = X̄(2) + (Σ22)−1Σ21(X̄(1) − μ(1)
o ).

Then, substituting this MLE μ̂(2) in the various terms in (iii), we have the following:

(X̄(2) − μ̂(2))′Σ22(X̄(2) − μ̂(2)) = (X̄(1) − μ(1)
o )′Σ12(Σ22)−1Σ21(X̄(1) − μ(1)

o )

2(X̄(2) − μ̂(2))′Σ21(X̄(1) − μ(1)
o ) = −2(X̄(1) − μ(1)

o )′Σ12(Σ22)−1Σ21(X̄(1) − μ(1)
o ) ⇒

(X̄ − μ)′Σ−1(X̄ − μ) = (X̄(1) − μ(1)
o )′[Σ11 − Σ12(Σ22)−1Σ21](X̄(1) − μ(1)

o )

= (X̄(1) − μ(1)
o )′Σ−1

11 (X̄(1) − μ(1)
o ),

since, as established in Sect. 1.3, Σ−1
11 = Σ11 − Σ12(Σ22)−1Σ21. Thus, the maximum of

L under the null hypothesis is given by

max
Ho

L = e− 1
2 tr(Σ−1S)− n

2 (X̄(1)−μ
(1)
o )′Σ−1

11 (X̄(1)−μ
(1)
o )

(2π)
np
2 |Σ | n

2
,

and the λ-criterion is then

λ = maxHo
L

max� L
= e− n

2 (X̄(1)−μ
(1)
o )′Σ−1

11 (X̄(1)−μ
(1)
o ). (6.2.1)

Hence, we reject Ho for small values of λ or for large values of n(X̄(1)−μ
(1)
o )′Σ−1

11 (X̄(1)−
μ

(1)
o ) ∼ χ2

r since the expected value and covariance matrix of X̄(1) are respectively μ
(1)
o

and Σ11/n. Accordingly, the criterion can be enunciated as follows:

Reject Ho : μ(1) = μ(1)
o (given) if u ≡ n(X̄(1) − μ(1)

o )′Σ−1
11 (X̄(1) − μ(1)

o ) ≥ χ2
r, α (6.2.2)

with Pr{χ2
r ≥ χ2

r, α} = α. In the complex Gaussian case, the corresponding 2ũ will
be distributed as a real chisquare random variable having 2r degrees of freedom; thus, the
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criterion will consist of rejecting the corresponding null hypothesis whenever the observed
value of 2ũ ≥ χ2

2r, α.

Example 6.2.4. Let the 4 × 1 vector X have a real normal distribution N4(μ, Σ), Σ >

O. Consider the hypothesis that part of μ is specified. For example, let the hypothesis Ho

and Σ be the following:

Ho : μ = μo =

⎡

⎢
⎢
⎣

1
−1
μ3

μ4

⎤

⎥
⎥
⎦ , Σ =

⎡

⎢
⎢
⎣

2 1 0 0
1 2 0 1
0 0 3 1
0 1 1 2

⎤

⎥
⎥
⎦ = Σ ′ > O, X =

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ ≡

[
X(1)

X(2)

]

.

Since we are specifying the first two parameters in μ, the hypothesis can be tested by

computing the distribution of X(1) =
[
x1

x2

]

. Observe that X(1) ∼ N2(μ
(1), Σ11), Σ11 >

O where

μ(1) =
[
μ1

μ2

]

, μ(1)
o =

[
1

−1

]

, Ho : μ(1) = μ(1)
o , Σ11 =

[
2 1
1 2

]

⇒ Σ−1
11 = 1

3

[
2 −1

−1 2

]

.

Let the observed vectors from the original N4(μ, Σ) population be

X1 =

⎡

⎢
⎢
⎣

1
0
2
4

⎤

⎥
⎥
⎦ , X2 =

⎡

⎢
⎢
⎣

−1
1
1
2

⎤

⎥
⎥
⎦ , X3 =

⎡

⎢
⎢
⎣

0
2
3
4

⎤

⎥
⎥
⎦ , X4 =

⎡

⎢
⎢
⎣

2
1

−1
3

⎤

⎥
⎥
⎦ , X5 =

⎡

⎢
⎢
⎣

2
−1

0
4

⎤

⎥
⎥
⎦ .

Then the observations corresponding to the subvector X(1), denoted by X
(1)
j , are the fol-

lowing:

X
(1)
1 =

[
1
0

]

, X
(1)
2 =

[−1
1

]

, X
(1)
3 =

[
0
2

]

, X
(1)
4 =

[
2
1

]

, X
(1)
5 =

[
2

−1

]

.

In this case, the sample size n = 5 and the sample mean, denoted by X̄(1), is

X̄(1) = 1

5

{[
1
0

]

+
[−1

1

]

+
[

0
2

]

+
[

2
1

]

+
[

2
−1

]}

= 1

5

[
4
3

]

⇒

X̄(1) − μ(1)
o = 1

5

[
4
3

]

−
[

1
−1

]

= 1

5

[−1
8

]

.
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Therefore

n(X̄(1) − μ(1)
o )′Σ−1

11 (X̄(1) − μ(1)
o ) = 5

52

[−1 8
] 1

3

[
2 −1

−1 2

] [−1
8

]

= 1

15
(146) = 9.73.

If 9.73 > χ2
2, α, then we would reject H

(1)
o : μ(1) = μ

(1)
o . Let us test this hypothesis at

the significance level α = 0.01. Since χ2
2, 0.01 = 9.21, we reject the null hypothesis. In

this instance, the p-value, which can be determined from a chisquare table, is Pr{χ2
2 ≥

9.73} ≈ 0.007.

6.2.4. Testing μ1 = · · · = μp, with Σ known, real Gaussian case

Let Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the Xj be independently dis-
tributed. Letting μ′ = (μ1, . . . , μp), consider the hypothesis

Ho : μ1 = μ2 = · · · = μp = ν,

where ν, the common μj is unknown. This implies that μi − μj = 0 for all i and j . Con-
sider the p × 1 vector J of unities, J ′ = (1, . . . , 1) and then take any non-null vector that
is orthogonal to J . Let A be such a vector so that A′J = 0. Actually, p − 1 linearly inde-
pendent such vectors are available. For example, if p is even, then take 1, −1, . . . , 1, −1
as the elements of A and, when p is odd, one can start with 1, −1, . . . , 1, −1 and take the
last three elements as 1, −2, 1, or the last element as 0, that is,

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
1
...

1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1

...

−1
1

−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for p even and A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1

...

1
−2

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
−1

...

−1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

for p odd.

When the last element of the vector A is zero, we are simply ignoring the last element in
Xj . Let the p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the Xj ’s be inde-
pendently distributed. Let the scalar yj = A′Xj and the 1 × n vector Y = (y1, . . . , yn) =
(A′X1, . . . , A

′Xn) = A′(X1, . . . , Xn) = A′X, where the p×n matrix X = (X1, . . . , Xn).
Let ȳ = 1

n
(y1 +· · ·+yn) = A′ 1

n
(X1 +· · ·+Xn) = A′X̄. Then.

∑n
j=1(yj − ȳ)(yj − ȳ)′ =

A′∑n
j=1(Xj −X̄)(Xj −X̄)′A where

∑n
j=1(Xj −X̄)(Xj −X̄)′ = (X−X̄)(X−X̄)′ = S =
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the sample sum of products matrix in the Xj ’s, where X̄ = (X̄, . . . , X̄) the p × n ma-
trix whose columns are all equal to X̄. Thus, one has

∑n
j=1(yj − ȳ)2 = A′SA. Con-

sider the hypothesis μ1 = · · · = μp = ν. Then, A′μ = νA′J = ν 0 = 0 under Ho.
Since Xj ∼ Np(μ, Σ), Σ > O, we have yj ∼ N1(A

′μ, A′ΣA), A′ΣA > 0. Un-
der Ho, yj ∼ N1(0, A′ΣA), j = 1, . . . , n, the yj ’s being independently distributed.
Consider the joint density of y1, . . . , yn, denoted by L:

L =
n∏

j=1

e− 1
2A′ΣA

(yj−A′μ)2

(2π)
1
2 [A′ΣA] 1

2

. (i)

Since Σ is known, the only unknown quantity in L is μ. Differentiating ln L with respect
to μ and equating the result to a null vector, we have

n∑

j=1

(yj − A′μ̂) = 0 ⇒
n∑

j=1

yj − nA′μ̂ = 0 ⇒ ȳ − A′μ̂ = 0 ⇒ A′(X̄ − μ̂) = 0.

However, since A is a fixed known vector and the equation holds for arbitrary X̄, μ̂ = X̄.
Hence the maximum of L, in the entire parameter space � = μ, is the following:

max
�

L = e− 1
2A′ΣA

∑n
j=1[A′(Xj−X̄)]2

(2π)
np
2 [A′ΣA] n

2
= e− 1

2A′ΣA
A′SA

(2π)
np
2 [A′ΣA] n

2
. (ii)

Now, noting that under Ho, A′μ = 0, we have

max
Ho

L = e− 1
2A′ΣA

∑n
j=1 A′XjX

′
jA

′

(2π)
np
2 [A′ΣA] n

2
. (iii)

From (i) to (iii), the λ-criterion is as follows, observing that A′(
∑n

j=1 XjX
′
j )A =

∑n
j=1 A′(Xj − X̄)(Xj − X̄)′A + nA′(X̄X̄′A) = A′SA + nA′X̄X̄′A:

λ = e− n
2A′ΣA

A′X̄X̄′A
. (6.2.3)

But since
√

n
A′ΣA

A′X̄ ∼ N1(0, 1) under Ho, we may test this null hypothesis either by

using the standard normal variable or a chisquare variable as n
A′ΣA

A′X̄X̄′A ∼ χ2
1 under

Ho. Accordingly, the criterion consists of rejecting Ho

when

∣
∣
∣
∣

√
n

A′ΣA
A′X̄

∣
∣
∣
∣ ≥ zα

2
, with Pr{z ≥ zβ} = β, z ∼ N1(0, 1)

or

when u ≡ n

A′ΣA
(A′X̄X̄′A) ≥ χ2

1, α, with Pr{χ2
1 ≥ χ2

1, α} = α, u ∼ χ2
1 . (6.2.4)
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Example 6.2.5. Consider a 4-variate real Gaussian vector X ∼ N4(μ, Σ), Σ > O with
Σ as specified in Example 6.2.4 and the null hypothesis that the individual components of
the mean value vector μ are all equal, that is,

Σ =

⎡

⎢
⎢
⎣

2 1 0 0
1 2 0 1
0 0 3 1
0 1 1 2

⎤

⎥
⎥
⎦ , Ho : μ1 = μ2 = μ3 = μ4 ≡ ν (say), with μ =

⎡

⎢
⎢
⎣

μ1

μ2

μ3

μ4

⎤

⎥
⎥
⎦.

Let L be a 4 × 1 constant vector such that L′ = (1, −1, 1, −1). Then, under Ho, L′μ = 0
and u = L′X is univariate normal; more specifically, u ∼ N1(0, L′ΣL) where

L′ΣL = [1 −1 1 −1
]

⎡

⎢
⎢
⎣

2 1 0 0
1 2 0 1
0 0 3 1
0 1 1 2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
−1

1
−1

⎤

⎥
⎥
⎦ = 7 ⇒ u ∼ N1(0, 7).

Let the observation vectors be the same as those used in Example 6.2.4 and let uj =
L′Xj, j = 1, . . . , 5. Then, the five independent observations from u ∼ N1(0, 7) are the
following:

u1 = L′X1 = [1 −1 1 −1
]

⎡

⎢
⎢
⎣

1
0
2
4

⎤

⎥
⎥
⎦ = −1, u2 = L′

⎡

⎢
⎢
⎣

−1
1
1
2

⎤

⎥
⎥
⎦ = −3, u3 = L′

⎡

⎢
⎢
⎣

0
2
3
4

⎤

⎥
⎥
⎦ = −3,

u4 = L′

⎡

⎢
⎢
⎣

2
1

−1
3

⎤

⎥
⎥
⎦ = −3, u5 = L′

⎡

⎢
⎢
⎣

2
−1

0
4

⎤

⎥
⎥
⎦ = −1,

the average ū = 1
5(u1 + · · · + u5) = 1

5(−1 − 3 − 3 − 3 − 1) being equal to −11
5 . Then,

the standardized sample mean z =
√

n

σu
(ū − 0) ∼ N1(0, 1). Let us test the null hypothesis

at the significance level α = 0.05. Referring to a N1(0, 1) table, the required critical
value, denoted by zα

2
= z0.025 is 1.96. Therefore, we reject Ho in favor of the alternative

hypothesis that at least two components of μ are unequal at significance level α if the
observed value of

|z| =
∣
∣
∣

√
n

σu

(ū − 0)

∣
∣
∣ ≥ 1.96.
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Since the observed value of |z| is |
√

5√
7
(−7

5 − 0)| = √
1.4 = 1.18 is less than 1.96, we do

not reject Ho at the 5% significance level. Letting z ∼ N1(0, 1), the p-value in this case
is Pr{|z| ≥ 1.18} = 0.238, this quantile being available from a standard normal table.

In the complex case, proceeding in a parallel manner to the real case, the lambda cri-
terion will be the following:

λ̃ = e− n
A∗ΣA

A∗ ¯̃
X

¯̃
X∗A (6.2a.5)

where an asterisk indicates the conjugate transpose. Letting ũ = 2n
A∗ΣA

(A∗ ¯̃
X

¯̃
X∗A), it can

be shown that under Ho, ũ is distributed as a real chisquare random variable having 2
degrees of freedom. Accordingly, the criterion will be as follows:

Reject Ho if the observed ũ ≥ χ2
2, α with Pr{χ2

2 ≥ χ2
2, α} = α. (6.2a.6)

Example 6.2a.2. When p > 2, the computations become quite involved in the complex
case. Thus, we will let p = 2 and consider the bivariate complex Ñ2(μ̃, Σ̃) distribution
that was specified in Example 6.2a.1, assuming that Σ̃ is as given therein, the same set of
observations being utilized as well. In this case, the null hypothesis is Ho : μ̃1 = μ̃2, the
parameters and sample average being

μ̃ =
[
μ̃1

μ̃2

]

, Σ̃ =
[

2 1 + i

1 − i 3

]

,
¯̃
X = 1

4

[
5 − i

6 + i

]

.

Letting L′ = (1, −1), L′μ̃ = 0 under Ho, and

ũ = L′ ¯̃
X = 1

4

[
1 −1

]
[

5 − i

6 + i

]

= −1

4
(1+2i); (L′ ¯̃

X)∗(L′ ¯̃
X) = 1

16
(1−2i)(1+2i) = 5

16
;

L′Σ̃L = [1 −1
]
[

2 1 + i

1 − i 3

] [
1

−1

]

= 3; v = 2n

L′Σ̃L
[(L′ ¯̃

X)∗(L′ ¯̃
X) = 8

3
× 5

16
= 5

6
.

The criterion consists of rejecting Ho if the observed value of v ≥ χ2
2, α. Letting the

significance level of the test be α = 0.05, the critical value is χ2
2, 0.05 = 5.99, which is

readily available from a chisquare table. The observed value of v being 5
6 < 5.99, we do

not reject Ho. In this case, the p-value is Pr{χ2
2 ≥ 5

6} ≈ 0.318.

6.2.5. Likelihood ratio criterion for testing Ho : μ1 = · · · = μp , Σ known

Consider again, Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, with the Xj ’s being
independently distributed and Σ , assumed known. Letting the joint density of X1, . . . , Xn

be denoted by L, then, as determined earlier,

L = e− 1
2 tr(Σ−1S)− n

2 (X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2
(i)
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where n is the sample size and S is the sample sum of products matrix. In the entire
parameter space

� = {(μ, Σ) |Σ > O known, μ′ = (μ1, . . . , μp)},
the MLE of μ is X̄ = the sample average. Then

max
�

L = e− 1
2 tr(Σ−1S)

(2π)
np
2 |Σ | n

2
. (ii)

Consider the following hypothesis on μ′ = (μ1, . . . , μp):

Ho : μ1 = · · · = μp = ν, ν is unknown.

Then, the MLE of μ under Ho is μ̂ = J ν̂ = J 1
p
J ′X̄, J ′ = (1, . . . , 1). This ν̂ is in fact

the sum of all observations on all components of Xj, j = 1, . . . , n, divided by np, which
is identical to the sum of all the coordinates of X̄ divided by p or μ̂ = 1

p
JJ ′X̄. In order to

evaluate the maximum of L under Ho, it suffices to substitute μ̂ to μ in (i). Accordingly,
the λ-criterion is

λ = maxHo
L

max� L
= e− n

2 (X̄−μ̂)′Σ−1(X̄−μ̂). (6.2.5)

Thus, we reject Ho for small values of λ or for large values of w ≡ n(X̄−μ̂)′Σ−1(X̄−μ̂).
Let us determine the distribution of v. First, note that

X̄ − μ̂ = X̄ − 1

p
JJ ′X̄ = (Ip − 1

p
JJ ′)X̄,

and let

w = n(X̄ − μ̂)′Σ−1(X̄ − μ̂) = nX̄′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)X̄ (iii)

= (X̄ − μ)′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)(X̄ − μ)

since J ′(I − 1
p
JJ ′) = O, μ = νJ being the true mean value of the Np(μ, Σ) distribution.

Observe that
√

n(X̄ − μ) ∼ Np(O, Σ), Σ > O, and that 1
p
JJ ′ is idempotent. Since

I − 1
p
JJ ′ is also idempotent and its rank is p − 1, there exists an orthonormal matrix P ,

PP ′ = I, P ′P = I , such that

I − 1

p
JJ ′ = P ′

[
Ip−1 O

O ′ 0

]

P.
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Letting U = P
√

n(X̄ − μ̂), with U ′ = (u1, . . . , up−1, up), U ∼ Np(O, PΣP ′). Now,
on noting that

U ′
[
Ip−1 O

O ′ 0

]

= (u1, . . . , up−1, 0),

we have

n(X̄ − μ̂)′Σ−1(X̄ − μ̂) = [U ′
1, 0]PΣ−1P ′

[
U1

0

]

= U ′
1B

−1U1, U ′
1 = (u1, . . . , up−1),

B being the covariance matrix associated with U1, so that U1 ∼ Np−1(O, B), B > O.
Thus, U ′

1B
−1U1 ∼ χ2

p−1, a real scalar chisquare random variable having p − 1 degrees of
freedom. Hence, upon evaluating

w = X̄′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)X̄,

one would reject Ho : μ1 = · · · = μp = ν, ν unknown, whenever the observed value of

w ≥ χ2
p−1, α, with Pr{χ2

p−1 ≥ χ2
p−1, α} = α. (6.2.6)

Observe that the degrees of freedom of this chisquare variable, that is, p − 1, coincides
with the number of parameters being restricted by Ho.

Example 6.2.6. Consider the trivariate real Gaussian population X ∼ N3(μ, Σ), Σ >

O, as already specified in Example 6.2.1 with the same Σ and the same observed sample
vectors for testing Ho : μ′ = (ν, ν, ν), namely,

μ =
⎡

⎣
μ1

μ2

μ3

⎤

⎦ , X̄ = 1

5

⎡

⎣
9
4
3

⎤

⎦ , Σ =
⎡

⎣
2 0 0
0 1 1
0 1 2

⎤

⎦⇒ Σ−1 =
⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦ .

The following test statistic has to be evaluated for p = 3:

w = X̄′(I − 1

p
JJ ′)Σ−1(I − 1

p
JJ ′)X̄, J ′ = (1, 1, 1).
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We have to evaluate the following quantities in order to determine the value of w:

1

3
JJ ′Σ−1 = 1

3

⎡

⎣

1
2 1 0
1
2 1 0
1
2 1 0

⎤

⎦ , Σ−1 1

3
JJ ′ = 1

3

⎡

⎣

1
2

1
2

1
2

1 1 1
0 0 0

⎤

⎦ ,

1

3
JJ ′Σ−1 1

3
JJ ′ = 1

9

⎡

⎣

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

⎤

⎦ = 1

6

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ ,

⎡

⎣

1
2 0 0
0 2 −1
0 −1 1

⎤

⎦− 1

3

⎡

⎣

1
2 1 0
1
2 1 0
1
2 1 0

⎤

⎦− 1

3

⎡

⎣

1
2

1
2

1
2

1 1 1
0 0 0

⎤

⎦

+ 1

6

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ =
⎡

⎣

1
3 −1

3 0
−1

3
3
2 −7

6
0 −7

6
7
6

⎤

⎦ = (I − 1

3
JJ ′)Σ−1(I − 1

3
JJ ′).

Thus,

w = X̄′(I − 1

3
JJ ′)Σ−1(I − 1

3
JJ ′)X̄, J ′ = (1, 1, 1)

= 1

52

[
9 4 3

]
⎡

⎣

1
3 −1

3 0
−1

3
3
2 −7

6
0 −7

6
7
6

⎤

⎦

⎡

⎣
9
4
3

⎤

⎦

= 1

52

[
92 1

3
+ 42 3

2
+ 32 7

6
− 2

3
(9)(4) − 14

6
(4)(3)

]

= 0.38.

We reject Ho whenever w ≥ χ2
p−1,α. Letting the significance level be α = 0.05, the

tabulated critical value is χ2
p−1, α = χ2

2, 0.05 = 5.99, and since 0.38 < 5.99, we do not

reject the null hypothesis. In this instance, the p-value is Pr{χ2
2 ≥ 0.38} ≈ 0.32.

6.3. Testing Ho : μ = μo (given) When Σ is Unknown, Real Gaussian Case

In this case, both μ and Σ are unknown in the entire parameter space �; however,
μ = μo known while Σ is still unknown in the subspace ω. The MLE under � is the same
as that obtained in Sect. 6.1.1., that is,

sup�L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
. (6.3.1)
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When μ = μo, Σ is estimated by Σ̂ = 1
n

∑n
j=1(Xj − μo)(Xj − μo)

′. As shown in

Sect. 3.5, Σ̂ can be reexpressed as follows:

Σ̂ = 1

n

n∑

j=1

(Xj − μo)(Xj − μo) = 1

n
S + (X̄ − μo)(X̄ − μo)

′

= 1

n
[S + n(X̄ − μo)(X̄ − μo)

′].

Then, under the null hypothesis, we have

supωL = e− np
2 n

np
2

(2π)
np
2 |S + n(X̄ − μo)(X̄ − μo)′| n

2
. (6.3.2)

Thus,

λ = supωL

sup�L
= |S| n

2

|S + n(X̄ − μo)(X̄ − μo)′| n
2
.

On applying results on the determinants of partitioned matrices which were obtained in
Sect. 1.3, we have the following equivalent representations of the denominator:

∣
∣
∣
∣

[
S n(X̄ − μo)

−(X̄ − μo)
′ 1

]∣
∣
∣
∣ = [1]|S + n(X̄ − μo)(X̄ − μo)

′|
= |S| |1 + n(X̄ − μo)

′S−1(X̄ − μo)|,

that is,
|S + n(X̄ − μo)(X̄ − μo)

′| = |S|[1 + n(X̄ − μo)
′S−1(X̄ − μo)],

which yields the following simplified representation of the likelihood ratio statistic:

λ = 1

[1 + n(X̄ − μo)′S−1(X̄ − μo)] n
2
. (6.3.3)

Small values of λ correspond to large values of u ≡ n(X̄ − μo)
′S−1(X̄ − μo), which is

connected to Hotelling’s T 2
n statistic. Hence the criterion is the following: “Reject Ho for

large values of u”. The distribution of u can be derived by making use of the indepen-
dence of the sample mean and sample sum of products matrix and the densities of these
quantities. An outline of the derivation is provided in the next subsection.
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6.3.1. The distribution of the test statistic

Let us examine the distribution of u = n(X̄ − μ)′S−1(X̄ − μ). We have already
established in Theorems 3.5.3, that S and X̄ are independently distributed in the case of
a real p-variate nonsingular Gaussian Np(μ, Σ) population. It was also determined in
Corollary 3.5.1 that the distribution of the sample average X̄ is a p-variate real Gaussian
vector with the parameters μ and 1

n
Σ, Σ > O and in the continuing discussion, it is

shown that the distribution of S is a matrix-variate Wishart with m = n − 1 degrees of
freedom, where n is the sample size and parameter matrix Σ > O. Hence the joint density
of S and X̄, denoted by f (S, X̄), is the product of the marginal densities. Letting Σ = I ,
this joint density is given by

f (S, X̄) = n
p
2

(2π)
p
2 2

mp
2 Γp(m

2 )
|S|m

2 −p+1
2 e− 1

2 tr(S)− n
2 tr((X̄−μ)(X̄−μ)′), m = n − 1. (i)

Note that it is sufficient to consider the case Σ = I . Due to the presence of S−1 in u =
(X̄ − μ)′S−1(X̄ − μ), the effect of any scaling matrix on Xj will disappear. If Xj goes

to A
1
2 Xj for any constant positive definite matrix A then S−1 will go to A− 1

2 S−1A− 1
2 and

thus u will be free of A.

Letting Y = S− 1
2 (X̄ −μ) for fixed S, Y ∼ Np(O, S−1/n), so that the conditional density

of Y , given S, is

g(Y |S) = n
p
2 |S| 1

2

(2π)
p
2

e− n
2 tr(SYY ′).

Thus, the joint density of S and Y , denoted by f1(S, Y ), is

f1(S, Y ) = n
p
2

(2π)
p
2 2

mp
2 Γp(m

2 )
|S|m+1

2 −p+1
2 e− 1

2 tr(S[I+nYY ′]), m = n − 1. (ii)

On integrating out S from (ii) by making use of a matrix-variate gamma integral, we obtain
the following marginal density of Y , denoted by f2(Y ):

f2(Y )dY = n
p
2

(π)
p
2

Γp(m+1
2 )

Γp(m
2 )

|I + nYY ′|−(m+1
2 )dY, m = n − 1. (iii)

However, |I + nYY ′| = 1 + nY ′Y, which can be established by considering two represen-
tations of the determinant ∣

∣
∣
∣

I −√
nY√

nY ′ 1

∣
∣
∣
∣ ,
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similarly to what was done in Sect. 6.3 to obtain the likelihood ratio statistic given in
(6.3.3). As well, it can easily be shown that

Γp(m+1
2 )

Γp(m
2 )

= Γ (m+1
2 )

Γ (m+1
2 − p

2 )

by expanding the matrix-variate gamma functions. Now, letting s = Y ′Y , it follows from

Theorem 4.2.3 that dY = π
p
2

Γ (
p
2 )

s
p
2 −1ds. Thus, the density of s, denoted by f3(s), is

f3(s)ds = n
p
2 Γ (m+1

2 )

Γ (m+1
2 − p

2 )Γ (
p
2 )

s
p
2 −1(1 + ns)−(m+1

2 )ds (6.3.4)

= n
p
2 Γ (n

2 )

Γ (n
2 − p

2 )Γ (
p
2 )

s
p
2 −1(1 + ns)−( n

2 )ds, m = n − 1, (6.3.5)

for n = p + 1, p + 2, . . . , 0 ≤ s < ∞, and zero elsewhere. It can then readily be seen
from (6.3.5) that ns = nY ′Y = n(X̄ − μ)′S−1(X̄ − μ) = u is distributed as a real scalar
type-2 beta random variable whose parameters are (

p
2 , n

2 − p
2 ), n = p + 1, . . . . Thus, the

following result:

Theorem 6.3.1. Consider a real p-variate normal population Np(μ, Σ), Σ > O, and
a simple random sample of size n from this normal population, Xj ∼ Np(μ, Σ), j =
1, . . . , n, the Xj ’s being independently distributed. Let the p × n matrix X = (X1, . . . ,

Xn) be the sample matrix and the p-vector X̄ = 1
n
(X1 + · · · + Xn) denote the sample

average. Let X̄ = (X̄, . . . , X̄) be a p × n matrix whose columns are all equal to X̄,

and S = (X − X̄)(X − X̄)′ be the sample sum of products matrix. Then, u = n(X̄ −
μ)′S−1(X̄ −μ) has a real scalar type-2 beta distribution with the parameters (

p
2 , n

2 − p
2 ),

so that u ∼ p
n−p

Fp, n−p where Fp, n−p denotes a real F random variable whose degrees
of freedoms are p and n − p.

Hence, in order to test the hypothesis Ho : μ = μo, the likelihood ratio statistic gives
the test criterion: Reject Ho for large values of u = n(X̄ − μo)

′S−1(X̄ − μo), which is
equivalent to rejecting Ho for large values of an F -random variable having p and n − p

degrees of freedom where Fp, n−p = n−p
p

u = n−p
p

n(X̄ − μo)
′S−1(X̄ − μo), that is,

reject Ho if
n − p

p
u = Fp, n−p ≥ Fp, n−p, α ,

with α = Pr{Fp, n−p ≥ Fn, n−p, α} (6.3.6)
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at a given significance level α where u = n(X̄−μo)
′S−1(X̄−μo) ∼ p

n−p
Fp, n−p , n being

the sample size.

Example 6.3.1. Consider a trivariate real Gaussian vector X ∼ N3(μ, Σ), Σ > O,

where Σ is unknown. We would like to test the following hypothesis on μ: Ho : μ = μo,

with μ′
o = (1, 1, 1). Consider the following simple random sample of size n = 5 from this

N3(μ, Σ) population:

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0

−1

⎤

⎦ , X3 =
⎡

⎣
−1

1
2

⎤

⎦ , X4 =
⎡

⎣
−2

1
2

⎤

⎦ , X5 =
⎡

⎣
2

−1
0

⎤

⎦ ,

so that

X̄ = 1

5

⎡

⎣
1
2
4

⎤

⎦ , X1 − X̄ =
⎡

⎣
1
1
1

⎤

⎦− 1

5

⎡

⎣
1
2
4

⎤

⎦ = 1

5

⎡

⎣
4
3
1

⎤

⎦ , X2 − X̄ = 1

5

⎡

⎣
4

−2
−9

⎤

⎦ ,

X3 − X̄ = 1

5

⎡

⎣
−6

3
6

⎤

⎦ , X4 − X̄ = 1

5

⎡

⎣
−11

3
6

⎤

⎦ , X5 − X̄ = 1

5

⎡

⎣
9

−7
−4

⎤

⎦ .

Let X = [X1, . . . , X5] the 3×5 sample matrix and X̄ = [X̄, X̄, . . . , X̄] be the 3×5 matrix
of sample means. Then,

X − X̄ = [X1 − X̄, . . . , X5 − X̄] = 1

5

⎡

⎣
4 4 −6 −11 9
3 −2 3 3 −7
1 −9 6 6 −4

⎤

⎦ ,

S = (X − X̄)(X − X̄)′ = 1

52

⎡

⎣
270 −110 −170

−110 80 85
−170 85 170

⎤

⎦ .

Let S = 1
52 A. In order to evaluate the test statistic, we need S−1 = 25A−1. To obtain

the correct inverse without any approximation, we will use the transpose of the cofactor
matrix divided by the determinant. The determinant of A, |A|, as obtained in terms of the
elements of the first row and the corresponding cofactors is equal to 531250. The matrix
of cofactors, denoted by Cof(A), which is symmetric in this case, is the following:

Cof(A) =
⎡

⎣
6375 4250 4250
4250 17000 −4250
4250 −4250 9500

⎤

⎦⇒ S−1 = 25

531250
Cof(A).
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The null hypothesis is Ho : μ = μo = (1, 1, 1)′, so that

X̄ − μo = 1

5

⎡

⎣
1
2
4

⎤

⎦−
⎡

⎣
1
1
1

⎤

⎦ = −1

5

⎡

⎣
4
3
1

⎤

⎦ ,

the observed value of the test statistic being

w = n − p

p
n(X̄ − μo)

′S−1(X̄ − μo) = (5 − 3)

3
5

25

52

[
4 3 1

]
A−1

⎡

⎣
4
3
1

⎤

⎦

= 2

3
5

25

52

1

531250
[(4)2(6375) + (3)2(17000) + (1)2(9500)

+ 2(4)(3)(4250) + 2(4)(1)(4250) − 2(3)(1)(4250)]
= 2

3
5

25

52

1

531250
[375000] = 2.35.

The test statistic w under the null hypothesis is F -distributed, that is, w ∼ Fp, n−p. Let
us test Ho at the significance level α = 0.05. Since the critical value as obtained from an
F -table is Fp,n−p, α = F3,2, 0.05 = 19.2 and 2.35 < 19.2, we do not reject Ho.

Note 6.3.1. If S is replaced by 1
n−1S, an unbiased estimator for Σ , then the test statistic

1
n−1n(X̄−μo)

′[ 1
n−1S]−1(X̄−μo) = T 2

n

n−1 where T 2
n denotes Hotelling’s T 2 statistic, which

for p = 1 corresponds to the square of a Student-t statistic having n−1 degrees of freedom.

Since u as defined in Theorem 6.3.1 is distributed as a type-2 beta random variable with
the parameters (

p
2 ,

n−p
2 ), we have the following results: 1

u
is type-2 beta distributed with

the parameters (
n−p

2 ,
p
2 ), u

1+u
is type-1 beta distributed with the parameters (

p
2 ,

n−p
2 ),

and 1
1+u

is type-1 beta distributed with the parameters (
n−p

2 ,
p
2 ), n being the sample size.

6.3.2. Paired values or linear functions when Σ is unknown

Let Y1, . . . , Yk be p × 1 vectors having their own distributions which are unknown.
However, suppose that it is known that a certain linear function X = a1Y1 +· · ·+akYk has
a p-variate real Gaussian Np(μ, Σ) distribution with Σ > O. We would like to test hy-

potheses of the type E[X] = a1μ
(o)
(1)+· · ·+akμ

(o)
(k) where the μ

(o)
j ’s, j = 1, . . . , k, are spec-

ified. Since we do not know the distributions of Y1, . . . , Yk, let us convert the iid variables
on Yj , j = 1, . . . , k, to iid variables on Xj , say X1, . . . , Xn, Xj ∼ Np(μ, Σ), Σ > O,

where Σ is unknown. First, the observations on Y1, . . . , Yk are transformed into observa-
tions on the Xj ’s. The problem then involves a single normal population whose covariance
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matrix is unknown. An example of this type is Y1 representing a p × 1 vector before a cer-
tain process, such as administering a drug to a patient; in this instance, Y1 could consists of
measurements on p characteristics observed in a patient. Observations on Y2 will then be
the measurements on the same p characteristics after the process such as after administer-
ing the drug to the patient. Then Y2q −Y1q = Xq will represent the variable corresponding
to the difference in the measurements on the q-th characteristic. Let the hypothesis be
Ho : μ = μo (given), Σ being unknown. Note that once the observations on Xj are taken,
then the individual μ(j)’s are irrelevant as they no longer are of any use. Once the Xj ’s
are determined, one can compute the sum of products matrix S in Xj . In this case, the
test statistic is u = n(X̄ − μo)

′S−1(X̄ − μo), which is distributed as a type-2 beta with
parameters (

p
2 ,

n−p
2 ). Then, u ∼ p

n−p
F where F is an F random variable having p and

n − p degrees of freedom, that is, an Fp, n−p random variable, n being the sample size.
Thus, the test criterion is applied as follows: Determine the observed value of u and the
corresponding observed value of Fp,n−p that is, n−p

p
u, and then

reject Ho if
n − p

p
u ≥ Fp, n−p, α, with Pr{Fp, n−p ≥ Fp, n−p, α} = α. (6.3.7)

Example 6.3.2. Five motivated individuals were randomly selected and subjected to an
exercise regimen for a month. The exercise program promoters claim that the subjects can
expect a weight loss of 5 kg as well as a 2-in. reduction in lower stomach girth by the end
of the month period. Let Y1 and Y2 denote the two component vectors representing weight
and girth before starting the routine and at the end of the exercise program, respectively.
The following are the observations on the five individuals:

(Y1, Y2) =
[
(85, 85)

(40, 41)

]

,

[
(80, 70)

(40, 45)

]

,

[
(75, 73)

(36, 36)

]

,

[
(70, 71)

(38, 38)

]

,

[
(70, 68)

(35, 34)

]

.

Obviously, Y1 and Y2 are dependent variables having a joint distribution. We will as-
sume that the difference X = Y1 − Y2 has a real Gaussian distribution, that is, X ∼
N2(μ, Σ), Σ > O. Under this assumption, the observations on X are

X1 =
[

85 − 85
40 − 41

]

=
[

0
−1

]

, X2 =
[

10
−5

]

, X3 =
[

2
0

]

, X4 =
[−1

0

]

, X5 =
[

2
1

]

.

Let X = [X1, X2, . . . , X5] and X− X̄ = [X1 − X̄, . . . , X5 − X̄], both being 2 × 5 matrix.
The observed sample average X̄, the claim of the exercise routine promoters μ = μo as
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well as other relevant quantities are as follows:

X̄ = 1

5
(X1 + · · · + X5) = 1

5

[
13

−5

]

, μo =
[

5
2

]

,

X1 − X̄ =
[

0
−1

]

− 1

5

[
13
−5

]

= 1

5

[−13
0

]

,

X2 − X̄ = 1

5

[
37

−20

]

, X3 − X̄ = 1

5

[−3
5

]

, X4 − X̄ = 1

5

[−18
5

]

, X5 − X̄ = 1

5

[−3
10

]

;

X − X̄ = [X1 − X̄, . . . , X5 − X̄] = 1

5

[ −13 37 −3 −18 −3
0 −20 5 5 10

]

;

S = (X − X̄)(X − X̄)′ = 1

52

[ −13 37 −3 −18 −3
0 −20 5 5 10

]

⎡

⎢
⎢
⎢
⎢
⎣

−13 0
37 −20
−3 5

−18 5
−3 10

⎤

⎥
⎥
⎥
⎥
⎦

= 1

52

[
1880 −875
−875 550

]

= 1

52
A, A =

[
1880 −875
−875 550

]

⇒ S−1 = 25A−1;

|A| = 1880(550) − (875)2 = 214975; Cof(A) =
[

550 875
875 1880

]

; A−1 = Cof(A)

|A| ;

A−1 = 1

268375

[
550 875
875 1880

]

, S−1 = 25A−1;

X̄ − μo = 1

5

[
13
−5

]

−
[

5
2

]

= −1

5

[
12
15

]

.

The test statistic being w = (n−p)
p

n(X̄ − μo)
′S−1(X̄ − μo), its observed value is

v = (5 − 2)

2
5

52

52

1

268375

[
12 15

]
[

550 875
875 1880

] [
12
15

]

= 3

2

5

268375
[(12)2(550) + (15)2(1880) + 2(12)(15)(875)] = 22.84.

Letting the significance level of the test be α = 0.05, the critical value is Fp, n−p, α =
F2, 3, 0.05 = 9.55. Since 22.84 > 9.55, Ho is thus rejected.

6.3.3. Independent Gaussian populations

Consider k independent p-variate real Gaussian populations whose individual distri-
bution is Np(μ(j), Σj ), Σj > O, j = 1, . . . , k. Given simple random samples of sizes
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n1, . . . , nk from these k populations, we may wish to test a hypothesis on a given linear
functions of the mean values, that is, Ho : a1μ(1) + · · · + akμ(k) = μ0 where a1, . . . , ak

are known constants and μo is a given quantity under the null hypothesis. We have already
discussed this problem for the case of known covariance matrices. When the Σj ’s are all
unknown or some of them are known while others are not, the MLE’s of the unknown co-
variance matrices turn out to be the respective sample sums of products matrices divided
by the corresponding sample sizes. This will result in a linear function of independent
Wishart matrices whose distribution proves challenging to determine, even for the null
case.

Special case of two independent Gaussian populations

Consider the special case of two independent real Gaussian populations having identical
covariance matrices. that is, let the populations be Y1q ∼ Np(μ(1), Σ), Σ > O, the Y1q’s,
q = 1, . . . , n1, being iid, and Y2q ∼ Np(μ(2), Σ), Σ > O, the Y2q’s, q = 1, . . . , n2,

being iid . Let the sample p × n1 and p × n2 matrices be denoted as Y1 = (Y11, . . . , Y1n1)

and Y2 = (Y21, . . . , Y2n2) and let the sample averages be Ȳj = 1
nj

(Yj1 + · · · + Yjnj
), j =

1, 2. Let Ȳj = (Ȳj , . . . , Ȳj ), a p × nj matrix whose columns are equal to Ȳj , j = 1, 2,

and let

Sj = (Yj − Ȳj )(Yj − Ȳj )
′, j = 1, 2,

be the corresponding sample sum of products matrices. Then, S1 and S2 are independently
distributed as Wishart matrices having n1 − 1 and n2 − 1 degrees of freedom, respectively.
As the sum of two independent p × p real or complex matrices having matrix-variate
gamma distributions with the same scale parameter matrix is again gamma distributed
with the shape parameters summed up and the same scale parameter matrix, we observe
that since the two populations are independently distributed, S1 + S2 ≡ S has a Wishart
distribution having n1 + n2 − 2 degrees of freedom. We now consider a hypothesis of the
type μ(1) = μ(2). In order to do away with the unknown common mean value, we may
consider the real p-vector U = Ȳ1 − Ȳ2, so that E(U) = O and Cov(U) = 1

n1
Σ + 1

n2
Σ =

( 1
n1

+ 1
n2

)Σ = n1+n2
n1n2

Σ . The MLE of this pooled covariance matrix is 1
n1+n2

S where S

is Wishart distributed with n1 + n2 − 2 degrees of freedom. Then, following through the
steps included in Sect. 6.3.1 with the parameter m now being n1 + n2 − 2, the power of
S will become (n1+n2−2+1)

2 − p+1
2 when integrating out S. Letting the null hypothesis be

Ho : E[Y1]−E[Y2] = δ (specified), such as δ = 0, the function resulting from integrating
out S is

c
[(n1 + n2)

n1n2
u]p

2 −1[1 + (n1 + n2)

n1n2
u
]− 1

2 (n1+n2−1)

(6.3.8)
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where c is the normalizing constant, so that w = (n1+n2)
n1n2

(Ȳ1 − Ȳ2 − δ)′S−1(Ȳ1 − Ȳ2 −
δ) is distributed as a type-2 beta with the parameters (

p
2 ,

(n1+n2−1−p)
2 ). Writing w =

p
n1+n2−1−p

Fp,n1+n2−1−p, this F is seen to be an F statistic having p and n1 + n2 − 1 − p

degrees of freedom. We will state these results as theorems.

Theorem 6.3.2. Let the p×p real positive definite matricesX1 and X2 be independently
distributed as real matrix-variate gamma random variables with densities

fj (Xj ) = |B|αj

Γp(αj )
|Xj |αj−p+1

2 e−tr(BXj ), B > O, Xj > O, �(αj ) >
p − 1

2
, (6.3.9)

j=1,2, and zero elsewhere. Then, as can be seen from (5.2.6), the Laplace transform asso-
ciated with Xj or that of fj , denoted as LXj

(∗T ), is

LXj
(∗T ) = |I + B−1∗T |−αj , I + B−1∗T > O, j = 1, 2. (i)

Accordingly, U1 = X1 + X2 has a real matrix-variate gamma density with the parameters
(α1 + α2, B) whose associated Laplace transform is

LU1(∗T ) = |I + B−1∗T |−(α1+α2), (ii)

and U2 = a1X1 + a2X2 has the Laplace transform

LU2(∗T ) = |I + a1B
−1∗T |−α1|I + a2B

−1∗T |−α2, (iii)

whenever I + ajB
−1∗T > O, j = 1, 2, where a1 and a2 are real scalar constants.

It follows from (ii) that X1 + X2 is also real matrix-variate gamma distributed. When
a1 
= a2, it is very difficult to invert (iii) in order to obtain the corresponding density. This
can be achieved by expanding one of the determinants in (iii) in terms of zonal polynomi-
als, say the second one, after having first taken |I + a1B

−1∗T |−(α1+α2) out as a factor in
this instance.

Theorem 6.3.3. Let Yj ∼ Np(μ(j), Σ), Σ > O, j = 1, 2, be independent p-variate
real Gaussian distributions sharing the same covariance matrix. Given a simple random
sample of size n1 from Y1 and a simple random sample of size n2 from Y2, let the sample
averages be denoted by Ȳ1 and Ȳ2 and the sample sums of products matrices, by S1 and S2,
respectively. Consider the hypothesis Ho : μ(1) − μ(2) = δ (given). Letting S = S1 + S2

and

w = (n1 + n2)

n1n2
(Ȳ1−Ȳ2−δ)′S−1(Ȳ1−Ȳ2−δ), w ∼ p

n1 + n2 − 1 − p
Fp, n1+n2−1−p (iv)
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where Fp, n1+n2−1−p denotes an F distribution with p and n1 + n2 − 1 − p degrees of
freedom, or equivalently, w is distributed as a type-2 beta variable with the parameters
(
p
2 ,

(n1+n2−1−p)
2 ). We reject the null hypothesis Ho if

n1+n2−1−p
p

w ≥ Fp, n1+n2−1−p, α with

Pr{Fp, n1+n2−1−p ≥ Fp, n+1+n2−1−p, α} = α (vi)

at a given significance level α.

Theorem 6.3.4. Let w be as defined in Theorem 6.3.3. Then w1 = 1
w

is a real scalar

type-2 beta variable with the parameters (
n1+n2−1−p

2 ,
p
2 ); w2 = w

1+w
is a real scalar

type-1 beta variable with the parameters (
p
2 ,

(n1+n2−1−p)
2 ); w3 = 1

1+w
is a real scalar

type-1 beta variable with the parameters (
n1+n2−1−p

2 ,
p
2 ).

Those last results follow from the connections between real scalar type-1 and type-2
beta random variables. Results parallel to those appearing in (i) to (vi) and stated Theo-
rems 6.3.1–6.3.4 can similarly be obtained for the complex case.

Example 6.3.3. Consider two independent populations whose respective distributions
are N2(μ(1), Σ1) and N2(μ(2j), Σ2), Σj > O, j = 1, 2, and samples of sizes n1 =
4 and n2 = 5 from these two populations, respectively. Let the population covariance
matrices be identical with Σ1 = Σ2 = Σ , the common covariance matrix being unknown,
and let the observed sample vectors from the first population, Xj ∼ N2(μ(1), Σ), be

X1 =
[

1
0

]

, X2 =
[−1

1

]

, X3 =
[

1
2

]

, X4 =
[−1
−1

]

.

Denoting the sample mean from the first population by X̄ and the sample sum of products
matrix by S1, we have

X̄ = 1

4

[
0
2

]

and S1 = (X − X̄)(X − X̄)′, X = [X1, X2, X3, X4], X̄ = [X̄, . . . , X̄],
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the observations on these quantities being the following:

X1 − X̄ =
[

1
0

]

− 1

4

[
0
2

]

= 1

4

[
4

−2

]

,

X2 − X̄ = 1

4

[−4
2

]

, X3 − X̄ = 1

4

[
4
6

]

, X4 − X̄ = 1

4

[−4
−6

]

;

X − X̄ = 1

4

[
4 −4 4 −4

−2 2 6 −6

]

, S1 = (X − X̄)(X − X̄)′

S1 = 1

42

[
64 32
32 80

]

.

Let the sample vectors from the second population denoted as Y1, . . . , Y5 be

Y1 =
[

0
1

]

, Y2 =
[

1
0

]

, Y3 =
[

1
−1

]

, Y4 =
[

1
1

]

, Y5 =
[

2
1

]

.

Then, the sample average and the deviation vectors are the following:

Ȳ = 1

5
[Y1 + · · · + Y5] = 1

5

[
5
2

]

,

Y1 − Ȳ =
[

0
1

]

− 1

5

[
5
2

]

= 1

5

[−5
3

]

, Y2 − Ȳ = 1

5

[
0

−2

]

,

Y3 − Ȳ = 1

5

[
0

−7

]

, Y4 − Ȳ = 1

5

[
0
3

]

, Y5 − Ȳ = 1

5

[
5
3

]

,

Y − Ȳ = 1

5

[ −5 0 0 0 5
3 −2 −7 3 3

]

, S2 = (Y − Ȳ)(Y − Ȳ)′;

S2 = 1

52

[
50 0
0 80

]

; S = S1 + S2 = 1

16

[
64 32
32 80

]

+ 1

25

[
50 0
0 80

]

=
[

6.00 2.00
2.00 8.20

]

⇒ S−1 = Cof(S)

|S|
|S| = 45.20; S−1 = 1

45.20

[
8.20 −2.00

−2.00 6.00

]

.

Letting the null hypothesis be

Ho : μ(1) − μ(2) = δ =
[

1
1

]

,
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X̄ − Ȳ − δ = 1

4

[
0
2

]

− 1

5

[
5
2

]

−
[

1
1

]

= −
[

2.0
0.9

]

; n1 = 4, n2 = 5.

Thus, test statistic is u ∼ Fp,n1+n2−1−p where

u = (n1 + n2 − 1 − p)

p

(n1 + n2)

n1n2
(X̄ − Ȳ − δ)′S−1(X̄ − Ȳ − δ)

= (4 + 5 − 1 − 2)

2

(4 + 5)

(4)(5)

1

45.2

[−2.0 −0.9
]
[

8.2 −2.0
−2.0 6.0

] [−2.0
−0.9

]

≈ 0.91.

Let us test Ho at the 5% significance level. Since the required critical value is
Fp, n1+n2−1−p, α = F2, 6, 0.05 = 5.14 and 0.91 < 5.14, the null hypothesis is not rejected.

6.3.4. Testing μ1 = · · · = μp when Σ is unknown in the real Gaussian case

Let the p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, the Xj ’s being inde-
pendently distributed. Let the p × 1 vector of unities be denoted by J or J ′ = (1, . . . , 1),

and let A be a vector that is orthogonal to J so that A′J = 0. For example, we can take

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
−1

...

1
−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

when p is even, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1

...

1
−2

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
−1

...

−1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

when p is odd.

If the last component of A is zero, we are then ignoring the last component of Xj .
Let yj = A′Xj, j = 1, . . . , n, and the yj ’s be independently distributed. Then
yj ∼ N1(A

′μ, A′ΣA), A′ΣA > O, is a univariate normal variable with mean value
A′μ and variance A′ΣA. Consider the p × n sample matrix comprising the Xj ’s, that is,
X = (X1, . . . , Xn). Let the sample average of the Xj ’s be X̄ = 1

n
(X1 + · · · + Xn) and

X̄ = (X̄, . . . , X̄). Then, the sample sum of products matrix S = (X−X̄)(X−X̄)′. Consider
the 1 × n vector Y = (y1, . . . , yn) = (A′X1, . . . , A

′Xn) = A′X, ȳ = 1
n
(y1 + · · · + yn) =

A′X̄,
∑n

j=1(yj − ȳ)2 = A′(X − X̄)(X − X̄)′A = A′SA. Let the null hypothesis be
Ho : μ1 = · · · = μp = ν, where ν is unknown, μ′ = (μ1, . . . , μp). Thus, Ho is
A′μ = νA′J = 0. The joint density of y1, . . . , yn, denoted by L, is then
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L =
n∏

j=1

e− 1
2A′ΣA

(yj−A′μ)2

(2π)
1
2 [A′ΣA] 1

2

= e
− 1

2(A′ΣA)

∑n
j=1(yj−A′μ)2

(2π)
n
2 [A′ΣA] n

2

= e− 1
2A′ΣA

{A′SA+nA′(X̄−μ)(X̄−μ)′A}

(2π)
n
2 [A′ΣA] n

2
(i)

where
n∑

j=1

(yj − A′μ)2 =
n∑

j=1

(yj − ȳ + ȳ − A′μ)2 =
n∑

j=1

(yj − ȳ)2 + n(ȳ − A′μ)2

=
n∑

j=1

A′(Xj − X̄)(Xj − X̄)′A + nA′(X̄ − μ)(X̄ − μ)′A

= A′SA + nA′(X̄ − μ)(X̄ − μ)′A.

Let us determine the MLE’s of μ and Σ . We have

ln L = −n

2
(2π) − n

2
ln A′ΣA − 1

2A′ΣA
[A′SA + n(A′(X̄ − μ)(X̄ − μ)′A)].

On differentiating ln L with respect to μ1 and equating the result to zero, we have

∂

∂μ1
ln L = 0 ⇒ nA′[ ∂

∂μ1
{X̄X̄′ − X̄μ′ − μX̄′ + μμ′}]A = O

⇒ nA′[−X̄[1, 0, . . . , 0] −

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

X̄′ +

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

μ′ + μ[1, 0, . . . , 0]]A = O

⇒ 2a1A
′(X̄ − μ) = 0 ⇒ μ̂ = X̄ (ii)

since the equation holds for each μj, j = 1, . . . , p, and A′ = (a1, . . . , ap), aj 
= 0, j =
1, . . . , p, A being fixed. As well, (X̄ − μ)(X̄ − μ)′ = X̄X̄′ − X̄μ′ − μX̄′ + μμ′. Now,
consider differentiating ln L with respect to an element of Σ , say, σ11, at μ̂ = X̄:

∂

∂σ11
ln L = 0

⇒ −2n a2
1σ11

2A′ΣA
+ A′SA

2(A′ΣA)2
(2a2

1σ11) = 0

⇒ A′Σ̂A = 1

n
A′SA
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for each element in Σ and hence Σ̂ = 1
n
S. Thus,

max
�

L = e− n
2 n

n
2

(A′SA)
n
2
. (iii)

Under Ho, A′μ = 0 and consequently the maximum under Ho is the following:

max
Ho

L = e− n
2 n

n
2

[A′(S + nX̄X̄′)A] n
2
. (iv)

Accordingly, the λ-criterion is

λ = (A′SA)
n
2

[A′(S + nX̄X̄′)A] n
2

= 1

[1 + nA′X̄X̄′A
A′SA

] n
2

. (6.3.10)

We would reject Ho for small values of λ or for large values of u ≡ nA′X̄X̄′A/A′SA

where X̄ and S are independently distributed. Observing that S ∼ Wp(n−1, Σ), Σ > O

and X̄ ∼ Np(μ, 1
n
Σ), Σ > O, we have

n

A′ΣA
A′X̄X̄′A ∼ χ2

1 and
A′SA

A′ΣA
∼ χ2

n−1.

Hence, (n−1)u is a F statistic with 1 and n−1 degrees of freedom, and the null hypothesis
is to be rejected whenever

v ≡ n(n − 1)
A′X̄X̄′A
A′SA

≥ F1, n−1, α, with Pr{F1, n−1 ≥ F1, n−1, α} = α. (6.3.11)

Example 6.3.4. Consider a real bivariate Gaussian N2(μ, Σ) population where Σ >

O is unknown. We would like to test the hypothesis Ho : μ1 = μ2, μ′ = (μ1, μ2),

so that μ1 − μ2 = 0 under this null hypothesis. Let the sample be X1, X2, X3, X4, as
specified in Example 6.3.3. Let A′ = (1, −1) so that A′μ = O under Ho. With the
same observation vectors as those comprising the first sample in Example 6.3.3, A′X1 =
(1), A′X2 = (−2), A′X3 = (−1), A′X4 = (0). Letting y = A′Xj , the observations on
yj are (1, −2, −1, 0) or A′X = A′[X1, X2, X3, X4] = [1, −2, −1, 0]. The sample sum
of products matrix as evaluated in the first part of Example 6.3.3 is

S1 = 1

16

[
64 32
32 80

]

⇒ A′S1A = 1

16

[
1 −1

]
[

64 32
32 80

] [
1

−1

]

= 80

16
= 5.

Our test statistic is

v = n(n − 1)
A′X̄X̄′A
A′S1A

∼ F1,n−1, n = 4.
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Let the significance level be α = 0.05. the observed values of A′X̄X̄′A, A′S1A, v, and
the tabulated critical value of F1, n−1, α are the following:

A′X̄X̄′A = 1

4
; A′S1A = 80

16
= 5;

v = 4(3)
( 1

5 × 4

)
= 0.6; F1, n−1, α = F1, 3, 0.05 = 10.13.

As 0.6 < 10.13, Ho is not rejected.

6.3.5. Likelihood ratio test for testing Ho : μ1 = · · · = μp when Σ is unknown

In the entire parameter space � of a Np(μ, Σ) population, μ is estimated by the sample
average X̄ and, as previously determined, the maximum of the likelihood function is

max
�

L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
(i)

where S is the sample sum of products matrix and n is the sample size. Under the hypothe-
sis Ho : μ1 = · · · = μp = ν, where ν is unknown, this ν is estimated by ν̂ = 1

np

∑
i,j xij =

1
p
J ′X̄, J ′ = (1, . . . , 1), the p × 1 sample vectors X′

j = (x1j , . . . , xpj ), j = 1, . . . , n,
being independently distributed. Thus, under the null hypothesis Ho, the population co-
variance matrix is estimated by 1

n
(S + n(X̄ − μ̂)(X̄ − μ̂)′), and, proceeding as was done

to obtain Eq. (6.3.3), the λ-criterion reduces to

λ = |S| n
2

|S + n(X̄ − μ̂)(X̄ − μ̂)′| n
2

(6.3.12)

= 1

(1 + u)
n
2
, u = n(X̄ − μ̂)′S−1(X̄ − μ̂). (6.3.13)

Given the structure of u in (6.3.13), we can take the Gaussian population covariance matrix
Σ to be the identity matrix I , as was explained in Sect. 6.3.1. Observe that

(X̄ − μ̂)′ = (X̄ − 1

p
JJ ′X̄)′ = X̄′[I − 1

p
JJ ′] (ii)

where I − 1
p
JJ ′ is idempotent of rank p − 1; hence there exists an orthonormal matrix

P , PP ′ = I, P ′P = I , such that

I − 1

p
JJ ′ = P

[
Ip−1 O

O ′ 0

]

P ′ ⇒
√

n(X̄ − μ̂)′ = √
nX̄′(I − 1

p
JJ ′) = √

nX̄′P
[
Ip−1 O

O ′ 0

]

= [V ′
1, 0], V = √

nX̄′P,
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where V1 is the subvector of the first p − 1 components of V . Then the quadratic form u,
which is our test statistic, reduces to the following:

u = n(X̄ − μ̂)′S−1(X̄ − μ̂) = [V ′
1, 0]S−1

[
V1

0

]

= V ′
1S

11V1,

S−1 =
[
S11 S12

S21 S22

]

.

We note that the test statistic u has the same structure that of u in Theorem 6.3.1 with p

replaced by p − 1. Accordingly, u = n(X̄ − μ̂)′S−1(X̄ − μ̂) is distributed as a real scalar
type-2 beta variable with the parameters p−1

2 and n−(p−1)
2 , so that n−p+1

p−1 u ∼ Fp−1, n−p+1.
Thus, the test criterion consists of

rejecting Ho if the observed value of
n − p + 1

p − 1
u ≥ Fp−1, n−p+1, α,

with Pr{Fp−1, n−p+1 ≥ Fp−1, n−p+1, α} = α. (6.3.14)

Example 6.3.5. Let the population be N2(μ, Σ), Σ > O, μ′ = (μ1, μ2) and the null
hypothesis be Ho : μ1 = μ2 = ν where ν and Σ are unknown. The sample values, as
specified in Example 6.3.3, are

X1 =
[

1
0

]

, X2 =
[−1

1

]

, X3 =
[

1
2

]

, X4 =
[−1
−1

]

⇒ X̄ = 1

4

[
0
2

]

.

The maximum likelihood estimate of μ under Ho, is

μ̂ = 1

p
JJ ′X̄, J =

[
1
1

]

,

and

(X̄ − μ̂)′ = X̄′[I − 1

p
JJ ′] = X̄′[I − 1

2

(
1 1
1 1

)

] = 1

4

[−1 1
]
.

As previously calculated, the sample sum of products matrix is

S1 = 1

42

[
64 32
32 80

]

⇒ S−1
1 = 16

4096

[
80 −32

−32 64

]

= 1

256

[
80 −32

−32 64

]

; n = 4, p = 2.
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The test statistic v and its observed value are

v = (n − p + 1)

(p − 1)
n(X̄ − μ̂)′S−1

1 (X̄ − μ̂) ∼ Fp−1, n−p+1 = F1, 3

= (4 − 2 + 1)

(2 − 1)
(4)

1

42

1

256

[−1 1
]
[

80 −32
−32 64

] [−1
1

]

= (3)(4)

(42)(256)
[(−1)2(80) + (1)2(64) − 2(32)(−1)(1)]

= 0.61.

At significance level α = 0.05, the tabulated critical value F1, 3, 0.05 is 10.13, and since
the observed value 0.61 is less than 10.13, Ho is not rejected.

6.4. Testing Hypotheses on the Population Covariance Matrix

Let the p×1 independent vectors Xj, j = 1, . . . , n, have a p-variate real nonsingular
Np(μ, Σ) distribution and the p × n matrix X = (X1, . . . , Xn) be the sample matrix.
Denoting the sample average by X̄ = 1

n
(X1 +· · ·+Xn) and letting X̄ = (X̄, . . . , X̄), each

column of X̄ being equal to X̄, the sample sum of products matrix is S = (X−X̄)(X−X̄)′.
We have already established that S is Wishart distributed with m = n − 1 degrees of
freedom, that is, S ∼ Wp(m, Σ), Σ > O. Letting Sμ = (X − M)(X − M)′ where
M = (μ, . . . , μ), each of its column being the p × 1 vector μ, Sμ ∼ Wp(n, Σ), Σ > O,
where the number of degrees of freedom is n itself whereas the number of degrees of
freedom associated with S is m = n − 1. Let us consider the hypothesis Ho : Σ = Σo

where Σo is a given known matrix and μ is unspecified. Then, the MLE’s of μ and Σ in
the entire parameter space are μ̂ = X̄ and Σ̂ = 1

n
S, and the joint density of the sample

values X1, . . . , Xn, denoted by L, is given by

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ−1S)− n
2 tr(X̄−μ)(X̄−μ)′ . (6.4.1)

Thus, as previously determined, the maximum of L in the parameter space � =
{(μ, Σ)|Σ > O} is

max
�

L = n
np
2 e− np

2

(2π)
np
2 |S| n

2
, (i)

the maximum of L under the null hypothesis Ho : Σ = Σo being given by

max
Ho

L = e− 1
2 tr(Σ−1

o S)

(2π)
np
2 |Σo| n

2
. (ii)
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Then, the λ-criterion is the following:

λ = e
np
2

n
np
2

|Σ−1
o S | n

2 e− 1
2 tr(Σ−1

o S). (6.4.2)

Letting u = λ
2
n ,

u = ep

np
|Σ−1

o S| e− 1
n

tr(Σ−1
o S), (6.4.3)

and we would reject Ho for small values of u since it is a monotonically increasing func-
tion of λ, which means that the null hypothesis ought to be rejected for large values of
tr(Σ−1

o S) as the exponential function dominates the polynomial function for large val-
ues of the argument. Let us determine the distribution of w = tr(Σ−1

o S) whose Laplace
transform with parameter s is

Lw(s) = E[e−sw] = E[e−s tr(Σ−1
o S)]. (iii)

This can be evaluated by integrating out over the density of S which has a Wishart distri-
bution with m = n − 1 degrees of freedom when μ is estimated:

Lw(s) = 1

2
mp
2 Γp(m

2 )|Σ |m
2

∫

S>O

|S|m
2 −p+1

2 e− 1
2 tr(Σ−1S)−s tr(Σ−1

o S)dS. (iv)

The exponential part is −1
2 tr(Σ−1S) − s tr(Σ−1

o S) = −1
2 tr[(Σ− 1

2 SΣ− 1
2 )(I +

2sΣ
1
2 Σ−1

o Σ
1
2 )] and hence,

Lw(s) = |I + 2sΣ
1
2 Σ−1

o Σ
1
2 |−m

2 . (6.4.4)

The null case, Σ = Σo

In this case, Σ
1
2 Σ−1

o Σ
1
2 = I, so that

Lw(s) = |I + 2sI |−m
2 = (1 + 2s)−

mp
2 ⇒ w ∼ χ2

mp. (6.4.5)

Thus, the test criterion is the following:

Reject Ho if w ≥ χ2
mp, α, with Pr{χ2

mp ≥ χ2
mp, α} = α. (6.4.6)

When μ is known, it is used instead of its MLE to determine Sμ, and the resulting criterion
consists of rejecting Ho whenever the observed wμ = tr(Σ−1

o Sμ) ≥ χ2
np, α where n is the

sample size. These results are summarized in the following theorem.

Theorem 6.4.1. Let the null hypothesis be Ho : Σ = Σo (given) and w = tr(Σ−1
o S)

where S is the sample sum of products matrix. Then, the null distribution of w = tr(Σ−1
o S)
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has a real scalar chisquare distribution with (n−1)p degrees of freedom when the estimate
of μ, namely μ̂ = X̄, is utilized to compute S; when μ is specified, w has a chisquare
distribution having np degrees of freedom where n is the sample size.

The non-null density of w

The non-null density of w is available from (6.4.4). Let λ1, . . . , λp be the eigenvalues

of Σ
1
2 Σ−1

o Σ
1
2 . Then Lw(s) in (6.4.4) can be re-expressed as follows:

Lw(s) =
p∏

j=1

(1 + 2λj s)
−m

2 . (6.4.7)

This is the Laplace transform of a variable of the form w = λ1w1 + · · · + λpwp where
w1, . . . , wp are independently distributed real scalar chisquare random variables, each
having m = n − 1 degrees of freedom, where λj > 0, j = 1, . . . , p. The distribution
of linear combinations of chisquare random variables corresponds to the distribution of
quadratic forms; the reader may refer to Mathai and Provost (1992) for explicit represen-
tations of their density functions.

Note 6.4.1. If the population mean value μ is known, then one can proceed by making
use of μ instead of the sample mean to determine Sμ, in which case n, the sample size,
ought to be used instead of m = n − 1 in the above discussion.

6.4.1. Arbitrary moments of λ

From (6.4.2), the h-th moment of the λ-criterion for testing Ho : Σ = Σo (given) in a
real nonsingular Np(μ, Σ) population, is obtained as follows:

λh = e
nph

2

n
nph

2

|Σ−1
o | nh

2 |S| nh
2 e− h

2 tr(Σ−1
o S) ⇒

E[λh] = e
nph

2

n
nph

2 2
(n−1)p

2 |Σo| nh
2 |Σ | n−1

2 Γp(n−1
2 )

∫

S>O

|S| nh
2 + n−1

2 −p+1
2 e− 1

2 tr(Σ−1S)− h
2 tr(Σ−1

o S)dS

= e
nph

2 2p(nh
2 + n−1

2 )Γp(nh
2 + n−1

2 )

n
nph

2 2
(n−1)p

2 |Σo| nh
2 |Σ | n−1

2 Γp(n−1
2 )

|Σ−1 + hΣ−1
o |−( nh

2 + n−1
2 )

= e
nph

2

(2

n

) nph
2 |Σ | nh

2

|Σo| nh
2

Γp(nh
2 + n−1

2 )

Γp(n−1
2 )

|I + hΣΣ−1
o |−( nh

2 + n−1
2 ) (6.4.8)
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for �(nh
2 + n−1

2 ) >
p−1

2 , I + hΣΣ−1
o > O. Under Ho : Σ = Σo, we have |I +

hΣΣ−1
o |−( nh

2 + n−1
2 ) = (1 + h)−p(nh

2 + n−1
2 ). Thus, the h-th null moment is given by

E[λh|Ho] = e
nph

2

(2

n

) nph
2 Γp(nh

2 + n−1
2 )

Γp(n−1
2 )

(1 + h)−p(nh
2 + n−1

2 ) (6.4.9)

for �(nh
2 + n−1

2 ) >
p−1

2 .

6.4.2. The asymptotic distribution of −2 ln λ when testing Ho : Σ = Σo

Let us determine the asymptotic distribution of −2 ln λ where λ is the likelihood ratio
statistic for testing Ho : Σ = Σo (specified) in a real nonsingular Np(μ, Σ) population, as
n → ∞, n being the sample size. This distribution can be determined by expanding both
real matrix-variate gamma functions appearing in (6.4.9) and applying Stirling’s approx-
imation formula as given in (6.5.14) by letting n

2 (1 + h) → ∞ in the numerator gamma
functions and n

2 → ∞ in the denominator gamma functions. Then, we have

Γp(nh
2 + n−1

2 )

Γp(n−1
2 )

=
p∏

j=1

Γ (n
2 (1 + h) − 1

2 − j−1
2 )

Γ (n
2 − 1

2 − j−1
2 )

→
p∏

j=1

(2π)
1
2

(2π)
1
2

[n
2 (1 + h)] n

2 (1+h)− 1
2 − j

2

[n
2 ] n

2 − 1
2 − j

2

e− n
2 (1+h)

e− n
2

=
(n

2

) nph
2

e− nph
2 (1 + h)

np
2 (1+h)−p

2 −p(p+1)
4 .

Hence, from (6.4.9)

E[λh|Ho] → (1 + h)−
p(p+1)

4 as n → ∞, (6.4.10)

where (1 + h)−
p(p+1)

4 is the h-th moment of the distribution of e−y/2 when y ∼ χ2
p(p+1)

2

.

Thus, under Ho, −2 ln λ → χ2
p(p+1)

2

as n → ∞ . For general procedures leading to asymp-

totic normality, see Mathai (1982).

Theorem 6.4.2. Letting λ be the likelihood ratio statistic for testing Ho : Σ = Σo

(given) on the covariance matrix of a real nonsingular Np(μ, Σ) distribution, the null
distribution of −2 ln λ is asymptotically (as then sample size tends to ∞) that of a real
scalar chisquare random variable having p(p+1)

2 degrees of freedom, where n denotes the
sample size. This number of degrees of freedom is also equal to the number of parameters
restricted by the null hypothesis.
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Note 6.4.2. Sugiura and Nagao (1968) have shown that the test based on the statistic λ

as specified in (6.4.2) is biased whereas it becomes unbiased upon replacing n, the sam-
ple size, by the degrees of freedom n − 1 in (6.4.2). Accordingly, percentage points are
then computed for −2 ln λ1, where λ1 is the statistic λ given in (6.4.2) wherein n − 1 is
substituted to n. Korin (1968), Davis (1971), and Nagarsenker and Pillai (1973) computed
5% and 1% percentage points for this test statistic. Davis and Field (1971) evaluated the
percentage points for p = 2(1)10 and n = 6(1)30(5)50, 60, 120 and Korin (1968), for
p = 2(1)10.

Example 6.4.1. Let us take the same 3-variate real Gaussian population N3(μ, Σ),

Σ > O and the same data as in Example 6.3.1, so that intermediate calculations could
be utilized. The sample size is 5 and the sample values are the following:

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0

−1

⎤

⎦ , X3 =
⎡

⎣
−1

1
2

⎤

⎦ , X4 =
⎡

⎣
−2

1
2

⎤

⎦ , X5 =
⎡

⎣
2

−1
0

⎤

⎦ ,

the sample average and the sample sum of products matrix being

X̄ = 1

5

⎡

⎣
1
2
4

⎤

⎦ , S = 1

52

⎡

⎣
270 −110 −170

−110 80 85
−170 85 170

⎤

⎦ .

Let us consider the hypothesis Σ = Σo where

Σo =
⎡

⎣
2 0 0
0 3 −1
0 −1 2

⎤

⎦⇒ |Σo| = 10, Cof(Σo) =
⎡

⎣
5 0 0
0 4 2
0 2 6

⎤

⎦ ;

Σ−1
o = Cof(Σo)

|Σo| = 1

10

⎡

⎣
5 0 0
0 4 2
0 2 6

⎤

⎦ ;

tr(Σ−1
o S) = 1

(10)(52)
tr

⎧
⎨

⎩

⎡

⎣
5 0 0
0 4 2
0 2 6

⎤

⎦

⎡

⎣
270 −110 −170

−110 80 85
−170 85 170

⎤

⎦

⎫
⎬

⎭

= 1

(10)(52)
[5(270) + (4(80) + 2(85)) + (2(85) + 6(170))]

= 12.12 ; n = 5, p = 3.

Let us test the null hypothesis at the significance level α = 0.05. The distribution of the
test statistic w and the tabulated critical value are as follows:

w = tr(Σ−1
o S) ∼ χ2

(n−1)p � χ2
12 ; χ2

12, 0.05 = 21.03.
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As the observed value 12.12 < 21.03, Ho is not rejected. The asymptotic distribution of
−2 ln λ, as n → ∞, is χ2

p(p+1)/2 � χ2
6 where λ is the likelihood ratio criterion statistic.

Since χ2
6, 0.05 = 12.59 and 12.59 > 12.12, we still do not reject Ho as n → ∞.

6.4.3. Tests on Wilks’ concept of generalized variance

The concept of generalized variance was explained in Chap. 5. The sample general-
ized variance is simply the determinant of S, the sample sum of products matrix. When the
population is p-variate Gaussian, it has already been shown in Chap. 5 that S is Wishart
distributed with m = n − 1 degrees of freedom, n being the sample size, and parameter
matrix Σ > O, which is the population covariance matrix. When the population is mul-
tivariate normal, several types of tests of hypotheses involve the sample generalized vari-
ance. The first author has given the exact distributions of such tests, see Mathai (1972a,b)
and Mathai and Rathie (1971).

6.5. The Sphericity Test or Testing if Ho : Σ = σ 2I, Given a Np(μ, Σ) Sample

When the covariance matrix Σ = σ 2I , where σ 2 > 0 is a real scalar quantity, the
ellipsoid (X − μ)′Σ−1(X − μ) = c > 0, which represents a specific contour of constant
density for a nonsingular Np(μ, Σ) distribution, becomes the sphere defined by the equa-
tion 1

σ 2 (X−μ)′(X−μ) = c or 1
σ 2 ((x1−μ1)

2+· · ·+(xp−μp)2) = c > 0, whose center is
located at the point μ; hence the test’s name, the sphericity test. Given a Np(μ, Σ) sample
of size n, the maximum of the likelihood function in the entire parameter space is

sup�L = n
np
2 e− np

2

(2π)
np
2 |S| n

2
,

as was previously established. However, under the null hypothesis Ho : Σ = σ 2I ,
tr(Σ−1S) = (σ 2)−1(tr(S)) and |Σ | = (σ 2)p. Thus, if we let θ = σ 2 and substitute μ̂ = X̄

in L, under Ho the loglikelihood function will be ln Lω = −np
2 ln(2π)− np

2 ln θ − 1
2θ

tr(S).

Differentiating this function with respect to θ and equating the result to zero produces the
following estimator for θ :

θ̂ = σ̂ 2 = tr(S)

np
. (6.5.1)

Accordingly, the maximum of the likelihood function under Ho is the following:

max
ω

L = n
np
2

(2π)
np
2

e− np
2

[ tr(S)
p

] n
2
.
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Thus, the λ-criterion for testing

Ho : Σ = σ 2I, σ 2 > 0 (unknown)

is

λ = supωL

sup�L
= |S| n

2

[ tr(S)
p

] n
2
. (6.5.2)

In the complex Gaussian case when X̃j ∼ Ñp(μ̃, Σ), Σ = Σ∗ > O where an asterisk
indicates the conjugate transpose, X̃j = Xj1 + iXj2 where Xj1 and Xj2 are real p × 1
vectors and i = √

(−1). The covariance matrix associated with X̃j is then defined as

Cov(X̃j ) = E[(X̃j − μ̃)(X̃j − μ̃)∗]
= E[(Xj1 − μ(1)) + i(Xj2 − μ(2))][(Xj1 − μ(1))

′ − i(Xj2 − μ(2))
′]

= Σ11 + Σ22 + i(Σ21 − Σ12) ≡ Σ, with μ = μ(1) + iμ(2),

where Σ is assumed to be Hermitian positive definite, with Σ11 = Cov(Xj1), Σ22 =
Cov(Xj2), Σ12 = Cov(Xj1, Xj2) and Σ21 = Cov(Xj2, Xj1). Thus, the hypothesis of
sphericity in the complex Gaussian case is Σ = σ 2I where σ is real and positive. Then,
under the null hypothesis H̃o : Σ = σ 2I , the Hermitian form Ỹ ∗ΣỸ = c > 0 where c is
real and positive, becomes σ 2Ỹ ∗Ỹ = c ⇒ |ỹ1|2 + · · · + |ỹp|2 = c

σ 2 > 0, which defines
a sphere in the complex space, where |ỹj | denotes the absolute value or modulus of ỹj . If
ỹj = yj1 + iyj2 with i = √

(−1), yj1, yj2 being real, then |ỹj |2 = y2
j1 + y2

j2.

The joint density of the sample values in the real Gaussian case is the following:

L =
n∏

j=1

e− 1
2 (Xj−μ)′Σ−1(Xj−μ)

(2π)
p
2 |Σ | 1

2

= e− 1
2 tr(Σ−1S)−n(X̄−μ)′Σ−1(X̄−μ)

(2π)
np
2 |Σ | n

2

where X̄ = 1
n
(X1 + · · · + Xn), Xj, j = 1, . . . , n are iid Np(μ, Σ), Σ > O. We have

already derived the maximum of L in the entire parameter space �, which, in the real case,
is

sup�L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
, (6.5.3)

where S is the sample sum of products matrix. Under Ho, |Σ | n
2 = (σ 2)

np
2 and tr(Σ−1S) =

1
σ 2 (s11 + · · · + spp) = 1

σ 2 tr(S). Thus, the maximum likelihood estimator of σ 2 is 1
np

tr(S).
Accordingly, the λ-criterion is

λ = |S| n
2 /
( tr(S)

p

) np
2 ⇒ u1 = λ

2
n = pp|S|

[tr(S)]p , (6.5.4)
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in the real case. Interestingly, (u1)
1/p is the ratio of the geometric mean of the eigenvalues

of S to their arithmetic mean. The structure remains the same in the complex domain, in
which case det(S̃) is replaced by the absolute value |det(S̃)| so that

ũ1 = pp|det(S̃)|
[tr(S̃)]p . (6.5a.1)

For arbitrary h, the h-th moment of u1 in the real case can be obtained by integrating out
over the density of S, which, as explained in Sect. 5.5, 5.5a, is a Wishart density with
n − 1 = m degrees of freedom and parameter matrix Σ > O. However, when the null
hypothesis Ho holds, Σ = σ 2Ip, so that the h-th moment in the real case is

E[uh
1|Ho] = pph

2
mp
2 Γp(m

2 )(σ 2)
mp
2

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2σ2 tr(S)

(tr(S))−phdS. (i)

In order to evaluate this integral, we replace [tr(S)]−ph by an equivalent integral:

[tr(S)]−ph = 1

Γ (ph)

∫ ∞

x=0
xph−1e−x(tr(S))dx, �(h) > 0. (ii)

Then, substituting (ii) in (i), the exponent becomes − 1
2σ 2 (1 + 2σ 2x)(tr(S)). Now, letting

S1 = 1
2σ 2 (1 + 2σ 2x)S ⇒ dS = (2σ 2)

p(p+1)
2 (1 + 2σ 2x)−

p(p+1)
2 dS1, and we have

E[uh
1|Ho] = (2σ 2)ph

Γp(m
2 )

pph

Γ (ph)

∫ ∞

0
xph−1(1 + 2σ 2x)−(m

2 +h)pdx

×
∫

S1>O

|S1|m
2 +h−p+1

2 e−tr(S1)dS1

= Γp(m
2 + h)

Γp(m
2 )

pph

Γ (ph)

∫ ∞

0
yph−1(1 + y)−(m

2 +h)pdy, y = 2σ 2x

= Γp(m
2 + h)

Γp(m
2 )

pph
Γ (

mp
2 )

Γ (
mp
2 + ph)

, �(h) > 0, m = n − 1. (6.5.5)

The corresponding h-th moment in the complex case is the following:

E[ũh
1|Ho] = Γ̃p(m + h)

Γ̃p(m)
pph Γ̃ (mp)

Γ̃ (mp + ph)
, �(h) > 0, m = n − 1. (6.5a.2)

By making use of the multiplication formula for gamma functions, one can expand the real
gamma function Γ (mz) as follows:

Γ (mz) = (2π)
1−m

2 mmz− 1
2 Γ (z)Γ

(
z + 1

m

) · · · Γ (z + m − 1

m

)
, m = 1, 2, . . . , (6.5.6)
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and for m = 2, we have the duplication formula

Γ (2z) = π− 1
2 22z−1Γ (z)Γ

(
z + 1

2

)
. (6.5.7)

Then on applying (6.5.6),

pphΓ (
mp
2 )

Γ (
mp
2 + ph)

= Γ (m
2 )

Γ (m
2 + h)

p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 + h + j

p
)
. (iii)

Moreover, it follows from the definition of the real matrix-variate gamma functions that

Γp(m
2 + h)

Γp(m
2 )

=
p∏

j=1

Γ (m
2 − j−1

2 + h)

Γ (m
2 − j−1

2 )
. (iv)

On canceling Γ (m
2 + h)/Γ (m

2 ) when multiplying (iii) by (iv), we are left with

E[uh
1|Ho] =

{ p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 − j

2 )

}{ p−1∏

j=1

Γ (m
2 − j

2 + h)

Γ (m
2 + j

p
+ h)

}
, m = n − 1. (6.5.8)

The corresponding h-th moment in the complex case is the following:

E[ũh
1|Ho] =

{ p−1∏

j=1

Γ̃ (m + j
p
)

Γ̃ (m − j)

}{ p−1∏

j=1

Γ̃ (m − j + h)

Γ̃ (m + j
p

+ h)

}
, m = n − 1. (6.5a.3)

For h = s − 1, one can treat E[us−1
1 |Ho] as the Mellin transform of the density of u1 in

the real case. Letting this density be denoted by fu1(u1), it can be expressed in terms of a
G-function as follows:

fu1(u1|Ho) = c1G
p−1,0
p−1,p−1

[

u1
∣
∣

m
2 + j

p
−1, j=1,...,p−1

m
2 − j

2 −1, j=1,...,p−1

]

, 0 ≤ u1 ≤ 1, (6.5.9)

and fu1(u1|Ho) = 0 elsewhere, where

c1 =
{ p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 − j

2 )

}
,
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the corresponding density in the complex case being the following:

f̃ũ1|Ho
(ũ1) = c̃1G̃

p−1,0
p−1,p−1

[

ũ1
∣
∣
m+ j

p
−1, j=1,...,p−1

m−j−1, j=1,...,p−1

]

, 0 ≤ |ũ2| ≤ 1, (6.5a.4)

and f̃ũ1(ũ1) = 0 elsewhere, where G̃ is a real G-function whose parameters are different
from those appearing in (6.5.9), and

c̃1 =
{ p−1∏

j=1

Γ̃ (m + j
p
)

Γ̃ (m − j)

}
.

For computable series representation of a G-function with general parameters, the reader
may refer to Mathai (1970a, 1993). Observe that u1 in the real case is structurally a product
of p − 1 mutually independently distributed real scalar type-1 beta random variables with
the parameters (αj = m

2 − j
2 , βj = j

2 + j
p
), j = 1, . . . , p − 1. In the complex case, ũ1 is

structurally a product of p − 1 mutually independently distributed real scalar type-1 beta
random variables with the parameters (αj = m− j, βj = j + j

p
), j = 1, . . . , p −1. This

observation is stated as a result.

Theorem 6.5.1. Consider the sphericity test statistic for testing the hypothesis Ho : Σ =
σ 2I where σ 2 > 0 is an unknown real scalar. Let u1 and the corresponding complex
quantity ũ1 be as defined in (6.5.4) and (6.5a.1) respectively. Then, in the real case, u1 is
structurally a product of p − 1 independently distributed real scalar type-1 beta random
variables with the parameters (αj = m

2 − j
2 , βj = j

2 + j
p
), j = 1, . . . , p − 1, and, in the

complex case, ũ1 is structurally a product of p − 1 independently distributed real scalar
type-1 beta random variables with the parameters (αj = m − j, βj = j + j

p
), j =

1, . . . , p − 1, where m = n − 1, n = the sample size.

For certain special cases, one can represent (6.5.9) and (6.5a.4) in terms of known
elementary functions. Some such cases are now being considered.

Real case: p = 2

In the real case, for p = 2

E[uh
1|Ho] = Γ (m

2 + 1
2)

Γ (m
2 − 1

2)

Γ (m
2 − 1

2 + h)

Γ (m
2 + 1

2 + h)
=

m
2 − 1

2
m
2 − 1

2 + h
.

This means u1 is a real type-1 beta variable with the parameters (α = m
2 − 1

2 , β = 1). The
corresponding result in the complex case is that ũ1 is a real type-1 beta variable with the
parameters (α = m − 1, β = 1).
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Real case: p = 3

In the real case

E[uh
1|Ho] = Γ (m

2 + 1
3)Γ (m

2 + 2
3)

Γ (m
2 − 1

2)Γ (m
2 − 1)

Γ (m
2 − 1

2 + h)Γ (m
2 − 1 + h)

Γ (m
2 + 1

3 + h)Γ (m
2 + 2

3 + h)
,

so that u1 is equivalent to the product of two independently distributed real type-1 beta
random variables with the parameters (αj , βj ) = (m

2 − j
2 ,

j
2 + j

3 ), j = 1, 2. This density
can be obtained by treating E[uh

1|Ho] for h = s − 1 as the Mellin transform of the density
of u1. The density is then available by taking the inverse Mellin transform. Thus, again
denoting it by fu1(u1), we have

fu1(u1|Ho) = c3
1

2πi

∫ c+i∞

c−i∞
φ3(s)ds, c >

1

2

= c3

[ ∞∑

ν=0

Rν +
∞∑

ν=0

R′
ν

]
,

c3 = Γ (m
2 + 1

3)Γ (m
2 + 2

3)

Γ (m
2 − 1

2)Γ (m
2 − 1)

,

φ3(s) = Γ (m
2 − 1

2 − 1 + s)Γ (m
2 − 1 − 1 + s)

Γ (m
2 + 1

3 − 1 + s)Γ (m
2 + 2

3 − 1 + s)
u−s

1 ,

where Rν is the residue of the integrand φ3(s) at the poles of Γ (m
2 − 3

2 + s) and R′
ν is the

residue of the integrand φ3(s) at the pole of Γ (m
2 − 2 + s). Letting s1 = m

2 − 3
2 + s,

Rν = lim
s→−ν+ 3

2 −m
2

φ3(s) = lim
s1→−ν

[(s1 + ν)u
m
2 − 3

2
1

Γ (s1)Γ (−1
2 + s1)u

−s1
1

Γ (1
3 + 1

2 + s1)Γ (2
3 + 1

2 + s1)

= u
m
2 − 3

2
1

(−1)ν

ν!
Γ (−1

2 − ν)

Γ (1
3 + 1

2 − ν)Γ (2
3 + 1

2 − ν)
uν

1.

We can replace negative ν in the arguments of the gamma functions with positive ν by
making use of the following formula:

Γ (a − ν) = (−1)νΓ (a)

(−a + 1)ν
, a 
= 1, 2, . . . , ν = 0, 1, . . . , (6.5.10)

where for example, (b)ν is the Pochhammer symbol

(b)ν = b(b + 1) · · · (b + ν − 1), b 
= 0, (b)0 = 1, (6.5.11)
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so that

Γ
(

− 1

2
− ν
)

= (−1)νΓ (−1
2)

(3
2)ν

, Γ
(1

3
+ 1

2
− ν
)

= (−1)νΓ (1
3 + 1

2)

(−1
3 + 1

2)ν
,

Γ
(2

3
+ 1

2
− ν
)

= (−1)νΓ (2
3 + 1

2)

(−2
3 + 1

2)ν
.

The sum of the residues then becomes

∞∑

ν=0

Rν = Γ (−1
2)

Γ (1
3 + 1

2)Γ (2
3 + 1

2)
u

m
2 − 3

2
1 2F1

(
− 1

3
+ 1

2
;−2

3
+ 1

2
; 3

2
; u1

)
, 0 ≤ u1 ≤ 1.

It can be similarly shown that

∞∑

ν=0

R′
ν = Γ (1

2)

Γ (1
3 + 1)Γ (2

3 + 1)
u

m
2 −2
1 2F1

(
− 1

3
, −2

3
; 1

2
; u1

)
, 0 ≤ u1 ≤ 1.

Accordingly, the density of u1 for p = 3 is the following:

f1(u1|Ho) = c3

{ Γ (−1
2)

Γ (5
6)Γ (7

6)
u

m
2 − 3

2
1 2F1

(1

6
, −1

6
; 3

2
; u1

)

+ Γ (1
2)

Γ (4
3)Γ (5

3)
u

m
2 −2
1 2F1

(
− 1

3
, −2

3
; 1

2
; u1

)}
, 0 ≤ u1 ≤ 1 (6.5.12)

and fu1(u1|Ho) = 0 elsewhere.

Real case: p = 4

In this case,

E[uh
1|Ho] = c4

Γ (m
2 − 3

2 + s)Γ (m
2 − 2 + s)Γ (m

2 − 5
2 + s)

Γ (m
2 − 3

4 + s)Γ (m
2 − 2

4 + s)Γ (m
2 − 1

4 + s)
,

where c4 is the normalizing constant. However, noting that

Γ (m
2 − 3

2 + s)

Γ (m
2 − 1

2 + s)
= 1

m
2 − 3

2 + s
,
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there is one pole at s = −m
2 + 3

2 . The poles of Γ (m
2 − 5

2 + s) occur at s = −m
2 +

5
2 − ν, ν = 0, 1, . . . , and hence at ν = 1, the pole coincides with the earlier pole and
there is a pole of order 2 at s = −m

2 + 3
2 . Each one of other poles of the integrand is

simple, that is, of order 1. The second order pole will bring in a logarithmic function.
As all the cases for which p ≥ 4 will bring in poles of higher orders, they will not be
herein discussed. The general expansion of a G-function of the type Gm,0

m,m(·) is provided
in Mathai (1970a, 1993). In the complex case, starting from p ≥ 3, poles of higher orders
are coming in, so that the densities can only be written in terms of logarithms, psi and zeta
functions; hence, these will not be considered. Observe that ũ1 corresponds to product of
independently distributed real type-1 beta random variables, even though the densities are
available only in terms of logarithms, psi and zeta functions for p ≥ 3. The null and non-
null densities of the λ-criterion in the general case, were derived by the first author and
some results obtained under the null distribution can also be found in Mathai and Saxena
(1973). Several researchers have contributed to various aspects of the sphericity and multi-
sample sphericity tests; for some of the first author’s contributions, the reader may refer to
Mathai and Rathie (1970) and Mathai (1977, 1984, 1986).

Gamma products such as those appearing in (6.5.8) and (6.5a.3) are frequently en-
countered when considering various types of tests on the parameters of a real or complex
Gaussian or certain other types of distributions. Structural representations in the form of
product of independently distributed real scalar type-1 beta random variables occur in nu-
merous situations. Thus, a general asymptotic result on the h-th moment of such products
of type-1 beta random variables will be derived. This is now stated as a result.

Theorem 6.5.2. Let u be a real scalar random variable whose h-th moment is of the
form

E[uh] = Γp(α + αh + γ )

Γp(α + γ )

Γp(α + γ + δ)

Γp(α + αh + γ + δ)
(6.5.13)

where Γp(·) is a real matrix-variate gamma function on p × p real positive definite ma-
trices, α is real, γ is bounded, δ is real, 0 < δ < ∞ and h is arbitrary. Then, as
α → ∞, −2 ln u → χ2

2 p δ, a real chisquare random variable having 2 p δ degrees of
freedom, that is, a real gamma random variable with the parameters (α = p δ, β = 2).

Proof: On expanding the real matrix-variate gamma functions, we have the following:

Γp(α + γ + δ)

Γp(α + γ )
=

p∏

j=1

Γ (α + γ + δ − j−1
2 )

Γ (α + γ − j−1
2 )

. (i)
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Γp(α(1 + h) + γ )

Γp(α(1 + h) + γ + δ)
=

p∏

j=1

Γ (α(1 + h) + γ − j−1
2 )

Γ (α(1 + h) + γ + δ − j−1
2 )

. (ii)

Consider the following form of Stirling’s asymptotic approximation formula for gamma
functions, namely,

Γ (z + η) ≈ √
2πzz+η− 1

2 e−z for |z| → ∞ and η bounded. (6.5.14)

On applying this asymptotic formula to the gamma functions appearing in (i) and (ii) for
α → ∞, we have

p∏

j=1

Γ (α + γ + δ − j−1
2 )

Γ (α + γ − j−1
2 )

→ αp δ

and
p∏

j=1

Γ (α(1 + h) + γ − j−1
2 )

Γ (α(1 + h) + γ + δ − j−1
2 )

→ [α(1 + h)]−p δ, (iii)

so that
E[uh] → (1 + h)−p δ. (iv)

On noting that E[uh] = E[eh ln u] → (1+h)−p δ, it is seen that ln u has the mgf (1+h)−p δ

for 1 + h > 0 or −2 ln u has mgf (1 − 2h)−p δ for 1 − 2h > 0, which happens to be the
mgf of a real scalar chisquare variable with 2 p δ degrees of freedom if 2 p δ is a positive
integer or a real gamma variable with the parameters (α = p δ, β = 2). Hence the
following result.

Corollary 6.5.1. Consider a slightly more general case than that considered in Theo-
rem 6.5.2. Let the h-th moment of u be of the form

E[uh] =
{ p∏

j=1

Γ (α(1 + h) + γj )

Γ (α + γj )

}{ p∏

j=1

Γ (α + γj + δj )

Γ (α(1 + h) + γj + δj )

}
. (6.5.15)

Then as α → ∞, E[uh] → (1+h)−(δ1+···+δp), which implies that −2 ln u → χ2
2(δ1+···+δp)

whenever 2(δ1 + · · · + δp) is a positive integer or, equivalently, −2 ln u tends to a real
gamma variable with the parameters (α = δ1 + · · · + δp, β = 2) .

Let us examine the asymptotic distribution of the test statistic for the sphericity test in
the light of Theorem 6.5.2. It is seen from (6.5.4) that λh = uhn

2 . Thus, by replacing h by
n
2h in (6.5.8) with m = n − 1, we have

E[λh|Ho] =
{ p−1∏

j=1

Γ (n−1
2 + j

p
)

Γ (n−1
2 − j

2 )

}{ p−1∏

j=1

Γ (n
2 (1 + h) − 1

2 − j
2 )

Γ (n
2 (1 + h) − 1

2 + j
p
)

}
. (6.5.16)
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Then, it follows from Corollary 6.5.1 that −2 ln λ → χ2
2
∑p−1

j=1 (
j
2 + j

p
)
, a chi-square random

variable having 2
∑p−1

j=1 (
j
2 + j

p
) = p(p−1)

2 + (p − 1) = (p−1)(p+2)
2 degrees of freedom.

Hence the following result:

Theorem 6.5.3. Consider the λ-criterion for testing the hypothesis of sphericity. Then,
under the null hypothesis, −2 ln λ → χ2

(p−1)(p+2)
2

, as the sample size n → ∞. In the

complex case, as n → ∞, −2 ln λ → χ2
(p−1)(p+1), a real scalar chisquare variable with

2[p(p−1)
2 + (p−1)

2 ] = p(p − 1) + (p − 1) = (p − 1)(p + 1) degrees of freedom.

Note 6.5.1. We observe that the degrees of freedom of the real chisquare variable in the
real scalar case is (p−1)(p+2)

2 , which is also equal to the number of parameters restricted
by the null hypothesis. Indeed, when Σ = σ 2I , we have σij = 0, i 
= j , which produces
p(p−1)

2 restrictions and, since σ 2 is unknown, requiring that the diagonal elements are such

that σ11 = · · · = σpp produces p−1 additional restrictions for a total of (p−1)(p+2)
2 restric-

tions being imposed. Thus, the degrees of freedom of the asymptotic chisquare variable
corresponds to the number of restrictions imposed by Ho, which, actually, is a general
result.

6.6. Testing the Hypothesis that the Covariance Matrix is Diagonal

Consider the null hypothesis that Σ , the nonsingular covariance matrix of a p-variate
real normal distribution, is diagonal, that is,

Ho : Σ = diag(σ11, . . . , σpp).

Since the population is assumed to be normally distributed, this implies that the compo-
nents of the p-variate Gaussian vector are mutually independently distributed as univariate
normal random variables whose respective variances are σjj , j = 1, . . . , p. Consider a
simple random sample of size n from a nonsingular Np(μ, Σ) population or, equivalently,
let X1, . . . , Xn be independently distributed as Np(μ, Σ) vectors, Σ > 0. Under Ho, σjj

is estimated by its MLE which is σ̂jj = 1
n
sjj where sjj is the j -th diagonal element of

S = (sij ), the sample sum of products matrix. The maximum of the likelihood function
under the null hypothesis is then

max
Ho

L =
p∏

j=1

max
Ho

Lj = 1

(2π)
np
2
∏p

j=1[sjj ]
n
2
n

np
2 e− 1

2 (np),

the likelihood function being the joint density evaluated at an observed value of the sample.
Observe that the overall maximum or the maximum in the entire parameter space remains
the same as that given in (6.1.1). Thus, the λ-criterion is given by
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λ = supωL

sup�L
= |S| n

2

∏p

j=1 s
n
2
jj

⇒ u2 = λ
2
n = |S|

∏p

j=1 sjj
(6.6.1)

where S ∼ Wp(m, Σ), Σ > O, and m = n − 1, n being the sample size. Under Ho,
Σ = diag(σ11, . . . , σpp). Then for an arbitrary h, the h-th moment of u2 is available by

taking the expected value of λ
2
n with respect to the density of S, that is,

E[uh
2|Ho] =

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr(Σ−1S)(

∏p

j=1 sjj )
−h

2
mp
2 |Σ |m

2 Γp(m
2 )

dS (6.6.2)

where, under Ho, |Σ | = σ11 · · · σpp. As was done in Sect. 6.1.1, we may replace s−h
jj by

the equivalent integral,

s−h
jj = 1

Γ (h)

∫ ∞

0
xh−1

j e−xj (sjj )dxj , �(h) > 0.

Thus,

p∏

j=1

s−h
jj = 1

[Γ (h)]p
∫ ∞

0
· · ·
∫ ∞

0
xh−1

1 · · · xh−1
p e−tr(YS)dx1 ∧ . . . ∧ dxp (i)

where Y = diag(x1, . . . , xp), so that tr(YS) = x1s11 + · · · + xpspp. Then, (6.6.2) can be
reexpressed as follow:

E[uh
2|Ho] =

∫∞
0 · · · ∫∞

0 xh−1
1 · · · xh−1

p

2
mp
2 Γp(m

2 )(
∏p

j=1 σjj )
mp
2

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr((Σ−1+2Y )S)dS

= Γp(m
2 + h)

Γp(m
2 )

∫∞
0 · · · ∫∞

0 xh−1
1 · · · xh−1

p

2
mp
2 (
∏p

j=1 σjj )
mp
2

×
∣
∣
∣
(Σ−1 + 2Y )

2

∣
∣
∣
−(m

2 +h)

dx1, ∧ . . . ∧ dxp,

and observing that, under Ho,

∣
∣
∣
(Σ−1 + 2Y )

2

∣
∣
∣ =

∣
∣
∣
Σ−1

2

∣
∣
∣ |I + 2ΣY | with

|I + 2ΣY | = (1 + 2σ11y1) · · · (1 + 2σppyp),
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E[uh
2|Ho] = Γp(m

2 + h)

Γp(m
2 )

p∏

j=1

1

Γ (h)

∫ ∞

0
yh−1

j (1 + yj )
−(m

2 +h)dyj , yj = 2xjσjj

= Γp(m
2 + h)

Γp(m
2 )

[ Γ (m
2 )

Γ (m
2 + h)

]p
, �(

m

2
+ h) >

p − 1

2
. (6.6.3)

Thus,

E[uh
2|Ho] =

[ Γ (m
2 )

Γ (m
2 + h)

]p p∏

j=1

Γ (m
2 − j−1

2 + h)

Γ (m
2 − j−1

2 )

= [Γ (m
2 )]p−1

{∏p−1
j=1 Γ (m

2 − j
2 )}

{∏p−1
j=1 Γ (m

2 − j
2 + h)}

[Γ (m
2 + h)]p−1

.

Denoting the density of u2 as fu2(u2|Ho), we can express it as an inverse Mellin transform
by taking h = s − 1. Then,

fu2(u2|Ho) = c2,p−1 G
p−1,0
p−1,p−1

[

u2

∣
∣
∣

m
2 −1,...,m

2 −1

m
2 − j

2 −1, j=1,...,p−1

]

, 0 ≤ u2 ≤ 1, (6.6.4)

and zero elsewhere, where

c2,p−1 = [Γ (m
2 )]p−1

{∏p−1
j=1 Γ (m

2 − j
2 )}

.

Some special cases of this density are expounded below.

Real and complex cases: p = 2

When p = 2, u2 has a real type-1 beta density with the parameters (α = m
2 − 1

2 , β = 1
2)

in the real case. In the complex case, it has a real type-1 beta density with the parameters
(α = m − 1, β = 1).

Real and complex cases: p = 3

In this case, fu2(u2|Ho) is given by

fu2(u2|Ho) = c2,2
1

2πi

∫ c+i∞

c−i∞
Γ (m

2 − 3
2 + s)Γ (m

2 − 2 + s)

[Γ (m
2 − 1 + s)]2

u−s
2 ds.
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The poles of the integrand are simple. Those coming from Γ (m
2 − 3

2 + s) occur at s =
−m

2 + 3
2 − ν, ν = 0, 1, . . . . The residue Rν is the following:

Rν = u
m
2 − 3

2 +ν

2
(−1)ν

ν!
Γ (−1

2 − ν)

[Γ (1
2 − ν)]2

= Γ (−1
2)

[Γ (1
2)]2

(1
2)ν(

1
2)ν(−1)ν

(3
2)ν

u
m
2 − 3

2 +ν

2

ν! .

Summing the residues, we have
∞∑

ν=0

Rν = Γ (−1
2)

[Γ (1
2)]2

u
m
2 − 3

2
2 2F1

(1

2
,

1

2
; 3

2
; u2

)
, 0 ≤ u2 ≤ 1.

Now, consider the sum of the residues at the poles of Γ (m
2 − 2 + s). Observing that

Γ (m
2 − 2 + s) cancels out one of the gamma functions in the denominator, namely Γ (m

2 −
1 + s) = (m

2 − 2 − s)Γ (m
2 − 2 + s), the integrand becomes

Γ (m
2 − 3

2 + s)u−s
2

(m
2 − 2 + s)Γ (m

2 − 1 + s)
,

the residue at the pole s = −m
2 + 2 being

Γ ( 1
2 ) u

m
2 −2

2
Γ (1)

. Then, noting that Γ (−1
2) =

−2Γ (1
2) = −2

√
π , the density is the following:

fu2(u2|Ho) = c2,2

{√
πu

m
2 −2
2 − 2√

π
u

m
2 − 3

2
2 2F1

(1

2
,

1

2
; 3

2
; u2

)}
, 0 ≤ u2 ≤ 1, (6.6.5)

and zero elsewhere.

In the complex case, the integrand is

Γ (m − 2 + s)Γ (m − 3 + s)

[Γ (m − 1 + s)]2
u−s

2 = 1

(m − 2 + s)2(m − 3 + s)
u−s

2 ,

and hence there is a pole of order 1 at s = −m + 3 and a pole of order 2 at s = −m + 2.

The residue at s = −m + 3 is
um−3

2
(1)2 = um−3

2 and the residue at s = −m + 2 is given by

lim
s→−m+2

∂

∂s
(m − 2 + s)2

[ 1

(m − 2 + s)2(m − 3 + s)
u−s

2

]
= lim

s→−m+2

∂

∂s

[ u−s
2

(m − 3 + s)

]
,

which gives the residue as um−2
2 ln u2 − um−2

2 . Thus, the sum of the residues is um−3
2 +

um−2
2 ln u2 − um−2

2 and the constant part is

[Γ (m)]2

Γ (m − 1)Γ (m − 2)
= (m − 1)2(m − 2), m > 2,
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so that the density is

fu2(u2) = (m − 1)2(m − 2)[um−3
2 + um−2

2 ln u2 − um−2
2 ], 0 < u2 ≤ 1, m ≥ 3,

and zero elsewhere. Note that as u2 → 0, the limit of
um−1

2
m−1 ln u2 is zero. By integrating out

over 0 < u2 ≤ 1 while m ≥ 3, it can be verified that fu2(·) is indeed a density function.

Real and complex cases: p ≥ 4

As poles of higher orders are present when p ≥ 4, both in the real and complex cases,
the exact density function of the test statistic will not be herein explicitly given for those
cases. Actually, the resulting densities would involve G-functions for which general ex-
pansions are for instance provided in Mathai (1993). The exact null and non-null densities
of u = λ

2
n have been previously derived by the first author. Percentage points accurate to

the 11th decimal place are available from Mathai and Katiyar (1979a, 1980) for the null
case; as well, various aspects of the distribution of the test statistic are discussed in Mathai
and Rathie (1971) and Mathai (1973, 1984, 1985)

Let us now consider the asymptotic distribution of the λ-criterion under the null hy-
pothesis,

Ho : Σ = diag(σ11, . . . , σpp).

Given the representation of the h-th moment of u2 provided in (6.6.3) and referring to
Corollary 6.5.1, it is seen that the sum of the δj ’s is

∑p−1
j=1 δj =∑p−1

j=1
j
2 = p(p−1)

4 , so that

the number of degrees of freedom of the asymptotic chisquare distribution is 2[p(p−1)
4 ] =

p(p−1)
2 which, as it should be, is the number of restrictions imposed by Ho, noting that

when Σ is diagonal, σij = 0, i 
= j , which produces p(p−1)
2 restrictions. Hence, the

following result:

Theorem 6.6.1. Let λ be the likelihood ratio criterion for testing the hypothesis that
the covariance matrix Σ of a nonsingular Np(μ, Σ) distribution is diagonal. Then, as
n → ∞, −2 ln λ → χ2

p(p−1)
2

in the real case. In the corresponding complex case, as

n → ∞, −2 ln λ → χ2
p(p−1), a real scalar chisquare variable having p(p − 1) degrees of

freedom.

6.7. Equality of Diagonal Elements, Given that Σ is Diagonal, Real Case

In the case of a p-variate real nonsingular Np(μ, Σ) population, whenever Σ is
diagonal, the individual components are independently distributed as univariate nor-
mal random variables. Consider a simple random sample of size n, that is, a set of
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p × 1 vectors X1, . . . , Xn, that are iid as Xj ∼ Np(μ, Σ) where it is assumed that
Σ = diag(σ 2

1 , . . . , σ 2
p). Letting X′

j = (x1j , . . . , xpj ), the joint density of the xrj ’s,
j = 1, . . . , n, in the above sample, which is denoted by Lr , is given by

Lr =
n∏

j=1

e
− 1

2σ2
r

(xrj−μr)
2

(2π)
1
2 (σ 2

r )
1
2

= e
− 1

2σ2
r

∑n
j=1(xrj−μr)

2

(2π)
n
2 (σ 2

r )
n
2

.

Then, on substituting the maximum likelihood estimators of μr and σ 2
r in Lr , its maximum

is

max Lr = n
n
2 e− n

2

(2π)
n
2 (srr)

n
2
, srr =

n∑

j=1

(xrj − x̄r )
2.

Under the null hypothesis Ho, σ 2
2 = · · · = σ 2

p ≡ σ 2 and the MLE of σ 2 is a pooled

estimate which is equal to 1
np

(s11 +· · ·+ spp). Thus, the λ-criterion is the following in this
case:

λ = supω

sup�

= [s11s22 · · · spp] n
2

(
s11+···+spp

p
)

np
2

. (6.7.1)

If we let

u3 = λ
2
n = pp(

∏p

j=1 sjj )

(
∑p

j=1 sjj )p
, (6.7.2)

then, for arbitrary h, the h-th moment of u3 is the following:

E[uh
3|Ho] = E

[ pph(
∏p

j=1 sh
jj )

(s11 + · · · + spp)ph

]
= E

[
pph

( p∏

j=1

sh
jj

)
(s11 + · · · + spp)−ph

]
. (6.7.3)

Observe that sjj

σ 2

iid∼ χ2
n−1 = χ2

m, m = n − 1, for j = 1, . . . , p, the density of sjj being of
the form

fsjj (sjj ) = s
m
2 −1
jj e− sjj

2σ2

(2σ 2)
m
2 Γ (m

2 )
, 0 ≤ sjj < ∞, m = n − 1 = 1, 2, . . . , (i)

under Ho. Note that (s11 + · · · + spp)−ph can be replaced by an equivalent integral as

(s11 + · · · + spp)−ph = 1

Γ (ph)

∫ ∞

0
xph−1e−x(s11+···+spp)dx, �(h) > 0. (ii)
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Due to independence of the sjj ’s, the joint density of s11, . . . , spp, is the product of the
densities appearing in (i), and on integrating out s11, . . . , spp, we end up with the follow-
ing:

1

(2σ 2)
mp
2

{ p∏

j=1

Γ (m
2 + h)

Γ (m
2 )

}{ n∏

j=1

[ (1 + 2σ 2x)

2σ 2

]−( m
2 +h)} = [Γ (m

2 + h)]p
[Γ (m

2 )]p
[ (1 + 2σ 2x)−p( m

2 +h)

(2σ 2)−ph

]
.

Now, the integral over x can be evaluated as follows:

(2σ 2)ph

Γ (ph)

∫ ∞

0
xph−1(1 + 2σ 2x)−p(m

2 +h)dx = Γ (
mp
2 )

Γ (
mp
2 + ph)

, �(h) > 0.

Thus,

E[uh
3|Ho] = pph

Γ p(m
2 + h)

Γ p(m
2 )

Γ (
mp
2 )

Γ (
mp
2 + ph)

, �(h) > 0. (6.7.4)

The density of u3 can be written in terms of an H-function. Since p is a positive integer,
we can expand one gamma ratio using Gauss’ multiplication formula:

Γ (
mp
2 )

Γ (
mp
2 + ph)

= (2π)
1−p

2 p
pm
2 − 1

2 Γ (m
2 )Γ (m

2 + 1
p
) · · · Γ (m

2 + p−1
p

)

(2π)
1−p

2 p
mp
2 − 1

2 +phΓ (m
2 + h) · · · Γ (m

2 + p−1
p

+ h)

for p = 1, 2, . . . , m ≥ p. Accordingly,

E[uh
3|Ho] = [Γ (m

2 + h)]p
[Γ (m

2 )]p
p−1∏

j=0

Γ (m
2 + j

p
)

Γ (m
2 + j

p
+ h)

= [Γ (m
2 + h)]p−1

[Γ (m
2 )]p−1

p−1∏

j=1

Γ (m
2 + j

p
)

Γ (m
2 + j

p
+ h)

= c3,p−1
[Γ (m

2 + h)]p−1

∏p−1
j=1 Γ (m

2 + j
p

+ h)
,

(6.7.5)

c3,p−1 =
∏p−1

j=1 Γ (m
2 + j

p
)

[Γ (m
2 )]p−1

, �(m
2

+ h
)

> 0. (6.7.6)

Hence, for h = s − 1, (6.7.5) is the Mellin transform of the density of u3. Thus, denoting
the density by fu3(u3), we have

fu3(u3|Ho) = c3,p−1G
p−1,0
p−1,p−1

[

u3
∣
∣

m
2 −1+ j

p
, j=1,...,p−1

m
2 −1,...,m

2 −1

]

, 0 ≤ u3 ≤ 1, (6.7.7)

and zero elsewhere.



452 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

In the complex case, the h-th moment is the following:

E[ũh
3|Ho] = c̃3,p−1

[Γ̃ (m + h)]p−1

∏p−1
j=1 Γ̃ (m + j

p
+ h)

, (6.7a.1)

c̃3,p−1 =
∏p−1

j=1 Γ̃ (m + j
p
)

˜[Γ (m)]p−1
. (6.7a.2)

and the corresponding density is given by

f̃ũ3(ũ3|Ho) = c̃3,p−1G
p−1,0
p−1,p−1

[

ũ3
∣
∣
m−1+ j

p
, j=1,...,p−1

m−1,...,m−1

]

, 0 ≤ |ũ3| ≤ 1, (6.7a.3)

and zero elsewhere, G denoting a real G-function.

Real and complex cases: p = 2

It is seen from (6.7.5) that for p = 2, u3 is a real type-1 beta with the parameters (α =
m
2 , β = 1

p
) in the real case. Whenever p ≥ 3, poles of order 2 or more are occurring, and

the resulting density functions which are expressible in terms generalized hypergeometric
functions, will not be explicitly provided. For a general series expansion of the G-function,
the reader may refer to Mathai (1970a, 1993).

In the complex case, when p = 2, ũ3 has a real type-1 beta density with the parameters
(α = m, β = 1

p
). In this instance as well, poles of higher orders will be present when

p ≥ 3, and hence explicit forms of the corresponding densities will not be herein provided.
The exact null and non-null distributions of the test statistic are derived for the general
case in Mathai and Saxena (1973), and highly accurate percentage points are provided in
Mathai (1979a,b).

An asymptotic result can also be obtained as n → ∞ . Consider the h-th moment of
λ, which is available from (6.7.5) in the real case and from (6.7a.1) in the complex case.
Then, referring to Corollary 6.5.2, δj = j

p
whether in the real or in the complex situations.

Hence, 2[∑p−1
j=1 δj ] = 2

∑p−1
j=1

j
p

= (p − 1) in both the real and the complex cases. As

well, observe that in the complex case, the diagonal elements are real since Σ̃ is Hermitian
positive definite. Accordingly, the number of restrictions imposed by Ho in either the real
or complex cases is p − 1. Thus, the following result:

Theorem 6.7.1. Consider the λ-criterion for testing the equality of the diagonal ele-
ments, given that the covariance matrix is already diagonal. Then, as n → ∞, the null
distribution of −2 ln λ → χ2

p−1 in both the real and the complex cases.
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6.8. Hypothesis that the Covariance Matrix is Block Diagonal, Real Case

We will discuss a generalization of the problem examined in Sect. 6.6, consid-
ering again the case of real Gaussian vectors. Let X1, . . . , Xn be iid as Xj ∼
Np(μ, Σ), Σ > O, and

Xj =
⎡

⎢
⎣

x1j
...

xpj

⎤

⎥
⎦ =

⎡

⎢
⎣

X(1j)
...

X(kj)

⎤

⎥
⎦ , X(1j) =

⎡

⎢
⎣

x1j
...

xp1j

⎤

⎥
⎦ , X(2j) =

⎡

⎢
⎣

xp1+1,j
...

xp1+p2,j

⎤

⎥
⎦ , . . . ,

Σ =

⎡

⎢
⎢
⎢
⎣

Σ11 O · · · O

O Σ22
. . . O

...
... · · · ...

O O · · · Σkk

⎤

⎥
⎥
⎥
⎦

, Σjj being pj × pj , j = 1, . . . , k.

In this case, the p × 1 real Gaussian vector is subdivided into subvectors of orders
p1, . . . , pk, so that p1 +· · ·+pk = p, and, under the null hypothesis Ho, Σ is assumed to
be a block diagonal matrix, which means that the subvectors are mutually independently
distributed pj -variate real Gaussian vectors with corresponding mean value vector μ(j)

and covariance matrix Σjj , j = 1, . . . , k. Then, the joint density of the sample values
under the null hypothesis can be written as L = ∏k

r=1 Lr where Lr is the joint density
of the sample values corresponding to the subvector X(rj), j = 1, . . . , n, r = 1, . . . , k.
Letting the p × n general sample matrix be X = (X1, . . . , Xn), we note that the sam-
ple representing the first p1 rows of X corresponds to the sample from the first subvector

X(1j)
iid∼ Np(μ(1), Σ11), Σ11 > O, j = 1, . . . , n. The MLE’s of μ(r) and Σrr are the

corresponding sample mean and sample covariance matrix. Thus, the maximum of Lr is
available as

max Lr = e− npr
2 n

npr
2

(2π)
npr

2 |Srr | n
2

ind⇒
k∏

r=1

max Lr = e− np
2 n

np
2

(2π)
np
2
∏k

r=1 |Srr | n
2
.

Hence,

λ = supωL

sup�L
= |S| n

2

∏k
r=1 |Srr | n

2
, (6.8.1)

and

u4 ≡ λ
2
n = |S|

∏k
r=1 |Srr |

. (6.8.2)

Observe that the covariance matrix Σ = (σij ) can be written in terms of the matrix of
population correlations. If we let D = diag(σ1, . . . , σp) where σ 2

t = σtt denotes the
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variance associated the component xtj in X′
j = (x1j , . . . , xpj ) where Cov(X) = Σ , and

R = (ρrs) be the population correlation matrix, where ρrs is the population correlation
between the components xrj and xsj , then, Σ = DRD. Consider a partitioning of Σ into
k × k blocks as well as the corresponding partitioning of D and R:

Σ =

⎡

⎢
⎢
⎢
⎣

Σ11 Σ12 · · · Σ1k

Σ21 Σ22 · · · Σ2k

...
...

. . .
...

Σk1 Σk2 · · · Σkk

⎤

⎥
⎥
⎥
⎦

, D =

⎡

⎢
⎢
⎢
⎣

D1 O · · · O

O D2 · · · O
...

...
. . .

...

O O · · · Dk

⎤

⎥
⎥
⎥
⎦

, R =

⎡

⎢
⎢
⎢
⎣

R11 R12 · · · R1k

R21 R22 · · · R2k

...
...

. . .
...

Rk1 Rk2 · · · Rkk

⎤

⎥
⎥
⎥
⎦

,

where, for example, Σjj is pj × pj , p1 + · · · + pk = p, and the corresponding par-
titioning of D and R. Consider a corresponding partitioning of the sample sum of prod-
ucts matrix S = (Sij ), D(s) and R(s) where R(s) is the sample correlation matrix and

D(s) = diag(
√

s11, . . . ,
√

spp), where Sjj , D
(s)
j , R

(s)
jj are pj × pj , p1 + · · · + pk = p.

Then, |Σ |
∏k

j=1 |Σjj |
= |R|
∏k

j=1 |Rjj |
(6.8.3)

and

u4 ≡ λ
2
n = |S|

∏k
j=1 |Sjj |

= |R(s)|
∏k

j=1 |R(s)
jj | . (6.8.4)

An additional interesting property is now pointed out. Consider a linear function of the
original p × 1 vector Xj ∼ Np(μ, Σ), Σ > O, in the form CXj where C is the diagonal
matrix, diag(c1, . . . , cp). In this case, the product CXj is such that the r-th component of
Xj is weighted or multiplied by cr . Let C be a block diagonal matrix that is partitioned
similarly to D so that its j -th diagonal block matrix be the pj × pj diagonal submatrix
Cj . Then,

uc = |CSC′|
∏k

j=1 |CjSjjC
′
j |

= |S|
∏k

j=1 |Sjj |
= u4. (6.8.5)

In other words, u4 is invariant under linear transformations on Xj
iid∼ Np(μ, Σ), Σ >

O, j = 1, . . . , n. That is, if Yj = CXj + d where d is a constant column vector, then the
p × n sample matrix on Yj , namely, Y = (Y1, . . . , Yn) = (CX1 + d, . . . , CXn + d),

Y − Ȳ = C(X − X̄) ⇒ Sy = (Y − Ȳ)(Y − Ȳ)′ = C(X − X̄)(X − X̄)′C′ = CSC′.

Letting Sy be partitioned as S into k × k blocks and Sy = (Sijy), we have

uy ≡ |Sy |
∏k

j=1 |Sjjy |
= |CSC′|
∏k

j=1 |CjSjjC
′
j |

= |S|
∏k

j=1 |Sjj |
= u4. (6.8.6)
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Arbitrary moments of u4 can be derived by proceeding as in Sect. 6.6. The h-th null mo-
ment, that is, the h-th moment under the null hypothesis Ho, is then

E[uh
4|Ho] = 1

2
mp
2 Γp(m

2 )|Σo|m
2

∫

S>O

|S|m
2 +h−p+1

2 e− 1
2 tr(Σ−1

o S)
{ k∏

r=1

|Srr |−h
}
dS (i)

where m = n − 1, n being the sample size, and

Σo =

⎡

⎢
⎢
⎢
⎣

Σ11 O · · · O

O Σ22 · · · O
...

...
. . . O

O O · · · Σkk

⎤

⎥
⎥
⎥
⎦

, tr(Σ−1
o S) = tr(Σ−1

11 S11) + · · · + tr(Σ−1
kk Skk), (ii)

where Srr is the r-th diagonal block of S, corresponding to Σrr of Σ whose order pr ×
pr, r = 1, . . . , k, p1 + · · · + pk = p. On noting that

|Srr |−h = 1

Γpr
(h)

∫

Yr>O

|Yr |h−pr+1
2 e−tr(YrSrr )dYr, r = 1, . . . , k, (iii)

where Yr > O is a pr × pr real positive definite matrix, and replacing each |Srr |−h by its
integral representation as given in (iii), the exponent of e in (i) becomes

−1

2
[tr(Σ−1

o S)+2tr(YS)], Y =

⎡

⎢
⎢
⎢
⎣

Y1 O · · · O

O Y2 · · · O
...

...
. . .

...

O O · · · Yk

⎤

⎥
⎥
⎥
⎦

, tr(YS) = tr(Y1S11)+· · ·+tr(YkSkk).

The right-hand side of equation (i) then becomes

E[uh
4|Ho] = Γp(m

2 + h)

Γp(m
2 )|Σo|m

2
2ph
{ k∏

r=1

1

Γpr
(h)

∫

Yr>O

|Yr |h−pr+1
2

}

× |Σ−1
o + 2Y |−(m

2 +h)dY1 ∧ . . . ∧ dYk, �(h) > −m

2
+ p − 1

2
. (iv)

It should be pointed out that the non-null moments of u4 can be obtained by substituting a
general Σ to Σo in (iv). Note that if we replace 2Y by Y , the factor containing 2, namely
2ph, will disappear. Further, under Ho,

|Σ−1
o + 2Y |−(m

2 +h) =
{ k∏

r=1

|Σrr |m
2 +h
}{ k∏

r=1

|I + 2ΣrrYr |−(m
2 +h)

}
. (v)
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Then, each Yr -integral can be evaluated as follows:

1

Γpr
(h)

∫

Yr>O

|Yr |h−pr+1
2 |I + 2ΣrrYr |−(m

2 +h)dYr

= 2−prh|Σrr |−h 1

Γpr
(h)

∫

Zr>O

|Zr |h−pr+1
2 |I + Zr |−(m

2 +h)dZr, Zr = 2Σ
1
2
rrYrΣ

1
2
rr

= 2−prh|Σrr |−hΓpr
(h)

Γpr
(h)

Γpr
(m

2 )

Γpr
(m

2 + h)
. (vi)

On combining equations (i) to (vi), we have

E[uh
4|Ho] = Γp(m

2 + h)

Γp(m
2 )

k∏

r=1

Γpr
(m

2 )

Γpr
(m

2 + h)
, �(

m

2
+ h) >

p − 1

2
, (6.8.7)

= c4,p

Γp(m
2 + h)

∏k
r=1 Γpr

(m
2 + h)

= c4,pc∗
∏p

j=1 Γ (m
2 − j−1

2 + h)
∏k

r=1[
∏pr

i=1 Γpr
(m

2 − i−1
2 + h)] , (6.8.8)

c4,p =
∏k

r=1 Γpr
(m

2 )

Γp(m
2 )

= [∏k
r=1 π

pr (pr−1)
4 ]

π
p(p−1)

4

∏k
r=1[

∏pr

i=1 Γ (m
2 − i−1

2 )]
∏p

j=1 Γ (m
2 − j−1

2 )
, (6.8.9)

c∗ = π
p(p−1)

4

∏k
r=1 π

pr (pr−1)
4

so that when h = 0, E[uh
4|Ho] = 1. Observe that one set of gamma products can be can-

celed in (6.8.8) and (6.8.9). When that set is the product of the first p1 gamma functions,
the h-th moment of u4 is given by

E[uh
4|Ho] = c4,p−p1

∏p

j=p1+1 Γ (m
2 − j−1

2 + h)
∏k

r=2[
∏pr

i=1 Γ (m
2 − i−1

2 + h)] , (6.8.10)

where c4,p−p1 is such that E[uh
4|Ho] = 1 when h = 0. Since the structure of the expression

given in (6.8.10) is that of the h-th moment of a product of p−p1 independently distributed
real scalar type-1 beta random variables, it can be inferred that the distribution of u4|Ho is
also that of a product of p − p1 independently distributed real scalar type-1 beta random
variables whose parameters can be determined from the arguments of the gamma functions
appearing in (6.8.10).

Some of the gamma functions appearing in (6.8.10) will cancel out for certain values
of p1, . . . , pk,, thereby simplifying the representation of the moments and enabling one to
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express the density of u4 in terms of elementary functions in such instances. The exact null
density in the general case was derived by the first author. For interesting representations of
the exact density, the reader is referred to Mathai and Rathie (1971) and Mathai and Saxena
(1973), some exact percentage points of the null distribution being included in Mathai
and Katiyar (1979a). As it turns out, explicit forms are available in terms of elementary
functions for the following special cases, see also Anderson (2003): p1 = p2 = p3 =
1; p1 = p2 = p3 = 2; p1 = p2 = 1, p3 = p − 2; p1 = 1, p2 = p3 = 2; p1 =
1, p2 = 2, p3 = 3; p1 = 2, p2 = 2, p3 = 4; p1 = p2 = 2, p3 = 3; p1 = 2, p2 = 3, p

is even.

6.8.1. Special case: k = 2

Let us consider a certain 2 × 2 partitioning of S, which corresponds to the special case
k = 2. When p1 = 1 and p2 = p − 1 so that p1 + p2 = p, the test statistic is

u4 = |S|
|S11| |S22| = |S11 − S12S

−1
22 S21|

|S11|
= s11 − S12S

−1
22 S21

s11
= 1 − r2

1.(2...p) (6.8.11)

where r1.(2...p) is the multiple correlation between x1 and (x2, . . . , xp). As stated in Theo-
rem 5.6.3, 1−r2

1.(2...p) is distributed as a real scalar type-1 beta variable with the parameters

(n−1
2 − p−1

2 ,
p−1

2 ). The simplifications in (6.8.11) are achieved by making use of the prop-
erties of determinants of partitioned matrices, which are discussed in Sect. 1.3. Since s11

is 1 × 1 in this case, the numerator determinant is a real scalar quantity. Thus, this yields a
type-2 beta distribution for w = u4

1−u4
and thereby n−p

p−1w has an F -distribution, so that the
test can be based on an F statistic having (n − 1) − (p − 1) = n − p and p − 1 degrees
of freedom.

6.8.2. General case: k = 2

If in a 2 × 2 partitioning of S, S11 is of order p1 × p1 and S22 is of order p2 × p2 with
p2 = p − p1. Then u4 can be expressed as

u4 = |S|
|S11| |S22| = |S11 − S12S

−1
22 S21|

|S11|
= |I − S

− 1
2

11 S12S
−1
22 S21S

− 1
2

11 | = |I − U |, U = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 (6.8.12)

where U is called the multiple correlation matrix. It will be shown that U has a real matrix-
variate type-1 beta distribution when S11 is of general order rather than being a scalar.
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Theorem 6.8.1. Consider u4 for k = 2. Let S11 be p1 × p1 and S22 be p2 × p2 so that
p1 + p2 = p. Without any loss of generality, let us assume that p1 ≤ p2. Then, under
Ho : Σ12 = O, the multiple correlation matrix U has a real matrix-variate type-1 beta
distribution with the parameters (

p2
2 , m

2 − p2
2 ), with m = n − 1, n being sample size, and

thereby (I − U) ∼ type-1 beta (m
2 − p2

2 ,
p2
2 ), the determinant of I − U being u4 under

the null hypothesis when k = 2.

Proof: Since Σ under Ho can readily be eliminated from a structure such as u4, we will
take a Wishart matrix S having m = n−1 degrees of freedom, n denoting the sample size,
and parameter matrix I , the identity matrix. At first, assume that Σ is a block diagonal
matrix and make the transformation S1 = Σ− 1

2 SΣ− 1
2 . As a result, u4 will be free of Σ11

and Σ22, and so, we may take S ∼ Wp(m, I). Now, consider the submatrices S11, S22, S12

so that dS = dS11 ∧ dS22 ∧ dS12. Let f (S) denote the Wp(m, I) density. Then,

f (S)dS = |S|m
2 −p+1

2

2
mp
2 Γp(m

2 )
e− 1

2 tr(S)dS, S =
[
S11 S12

S21 S22

]

, S21 = S′
12.

However, appealing to a result stated in Sect. 1.3, we have

|S| = |S22| |S11 − S12S
−1
22 S21|

= |S22| |S11| |I − S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 |.
The joint density of S11, S22, S12 denoted by f1(S11, S22, S12) is then

f1(S11, S22, S12) = |S11|m
2 −p+1

2 |S22|m
2 −p+1

2 |I − U |m
2 −p+1

2

× e− 1
2 tr(S11)− 1

2 tr(S22)

2
mp
2 Γp(m

2 )
, U = S

− 1
2

11 S12S
−1
22 S21S

− 1
2

11 .

Letting Y = S
− 1

2
11 S12S

− 1
2

22 , it follows from a result on Jacobian of matrix transformation,

previously established in Chap. 1, that dY = |S11|−
p2
2 |S22|−

p1
2 dS12. Thus, the joint density

of S11, S22, Y , denoted by f2(S11, S22, Y ), is given by

f2(S11, S22, Y ) = |S11|m
2 +p2

2 −p+1
2 |S22|m

2 +p1
2 −p+1

2 |I − YY ′|m
2 −p+1

2

× e− 1
2 tr(S11)− 1

2 tr(S22)

2
pm
2 Γp(m

2 )
,
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Note that S11, S22, Y are independently distributed as f2(·) can be factorized into functions
of S11, S22, Y . Now, letting U = YY ′, it follows from Theorem 4.2.3 that

dY = π
p1p2

2

Γp1(
p2
2 )

|U |p2
2 −p1+1

2 dU,

and the density of U , denoted by f3(U), can then be expressed as follows:

f3(U) = c |U |p2
2 −p1+1

2 |I − U |m
2 −p2

2 −p1+1
2 , O < U < I, (6.8.13)

which is a real matrix-variate type-1 beta density with the parameters (
p2
2 , m

2 − p2
2 ), where

c is the normalizing constant. As a result, I − U has a real matrix-variate type-1 beta
distribution with the parameters (m

2 − p2
2 ,

p2
2 ). Finally, observe that u4 is the determinant

of I − U .

Corollary 6.8.1. Consider u4 as given in (6.8.12) and the determinant |I − U | where U

and I − U are defined in Theorem 6.8.1. Then for k = 2 and an arbitrary h, E[uh
4|Ho] =

|I − U |h.
Proof: On letting k = 2 in (6.8.8), we obtain the h-th moment of u4|Ho as

E[uh
4|Ho] = c4,p

∏p

j=1 Γ (m
2 − j−1

2 + h)

{∏p1
j=1 Γ (m

2 − j−1
2 + h)}{∏p2

j=1 Γ (m
2 − j−1

2 + h)} . (i)

After canceling p2 of the gamma functions, the remaining gamma product in the numerator
of (i) is

Γ
(
α − p2

2

)
Γ
(
α − p2 + 1

2

)
· · · Γ

(
α − p − 1

2

)
= Γp1

(
α − p2

2

)
, α = m

2
+ h,

excluding π
p1(p1−1)

4 . The remainder of the gamma product present in the denominator is

comprised of the gamma functions coming from Γp1(
m
2 + h), excluding π

p1(p1−1)

4 . The
normalizing constant will automatically take care of the factors containing π . Now, the
resulting part containing h is Γp1(

m
2 − p2

2 +h)/Γp1(
m
2 +h), which is the gamma ratio in the

h-th moment of a p1 × p1 real matrix-variate type-1 beta distribution with the parameters
(m

2 − p2
2 ,

p2
2 ).

Since this happens to be E[|I − U |]h for I − U distributed as is specified in Theo-
rem 6.8.1, the Corollary is established.

An asymptotic result can be established from Corollary 6.5.1 and the λ-criterion for
testing block-diagonality or equivalently the independence of subvectors in a p-variate
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Gaussian population. The resulting chisquare variable will have 2
∑

j δj degrees of free-
dom where δj is as defined in Corollary 6.5.1 for the second parameter of the real scalar
type-1 beta distribution. Referring to (6.8.10), we have

∑

j

δj =
p∑

j=p1+1

j − 1

2
−

k∑

j=2

pj∑

i=1

i − 1

2
=

p∑

j=p1+1

j − 1

2
−

k∑

j=2

pj (pj − 1)

4

=
p∑

j=1

j − 1

2
−

k∑

j=1

pj (pj − 1)

4
= p(p − 1)

4
−

k∑

j=1

pj (pj − 1)

4
=

k∑

j=1

pj (p − pj )

4
.

Accordingly, the degrees of freedom of the resulting chisquare is 2[∑k
j=1

pj (p−pj )

4 ] =
∑k

j=1
pj (p−pj )

2 in the real case. It can also be observed that the number of restrictions
imposed by the null hypothesis Ho is obtained by first letting all the off-diagonal elements
of Σ = Σ ′ equal to zero and subtracting the off-diagonal elements of the k diagonal blocks
which produces p(p−1)

2 − ∑k
j=1

pj (pj−1)

2 = ∑k
j=1

pj (p−pj )

2 . In the complex case, the
number of degrees of freedom will be twice that obtained for the real case, the chisquare
variable remaining a real scalar chisquare random variable. This is now stated as a theorem.

Theorem 6.8.2. Consider the λ-criterion given in (6.8.1) in the real case and let the
corresponding λ in the complex case be λ̃. Then −2 ln λ → χ2

δ as n → ∞ where n is the

sample size and δ = ∑k
j=1

pj (p−pj )

2 , which is also the number of restrictions imposed by

Ho. Analogously, in the complex case, −2 ln λ̃ → χ2
δ̃
as n → ∞, where the chisquare

variable remains a real scalar chisquare random variable, δ̃ = ∑k
j=1 pj(p − pj) and n

denotes the sample size.

6.9. Hypothesis that the Mean Value and Covariance Matrix are Given

Consider a real p-variate Gaussian population Xj ∼ Np(μ, Σ), Σ > O, and a sim-
ple random sample, X1, . . . , Xn, from this population, the Xi’s being iid as Xj . Let the
sample mean and the sample sum of products matrix be denoted by X̄ and S, respectively.
Consider the hypothesis Ho : μ = μo, Σ = Σo where μo and Σo are specified. Let us
examine the likelihood ratio test for testing Ho and obtain the resulting λ-criterion. Let
the parameter space be � = {(μ, Σ)|Σ > O, − ∞ < μj < ∞, j = 1, . . . , p, μ′ =
(μ1, . . . , μp)}. Let the joint density of X1, . . . , Xn be denoted by L. Then, as previously
obtained, the maximum value of L is

max
�

L = e− np
2 n

np
2

(2π)
np
2 |S| n

2
(6.9.1)
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and the maximum under Ho is

max
Ho

L = e− 1
2 tr(
∑n

j=1(Xj−μo)
′Σ−1

o (Xj−μo))

(2π)
np
2 |Σo| n

2
. (6.9.2)

Thus,

λ = maxHo
L

max� L
= e

np
2 |S| n

2

n
np
2 |Σo| n

2
e− 1

2 tr(
∑n

j=1(Xj−μo)
′Σ−1

o (Xj−μo)). (6.9.3)

We reject Ho for small values of λ. Since the exponential part dominates the poly-
nomial part for large values, we reject for large values of the exponent, excluding
(−1), which means for large values of

∑n
j=1(Xj − μo)

′Σ−1
o (Xj − μo) ∼ χ2

np since

(Xj − μo)
′Σ−1

o (Xj − μo)
iid∼ χ2

p for each j . Hence the criterion consists of

rejecting Ho if the observed values of
n∑

j=1

(Xj − μo)
′Σ−1

o (Xj − μo) ≥ χ2
np,α

with
Pr{χ2

np ≥ χ2
np,α} = α. (6.9.4)

Let us determine the h-th moment of λ for an arbitrary h. Note that

λh = e
nph

2

n
nph

2 |Σo| nh
2

|S| nh
2 e− h

2 tr(Σ−1
o S)− hn

2 (X̄−μo)
′Σ−1

o (X̄−μo). (6.9.5)

Since λ contains S and X̄ and these quantities are independently distributed, we can in-
tegrate out the part containing S over a Wishart density having m = n − 1 degrees of
freedom and the part containing X̄ over the density of X̄. Thus, for m = n − 1,

E
[
(|S| nh

2 /|Σo| nh
2 ) e− h

2 tr(Σ−1
o S)|Ho

]
=
∫
S>O

|S|m
2 + nh

2 −p+1
2 e− (1+h)

2 tr(Σ−1
o S)

2
mp
2 Γp(m

2 )|Σo| n
2 (1+h)− 1

2

dS

= 2
nph

2
Γp(n

2 (1 + h) − 1
2)

Γp(n
2 − 1

2)
(1 + h)−[ n

2 (1+h)− 1
2 ]p. (i)

Under Ho, the integral over X̄ gives

∫

X̄

√
n

(2π)
p
2 |Σo| 1

2

e−(1+h) n
2 (X̄−μo)

′Σ−1
o (X̄−μo)dX̄ = (1 + h)−

p
2 . (ii)
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From (i) and (ii), we have

E[λh|Ho] = e
nph

2 2
nph

2

n
nph

2

Γp(n
2 (1 + h) − 1

2)

Γp(n−1
2 )

(1 + h)−[ n
2 (1+h)]p. (6.9.6)

The inversion of this expression is quite involved due to branch points. Let us examine
the asymptotic case as n → ∞. On expanding the gamma functions by making use of
the version of Stirling’s asymptotic approximation formula for gamma functions given in
(6.5.14), namely Γ (z + η) ≈ √

2πzz+η− 1
2 e−z for |z| → ∞ and η bounded, we have

Γp(n
2 (1 + h) − 1

2)

Γp(n−1
2 )

=
p∏

j=1

Γ (n
2 (1 + h) − 1

2 − j−1
2 )

Γ (n−1
2 − j−1

2 )

=
p∏

j=1

√
2π [n

2 (1 + h)] n
2 (1+h)− 1

2 − 1
2 − j−1

2 e− n
2 (1+h)

√
2π [n

2 ] n
2 − 1

2 − 1
2 − j−1

2 e− n
2

=
[n

2

] nph
2

e− nph
2 (1 + h)

n
2 (1+h)p−p

2 −p(p+1)
4 . (iii)

Thus, as n → ∞, it follows from (6.9.6) and (iii) that

E[λh|Ho] = (1 + h)−
1
2 (p+p(p+1)

2 ), (6.9.7)

which implies that, asymptotically, −2 ln λ has a real scalar chisquare distribution with
p + p(p+1)

2 degrees of freedom in the real Gaussian case. Hence the following result:

Theorem 6.9.1. Given a Np(μ, Σ), Σ > O, population, consider the hypothesis Ho :
μ = μo, Σ = Σo where μo and Σo are specified. Let λ denote the λ-criterion for
testing this hypothesis. Then, in the real case, −2 ln λ → χ2

δ as n → ∞ where δ =
p + p(p+1)

2 and, in the corresponding complex case, −2 ln λ → χ2
δ1

as n → ∞ where
δ1 = 2p + p(p + 1), the chisquare variable remaining a real scalar chisquare random
variable.

Note 6.9.1. In the real case, observe that the hypothesis Ho : μ = μo, Σ = Σo imposes
p restrictions on the μ parameters and p(p+1)

2 restrictions on the Σ parameters, for a total

of p + p(p+1)
2 restrictions, which corresponds to the degrees of freedom for the asymp-

totic chisquare distribution in the real case. In the complex case, there are twice as many
restrictions.
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Example 6.9.1. Consider the real trivariate Gaussian distribution N3(μ, Σ), Σ > O

and the hypothesis Ho : μ = μo, Σ = Σo where μo, Σo and an observed sample of size
5 are as follows:

μo =
⎡

⎣
1

−1
1

⎤

⎦ , Σo =
⎡

⎣
3 0 0
0 4 −2
0 −2 3

⎤

⎦⇒ |Σo| = 24, Cof(Σo) =
⎡

⎣
8 0 0
0 9 6
0 6 12

⎤

⎦ ,

Σ−1
o = Cof(Σo)

|Σo| = 1

24

⎡

⎣
8 0 0
0 9 6
0 6 12

⎤

⎦ ;

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0

−1

⎤

⎦ , X3 =
⎡

⎣
−1

1
2

⎤

⎦ , X4 =
⎡

⎣
−2

1
2

⎤

⎦ , X5 =
⎡

⎣
2

−1
0

⎤

⎦ .

Now,

(X1 − μo)
′Σ−1

o (X1 − μo) = 36

24
, (X2 − μo)

′Σ−1
o (X2 − μo) = 33

24
,

(X3 − μo)
′Σ−1

o (X3 − μo) = 104

24
, (X4 − μo)

′Σ−1
o (X4 − μo) = 144

24
,

(X5 − μo)
′Σ−1

o (X5 − μo) = 20

24
,

and

5∑

j=1

(Xj − μo)
′Σ−1

o (Xj − μo) = 1

24
[36 + 33 + 104 + 144 + 20] = 337

24
= 14.04.

Note that, in this example, n = 5, p = 3 and np = 15. Letting the significance level of
the test be α = 0.05, Ho is not rejected since 14.04 < χ2

15, 0.05 = 25.

6.10. Testing Hypotheses on Linear Regression Models or Linear Hypotheses

Let the p×1 real vector Xj have an expected value μ and a covariance matrix Σ > O

for j = 1, . . . , n, and the Xj ’s be independently distributed. Let Xj, μ, Σ be partitioned
as follows where x1j , μ1 and σ11 are 1 × 1, μ(2), Σ21 are (p − 1) × 1, Σ12 = Σ ′

21 and
Σ22 is (p − 1) × (p − 1):

Xj =
[

x1j

X(2)j

]

, μ =
[

μ1

μ(2)

]

, Σ =
[

σ11 Σ12

Σ21 Σ22

]

. (i)
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If the conditional expectation of x1j , given X(2)j is linear in X(2)j , then omitting the sub-
script j since the Xj ’s are iid, it was established in Eq. (3.3.5) that

E[x1|X(2)] = μ1 + Σ12Σ
−1
22 (X(2) − μ(2)). (6.10.1)

When the regression is linear, the best linear predictor of x1 in terms of X(2) will be of the
form

E[x1|X(2)] − E(x1) = β ′(X(2) − E(X(2))), β ′ = (β2, . . . , βp). (6.10.2)

Then, by appealing to properties of the conditional expectation and conditional variance,
it was shown in Chap. 3 that β ′ = Σ12Σ

−1
22 . Hypothesizing that X(2) is not random, or

equivalently that the predictor function is a function of the preassigned values of X(2),
amounts to testing whether Σ12Σ

−1
22 = O. Noting that Σ22 > O since Σ > O, the

null hypothesis thus reduces to Ho : Σ12 = O. If the original population X is p-variate
real Gaussian, this hypothesis is then equivalent to testing the independence of x1 and
X(2). Actually, this has already been discussed in Sect. 6.8.2 for the case of k = 2, and
is also tantamount to testing whether the population multiple correlation ρ1.(2...k) = 0.

Assuming that the population is Gaussian and letting of u = λ
2
n where λ is the lambda

criterion, u ∼ type-1 beta(n−p
2 ,

p−1
2 ) under the null hypothesis; this was established in

Theorem 6.8.1 for p1 = 1 and p2 = p − 1. Then, v = u
1−u

∼ type-2 beta (
n−p

2 ,
p−1

2 ),

that is, v ∼ n−p
p−1Fn−p, p−1 or (p−1)

(n−p)
u

1−u
∼ Fn−p, p−1. Hence, in order to test Ho : β = O,

reject Ho if Fn−p, p−1 ≥ Fn−p, p−1, α, with Pr{Fn−p, p−1 ≥ Fn−p, p−1, α} = α

(6.10.3)
The test statistic u is of the form

u = |S|
s11|S22| , S ∼ Wp(n − 1, Σ), Σ > O,

(p − 1)

(n − p)

u

1 − u
∼ Fn−p, p−1,

where the submatrices of S, s11 is 1 × 1 and S22 is (p − 1) × (p − 1). Observe that the
number of parameters being restricted by the hypothesis Σ12 = O is p1p2 = 1(p − 1) =
p − 1. Hence as n → ∞, the null distribution of −2 ln λ is a real scalar chisquare having
p − 1 degrees of freedom. Thus, the following result:

Theorem 6.10.1. Let the p × 1 vector Xj be partitioned into the subvectors x1j of order
1 and X(2)j of order p − 1. Let the regression of x1j on X(2)j be linear in X(2)j , that is,
E[x1j |X(2)j ]−E(x1j ) = β ′(X(2)j −E(X(2)j )). Consider the hypothesis Ho : β = O. Let
Xj ∼ Np(μ, Σ), Σ > O, for j = 1, . . . , n, the Xj ’s being independently distributed,
and let λ be the λ-criterion for testing this hypothesis. Then, as n → ∞, −2 ln λ → χ2

p−1.
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Example 6.10.1. Let the population be N3(μ, Σ), Σ > O, and the observed sample of
size n = 5 be

X1 =
⎡

⎣
1
1
1

⎤

⎦ , X2 =
⎡

⎣
1
0
1

⎤

⎦ , X3 =
⎡

⎣
−1

1
0

⎤

⎦ , X4 =
⎡

⎣
1
1
2

⎤

⎦ , X5 =
⎡

⎣
−1
−1
−2

⎤

⎦ .

The resulting sample average X̄ and deviation vectors are then

X̄ = 1

5

⎡

⎣
1
2
2

⎤

⎦ , X1 − X̄ =
⎡

⎣
1
1
1

⎤

⎦− 1

5

⎡

⎣
1
2
2

⎤

⎦ = 1

5

⎡

⎣
4
3
3

⎤

⎦ ,

X2 − X̄ = 1

5

⎡

⎣
4

−2
3

⎤

⎦ , X3 − X̄ = 1

5

⎡

⎣
−6

3
−2

⎤

⎦ ,

X4 − X̄ = 1

5

⎡

⎣
4
3
8

⎤

⎦ , X5 − X̄ = 1

5

⎡

⎣
−6
−7
−12

⎤

⎦ .

Letting

X = [X1, . . . , X5], X̄ = [X̄, . . . , X̄] and S = (X − X̄)(X − X̄)′,

X − X̄ = 1

5

⎡

⎣
4 4 −6 4 −6
3 −2 3 3 −7
3 3 −2 8 −12

⎤

⎦ ,

S = 1

52

⎡

⎣
120 40 140
40 80 105
140 105 230

⎤

⎦ =
[
s11 S12

S21 S22

]

,

s11 = 120

25
, S12 = 1

25
[40, 140],

S22 = 1

25

[
80 105
105 230

]

, S−1
22 = 25

7375

[
230 −105

−105 80

]

,

S12S
−1
22 S21 =

[ 1

(25)2

][ 25

7375

] [
40 140

]
[

230 −105
−105 80

] [
40
140

]

= 760000

(25)(7375)
,



466 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

so that the test statistic is

u = s11 − S12S
−1
22 S21

s11
= 1 − S12S

−1
22 S21

s11
= 1 − r2

1.(2,3)

= 1 − 760000

(120)(7375)
= 1 − 0.859 = 0.141 ⇒

v = (p − 1)

(n − p)

u

1 − u
=
(2

2

)(0.141

0.859

)
= 0.164, v ∼ Fn−p,p−1.

Let us test Ho at the significance level α = 0.05. In that case, the critical value which is
available from F tables is Fn−p, p−1, α = F2, 2, 0.05 = 19. Since the observed value of v is
0.164 < 19, Ho is not rejected.

Note 6.10.1. Observe that

u = 1 − r2
1.(2,3), r2

1.(2,3) = S12S
−1
22 S21

s11

where r1.(2,3) is the sample multiple correlation between the first component of Xj ∼
N3(μ, Σ), Σ > O, and the other two components of Xj . If the population covariance
matrix Σ is similarly partitioned, that is,

Σ =
[

σ11 Σ12

Σ21 Σ22

]

, where σ11 is 1 × 1, Σ22 is (p − 1) × (p − 1),

then, the population multiple correlation coefficient is ρ1.(2,3) where

ρ2
1.(2,3) = Σ12Σ

−1
22 Σ21

σ11
.

Thus, if Σ12 = Σ ′
21 = O, ρ1.(2,3) = 0 and conversely since σ11 > 0 and Σ22 > O ⇒

Σ−1
22 > O. The regression coefficient β being equal to the transpose of Σ12Σ

−1
22 , Σ12 =

O also implies that the regression coefficient β = O and conversely. Accordingly, the
hypothesis that the regression coefficient vector β = O is equivalent to hypothesizing
that the population multiple correlation ρ1,(2,...,p) = 0, which also implies the hypothesis
that the two subvectors are independently distributed in the multivariate normal case, or
that the covariance matrix Σ12 = O, the only difference being that the test on regression
coefficients is in the conditional space whereas testing the independence of the subvectors
or whether the population multiple correlation equals zero is carried out in the entire space.
The numerical example included in this section also illustrates the main result presented in
Sect. 6.8.1 in connection with testing whether a population multiple correlation coefficient
is equal to zero.
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6.10.1. A simple linear model

Consider a linear model of the following form where a real scalar variable y is esti-
mated by a linear function of pre-assigned real scalar variables z1, . . . , zq :

yj = βo + β1z1j + · · · + βqzqj + ej , j = 1, . . . , n (i)

where y1, . . . , yn are n observations on y, zi1, zi2, . . . , zin, i = 1, . . . , q, are preassigned
values on z1, . . . , zq , and βo, β1, . . . , βq are unknown parameters. The random compo-
nents ej , j = 1, . . . , n, are the corresponding sum total contributions coming from all
unknown factors. There are two possibilities with respect to this model: βo = 0 or βo 
= 0.
If βo = 0, βo is omitted in model (i) and we let yj = xj . If βo 
= 0, the model is modified
by taking xj = yj − ȳ where ȳ = 1

n
(y1 + · · · + yn), then becoming

xj = yj − ȳ = β1(z1j − z̄1) + · · · + βq(zqj − z̄q) + εj (ii)

for some error term εj , where z̄i = 1
n
(zi1 + · · · + zin), i = 1, . . . , q. Letting Z′

j =
(z1j , . . . , zqj ) if βo = 0 and Z′

j = (z1j − z̄1, . . . , zqj − z̄q), otherwise, equation (ii) can
be written in vector/matrix notation as follows:

εj = (xj − β1z1j − · · · − βqzqj ) = (xj − β ′Zj), β ′ = (β1, . . . , βq),

n∑

j=1

ε2
j =

n∑

j=1

(xj − β1z1j − · · · − β1qzqj )
2 =

n∑

j=1

(xj − β ′Zj)
2.

Letting

X =
⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ , ε =

⎡

⎢
⎣

ε1
...

εn

⎤

⎥
⎦ and Z =

⎡

⎢
⎢
⎢
⎣

z11 . . . z1n

z21 . . . z2n
...

. . .
...

zq1 . . . zqn

⎤

⎥
⎥
⎥
⎦

, (iii)

ε′ = (X′ − β ′Z) ⇒
n∑

j=1

ε2
j = ε′ε = (X′ − β ′Z)(X − Z′β). (iv)

The least squares minimum is thus available by differentiating ε′ε with respect to β, equat-
ing the resulting expression to a null vector and solving, which will produce a single criti-
cal point that corresponds to the minimum as the maximum occurs at +∞:
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∂

∂β

( n∑

j=1

ε2
j

)
= O ⇒

n∑

j=1

xjZ
′
j − β̂ ′

n∑

j=1

ZjZ
′
j

⇒ β̂ =
( n∑

j=1

ZjZ
′
j

)−1( n∑

j=1

xjZ
′
j

)
; (v)

∂

∂β
(ε′ε) = O ⇒ β̂ = (ZZ′)−1ZX, (vi)

that is,

β̂ =
( n∑

j=1

ZjZ
′
j

)−1( n∑

j=1

xjZj

)
. (6.10.4)

Since the zij ’s are preassigned quantities, it can be assumed without any loss of generality
that (ZZ′) is nonsingular, and thereby that (ZZ′)−1 exists, so that the least squares mini-
mum, usually denoted by s2, is available by substituting β̂ for β in ε′ε. Then, at β = β̂,

ε′|
β=β̂

= X′ − X′Z′(ZZ′)−1Z = X′[I − Z′(ZZ′)−1Z] so that

s2 = ε′ε|
β=β̂

= X′[I − Z′(ZZ′)−1Z]X (6.10.5)

where I − Z′(ZZ′)−1Z is idempotent and of rank (n − 1) − q. Observe that if βo 
= 0
in (i) and we had proceeded without eliminating βo, then β would have been of order
(k + 1)× 1 and I −Z′(ZZ′)−1Z, of rank n− (q + 1) = n− 1 − q, whereas if βo 
= 0 and
we had eliminated βo from the model, then the rank of I − Z′(ZZ′)−1Z would have been
(n− 1)− q, that is, unchanged, since

∑n
j=1(xj − x̄)2 = X′[I − 1

n
JJ ′]X, J ′ = (1, . . . , 1)

and the rank of I − 1
n
JJ ′ = n − 1.

Some distributional assumptions on εj are required in order to test hypotheses on β.
Let εj ∼ N1(0, σ 2), σ 2 > 0, j = 1, . . . , n, be independently distributed. Then xj ∼
N1(β

′Zj, σ
2), j = 1, . . . , n are independently distributed but not identically distributed

as the mean value depends on j . Under the normality assumption for the εj ’s, it can readily
be seen that the least squares estimators of β and σ 2 coincide with the maximum likelihood
estimators. It can also be observed that σ 2 is estimated by s2

n
where n is the sample size.

In this simple linear regression context, the parameter space � = {(β, σ 2)|σ 2 > 0}. Thus,
under the normality assumption, the maximum of the likelihood function L is given by

max
�

L = e− n
2 n

n
2

(2π)
n
2 [s2] n

2
. (vi)
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Under the hypothesis Ho : β = O or β1 = 0 = · · · = βq , the least squares minimum,
usually denoted as s2

o , is X′X and, assuming normality, the maximum of the likelihood
function under Ho is the following:

max
Ho

L = e− n
2 n

n
2

(2π)
n
2 [s2

o ]
n
2
. (vii)

Thus, the λ-criterion is

λ = maxHo
L

max� L
=
[s2

s2
o

] n
2

⇒ u = λ
2
n = X′[I − Z′(ZZ′)−1Z]X

X′X

= X′[I − Z′(ZZ′)−1Z]X
X′[I − Z′(ZZ′)−1Z]X + X′Z′(ZZ′)−1ZX

= 1

1 + u1
(6.10.6)

where

u1 = X′Z′(ZZ′)−1ZX

X′[I − Z′(ZZ′)−1Z]X = s2
o − s2

s2
(viii)

with the matrices Z′(ZZ′)−1Z and I − Z′(ZZ′)−1Z being idempotent, mutually orthog-
onal, and of ranks q and (n − 1) − q, respectively. We can interpret s2

o − s2 as the sum of
squares due to the hypothesis and s2 as the residual part. Under the normality assumption,
s2
o−s2 and s2 are independently distributed in light of independence of quadratic forms that

was discussed in Sect. 3.4.1; moreover, their representations as quadratic forms in idem-

potent matrices of ranks q and (n − 1) − q implies that s2
o−s2

σ 2 ∼ χ2
q and s2

σ 2 ∼ χ2
(n−1)−q .

Accordingly, under the null hypothesis,

u2 = (s2
o − s2)/q

s2/[(n − 1) − q] ∼ Fq, n−1−q, (6.10.7)

that is, an F -statistic having q and n − 1 − q degrees of freedom. Thus, we reject Ho for
small values of λ or equivalently for large values of u2 or large values of Fq, n−1−q . Hence,
the following criterion:

Reject Ho if the observed value of u2 ≥ Fq, n−1−q, α, P r{Fq, n−1−q ≥ Fq, n−1−q, α} = α.

(6.10.8)
A detailed discussion of the real scalar variable case is provided in Mathai and Haubold
(2017).
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6.10.2. Hypotheses on individual parameters

Denoting the expected value of (·) by E[(·)], it follows from (6.10.4) that

E[β̂] = (ZZ′)−1ZE(X) = (ZZ′)−1ZZ′β = β, E[X] = Z′β, and

Cov(β̂) = (ZZ′)−1Z[Cov(X)]Z′(ZZ′)−1 = (ZZ′)−1Z(σ 2I )Z′(ZZ′)−1

= σ 2(ZZ′)−1.

Under the normality assumption on xj , we have β̂ ∼ Nq(β, σ 2(ZZ′)−1). Letting the
(r, r)-th diagonal element of (ZZ′)−1 be brr , then β̂r , the estimator of the r-th component
of the parameter vector β, is distributed as β̂r ∼ N1(βr, σ

2brr), so that

β̂r − βr

σ̂
√

brr

∼ tn−1−q (6.10.9)

where tn−1−q denotes a Student-t distribution having n − 1 − q degrees of freedom and

σ̂ 2 = s2

n−1−q
is an unbiased estimator for σ 2. On writing s2 in terms of ε, it is easily

seen that E[s2] = (n − 1 − q)σ 2 where s2 is the least squares minimum in the entire
parameter space �. Thus, one can test hypotheses on βr and construct confidence intervals
for that parameter by means of the Student-t statistic specified in (6.10.9) or its square
t2
n−1−q which has an F distribution having 1 and n − 1 − q degrees of freedom, that is,

t2
n−1−q ∼ F1,n−1−q .

Example 6.10.2. Let us consider a linear model of the following form:

yj = βo + β1z1j + · · · + βqzqj + ej , j = 1, . . . , n,

where the zij ’s are preassigned numbers of the variable zi . Let us take n = 5 and q = 2,
so that the sample is of size 5 and, excluding βo, the model has two parameters. Let the
observations on y and the preassigned values on the zi’s be the following:

1 = βo + β1(0) + β1(1) + e1

2 = βo + β1(1) + β2(−1) + e2

4 = βo + β1(−1) + β2(2) + e3

6 = βo + β1(2) + β2(−2) + e4

7 = βo + β1(−2) + β2(5) + e5 .
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The averages on y, z1 and z2 are then

ȳ = 1

5
[1 + 2 + 4 + 6 + 7] = 4, z̄1 = 1

5
[0 + 1 + (−1) + 2 + (−2)] = 0 and

z̄2 = 1

5
[1 + (−1) + 2 + (−2) + 5] = 1,

and, in terms of deviations, the model becomes

xj = yj − ȳ = β1(z1j − z̄1) + β2(z2j − z̄2) + εj , εj = ej − ē .

That is, ⎡

⎢
⎢
⎢
⎢
⎣

−3
−2

0
2
3

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 0
1 −2

−1 1
2 −3

−2 4

⎤

⎥
⎥
⎥
⎥
⎦

[
β1

β2

]

+

⎡

⎢
⎢
⎢
⎢
⎣

ε1

ε2

ε3

ε4

ε5

⎤

⎥
⎥
⎥
⎥
⎦

⇒ X = Z′β + ε.

When minimizing ε′ε = (X − Z′β)′(X − Z′β), we determined that β̂, the least squares
estimate of β, the least squares minimum s2 and s2

o − s2 = corresponding to the sum of
squares due to β, could be express as

β̂ = (ZZ′)−1ZX, s2
o − s2 = X′Z′(ZZ′)−1ZX,

s2 = X′[I − Z′(ZZ′)−1Z]X and that

Z′(ZZ′)−1Z = [Z′(ZZ′)−1Z]2, I − Z′(ZZ′)−1Z = [I − Z′(ZZ′)−1Z]2,

[I − Z′(ZZ′)−1Z][Z′(ZZ′)−1Z] = O.

Let us evaluate those quantities:

Z =
[

0 1 −1 2 −2
0 −2 1 −3 4

]

, ZZ′ =
[

10 −17
−17 30

]

,

|ZZ′| = 11, Cof(ZZ′) =
[

30 17
17 10

]

, (ZZ′)−1 = 1

11

[
30 17
17 10

]

,

(ZZ′)−1Z = 1

11

[
30 17
17 10

] [
0 1 −1 2 −2
0 −2 1 −3 4

]

= 1

11

[
0 −4 −13 9 8
0 −3 −7 4 6

]

;



472 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

β̂ = (ZZ′)−1ZX = 1

11

[
0 −4 −13 9 8
0 −3 −7 4 6

]

⎡

⎢
⎢
⎢
⎢
⎣

−3
−2

0
2
3

⎤

⎥
⎥
⎥
⎥
⎦

= 1

11

[
50
32

]

=
[
β̂1

β̂2

]

;

Z′(ZZ′)−1Z = 1

11

⎡

⎢
⎢
⎢
⎢
⎣

0 0
1 −2

−1 1
2 −3

−2 4

⎤

⎥
⎥
⎥
⎥
⎦

[
0 −4 −13 9 8
0 −3 −7 4 6

]

= 1

11

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 2 1 1 −4
0 1 6 −5 −2
0 1 −5 6 −2
0 −4 −2 −2 8

⎤

⎥
⎥
⎥
⎥
⎦

.

Then,

X′Z′(ZZ′)−1ZX = 1

11

[−3 −2 0 2 3
]

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 2 1 1 −4
0 1 6 −5 −2
0 1 −5 6 −2
0 −4 −2 −2 8

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

−3
−2

0
2
3

⎤

⎥
⎥
⎥
⎥
⎦

= 120

11
, X′X = 26,

X′[I − Z′(ZZ′)−1Z]X = 26 − 120

11
= 166

11
, with n = 5 and q = 2.



Hypothesis Testing and Null Distributions 473

The test statistics u1 and u2 and their observed values are the following:

u1 = X′Z′(ZZ′)−1ZX

X′[I − Z′(ZZ′)−1Z]X = s2
o − s2

s2

= 120

166
= 0.72;

u2 = (s2
o − s2)/q

s2/(n − 1 − q)
∼ Fq, n−1−q

= 120/2

166/2
= 0.72.

Letting the significance level be α = 0.05, the required tabulated critical value is
Fq, n−1−q, α = F2, 2, 0.05 = 19. Since 0.72 < 19, the hypothesis Ho : β = O is not
rejected. Thus, we will not proceed to test individual hypotheses on the regression coeffi-
cients β1 and β2. For tests on general linear models, refer for instance to Mathai (1971).

6.11. Problem Involving Two or More Independent Gaussian Populations

Consider k independent p-variate real normal populations Xj ∼ Np(μ(j), Σ), Σ >

O, j = 1, . . . , k, having the same nonsingular covariance matrix Σ but possibly different
mean values. We consider the problem of testing hypotheses on linear functions of the
mean values. Let b = a1μ(1) + · · · + akμ(k) where a1, . . . , ak, are real scalar constants,
and the null hypothesis be Ho : b = bo (given), which means that the aj ’s and μ(j)’s,
j = 1, . . . , k, are all specified. It is also assumed that Σ is known. Suppose that simple
random samples of sizes n1, . . . , nk from these k independent normal populations can be
secured, and let the sample values be Xjq, q = 1, . . . , nj , where Xj1, . . . , Xjnj

are iid as

Np(μ(j), Σ), Σ > O. Let the sample averages be denoted by X̄j = 1
nj

∑nj

q=1 Xjq, j =
1, . . . , k. Consider the test statistic Uk = a1X̄1 + · · · + akX̄k. Since the populations are
independent and Uk is a linear function of independent vector normal variables, Uk is
normally distributed with the mean value b = a1μ(1) +· · ·+akμ(k) and covariance matrix
1
n
Σ , where 1

n
= (

a2
1

n1
+ · · · + a2

k

nk
) and so,

√
n Σ− 1

2 (Uk − b) ∼ Np(O, I). Then, under the
hypothesis Ho : b = bo (given), which is being tested against the alternative H1 : b 
= bo,
the test criterion is obtained by proceeding as was done in the single population case. Thus,
the test statistic is z = n(Uk − bo)

′Σ−1(Uk − bo) ∼ χ2
p and the criterion will be to reject

the null hypothesis for large values of the z. Accordingly, the criterion is

Reject Ho : b = bo if the observed value of n(Uk − bo)
′Σ−1(Uk − bo) ≥ χ2

p, α,

with Pr{χ2
p ≥ χ2

p, α} = α. (6.11.1)
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In particular, suppose that we wish to test the hypothesis Ho : δ = μ(1) − μ(2) = δ0, such
as δo = 0 as is often the case, against the natural alternative. In this case, when δo = 0,

the null hypothesis is that the mean value vectors are equal, that is, μ(1) = μ(2), and the
test statistic is z = n(X̄1 − X̄2)

′Σ−1(X̄1 − X̄2) ∼ χ2
p with 1

n
= 1

n1
+ 1

n2
, the test criterion

being

Reject Ho : μ(1) − μ(2) = 0 if the observed value of z ≥ χ2
p, α,

with Pr{χ2
p ≥ χ2

p, α} = α. (6.11.2)

For a numerical example, the reader is referred to Example 6.2.3. One can also determine
the power of the test or the probability of rejecting Ho : δ = μ(1) − μ(2) = δ0,

under an alternative hypothesis, in which case the distribution of z is a noncen-
tral chisquare variable with p degrees of freedom and non-centrality parameter
λ = 1

2
n1n2

n1+n2
(δ − δo)

′Σ−1(δ − δo), δ = μ(1) − μ(2), where n1 and n2 are the sample sizes.
Under the null hypothesis, the non-centrality parameter λ is equal to zero. The power is
given by

Power = Pr{reject Ho|H1} = Pr{χ2
p(λ) ≥ χ2

p, α(λ)}. (6.11.3)

When the population covariance matrices are identical and the common covariance matrix
is unknown, one can also construct a statistic for testing hypotheses on linear functions
of the mean value vectors by making use of steps parallel to those employed in the single
population case, with the resulting criterion being based on Hotelling’s T 2 statistic for
testing Ho : μ(1) = μ(2).

6.11.1. Equal but unknown covariance matrices

Let us consider the same procedure as in Sect. 6.11 to test a hypothesis on a linear
function b = a1μ(1) + · · · + akμ(k) where a1, . . . , ak are known real scalar constants
and μ(j), j = 1, . . . , k, are the population mean values. We wish to test the hypothesis
Ho : b = bo (given) in the sense all the mean values μ(j), j = 1, . . . , k and a1, . . . , ak,

are specified. . Let Uk = a1X̄1 + · · · + akX̄k as previously defined. Then, E[Uk] = b

and Cov(Uk) = (
a2

1
n1

+ · · · + a2
k

nk
)Σ , where (

a2
1

n1
+ · · · + a2

k

nk
) ≡ 1

n
for some symbol n.

The common covariance matrix Σ has the MLE 1
n1+···+nk

(S1 + · · · + Sk) where Sj is the
sample sum of products matrix for the j -th Gaussian population. It has been established
that S = S1 + · · · + Sk has a Wishart distribution with (n1 − 1) + · · · + (nk − 1) =
N − k, N = n1 + · · · + nk, degrees of freedom, that is,

S ∼ Wp(N − k, Σ), Σ > O, N = n1 + · · · + nk. (6.11.4)
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Then, when Σ is unknown, it follows from a derivation parallel to that provided in Sect. 6.3
for the single population case that

w ≡ n(Uk − b)′S−1(Uk − b) ∼ type-2 beta
(p

2
,

N − k − p

2

)
, (6.11.5)

or, w has a real scalar type-2 beta distribution with the parameters (
p
2 ,

N−k−p
2 ). Letting

w = p
N−k−p

F , this F is an F -statistic with p and N − k − p degrees of freedom.

Theorem 6.11.1. Let Uk, n, N, b, S be as defined above. Then w = n(Uk − b)′S−1

(Uk − b) has a real scalar type-2 beta distribution with the parameters (
p
2 ,

N−k−p
2 ).

Letting w = p
N−k−p

F , this F is an F -statistic with p and N − k − p degrees of freedom.

Hence for testing the hypothesis Ho : b = bo (given), the criterion is the following:

Reject Ho if the observed value of F = N − k − p

p
w ≥ Fp N−k−p, α, (6.11.6)

with Pr{Fp, N−k−p ≥ Fp,N−k−p, α} = α. (6.11.7)

Note that by exploiting the connection between type-1 and type-2 real scalar beta random
variables, one can obtain a number of properties on this F -statistic.

This situation has already been covered in Theorem 6.3.4 for the case k = 2.

6.12. Equality of Covariance Matrices in Independent Gaussian Populations

Let Xj ∼ Np(μ(j), Σj ), Σj > O, j = 1, . . . , k, be independently distributed
real p-variate Gaussian populations. Consider simple random samples of sizes n1, . . . , nk

from these k populations, whose sample values, denoted by Xjq, q = 1, . . . , nj , are iid
as Xj1, j = 1, . . . , k. The sample sums of products matrices denoted by S1, . . . , Sk,

respectively, are independently distributed as Wishart matrix random variables with nj −
1, j = 1, . . . , k, degrees of freedoms. The joint density of all the sample values is then
given by

L =
k∏

j=1

Lj, Lj = e− 1
2 tr(Σ−1

j Sj )− nj
2 (X̄j−μ(j))

′Σ−1
j (X̄j−μ(j))

(2π)
nj p

2 |Σj |
nj
2

, (6.12.1)

the MLE’s of μ(j) and Σj being ˆμ(j) = X̄j and Σ̂j = 1
nj

Sj . The maximum of L in the
entire parameter space � is

max
�

L =
k∏

j=1

max
�

Lj =
[∏k

j=1 n

nj p

2
j

]
e−Np

2

(2π)
Np
2
∏k

j=1 |Sj |
nj
2

, N = n1 + · · · + nk. (i)
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Let us test the hypothesis of equality of covariance matrices:

Ho : Σ1 = Σ2 = · · · = Σk = Σ

where Σ is unknown. Under this null hypothesis, the MLE of μ(j) is X̄j and the MLE of
the common Σ is 1

N
(S1 + · · · + Sk) = 1

N
S, N = n1 + · · · + nk, S = S1 + · · · + Sk. Thus,

the maximum of L under Ho is

max
Ho

L = N
Np
2 e−Np

2

(2π)
Np
2
∏k

j=1 |S| nj
2

= N
Np
2 e−Np

2

(2π)
Np
2 |S|N

2

, (ii)

and the λ-criterion is the following:

λ =
N

Np
2

{∏k
j=1 |Sj |

nj
2

}

|S|N
2

{∏k
j=1 n

nj p

2
j

} . (6.12.2)

Let us consider the h-th moment of λ for an arbitrary h. Letting c = N
Np
2

{
∏k

j=1 n

nj p

2
j

} ,

λh = ch

{∏k
j=1 |Sj |

nj h

2

}

|S|Nh
2

= ch
{ k∏

j=1

|Sj |
nj h

2

}
|S|−Nh

2 . (6.12.3)

The factor causing a difficulty, namely |S|−Nh
2 , will be replaced by an equivalent integral.

Letting Y > O be a real p × p positive definite matrix, we have the identity

|S|−Nh
2 = 1

Γp(Nh
2 )

∫

Y>O

|Y |Nh
2 −p+1

2 e−tr(YS)dY, �(
Nh

2
) >

p − 1

2
, S > O, (6.12.4)

where
tr(YS) = tr(YS1) + · · · + tr(YSk). (iii)

Thus, once (6.12.4) is substituted in (6.12.3), λh splits into products involving Sj , j =
1, . . . , k; this enables one to integrate out over the densities of Sj , which are Wishart
densities with mj = nj − 1 degrees of freedom. Noting that the exponent involving Sj is
−1

2 tr(Σ−1
j Sj ) − tr(YSj ) = −1

2 tr[Sj (Σ
−1
j + 2Y )], the integral over the Wishart density of

Sj gives the following:
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k∏

j=1

1

2
mj p

2 Γp(
mj

2 )|Σj |
mj
2

∫

Sj>O

|Sj |
mj
2 + nj h

2 −p+1
2 e− 1

2 tr[Sj (Σ
−1+2Y )]dSj

=
k∏

j=1

2
nj hp

2 Γp(
mj

2 + njh

2 )|Σ−1
j + 2Y |−(

mj
2 + nj h

2 )

Γp(
mj

2 )|Σj |
mj
2

= 2
Nph

2

k∏

j=1

|Σj |
nj h

2 |I + 2ΣjY |−(
mj
2 + nj h

2 )Γp(
mj

2 + njh

2 )

Γp(
mj

2 )
. (iv)

Thus, on substituting (iv) in E[λh], we have

E[λh] = ch2
Nph

2

Γp(Nh
2 )

∫

Y>O

|Y |Nh
2 −p+1

2

×
{ k∏

j=1

|Σj |
nj h

2 |I + 2ΣjY |−(
mj
2 + nj h

2 )Γp(
mj

2 + njh

2 )

Γp(
mj

2 )

}
dY, (6.12.5)

which is the non-null h-th moment of λ. The h-th null moment is available when Σ1 =
· · · = Σk = Σ . In the null case,

k∏

j=1

|I + 2YΣj |−(
mj
2 + nj h

2 )|Σj |
nj h

2
Γp(

mj

2 + njh

2 )

Γp(
mj

2 )

= |Σ |Nh
2 |I + 2YΣ |−(N−k

2 +Nh
2 )
{ k∏

j=1

Γp(
mj

2 + njh

2 )

Γp(
mj

2 )

}
. (v)

Then, substituting (v) in (6.12.5) and integrating out over Y produces

E[λh|Ho] = ch
Γp(N−k

2 )

Γp(N−k
2 + Nh

2 )

{ k∏

j=1

Γp(
nj−1

2 + njh

2 )

Γp(
nj−1

2 )

}
. (6.12.6)

Observe that when h = 0, E[λh|Ho] = 1. For h = s − 1 where s is a complex parameter,
we have the Mellin transform of the density of λ, denoted by f (λ), which can be expressed
as follows in terms of an H-function:

f (λ) = 1

c

Γp(N−k
2 )

{∏k
j=1 Γp(

nj−1
2 )
}H

k,0
1,k

[
λ

c

∣
∣
∣
(− k

2 , N
2 )

(− 1
2 ,

nj
2 ), j=1,...,k

]

, 0 < λ < 1, (6.12.7)
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and zero elsewhere, where the H-function is defined in Sect. 5.4.3, more details being
available from Mathai and Saxena (1978) and Mathai et al. (2010). Since the coefficients
of h

2 in the gammas, that is, n1, . . . , nk and N , are all positive integers, one can expand
all gammas by using the multiplication formula for gamma functions, and then, f (λ) can
be expressed in terms of a G-function as well. It may be noted from (6.12.5) that for
obtaining the non-null moments, and thereby the non-null density, one has to integrate out
Y in (6.12.5). This has not yet been worked out for a general k. For k = 2, one can obtain
a series form in terms of zonal polynomials for the integral in (6.12.5). The rather intricate
derivations are omitted.

6.12.1. Asymptotic behavior

We now investigate the asymptotic behavior of −2 ln λ as nj → ∞, j = 1, . . . , k,
N = n1 + · · · + nk. On expanding the real matrix-variate gamma functions in the the
gamma ratio involving h in (6.12.6), we have

∏k
j=1 Γp(

nj

2 (1 + h) − 1
2)

Γp(N
2 (1 + h) − k

2)
→
∏k

j=1

{∏p

i=1 Γ (
nj

2 (1 + h) − 1
2 − i−1

2 )
}

∏p

i=1 Γ (N
2 (1 + h) − k

2 − i−1
2 )

, (i)

excluding the factor containing π . Letting nj

2 (1+h) → ∞, j = 1, . . . , k, and N
2 (1+h) →

∞ as nj → ∞, j = 1, . . . , k, with N → ∞, we now express all the gamma functions in
(i) in terms of Sterling’s asymptotic formula. For the numerator, we have

k∏

j=1

{ p∏

i=1

Γ
(nj

2
(1 + h) − 1

2
− i − 1

2

)}

→
k∏

j=1

{ p∏

i=1

√
(2π)

[nj

2
(1 + h)

] nj
2 (1+h)− 1

2 − i
2
e− nj

2 (1+h)
}

=
k∏

j=1

(
√

2π)p
[nj

2
(1 + h)

] nj
2 (1+h)p−p

2 −p(p+1)
4

e− nj
2 (1+h)p

= (
√

2π)kp
[ k∏

j=1

(nj

2

) nj
2 (1+h)p−p

2 −p(p+1)
4
]
e−N

2 (1+h)p

× (1 + h)
N
2 (1+h)− kp

2 −k
p(p+1)

4 , (ii)
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and the denominator in (i) has the following asymptotic representation:

p∏

i=1

Γ
(N

2
(1 + h) − k

2
− i − 1

2

)
→

p∏

i=1

(
√

2π)
[N

2
(1 + h)

]N
2 (1+h)− k

2 − i
2
e−N

2 (1+h)

= (
√

2π)p
[N

2

]N
2 (1+h)p− kp

2 −p(p+1)
4

e−N
2 (1+h)p

× (1 + h)
N
2 (1+h)p− kp

2 −p(p+1)
4 . (iii)

Now, expanding the gammas in the constant part Γp(N−k
2 )/

∏k
j=1 Γp(

nj−1
2 ) and then tak-

ing care of ch, we see that the factors containing π , the nj ’s and N disappear leaving

(1 + h)−(k−1)
p(p+1)

4 .

Hence −2 ln λ → χ2
(k−1)

p(p+1)
2

and hence we have the following result:

Theorem 6.12.1. Consider the λ-criterion in (6.12.2) or the null density in (6.12.7).
When nj → ∞, j = 1, . . . , k, the asymptotic null density of −2 ln λ is a real scalar
chisquare with (k − 1)

p(p+1)
2 degrees of freedom.

Observe that the number of parameters restricted by the null hypothesis Ho : Σ1 =
· · · = Σk = Σ where Σ is unknown, is (k − 1) times the number of distinct parameters
in Σ , which is p(p+1)

2 , which coincides with the number of degrees of freedom of the
asymptotic chisquare distribution under Ho.

6.13. Testing the Hypothesis that k Independent p-variate Real Gaussian Popula-
tions are Identical and Multivariate Analysis of Variance

Consider k independent p-variate real Gaussian populations Xij ∼ Np(μ(i), Σi),

Σi > O, i = 1, . . . , k, and j = 1, . . . , ni, where the p × 1 vector Xij is the j -th
sample value belonging to the i-th population, these samples (iid variables) being of sizes
n1, . . . , nk from these k populations. The joint density of all the sample values, denoted
by L, can be expressed as follows:

L =
k∏

i=1

Li, Li =
ni∏

j=1

e− 1
2

∑ni
j=1(Xij−μ(i))′Σ−1

i (Xij−μ(i))

(2π)
nip

2 |Σi |
ni
2

= e− 1
2 tr(Σ−1

i Si)− ni
2 (X̄i−μ(i))′Σ−1

i (X̄i−μ(i))

(2π)
ni
2 |Σi |

ni
2
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where X̄i = 1
ni

(Xi1 +· · ·+Xini
), i = 1, . . . , k, and E[Xij ] = μ(i), j = 1, . . . , ni . Then,

letting N = n1 + · · · + nk,

max
�

L =
k∏

i=1

max
�

Li =
k∏

i=1

n
nip

2
i e− nip

2

(2π)
nip

2 |Si |
ni
2

= {∏k
i=1 n

nip

2
i }e−Np

2

(2π)
Np
2 {∏k

i=1 |Si |
ni
2 }

.

Consider the hypothesis Ho : μ(1) = · · · = μ(k) = μ, Σ1 = · · · = Σk = Σ, where μ

and Σ are unknown. This corresponds to the hypothesis of equality of these k populations.
Under Ho, the maximum likelihood estimator (MLE) of μ, denoted by μ̂, is given by
μ̂ = 1

N
[n1X̄1 + · · · + nkX̄k] where N and X̄i are as defined above. As for the common Σ ,

its MLE is

Σ̂ = 1

N

k∑

i=1

ni∑

j=1

(Xij − μ̂)(Xij − μ̂)′

= 1

N
[S1 + · · · + Sk +

k∑

i=1

ni(X̄i − μ̂)(X̄i − μ̂)′]

where Si is the sample sum of products matrix for the i-th sample, observing that
ni∑

j=1

(Xij − μ̂)(Xij − μ̂)′ =
ni∑

j=1

(Xij − X̄i + X̄i − μ̂)(Xij − X̄i + X̄i − μ̂)′

=
ni∑

j=1

(Xij − X̄i)(Xij − X̄i)
′ +

ni∑

j=1

(X̄i − μ̂)(X̄i − μ̂)′

= Si + ni(X̄i − μ̂)(X̄i − μ̂)′.

Hence the maximum of the likelihood function under Ho is the following:

max
Ho

L = e−Np
2 N

Np
2

(2π)
Np
2 |S +∑k

i=1 ni(X̄i − μ̂)(X̄i − μ̂)′|N
2

where S = S1 + · · · + Sk. Therefore the λ-criterion is given by

λ = maxHo

max�

= {∏k
i=1 |Si |

ni
2 }N Np

2

{∏k
i=1 n

nip

2
i }|S +∑k

i=1 ni(X̄i − μ̂)(X̄i − μ̂)′|N
2

. (6.13.1)
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6.13.1. Conditional and marginal hypotheses

For convenience, we may split λ into the product λ1λ2 where λ1 is the λ-criterion for
the conditional hypothesis Ho1 : μ(1) = · · · = μ(k) = μ given that Σ1 = · · · = Σk = Σ

and λ2 is the λ-criterion for the marginal hypothesis Ho2 : Σ1 = · · · = Σk = Σ where
μ and Σ are unknown. The conditional hypothesis Ho1 is actually the null hypothesis
usually being made when establishing the multivariate analysis of variance (MANOVA)
procedure. We will only consider Ho1 since the marginal hypothesis Ho2 has already been
discussed in Sect. 6.12. When the Σi’s are assumed to be equal, the common Σ is esti-
mated by the MLE 1

N
(S1 + · · · + Sk) where Si is the sample sum of products matrix in

the i-th population. The common μ is estimated by 1
N

(n1X̄1 + · · · + nkX̄k). Accordingly,
the λ-criterion for this conditional hypothesis is the following:

λ1 = |S|N
2

|S +∑k
i=1 ni(X̄i − μ̂)(X̄i − μ̂)′|N

2

(6.13.2)

where S = S1 + · · · + Sk, μ̂ = 1
N

(n1X̄1 + · · · + nkX̄k), N = n1 + · · · + nk. Note
that the Si’s are independently Wishart distributed with ni − 1 degrees of freedom, that is,

Si
ind∼ Wp(ni − 1, Σ), i = 1, . . . , k, and hence S ∼ Wp(N − k, Σ). Let

Q =
k∑

i=1

ni(X̄i − μ̂)(X̄i − μ̂)′.

Since Q only contains sample averages and the sample averages and the sample sum of
products matrices are independently distributed, Q and S are independently distributed.
Moreover, since we can write X̄i − μ̂ as (X̄i −μ)− (μ̂ −μ), where μ is the common true
mean value vector, without any loss of generality we can deem the X̄i’s to be independently

Np(O, 1
ni

Σ) distributed, i = 1, . . . , k, and letting Yi = √
niX̄i , one has Yi

iid∼ Np(O, Σ)

under the hypothesis Ho1. Now, observe that

X̄i − μ̂ = X̄i − 1

N
(n1X̄1 + · · · + nkX̄k)

= −n1

N
X̄1 − · · · − ni−1

N
X̄i−1 +

(
1 − ni

N

)
X̄i − ni+1

N
X̄i+1 − · · · − nk

N
X̄k , (i)
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Q =
k∑

i=1

ni(X̄i − μ̂)(X̄i − μ̂)′

=
k∑

i=1

niX̄iX̄
′
i − Nμ̂μ̂′ (ii)

=
k∑

i=1

YiY
′
i − 1

N
(
√

n1Y1 + · · · + √
nkYk)(

√
n1Y1 + · · · + √

nkYk)
′,

where
√

n1Y1 + · · · + √
nkYk = (Y1, . . . , Yk)DJ with J being the k × 1 vector of unities,

J ′ = (1, . . . , 1), and D = diag(
√

n1, . . . ,
√

nk). Thus, we can express Q as follows:

Q = (Y1, . . . , Yk)[I − 1

N
DJJ ′D](Y1, . . . , Yk)

′. (iii)

Let B = 1
N

DJJ ′D and A = I − B. Then, observing that J ′D2J = N , both B and
A are idempotent matrices, where B is of rank 1 since the trace of B or equivalently
the trace of 1

N
J ′D2J is equal to one, so that the trace of A which is also its rank, is

k − 1. Then, there exists an orthonormal matrix P , PP ′ = Ik, P ′P = Ik, such that

A = P ′
[
Ik−1 O

O ′ 0

]

P where O is a (k − 1)× 1 null vector, O ′ being its transpose. Letting

(U1, . . . , Uk) = (Y1, . . . , Yk)P
′, the Ui’s are still independently Np(O, Σ) distributed

under Ho1, so that

Q = (U1, . . . , Uk)

[
Ik−1 O

O ′ 0

]

(U1, . . . , Uk)
′ = (U1, . . . , Uk−1, O)(U1, . . . , Uk−1, O)′

=
k−1∑

i=1

UiU
′
i ∼ Wp(k − 1, Σ). (iv)

Thus, S+∑k
i=1 ni(X̄i −μ̂)(X̄i −μ̂)′ ∼ Wp(N −1, Σ), which clearly is not independently

distributed of S, referring to the ratio in (6.13.2).

6.13.2. Arbitrary moments of λ1

Given (6.13.2), we have

λ1 = |S|N
2

|S + Q|N
2

⇒ λh
1 = |S|Nh

2 |S + Q|−Nh
2 (v)
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where |S + Q|−Nh
2 will be replaced by the equivalent integral

|S + Q|−Nh
2 = 1

Γp(Nh
2 )

∫

T >O

|T |Nh
2 −p+1

2 e−tr((S+Q)T )dT (vi)

with the p × p matrix T > O. Hence, the h-th moment of λ1, for arbitrary h, is the
following expected value:

E[λh
1|Ho1] = E{|S|Nh

2 |S + Q|−Nh
2 }. (vii)

We now evaluate (vii) by integrating out over the Wishart density of S and over the joint
multinormal density for U1, . . . , Uk−1:

E[λh
1|Ho1] = 1

Γp(Nh
2 )

∫

T >O

|T |Nh
2 −p+1

2

×
∫
S>O

|S|Nh
2 +N−k

2 −p+1
2 e− 1

2 tr(Σ−1S)−tr(ST )

2
(N−k)p

2 Γp(N−k
2 )|Σ |N−k

2

dS

×
∫

U1,.,..,Uk−1

e− 1
2

∑k−1
i=1 U ′

iΣ
−1Ui−∑k−1

i=1 tr(T UiU
′
i )

(2π)
(k−1)p

2 |Σ | k−1
2

dU1 ∧ . . . ∧ dUk−1 ∧ dT .

The integral over S is evaluated as follows:

∫
S>O

|S|Nh
2 +N−k

2 −p+1
2 e− 1

2 tr(Σ−1(S+2T S))

2
(N−k)p

2 Γp(N−k
2 )|Σ |N−k

2

dS

= 2
Nhp

2 |Σ |Nh
2

Γp(N−k
2 + Nh

2 )

Γp(N−k
2 )

|I + 2ΣT |−(Nh
2 +N−k

2 ) (viii)

for I +2ΣT > O, �(N−k
2 + Nh

2 ) >
p−1

2 . The integral over U1, . . . , Uk−1 is the following,
denoted by δ:

δ =
∫

U1,...,Uk−1

e− 1
2

∑k−1
i=1 U ′

iΣ
−1Ui−tr(

∑k−1
i=1 T UiU

′
i )

(2π)
(k−1)p

2 |Σ | k−1
2

dU1 ∧ . . . ∧ dUk−1

where

tr
( k−1∑

i=1

T UiU
′
i

)
= tr

( k−1∑

i=1

U ′
i T Ui

)
=

k−1∑

i=1

U ′
i T Ui
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since U ′
i T Ui is scalar; thus, the exponent becomes −1

2

∑k−1
i=1 U ′

i [Σ−1 + 2T ]Ui and the
integral simplifies to

δ = |I + 2ΣT |− k−1
2 , I + 2ΣT > O. (ix)

Now the integral over T is the following:

1

Γp(Nh
2 )

∫

T >O

|T |Nh
2 −p+1

2 |I + 2ΣT |−(Nh
2 +N−k

2 + k−1
2 )

= Γp(N−k
2 + k−1

2 )

Γp(Nh
2 + N−k

2 + k−1
2 )

2−Nhp
2 |Σ |−Nh

2 , �(
N − k

2
+ Nh

2
) >

p − 1

2
. (x)

Therefore,

E[λh
1|Ho1] = Γp(N−k

2 + Nh
2 )

Γp(N−k
2 )

Γp(N−k
2 + k−1

2 )

Γp(Nh
2 + N−k

2 + k−1
2 )

(6.13.3)

for �(N−k
2 + Nh

2 ) >
p−1

2 .

6.13.3. The asymptotic distribution of −2 ln λ1

An asymptotic distribution of −2 ln λ1 as N → ∞ can be derived from (6.13.3). First,
on expanding the real matrix-variate gamma functions in (6.13.3), we obtain the following
representation of the h-th null moment of λ1:

E[λh
1|Ho1] =

{ p∏

j=1

Γ (N−k
2 + k−1

2 − j−1
2 )

Γ (N−k
2 − j−1

2 )

}

×
{ p∏

j=1

Γ (N
2 (1 + h) − k

2 − j−1
2 )

Γ (N
2 (1 + h) − k

2 + k−1
2 − j−1

2 )

}
. (xi)

Let us now express all the gamma functions in terms of Sterling’s asymptotic formula by
taking N

2 → ∞ in the constant part and N
2 (1 + h) → ∞ in the part containing h. Then,

Γ (N
2 (1 + h) − k

2 − j−1
2 )

Γ (N
2 (1 + h) − k

2 + k−1
2 − j−1

2 )
→ (2π)

1
2

(2π)
1
2

[N
2 (1 + h)]N

2 (1+h)− k
2 − j

2

[N
2 (1 + h)]N

2 (1+h)− k
2 + k−1

2 − j
2

e
N
2 (1+h)

e
N
2 (1+h)

= 1

[N
2 (1 + h)] k−1

2

, (xii)

Γ (N
2 − k

2 + k−1
2 − j−1

2 )

Γ (N
2 − k

2 − j−1
2 )

→
(N

2

) (k−1)
2

. (xiii)
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Hence,

E[λh
1|Ho1] → (1 + h)−

(k−1)p
2 as N → ∞. (6.13.4)

Thus, the following result:

Theorem 6.13.1. For the test statistic λ1 given in (6.13.2), −2 ln λ1 → χ2
(k−1)p, that is,−2 ln λ1 tends to a real scalar chisquare variable having (k − 1)p degrees of freedom as

N → ∞ with N = n1 + · · · + nk, nj being the sample size of the j -th p-variate real
Gaussian population.

Under the marginal hypothesis Ho2 : Σ1 = · · · = Σk = Σ where Σ is unknown,
the λ-criterion is denoted by λ2, and its h-th moment, which is available from (6.12.6) of
Sect. 6.12, is given by

E[λh
2|Ho2] = ch

Γp(N−k
2 )

Γp(N−k
2 + Nh

2 )

{ p∏

j=1

Γp(
nj−1

2 + njh

2 )

Γp(
nj−1

2 )

}
(6.13.5)

for �(
nj−1

2 + njh

2 ) >
p−1

2 , j = 1, . . . , k. Hence the h-th null moment of the λ criterion
for testing the hypothesis Ho of equality of the k independent p-variate real Gaussian
populations is the following:

E[λh|Ho] = E[λh
1|Ho1]E[λh

2|Ho2]

= Γp(N−k
2 + k−1

2 )

Γp(Nh
2 + N−k

2 + k−1
2 )

ch
{ p∏

j=1

Γp(
nj−1

2 + njh

2 )

Γp(
nj−1

2 )

}
(6.13.6)

for �(
nj−1

2 + njh

2 ) >
p−1

2 , j = 1, . . . , k, N = n1 + · · · + nk, where c is the constant
associated with the h-th moment of λ2. Combining Theorems 6.13.1 and Theorem 6.12.1,
the asymptotic distribution of −2 ln λ of (6.13.6) is a real scalar chisquare with (k −1)p+
(k − 1)

p(p+1)
2 degrees of freedom. Thus, the following result:

Theorem 6.13.2. For the λ-criterion for testing the hypothesis of equality of k indepen-
dent p-variate real Gaussian populations, −2 ln λ → χ2

ν , ν = (k − 1)p + (k − 1)
p(p+1)

2
as nj → ∞, j = 1, . . . , k.

Note 6.13.1. Observe that for the conditional hypothesis Ho1 in (6.13.2), the degrees of
freedom of the asymptotic chisquare distribution of −2 ln λ1 is (k − 1)p, which is also
the number of parameters restricted by the hypothesis Ho1. For the hypothesis Ho2, the
corresponding degrees of freedom of the asymptotic chisquare distribution of −2 ln λ2 is
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(k−1)
p(p+1)

2 , which as well is the number of parameters restricted by the hypothesis Ho2.
The asymptotic chisquare distribution of −2 ln λ for the hypothesis Ho of equality of k

independent p-variate Gaussian populations the degrees of freedom is the sum of these
two quantities, that is, (k − 1)p + (k − 1)

p(p+1)
2 = p(k − 1)

(p+3)
2 , which also coincides

with the number of parameters restricted under the hypothesis Ho.

Exercises

6.1. Derive the λ-criteria for the following tests in a real univariate Gaussian population
N1(μ, σ 2), assuming that a simple random sample of size n, namely x1, . . . , xn, which
are iid as N1(μ, σ 2), is available: (1): μ = μo (given), σ 2 is known; (2): μ = μo, σ 2

unknown; (3): σ 2 = σ 2
o (given), also you may refer to Mathai and Haubold (2017).

In all the following problems, it is assumed that a simple random sample of size n is
available. The alternative hypotheses are the natural alternatives.

6.2. Repeat Exercise 6.1 for the corresponding complex Gaussian.

6.3. Construct the λ-criteria in the complex case for the tests discussed in Sects. 6.2–6.4.

6.4. In the real p-variate Gaussian case, consider the hypotheses (1): Σ is diagonal or
the individual components are independently distributed; (2): The diagonal elements are
equal, given that Σ is diagonal (which is a conditional test). Construct the λ-criterion in
each case.

6.5. Repeat Exercise 6.4 for the complex Gaussian case.

6.6. Let the population be real p-variate Gaussian Np(μ, Σ), Σ = (σij ) > O, μ′ =
(μ1, . . . , μp). Consider the following tests and compute the λ-criteria: (1): σ11 = · · · =
σpp = σ 2, σij = ν for all i and j , i 
= j . That is, all the variances are equal and all the
covariances are equal; (2): In addition to (1), μ1 = μ2 = · · · = μ or all the mean values
are equal. Construct the λ-criterion in each case. The first one is known as Lvc criterion
and the second one is known Lmvc criterion. Repeat the same exercise for the complex
case. Some distributional aspects are examined in Mathai (1970b) and numerical tables
are available in Mathai and Katiyar (1979b).

6.7. Let the population be real p-variate Gaussian Np(μ, Σ), Σ > O. Consider the
hypothesis (1):

Σ =

⎡

⎢
⎢
⎢
⎣

a b b · · · b

b a b · · · b
...

...
...

. . .
...

b b b · · · a

⎤

⎥
⎥
⎥
⎦

, a 
= 0, b 
= 0, a 
= b.
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(2):

Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, Σ11 =

⎡

⎢
⎢
⎢
⎣

a1 b1 · · · b1

b1 a1 · · · b1
...

...
. . .

...

b1 b1 · · · a1

⎤

⎥
⎥
⎥
⎦

, Σ22 =

⎡

⎢
⎢
⎢
⎣

a2 b2 · · · b2

b2 a2 · · · b2
...

...
. . .

...

b2 b2 · · · a2

⎤

⎥
⎥
⎥
⎦

where a1 
= 0, a2 
= 0, b1 
= 0, b2 
= 0, a1 
= b1, a2 
= b2, Σ12 = Σ ′
21 and all the

elements in Σ12 and Σ21 are each equal to c 
= 0. Construct the λ-criterion in each case.
(These are hypotheses on patterned matrices).

6.8. Repeat Exercise 6.7 for the complex case.

6.9. Consider k independent real p-variate Gaussian populations with different parame-
ters, distributed as Np(Mj, Σj), Σj > O, M ′

j = (μ1j , . . . , μpj ), j = 1, . . . , k. Con-
struct the λ-criterion for testing the hypothesis Σ1 = · · · = Σk or the covariance matrices
are equal. Assume that simple random samples of sizes n1, . . . , nk are available from these
k populations.

6.10. Repeat Exercise 6.9 for the complex case.

6.11. For the second part of Exercise 6.7, which is also known as Wilks’ Lmvc criterion,
show that if u = λ

2
n where λ is the likelihood ratio criterion and n is the sample size, then

u = |S|
[s + (p − 1)s1][s − s1 + n

p−1

∑p

j=1(x̄j − x̄)2] (i)

where S = (sij ) is the sample sum of products matrix, s = 1
p

∑p

i=1 sii, s1 =
1

p(p−1)

∑p

i 
=j=1 sij , x̄ = 1
p

∑p

i=1 x̄i , x̄i = 1
n

∑n
k=1 xik. For the statistic u in (i), show

that the h-th null moment or the h-th moment when the null hypothesis is true, is given by
the following:

E[uh|Ho] =
p−2∏

j=0

Γ (n−1
2 + h − j

2 )

Γ (n−1
2 − j

2 )

Γ (n+1
2 + j

p−1)

Γ (n+1
2 + h + j

p−1)
. (ii)

Write down the conditions for the existence of the moment in (ii). [For the null and non-
null distributions of Wilks’ Lmvc criterion, see Mathai (1978).]
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6.12. Let the (p + q) × 1 vector X have a (p + q)-variate nonsingular real Gaussian
distribution, X ∼ Np+q(μ, Σ), Σ > O. Let

Σ =
[
Σ1 Σ2

Σ ′
2 Σ3

]

where Σ1 is p × p with all its diagonal elements equal to σaa and all other elements equal
to σaa′ , Σ2 has all elements equal to σab, Σ3 has all diagonal elements equal to σbb and all
other elements equal to σbb′ where σaa, σaa′, σbb, σbb′ are unknown. Then, Σ is known as
bipolar. Let λ be the likelihood ratio criterion for testing the hypothesis that Σ is bipolar.
Then show that the h-th null moment is the following:

E[λh|Ho] = [(p − 1)p−1(q − 1)q−1] Γ [ (q−1)(n−1)
2 ]Γ [ (p−1)(n−1)

2 ]
Γ [(p − 1)(h + n−1

2 )]Γ [(q − 1)(h + n−1
2 )]

×
p+q−3∏

j=0

Γ [h + n−3
2 − j

2 ]
Γ [n−3

2 − j
2 ]

where n is the sample size. Write down the conditions for the existence of this h-th null
moment.

6.13. Let X be m × n real matrix having the matrix-variate Gaussian density

f (X) = 1

|2πΣ | n
2

e− 1
2 tr[Σ−1(X−M)(X−M)′], Σ > O.

Letting S = XX′, S is a non-central Wishart matrix. Derive the density of S and show that
this density, denoted by fs(S), is the following:

fs(S) = 1

Γm(n
2 )|2Σ | n

2
|S| n

2 −m+1
2 e−tr(�)− 1

2 tr(Σ−1S)

× 0F1( ; n

2
; 1

2
Σ−1S)

where � = 1
2MM ′Σ−1 is the non-centrality parameter and 0F1 is a Bessel function of

matrix argument.

6.14. Show that the h-th moment of the determinant of S, the non-central Wishart matrix
specified in Exercise 6.13, is given by

E[|S|h] = Γm(h + n
2 )

Γ (n
2 )|2Σ |h e−tr(�)

1F1(h + n

2
; n

2
;�)
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where 1F1 is a hypergeometric function of matrix argument and � is the non-centrality
parameter defined in Exercise 6.13.

6.15. Letting v = λ
2
n in Eq. (6.3.10), show that, under the null hypothesis Ho, v is

distributed as a real scalar type-1 beta with the parameters (n−1
2 , 1

2) and that nA′X̄X̄′A
A′SA

is
real scalar type-2 beta distributed with the parameters (1

2 , n−1
2 ).

6.16. Show that for an arbitrary h, the h-th null moment of the test statistic λ specified in
Eq. (6.3.10) is

E[λh|Ho] = Γ (n−1
2 + nh

2 )

Γ (n−1
2 )

Γ (n
2 )

Γ (n
2 + nh

2 )
, �(h) > −n − 1

n
.
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Chapter 7
Rectangular Matrix-Variate Distributions

7.1. Introduction

Thus far, we have primarily been dealing with distributions involving real positive
definite or Hermitian positive definite matrices. We have already considered rectangular
matrices in the matrix-variate Gaussian case. In this chapter, we will examine rectangular
matrix-variate gamma and beta distributions and also consider to some extent other types
of distributions. We will begin with the rectangular matrix-variate real gamma distribution,
a version of which was discussed in connection with the pathway model introduced in
Mathai (2005). The notations will remain as previously specified. Lower-case letters such
as x, y, z will denote real scalar variables, whether mathematical or random. Capital letters
such as X, Y will be used for matrix-variate variables, whether square or rectangular. In
the complex domain, a tilde will be placed above the corresponding scalar and matrix-
variables; for instance, we will write x̃, ỹ, X̃, Ỹ . Constant matrices will be denoted by
upper-case letter such as A, B, C. A tilde will not be utilized for constant matrices except
for stressing the point that the constant matrix is in the complex domain. When X is a
p × p real positive definite matrix, then A < X < B will imply that the constant matrices
A and B are positive definite, that is, A > O, B > O, and further that X > O, X − A >

O, B − X > O. Real positive definite matrices will be assumed to be symmetric. The
corresponding notation for a p × p Hermitian positive definite matrix is A < X̃ < B.
The determinant of a square matrix A will be denoted by |A| or det(A) whereas, in the
complex case, the absolute value or modulus of the determinant of A will be denoted as
|det(A)|. When matrices are square, their order will be taken as being p×p unless specified
otherwise. Whenever A is a real p × q, q ≥ p, rectangular matrix of full rank p, AA′ is
positive definite, a prime denoting the transpose. When A is in the complex domain, then
AA∗ is Hermitian positive definite where an A∗ indicates the complex conjugate transpose
of A. Note that all positive definite complex matrices are necessarily Hermitian. As well,
dX will denote the wedge product of all differentials in the matrix X. If X = (xij ) is a

© The Author(s) 2022, corrected publication 2022
A. M. Mathai et al., Multivariate Statistical Analysis in the Real and Complex Domains,
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real p × q matrix, then dX = ∧p

i=1 ∧q

j=1 dxij . Whenever X = (xij )
′ is a p × p real

symmetric matrix, dX = ∧i≥jdxij = ∧i≤jdxij , that is, the wedge product of the p(p+1)
2

distinct differentials. As for the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.

7.2. Rectangular Matrix-Variate Gamma Density, Real Case

The most commonly utilized real gamma type distributions are the gamma, generalized
gamma and Wishart in Statistics and the Maxwell-Boltzmann and Raleigh in Physics. The
first author has previously introduced real and complex matrix-variate analogues of the
gamma, Maxwell-Boltzmann, Raleigh and Wishart densities where the matrices are p ×p

real positive definite or Hermitian positive definite. For the generalized gamma density
in the real scalar case, a matrix-variate analogue can be written down but the associated
properties cannot be studied owing to the problem of making a transformation of the type
Y = Xδ for δ 
= ±1; additionally, when X is real positive definite or Hermitian positive
definite, the Jacobians will produce awkward forms that cannot be easily handled, see
Mathai (1997) for an illustration wherein δ = 2 and the matrix X is real and symmetric.
Thus, we will provide extensions of the gamma, Wishart, Maxwell-Boltzmann and Raleigh
densities to the rectangular matrix-variate cases for δ = 1, in both the real and complex
domains.

The Maxwell-Boltzmann and Raleigh densities are associated with numerous prob-
lems occurring in Physics. A multivariate analogue as well as a rectangular matrix-variate
analogue of these densities may become useful in extending the usual theories giving rise
to these univariate densities, to multivariate and matrix-variate settings. It will be shown
that, as was explained in Mathai (1999), this problem is also connected to the volumes
of parallelotopes determined by p linearly independent random points in the Euclidean
n-space, n ≥ p. Structural decompositions of the resulting random determinants and path-
way extensions to gamma, Wishart, Maxwell-Boltzmann and Raleigh densities will also
be considered.

In the current nuclear reaction-rate theory, the basic distribution being assumed for the
relative velocity of reacting particles is the Maxwell-Boltzmann. One of the forms of this
density for the real scalar positive variable case is

f1(x) = 4√
π

β
3
2 x2e−βx2

, 0 ≤ x < ∞, β > 0, (7.2.1)

and f1(x) = 0 elsewhere. The Raleigh density is given by

f2(x) = x

α2
e− x2

2α2 , 0 ≤ x < ∞, α > 0, (7.2.2)
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and f2 = 0 elsewhere, and the three-parameter generalized gamma density has the form

f3(x) = δ b
α
δ

Γ (α
δ
)
xα−1e−bxδ

, x ≥ 0, b > 0, α > 0, δ > 0, (7.2.3)

and f3 = 0 elsewhere. Observe that (7.2.1) and (7.2.2) are special cases of (7.2.3). For
derivations of a reaction-rate probability integral based on Maxwell-Boltzmann velocity
density, the reader is referred to Mathai and Haubold (1988). Various basic results associ-
ated with the Maxwell-Boltzmann distribution are provided in Barnes et al. (1982), Critch-
field (1972), Fowler (1984), and Pais (1986), among others. The Maxwell-Boltzmann and
Raleigh densities have been extended to the real positive definite matrix-variate and the
real rectangular matrix-variate cases in Mathai and Princy (2017). These results will be in-
cluded in this section, along with extensions of the gamma and Wishart densities to the real
and complex rectangular matrix-variate cases. Extensions of the gamma and Wishart den-
sities to the real positive definite and complex Hermitian positive definite matrix-variate
cases have already been discussed in Chap. 5. The Jacobians that are needed and will be
frequently utilized in our discussion are already provided in Chaps. 1 and 4, further details
being available from Mathai (1997). The previously defined real matrix-variate gamma
Γp(α) and complex matrix-variate gamma Γ̃p(α) functions will also be utilized in this
chapter.

7.2.1. Extension of the gamma density to the real rectangular matrix-variate case

Consider a p × q, q ≥ p, real matrix X of full rank p, whose rows are thus linearly
independent, and a real-valued scalar function f (XX′) whose integral over X is conver-
gent, that is,

∫
X

f (XX′)dX < ∞. Letting S = XX′, S will be symmetric as well as real
positive definite meaning that for every p × 1 non-null vector Y , Y ′SY > 0 for all Y 
= O

(a non-null vector). Then, S = (sij ) will involve only p(p+1)
2 differential elements, that is,

dS = ∧p

i≥j=1dsij , whereas dX will contain pq differential elements dxij ’s. As has pre-
viously been explained in Chap. 4, the connection between dX and dS can be established
via a sequence of two or three matrix transformations.

Let the X = (xij ) be a p × q, q ≥ p, real matrix of rank p where the xij ’s are distinct
real scalar variables. Let A be a p × p real positive definite constant matrix and B be a
q × q real positive definite constant matrix, A

1
2 and B

1
2 denoting the respective positive

definite square roots of the positive definite matrices A and B. We will now determine the
value of c that satisfies the following integral equation:

1

c
=
∫

X

|AXBX′|γ e−tr(AXBX′)dX. (i)



496 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Note that tr(AXBX′) = tr(A
1
2 XBX′A 1

2 ). Letting Y = A
1
2 XB

1
2 , it follows from Theo-

rem 1.7.4 that dY = |A| q
2 |B|p

2 dX. Thus,

1

c
= |A|− q

2 |B|−p
2

∫

Y

|YY ′|γ e−tr(YY ′)dY. (ii)

Letting S = YY ′, we note that S is a p × p real positive definite matrix, and on applying

Theorem 4.2.3, we have dY = π
qp
2

Γp(
q
2 )

|S| q
2 −p+1

2 dS where Γp(·) is the real matrix-variate

gamma function. Thus,

1

c
= |A|− q

2 |B|−p
2

π
qp
2

Γp(
q
2 )

∫

S>O

|S|γ+ q
2 −p+1

2 e−tr(S)dS, A > O, B > O, (iii)

the integral being a real matrix-variate gamma integral given by Γp(γ + q
2 ) for �(γ + q

2 ) >
p−1

2 , where �(·) is the real part of (·), so that

c = |A| q
2 |B|p

2 Γp(
q
2 )

π
qp
2 Γp(γ + q

2 )
for �(γ + q

2
) >

p − 1

2
, A > O, B > O. (7.2.4)

Let
f4(X) = c |AXBX′|γ e−tr(AXBX′) (7.2.5)

for A > O, B > O, �(γ + q
2 ) >

p−1
2 , X = (xij ), −∞ < xij < ∞, i = 1, . . . , p, j =

1, . . . , q, where c is as specified in (7.2.4). Then, f4(X) is a statistical density that will be
referred to as the rectangular real matrix-variate gamma density with shape parameter γ

and scale parameter matrices A > O and B > O. Although the parameters are usually
real in a statistical density, the above conditions apply to the general complex case.

For p = 1, q = 1, γ = 1, A = 1 and B = β > 0, we have |AXBX′| = βx2 and

|A| q
2 |B|p

2 Γ (
q
2 )

π
qp
2 Γp(γ + q

2 )
= (β)

1
2 Γ (1

2)

π
1
2 Γ (3

2)
= 2

√
β√
π

,

so that c = 2√
π
β

3
2 for −∞ < x < ∞. Note that when the support of f (x) is restricted

to the interval 0 ≤ x < ∞, the normalizing constant will be multiplied by 2, f (x) be-
ing a symmetric function. Then, for this particular case, f4(X) in (7.2.5) agrees with the
Maxwell-Boltzmann density for the real scalar positive variable x whose density is given
in (7.2.1). Accordingly, when γ = 1, (7.2.5) with c as specified in (7.2.4) will be re-
ferred to as the real rectangular matrix-variate Maxwell-Boltzmann density. Observe that
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for γ = 0, (7.2.5) is the real rectangular matrix-variate Gaussian density that was con-
sidered in Chap. 4. In the Raleigh case, letting p = 1, q = 1, A = 1, B = 1

2α2 and

γ = 1
2 ,

|AXBX′|γ =
( x2

2α2

) 1
2 = |x|√

2|α| and c = 1√
2α

which gives

f5(x) = |x|
2α2

e− x2

2α2 , − ∞ < x < ∞ or f5(x) = x

α2
e− x2

2α2 , 0 ≤ x < ∞,

for α > 0, and f5 = 0 elsewhere where |x| denotes the absolute value of x, which is
the real positive scalar variable case of the Raleigh density given in (7.2.2). Accordingly,
(7.2.5) with c as specified in (7.2.4) wherein γ = 1

2 will be called the real rectangular
matrix-variate Raleigh density.

From (7.2.5), which is the density for X = (xij ), p × q, q ≥ p of rank p, with
−∞ < xij < ∞, i = 1, . . . , p, j = 1, . . . , q, we obtain the following density for

Y = A
1
2 XB

1
2 :

f6(Y )dY = Γp(
q
2 )

π
qp
2 Γp(γ + q

2 )
|YY ′|γ e−tr(YY ′)dY (7.2.6)

for γ + q
2 >

p−1
2 , and f6 = 0 elsewhere. We will refer to (7.2.6) as the standard form of

the real rectangular matrix-variate gamma density. The density of S = YY ′ is then

f7(S) dS = 1

Γp(γ + q
2 )

|S|γ+ q
2 −p+1

2 e−tr(S)dS (7.2.7)

for S > O, γ + q
2 >

p−1
2 , and f7 = 0 elsewhere.

Example 7.2.1. Specify the distribution of u = tr(A
1
2 XBX′A 1

2 ), the exponent of the
density given in (7.2.5).

Solution 7.2.1. Let us determine the moment generating function (mgf) of u with pa-
rameter t . That is,

Mu(t) = E[etu] = E[et tr(A
1
2 XBX′A

1
2 )]

= c

∫

X

|A 1
2 XBX′A

1
2 |γ e−(1−t)tr(A

1
2 XBX′A

1
2 )dX
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where c is given in (7.2.4). Let us make the following transformations: Y = A
1
2 XB

1
2 , S =

YY ′. Then, all factors, except Γp(γ + q
2 ), are canceled and the mgf becomes

Mu(t) = 1

Γp(γ + q
2 )

∫

S>O

|S|γ+ q
2 −p+1

2 e−(1−t)tr(S)dS

for 1 − t > 0. On making the transformation (1 − t)S = S1 and then integrating out S1,
we obtain the following representation of the moment generating function:

Mu(t) = (1 − t)−p(γ+ q
2 ), 1 − t > 0,

which happens to be the mgf of a real scalar gamma random variables with the parameters
(α = p(γ + q

2 ), β = 1), which owing to the uniqueness of the mgf, is the distribution of
u.

Example 7.2.2. Let U1 = A
1
2 XBX′A 1

2 , U2 = XBX′, U3 = B
1
2 X′AXB

1
2 , U4 =

X′AX. Determine the corresponding densities when they exist.

Solution 7.2.2. Let us examine the exponent in the density (7.2.5). By making use of the
commutative property of trace, one can write

tr(A
1
2 XBX′A

1
2 ) = tr[A(XBX′)] = tr(B

1
2 X′AXB

1
2 ) = tr[B(X′AX)].

Observe that the exponent depends on the matrix A
1
2 XBX′A 1

2 , which is symmetric and
positive definite, and that the functional part of the density also involves its determinant.
Thus, the structure is that of real matrix-variate gamma density; however, (7.2.5) gives the
density of X. Hence, one has to reach U1 from X and derive the density of U1. Consider
the transformation Y = A

1
2 XBX′A 1

2 . This will bring X to Y . Now, let S = YY ′ = U1

so that the matrix U1 has the real matrix-variate gamma distribution specified in (7.2.7),
that is, U1 is a real matrix-variate gamma variable with shape parameter γ + q

2 and scale
parameter matrix I . Next, consider U2. Let us obtain the density of U2 from the density
(7.2.5) for X. Proceeding as above while ignoring A or taking A = I , (7.2.7) will become
the following density, denoted by fu2(U2):

fu2(U2)dU2 = |A|γ+ q
2

Γp(γ + q
2 )

|U2|γ+ q
2 −p+1

2 e−tr(AU2)dU2,

which shows that U2 is a real matrix-variate gamma variable with shape parameter γ + q
2

and scale parameter matrix A. With respect to U3 and U4, when q > p, one has the positive
semi-definite factor X′BX whose determinant is zero; hence, in this singular case, the
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densities do not exist for U3 and U4. However, when q = p, U3 has a real matrix-variate
gamma distribution with shape parameter γ + p

2 and scale parameter matrix I and U4 has
a real matrix-variate gamma distribution with shape parameter γ + p

2 and scale parameter
matrix B, observing that when q = p both U3 and U4 are q × q and positive definite. This
completes the solution.

The above findings are stated as a theorem:

Theorem 7.2.1. Let X = (xij ) be a real full rank p × q matrix, q ≥ p, having the
density specified in (7.2.5). Let U1, U2, U3 and U4 be as defined in Example 7.2.2. Then,
U1 is real matrix-variate gamma variable with scale parameter matrix I and shape pa-
rameter γ + q

2 ; U2 is real matrix-variate gamma variable with shape parameter γ + q
2

and scale parameter matrix A; U3 and U4 are singular and do not have densities when
q > p; however, and when q = p, U3 is real matrix-variate gamma distributed with
shape parameter γ + p

2 and scale parameter matrix I , and U4 is real matrix-variate
gamma distributed with shape parameter γ + p

2 and scale parameter matrix B. Further

|Ip − A
1
2 XBXA

1
2 | = |Iq − B

1
2 X′AXB

1
2 |.

Proof: All the results, except the last one, were obtained in Solution 7.2.2. Hence, we
shall only consider the last part of the theorem. Observe that when q > p, |A 1

2 XBX′A 1
2 |

> 0, the matrix being positive definite, whereas |B 1
2 X′AXB

1
2 | = 0, the matrix being

positive semi-definite. The equality is established by noting that in accordance with results
previously stated in Sect. 1.3, the determinant of the following partitioned matrix has two
representations:

∣
∣
∣
∣
∣

Ip A
1
2 XB

1
2

B
1
2 X′A 1

2 Iq

∣
∣
∣
∣
∣
=
{

|Ip| |Iq − (B
1
2 X′A 1

2 )I−1
p (A

1
2 XB

1
2 )| = |Iq − B

1
2 X′AXB

1
2 |

|Iq | |Ip − (A
1
2 XB

1
2 )I−1

q (B
1
2 X′A 1

2 )| = |Ip − A
1
2 XBX′A 1

2 | .

7.2.2. Multivariate gamma and Maxwell-Boltzmann densities, real case

Multivariate usually means a collection of scalar variables, real or complex. Many real
scalar variable cases corresponding to (7.2.1) or a multivariate analogue of thereof can be
obtained from (7.2.5) by taking p = 1 and A = b > 0. Note that in this case, X is 1 × q,
that is, X = (x1, . . . , xq), and XBX′ is a positive definite quadratic form of the type

XBX′ = (x1, . . . , xq)B

⎛

⎜
⎝

x1
...

xq

⎞

⎟
⎠ .
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Thus, the density appearing in (7.2.5) becomes

f8(X)dX = bγ+ q
2 |B| 1

2 Γ (
q
2 )

π
q
2 Γ (γ + q

2 )
[XBX′]γ e−b(XBX′)dX (7.2.8)

for X = (x1, . . . , xq), −∞ < xj < ∞, j = 1, . . . , q, B = B ′ > O, b > 0, and f8 = 0

elsewhere. Then, the density of Y = B
1
2 X′ is given by

f9(Y )dY = bγ+ q
2

Γ (
q
2 )

π
q
2 Γ (γ + q

2 )
(y2

1 + · · · + y2
q)

γ e−b(y2
1+···+y2

q )dY (7.2.9)

where Y ′ = (y1, . . . , yq), − ∞ < yj < ∞, j = 1, . . . , q, b > 0, γ + q
2 > 0, and

f9 = 0 elsewhere. We will take (7.2.8) as the multivariate gamma as well as multivariate
Maxwell-Boltzmann density, and (7.2.9) as the standard multivariate gamma as well as
standard multivariate Maxwell-Boltzmann density.

How can we show that (7.2.9) is a statistical density? One way consists of writing
f9(Y )dY as f9(S)dS, applying Theorem 4.2.3 of Chap. 4 and writing dY in terms of dS

for p = 1. This will yield the result. Another way is to integrate out variables y1, . . . , yq

from f9(Y )dY , which can be achieved via a general polar coordinate transformation such
as the following: Consider the variables y1, . . . , yq, − ∞ < yj < ∞, j = 1, . . . , q, and
the transformation,

y1 = r sin θ1

yj = r cos θ1 cos θ2 · · · cos θj−1 sin θj , j = 2, 3, . . . , q − 1,

yq = r cos θ1 cos θ2 · · · cos θq−1,

for −π
2 < θj ≤ π

2 , j = 1, . . . , q − 2; − π < θq−1 ≤ π , which was discussed in Mathai
(1997). Its Jacobian is then given by

dy1 ∧ . . . ∧ dyq = rq−1

⎧
⎨

⎩

q−1∏

j=1

| cos θj |q−j−1

⎫
⎬

⎭
dr ∧ dθ1 ∧ . . . ∧ dθq−1. (7.2.10)

Under this transformation, y2
1 + · · · + y2

q = r2. Hence, integrating over r , we have
∫ ∞

r=0
(r2)γ rq−1e−br2

dr = 1

2
b−(γ+ q

2 )Γ (γ + q

2
), γ + q

2
> 0. (7.2.11)

Note that the θj ’s are present only in the Jacobian elements. There are formulae giving the
integral over each differential element. We will integrate the θj ’s one by one. Integrating
over θ1 gives
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∫ π
2

−π
2

(cos θ1)
q−2dθ1 = 2

∫ π
2

0
(cos θ1)

q−2dθ1 = 2
∫ 1

0
zq−2(1 − z2)−

1
2 dz

= Γ (1
2)Γ (

q−1
2 )

Γ (
q
2 )

, q > 1.

The integrals over θ2, θ3, . . . , θq−2 can be similarly evaluated as

Γ (1
2)Γ (

q−2
2 )

Γ (
q−1

2 )
,

Γ (1
2)Γ (

q−3
2 )

Γ (
q−2

2 )
, . . . ,

Γ (1
2)

Γ (3
2)

for q > p−1, the last integral
∫ π

−π
dθq−1 giving 2π . On taking the product, several gamma

functions cancel out, leaving

2π [Γ (1
2)]q−2

Γ (
q
2 )

= 2π
q
2

Γ (
q
2 )

. (7.2.12)

It follows from (7.2.11) and (7.2.12) that (7.2.9) is indeed a density which will be referred
to as the standard real multivariate gamma or standard real Maxwell-Boltzmann density.

Example 7.2.3. Write down the densities specified in (7.2.8) and (7.2.9) explicitly if

B =
⎡

⎣
3 −1 0

−1 2 1
0 1 1

⎤

⎦ , b = 2 and γ = 2.

Solution 7.2.3. Let us evaluate the normalizing constant in (7.2.8). Since in this case,
|B| = 2,

c8 = bγ+ q
2 |B| 1

2 Γ (
q
2 )

π
q
2 Γ (γ + q

2 )
= 22+ 3

2 2
1
2 Γ (3

2)

π
3
2 Γ (2 + 3

2)
= 26

15π
3
2

. (i)

The normalizing constant in (7.2.9) which will be denoted by c9, is the same as c8 exclud-
ing |B| 1

2 = 2
1
2 . Thus,

c9 = 2
11
2

15π
3
2

. (ii)

Note that for X = [x1, x2, x3], XBX′ = 3x2
1 + 2x2

2 + x2
3 − 2x1x2 + 2x2x3 and YY ′ =

y2
1 + y2

2 + y2
3 . Hence the densities f8(X) and f9(Y ) are the following, where c8 and c9 are

given in (i) and (ii):

f8(X) = c8

[
3x2

1 + 2x2
2 + x2

3 − 2x1x2 + 2x2x3

]2
e−2[3x2

1+2x2
2+x2

3−2x1x2+2x2x3]
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for −∞ < xj < ∞, j = 1, 2, 3, and

f9(Y ) = c9

[
y2

1 + y2
2 + y2

3

]2
e−2[y2

1+y2
2+y2

3 ], for − ∞ < yj < ∞, j = 1, 2, 3.

This completes the computations.

7.2.3. Some properties of the rectangular matrix-variate gamma density

For the real rectangular matrix-variate gamma and Maxwell-Bolztmann distribution
whose density is specified in (7.2.5), what might be the h-th moment of the determinant
|AXBX′| for an arbitrary h? This statistical quantity can be evaluated by looking at the
normalizing constant c given in (7.2.4) since the integrand used to evaluate E[|AXBX′|]h,
where E denotes the expected value, is nothing but the density of X wherein γ is replaced
by γ + h. Hence we have

E[|AXBX′|]h] = Γp(γ + q
2 + h)

Γp(γ + q
2 )

, �(h) > −γ − q

2
+ p − 1

2
. (7.2.13)

In many calculations involving the Maxwell-Boltzmann density for the real scalar variable
case x, one has to integrate a function of x, say ν(x), over the Maxwell-Boltzmann density,
as can be seen for example in equations (4.1) and (4.2) of Mathai and Haubold (1988) in
connection with a certain reaction-rate probability integral. Thus, the expression appearing
in (7.2.13) corresponds to the integral of a power function over the Maxwell-Boltzmann
density.

This arbitrary h-th moment expression also reveals an interesting point. By expanding
the matrix-variate gamma functions, we have the following:

Γp(γ + q
2 + h)

Γp(γ + q
2 )

=
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )
=

p∏

j=1

E(tj )
h

where tj is a real scalar gamma random variable with parameter (γ + q
2 − j−1

2 , 1), j =
1, . . . , p, whose density is

g(j)(tj ) = 1

Γ (γ + q
2 − (j−1)

2 )
t
γ+ q

2 − (j−1)
2 −1

j e−tj , tj ≥ 0, γ + q

2
− (j − 1)

2
> 0, (7.2.14)

and zero elsewhere. Thus structurally,

|AXBX′| = t1t2 · · · tp (7.2.15)

where t1, . . . , tp are independently distributed real scalar gamma random variables with tj
having the gamma density given in (7.2.14) for j = 1, . . . , p.
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7.2.4. Connection to the volume of a random parallelotope

First, observe that |AXBX′| = |(A 1
2 XB

1
2 )(A

1
2 XB

1
2 )′| ≡ |UU ′| where U = A

1
2 XB

1
2 .

Then, note that U is p × q, q ≥ p, and of full rank p, and that the p linearly independent
rows of U , taken in the order, will then create a convex hull and a parallelotope in the
q-dimensional Euclidean space. The p rows of U represent p linearly independent vectors
in the Euclidean q-space as well as p points in the same space. In light of (7.2.14), these
random points are gamma distributed, that is, the joint density of the p vectors or the p ran-
dom points is the real rectangular matrix-variate density given in (7.2.5), and the volume
content of the parallelotope created by these p random points is |AXBX′| 1

2 . Accordingly,
(7.2.13) represents the (2h)-th moment of the random volume of the p-parallelotope gener-
ated by the p linearly independent rows of A

1
2 XB

1
2 . The geometrical probability problems

considered in the literature usually pertain to random volumes generated by independently
distributed isotropic random points, isotropic meaning that their associated density is in-
variant with respect to orthonormal transformations or rotations of the coordinate axes. For
instance, the density given in (7.2.9) constitutes an example of isotropic form. The distri-
butions of random geometrical configurations is further discussed in Chap. 4 of Mathai
(1999).

7.2.5. Pathway to real matrix-variate gamma and Maxwell-Boltzmann densities

Consider a model of the following form for a p × q, q ≥ p, matrix X of full rank p:

f10(X) = c10|AXBX′|γ |I − a(1 − α)A
1
2 XBX′A

1
2 | η

1−α , α < 1, (7.2.16)

for A > O, B > O, a > 0, η > 0, I − a(1 − α)A
1
2 XBX′A 1

2 > O (positive definite),
and f10(X) = 0 elsewhere. It will be determined later that the parameter γ is subject to
the condition γ + q

2 >
p−1

2 . When α > 1, we let 1 − α = −(α − 1), α > 1, so that the
model specified in (7.2.16) shifts to the model

f11(X) = c11|AXBX′|γ |I + a(α − 1)A
1
2 XBX′A

1
2 |− η

α−1 , α > 1 (7.2.17)

for η > 0, a > 0, A > O, B > O, and f11(X) = 0 elsewhere. Observe that A
1
2 XBX′A 1

2

is symmetric as well as positive definite when X is of full rank p and A > O, B >

O. For this model, the condition η
α−1 − γ − q

2 >
p−1

2 is required in addition to that
applying to the parameter γ in (7.2.16). Note that when f10(X) and f11(X) are taken as
statistical densities, c10 and c11 are the associated normalizing constants. Proceeding as in
the evaluation of c in (7.2.4), we obtain the following representations for c10 and c11:
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c10 = |A| q
2 |B|p

2 [a(1 − α)]p(γ+ q
2 )

Γp(
q
2 )

π
qp
2

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(γ + q
2 )Γp(

η
1−α

+ p+1
2 )

(7.2.18)

for η > 0, α < 1, a > 0, A > O, B > O, γ + q
2 >

p−1
2 ,

c11 = |A| q
2 |B|p

2 [a(α − 1)]p(γ+ q
2 )Γp(

q
2 )

π
qp
2

Γp(
η

α−1)

Γp(γ + q
2 )Γp(

η
α−1 − γ − q

2 )
(7.2.19)

for α > 1, η > 0, a > 0, A > O, B > O, γ + q
2 >

p−1
2 ,

η
α−1 − γ − q

2 >
p−1

2 . When
α → 1− in (7.2.18) and α → 1+ in (7.2.19), the models (7.2.16) and (7.2.17) converge
to the real rectangular matrix-variate gamma or Maxwell-Boltzmann density specified in
(7.2.5). This can be established by applying the following lemmas.

Lemma 7.2.1.

lim
α→1−

|I − a(1 − α)A
1
2 XBX′A

1
2 | η

1−α = e−aηtr(AXBX′)

and
lim

α→1+
|I + a(α − 1)A

1
2 XBX′A

1
2 |− η

α−1 = e−aηtr(AXBX′). (7.2.20)

Proof: Letting λ1, . . . , λp be the eigenvalues of the symmetric matrix A
1
2 XBX′A 1

2 , we
have

|I − a(1 − α)A
1
2 XBX′A

1
2 | η

1−α =
p∏

j=1

[1 − a(1 − α)λj ]
η

1−α .

However, since
lim

α→1−
[1 − a(1 − α)λj ]

η
1−α = e−aηλj ,

the product gives the sum of the eigenvalues, that is, tr(A
1
2 XBX′A 1

2 ) in the exponent,
hence the result. The same result can be similarly obtained for the case α > 1. We can
also show that the normalizing constants c10 and c11 reduce to the normalizing constant
in (7.2.4). This can be achieved by making use of an asymptotic expansion of gamma
functions, namely,

Γ (z + δ) ≈ √
2π zz+δ− 1

2 e−z for |z| → ∞, δ bounded. (7.2.21)

This first term approximation is also known as Stirling’s formula.
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Lemma 7.2.2.

lim
α→1−

[a(1 − α)]p(γ+ q
2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(
η

1−α
+ p+1

2 )
= (aη)p(γ+ q

2 )

and

lim
α→1+

[a(α − 1)]p(γ+ q
2 )

Γp(
η

α−1)

Γp(
η

α−1 − γ − q
2 )

= (aη)p(γ+ q
2 ). (7.2.22)

Proof: On expanding Γp(·) using its definition, for α > 1, we have

[a(α − 1)]p(γ+ q
2 )Γp(

η
α−1)

Γp(
η

α−1 − γ − q
2 )

= [a(α − 1)]p(γ+ q
2 )

p∏

j=1

Γ (
η

α−1 − j−1
2 )

Γ (
η

α−1 − γ − q
2 − j−1

2 )
.

Now, on applying the Stirling’s formula as given in (7.2.21) to each of the gamma functions
by taking z = η

α−1 → ∞ when α → 1+, it is seen that the right-hand side of the above

equality reduces to (aη)p(γ+ q
2 ). The result can be similarly established for the case α < 1.

This shows that c10 and c11 of (7.2.18) and (7.2.19) converge to the normalizing con-
stant in (7.2.4). This means that the models specified in (7.2.16), (7.2.17), and (7.2.5) are
all available from either (7.2.16) or (7.2.17) via the pathway parameter α. Accordingly,
the combined model, either (7.2.16) or (7.2.17), is referred to as the pathway generalized
real rectangular matrix-variate gamma density. The Maxwell-Boltzmann case corresponds
to γ = 1 and the Raleigh case, to γ = 1

2 . If either of the Maxwell-Boltzmann or Raleigh
densities is the ideal or stable density in a physical system, then these stable densities as
well as the unstable neighborhoods, described through the pathway parameter α < 1 and
α > 1, and the transitional stages, are given by (7.2.16) or (7.2.17). The original pathway
model was introduced in Mathai (2005).

For addressing other problems occurring in physical situations, one may have to in-
tegrate functions of X over the densities (7.2.16), (7.2.17) or (7.2.5). Consequently, we
will evaluate an arbitrary h-th moment of |AXBX′| in the models (7.2.16) and (7.2.17).
For example, let us determine the h-th moment of |AXBX′| with respect to the model
specified in (7.2.16):

E[|AXBX′|h] = c10

∫

X

|AXBX′|γ+h |I − a(1 − α)A
1
2 XBX′A

1
2 | η

1−α dX.
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Note that the only change in the integrand, as compared to (7.2.16), is that γ is replaced
by γ + h. Hence the result is available from the normalizing constant c10, and the answer
is the following:

E[|AXBX′|h] = [a(1 − α)]−ph
Γp(γ + q

2 + h)

Γp(γ + q
2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 + h)
(7.2.23)

for �(γ + q
2 + h) >

p−1
2 , a > 0, α < 1. Therefore

E[|a(1 − α)AXBX′|h]

= Γp(γ + q
2 + h)

Γp(γ + q
2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 )

Γp(γ + q
2 + η

1−α
+ p+1

2 + h)

=
p∏

j=1

{
Γ (γ + q

2 − j−1
2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (γ + q
2 + η

1−α
+ p+1

2 − j−1
2 )

Γ (γ + q
2 + η

1−α
+ p+1

2 − j−1
2 + h)

}

=
p∏

j=1

E
(
yh

j

)
(7.2.24)

where yj is a real scalar type-1 beta random variable with the parameters (γ + q
2 −

j−1
2 ,

η
1−α

+ p+1
2 ), j = 1, . . . , p, the yj ’s being mutually independently distributed.

Hence, we have the structural relationship

|a(1 − α)AXBX′| = y1 · · · yp . (7.2.25)

Proceeding the same way for the model (7.2.17), we have

E[|AXBX′|h] = [a(α − 1)]−ph
Γp(γ + q

2 + h)

Γp(γ + q
2 )

Γp(
η

α−1 − γ − q
2 − h)

Γp(
η

α−1 − γ − q
2 )

(7.2.26)

for �(γ + q
2 + h) >

p−1
2 , �(

η
α−1 − γ − q

2 − h) >
p−1

2 or −(γ + q
2 ) + p−1

2 < �(h) <
η

α−1 − γ − q
2 − p−1

2 . Thus,

E[|a(α − 1)AXBX′|h] =
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (
η

α−1 − γ − q
2 − j−1

2 − h)

Γ (
η

α−1 − γ − q
2 − j−1

2 )

=
p∏

j=1

E(zh
j ) (7.2.27)
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where zj is a real scalar type-2 beta random variable with the parameters (γ + q
2 −

j−1
2 ,

η
α−1 − γ − q

2 − j−1
2 ) for j = 1, . . . , p, the zj ’s being mutually independently

distributed. Thus, for α > 1, we have the structural representation

|a(α − 1)AXBX′| = z1 · · · zp . (7.2.28)

As previously explained, one can consider the p linearly independent rows of A
1
2 XB

1
2

as p vectors in the Euclidean q-space. Then, these p vectors are jointly distributed as
rectangular matrix-variate type-2 beta, and E[|AXBX′|h] = E[|AXBX′| 1

2 ]2h is the (2h)-
th moment of the volume of the random parallelotope generated by these p q-vectors for
q > p. In this case, the random points will be called type-2 beta distributed random points.

The real Maxwell-Boltzmann case will correspond γ = 1 and the Raleigh case, to
γ = 1

2 , and all the above extensions and properties will apply to both of these distributions.

7.2.6. Multivariate gamma and Maxwell-Boltzmann densities, pathway model

Consider the density given in (7.2.16) for the case p = 1. In this instance, the p × p

constant matrix A is 1 × 1 and we shall let A = b > 0, a positive real scalar quantity.
Then for α < 1, (7.2.16) reduces to the following where X is 1 × q of the form X =
(x1, . . . , xq), − ∞ < xj < ∞, j = 1, . . . , q:

f12(X) = b
q
2 |B| 1

2 [a(1 − α)](γ+ q
2 )

Γ (
q
2 )

π
q
2

Γ (γ + q
2 + η

1−α
+ 1)

Γ (γ + q
2 )Γ (

η
1−α

+ 1)

× [bXBX′]γ [1 − a(1 − α)bXBX′] η
1−α (7.2.29)

for b > 0, B = B ′ > O, a > 0, η > 0, γ + q
2 > 0, − ∞ < xj < ∞, j =

1, . . . , q, 1 − a(1 − α)bXBX′ > 0, α < 1, and f12 = 0 elsewhere. Note that

XBX′ = (x1, . . . , xq)B

⎛

⎜
⎝

x1
...

xq

⎞

⎟
⎠

is a real quadratic form whose associated matrix B is positive definite. Letting the 1 × q

vector Y = XB
1
2 , the density of Y when α < 1 is given by

f13(Y ) dY = bγ+ q
2 [a(1 − α)](γ+ q

2 )
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + η

1−α
+ 1)

Γ (γ + q
2 )Γ (

η
1−α

+ 1)

× [(y2
1 + · · · + y2

q)]γ [1 − a(1 − α)b(y2
1 + · · · + y2

q)]
η

1−α dY, (7.2.30)
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for b > 0, γ + q
2 > 0, η > 0, − ∞ < yj < ∞, j = 1, . . . , q, 1 − a(1 − α)b(y2

1 +
· · · + y2

q) > 0, and f13 = 0 elsewhere, which will be taken as the standard form of the
real multivariate gamma density in its pathway generalized form, and for γ = 1, it will
be the real pathway generalized form of the Maxwell-Boltzmann density in the standard
multivariate case. For α > 1, the corresponding standard form of the real multivariate
gamma and Maxwell-Boltzmann densities is given by

f14(Y )dY = bγ+ q
2 [a(α − 1)](γ+ q

2 )
Γ (

q
2 )

π
q
2

Γ (
η

α−1)

Γ (γ + q
2 )Γ (

η
α−1 − γ − q

2 )

× [(y2
1 + · · · + y2

q)]γ [1 + a(α − 1)b(y2
1 + · · · + y2

q)]−
η

α−1 dY. (7.2.31)

for b > 0, γ + q
2 > 0, a > 0, η > 0,

η
α−1 −γ − q

2 > 0, −∞ < yj < ∞, j = 1, . . . , q,

and f14 = 0 elsewhere. This will be taken as the pathway generalized real multivariate
gamma density for α > 1, and for γ = 1, it will be the standard form of the real pathway
extended Maxwell-Boltzmann density for α > 1. Note that when α → 1− in (7.2.30) and
α → 1+ in (7.2.31), we have

f15(Y )dY = bγ+ q
2 (aη)(γ+ q

2 )
Γ (

q
2 )

π
q
2 Γ (γ + q

2 )

× [(y2
1 + · · · + y2

q)]γ e−aηb(y2
1+···+y2

q )dY, (7.2.32)

for b > 0, a > 0, η > 0, γ + q
2 > 0, and f15 = 0 elsewhere, which for γ = 1, is the real

multivariate Maxwell-Bolzmann density in the standard form. From (7.2.30), (7.2.31), and
thereby from (7.2.32), one can obtain the density of u = y2

1 + · · ·+ y2
q , either by using the

general polar coordinate transformation or the transformation of variables technique, that
is, going from dY to dS with S = YY ′, Y being 1 × p. Then, the density of u for the case
α < 1 is

f16(u) = bγ+ q
2 [a(1−α)]γ+ q

2
Γ (γ + q

2 + η
1−α

+ 1)

Γ (γ + q
2 )Γ (

η
1−α

+ 1)
uγ+ q

2 −1[1−a(1−α)bu] η
1−α , α < 1,

(7.2.33)
for b > 0, a > 0, η > 0, α < 1, γ + q

2 > 0, 1 − a(1 − α)bu > 0, and f16 = 0
elsewhere, the density of u for α > 1 being

f17(u) = bγ+ q
2 [a(α−1)]γ+ q

2
Γ (

η
α−1)

Γ (γ + q
2 )Γ (

η
α−1 − γ − q

2 )
uγ+ q

2 −1[1+a(α−1)bu]− η
α−1 , α > 1,

(7.2.34)
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for b > 0, a > 0, η > 0, γ + q
2 > 0,

η
α−1 − γ − q

2 > 0, u ≥ 0, and f17 = 0 elsewhere.
Observe that as α → 1, both (7.2.33) and (7.2.34) converge to the form

f18(u) = (aηb)γ+ q
2

Γ (γ + q
2 )

uγ+ q
2 −1e−abηu (7.2.35)

for a > 0, b > 0, η > 0, u ≥ 0, and f18 = 0 elsewhere. For γ = 1
2 , we have the

corresponding Raleigh cases.
Letting γ = 1 and q = 1 in (7.2.32), we have

f19(y1) = b
3
2

Γ (γ + 1
2)

(y2
1)γ e−by2

1 = 2b
3
2√
π

y2
1e−by2

1 , −∞ < y1 < ∞, b > 0

= 4b
3
2√
π

y2
1e−by2

1 , 0 ≤ y1 < ∞, b > 0, (7.2.36)

and f19 = 0 elsewhere. This is the real Maxwell-Boltzmann case. For the Raleigh case,
we let γ = 1

2 and p = 1, q = 1 in (7.2.32), which results in the following density:

f20(y1) = b(y2
1)

1
2 e−by2

1 , − ∞ < y1 < ∞, b > 0

= 2b|y1| e−by2
1 , 0 ≤ y1 < ∞, b > 0, (7.2.37)

and f20 = 0 elsewhere.

7.2.7. Concluding remarks

There exist natural phenomena that are suspected to involve an underlying distribution
which is not Maxwell-Boltzman but may be some deviation therefrom. In such instances,
it is preferable to model the collected data by means of the pathway extended model pre-
viously specified for p = 1, q = 1 (real scalar case), p = 1 (real multivariate case)
and the general matrix-variate case. The pathway parameter α will capture the Maxwell-
Boltzmann case, the neighboring models described by the pathway model for α < 1 and
for α > 1 and the transitional stages when moving from one family of functions to another,
and thus, to all three different families of functions. Incidentally, for γ = 0, one has the
rectangular matrix-variate Gaussian density given in (7.2.5) and its pathway extension in
(7.2.16) and (7.2.17) or the general extensions in the standard forms in (7.2.30), (7.2.31),
and (7.2.32) wherein γ = 0. The structures in (7.2.24), (7.2.27), and (7.2.28) suggest that
the corresponding densities can also be written in terms of G- and H-functions. For the
theory and applications of the G- and H-functions, the reader is referred to Mathai (1993)
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and Mathai et al. (2010), respectively. The complex analogues of some matrix-variate dis-
tributions, including the matrix-variate Gaussian, were introduced in Mathai and Provost
(2006). Certain bivariate distributions are discussed in Balakrishnan and Lai (2009) and
some general method of generating real multivariate distributions are presented in Mar-
shall and Olkin (1967).

Example 7.2.4. Let X = (xij ) be a real p × q, q ≥ p, matrix of rank p, where the xij ’s
are distinct real scalar variables. Let the constant matrices A = b > 0 be 1×1 and B > O

be q × q. Consider the following generalized multivariate Maxwell-Boltzmann density

f (X) = c |AXBX′|γ e−[tr(AXBX′)]δ

for δ > 0, A = b > 0, X = [x1, . . . , xq]. Evaluate c if f (X) is a density.

Solution 7.2.4. Since X is 1×q, |AXBX′| = b[XBX′] where XBX′ is a real quadratic
form. For f (X) to be a density, we must have

1 =
∫

X

f (X)dX = c bγ

∫

X

[XBX′]γ e−[(bXBX′)]δdX. (i)

Let us make the transformations Y = XB
1
2 and s = YY ′. Then (i) reduces to the following:

1 = c bγ π
q
2

Γ (
q
2 )

|B|− 1
2

∫ ∞

0
sγ+ q

2 −1e−(bs)δds. (ii)

Letting t = bδsδ, b > 0, s > 0 ⇒ ds = 1
δ

t
1
δ
−1

b
dt , (ii) becomes

1 = c
π

q
2

δ b
q
2 Γ (

q
2 )|B| 1

2

∫ ∞

0
t

γ
δ
+ q

2δ
−1e−tdt

= c
π

q
2 Γ (

γ
δ

+ q
2δ

)

δ b
q
2 Γ (

q
2 )|B| 1

2

.

Hence,

c = δ b
q
2 Γ (

q
2 )|B| 1

2

π
q
2 Γ (

γ
δ

+ q
2δ

)
.

No additional conditions are required other than γ > 0, δ > 0, q > 0, B > O. This
completes the solution.



Rectangular Matrix-Variate Distributions 511

7.2a. Complex Matrix-Variate Gamma and Maxwell-Boltzmann Densities

The matrix-variate gamma density in the real positive definite matrix case was defined
in equation (5.2.4) of Sect. 5.2. The corresponding matrix-variate gamma density in the
complex domain was given in Eq. (5.2a.4). Those distributions will be extended to the
rectangular matrix-variate cases in this section. A particular case of the rectangular matrix-
variate gamma in the complex domain will be called the Maxwell-Boltzmann density in
the complex matrix-variate case. Let X̃ = (x̃ij ) be a p × q, q ≥ p, rectangular matrix of
rank p in the complex domain whose elements x̃ij are distinct scalar complex variables.
Let |det(·)| denote the absolute value of the determinant of (·). Let A of order p × p and
B of order q × q be real positive definite or Hermitian positive definite constant matrices.
The conjugate transpose of X̃ will be denoted by X̃∗. Consider the function:

f̃ (X̃)dX̃ = c̃ |det(AX̃BX̃∗)|γ e−tr(AX̃BX̃∗)dX̃ (7.2a.1)

for A > O, B > O, �(γ + q) > p − 1 where c̃ is the normalizing constant so that f̃ (X̃)

is a statistical density. One can evaluate c̃ by proceeding as was done in the real case. Let

Ỹ = A
1
2 X̃B

1
2 ⇒ dỸ = |det(A)|q |det(B)|pdX̃,

the Jacobian of this matrix transformation being provided in Chap. 1 or Mathai (1997).
Then, f̃ (X̃) becomes

f̃1(Ỹ ) dỸ = c̃ |det(A)|−q |det(B)|−p|det(Ỹ Ỹ ∗)|γ e−tr(Ỹ Ỹ ∗)dỸ . (7.2a.2)

Now, letting

S̃ = Ỹ Ỹ ∗ ⇒ dỸ = πqp

Γ̃p(q)
|det(S̃)|q−pdS̃

by applying Result 4.2a.3 where Γ̃p(q) is the complex matrix-variate gamma function, f̃1

changes to

f̃2(S̃) dS̃ = c̃ |det(A)|−q |det(B)|−p πqp

Γ̃p(q)

× |det(S̃)|γ+q−pe−tr(S̃)dS̃. (7.2a.3)
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Finally, integrating out S̃ by making use of a complex matrix-variate gamma integral, we
have Γ̃p(γ +q) for �(γ +q) > p−1. Hence, the normalizing constant c̃ is the following:

c̃ = |det(A)|q |det(B)|p
πqp

Γ̃p(q)

Γ̃p(γ + q)
, �(γ + q) > p − 1, A > O, B > O. (7.2a.4)

Example 7.2a.1. Evaluate the normalizing constant in the density in (7.2a.1) if γ =
2, q = 3, p = 2,

A =
[

3 1 + i

1 − i 2

]

, B =
⎡

⎣
3 0 i

0 2 1 + i

−i 1 − i 2

⎤

⎦ .

Solution 7.2a.1. Note that A and B are both Hermitian matrices since A = A∗ and

B = B∗. The leading minors of A are |(3)| = 3 > 0,

∣
∣
∣
∣

3 1 + i

1 − i 2

∣
∣
∣
∣ = (3)(2) − (1 +

i)(1 − i) = 4 > 0 and hence, A > O (positive definite). The leading minors of B

are |(3)| = 3 > 0,

∣
∣
∣
∣
3 0
0 2

∣
∣
∣
∣ = 6 > 0, |B| = 3

∣
∣
∣
∣

2 1 + i

1 − i 2

∣
∣
∣
∣ + 0 + i

∣
∣
∣
∣

0 2
−i 1 − i

∣
∣
∣
∣ =

3(4 − 2) + i(2i) = 4 > 0. Hence B > O and |B| = 4. The normalizing constant

c̃ = |det(A)|q |det(B)|p
πpq

Γ̃p(q)

Γ̃p(γ + q)

= (4)3(4)2

π6

Γ̃2(3)

Γ̃2(5)
= 45

π6

πΓ (3)Γ (2)

πΓ (5)Γ (4)

= 27

32π6
.

This completes the computations.

7.2a.1. Extension of the Matrix-Variate Gamma Density in the Complex Domain

Consider the density of X̃ is given in (7.2a.1) with c̃ given in (7.2a.4). The density of
Ỹ = A

1
2 X̃B

1
2 is given by

f1(Ỹ ) = Γ̃p(q)

πqpΓ̃p(γ + q)
|det(Ỹ Ỹ ∗)|γ e−tr(Ỹ Ỹ ∗) (7.2a.5)

for �(γ + q) > p − 1, and f̃1 = 0 elsewhere, and the density of S̃ = Ỹ Ỹ ∗ is
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f̃2(S̃) = 1

Γ̃p(γ + q)
|det(S̃)|γ+q−pe−tr(S̃), �(γ + q) > p − 1, (7.2a.6)

and f̃2 = 0 elsewhere. Then, the density given in (7.2a.1), namely, f̃ (X̃) for γ = 1 will
be called the Maxwell-Boltzmann density for the complex rectangular matrix-variate case
since for p = 1 and q = 1 in the real scalar case, the density corresponds to the case
γ = 1, and (7.2a.1) for γ = 1

2 will be called complex rectangular matrix-variate Raleigh
density.

7.2a.2. The multivariate gamma density in the complex matrix-variate case

Consider the case p = 1 and A = b > 0 where b is a real positive scalar as the p × p

matrix A is assumed to be Hermitian positive definite. Then, X̃ is 1 × q and

AX̃BX̃∗ = bX̃BX̃∗ = b(x̃1, . . . , x̃q)B

⎛

⎜
⎝

x̃∗
1
...

x̃∗
q

⎞

⎟
⎠

is a positive definite Hermitian form, an asterisk denoting only the conjugate when the
elements are scalar quantities. Thus, when p = 1 and A = b > 0, the density f̃ (X̃)

reduces to

f̃3(X̃) = bγ+q |det(B)| Γ̃ (q)

πqΓ̃ (γ + q)
|det(X̃BX̃∗)|γ e−b(X̃BX̃∗) (7.2a.7)

for X̃ = (x̃1, . . . , x̃q), B = B∗ > O, b > 0, �(γ + q) > 0, and f̃3 = 0 elsewhere.

Letting Ỹ ∗ = B
1
2 X̃∗, the density of Ỹ is the following:

f̃4(Ỹ ) = bγ+qΓ̃ (q)

πqΓ̃ (γ + q)
(|ỹ1|2 + · · · + |ỹq |2)γ e−b(|ỹ1|2+···+|ỹq |2) (7.2a.8)

for b > 0, �(γ + q) > 0, and f̃4 = 0 elsewhere, where |ỹj | is the absolute value or
modulus of the complex quantity ỹj . We will take (7.2a.8) as the complex multivariate
gamma density; when γ = 1, it will be referred to as the complex multivariate Maxwell-
Boltzmann density, and when γ = 1

2 , it will be called complex multivariate Raleigh den-
sity. These densities are believed to be new.

Let us verify by integration that (7.2a.8) is indeed a density. First, consider the trans-
formation s = Ỹ Ỹ ∗. In view of Theorem 4.2a.3, the integral over the Stiefel mani-
fold gives dỸ = πq

Γ̃ (q)
s̃q−1ds̃, so that πq

Γ̃ (q)
is canceled. Then, the integral over s̃ yields
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b−(γ+q)Γ̃ (γ + q), �(γ + q) > 0, and hence it is verified that (7.2a.8) is a statistical
density.

7.2a.3. Arbitrary moments, complex case

Let us determine the h-th moment of u = |det(AX̃BX̃∗)| for an arbitrary h, that is,
the h-th moment of the absolute value of the determinant of the matrix AX̃BX̃∗ or its
symmetric form A

1
2 X̃BX̃∗A 1

2 , which is

E[|det(AX̃BX̃∗)|h = c̃

∫

X̃

|det(AX̃BX̃)|h+γ e−tr(A
1
2 X̃BX̃∗A

1
2 )dX̃. (7.2a.9)

Observe that the only change, as compared to the total integral, is that γ is replaced by
γ + h, so that the h-th moment is available from the normalizing constant c̃. Accordingly,

E[uh] = Γ̃p(γ + q + h)

Γ̃p(γ + q)
, �(γ + q + h) > p − 1, (7.2a.10)

=
p∏

j=1

Γ (γ + q + h − (j − 1))

Γ (γ + q − (j − 1))

= E(uh
1)E(uh

2) · · · E(uh
p) (7.2a.11)

where the uj ’s are independently distributed real scalar gamma random variables with pa-
rameters (γ + q − (j − 1), 1), j = 1, . . . , p. Thus, structurally u = |det(AX̃BX̃∗)| is
a product of independently distributed real scalar gamma random variables with param-
eters (γ + q − (j − 1), 1), j = 1, . . . , p. The corresponding result in the real case is
that |AXBX′| is structurally a product of independently distributed real gamma random
variables with parameters (γ + q

2 − j−1
2 , 1), j = 1, . . . , p, which can be seen from

(7.2.15).

7.2a.4. A pathway extension in the complex case

A pathway extension is also possible in the complex case. The results and properties
are parallel to those obtained in the real case. Hence, we will only mention the pathway
extended density. Consider the following density:

f̃5(X̃) = c̃1|det(A
1
2 X̃BX̃∗A

1
2 )|γ |det(I − a(1 − α)A

1
2 X̃BX̃∗A

1
2 )| η

1−α (7.2a.12)

for a > 0, α < 1, I − a(1 − α)A
1
2 X̃BX̃∗A 1

2 > O (positive definite), A > O, B >

O, η > 0, �(γ + q) > p − 1, and f̃5 = 0 elsewhere. Observe that (7.2a.12) remains in
the generalized type-1 beta family of functions for α < 1 (type-1 and type-2 beta densities
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in the complex rectangular matrix-variate cases will be considered in the next sections). If
α > 1, then on writing 1 − α = −(α − 1), α > 1, the model in (7.2a.12) shifts to the
model

f̃6(X̃) = c̃2|det(A
1
2 X̃BX̃∗A

1
2 )|γ |det(I + a(α − 1)A

1
2 X̃BX̃∗A

1
2 )|− η

α−1 (7.2a.13)

for a > 0, α > 1, A > O, B > O, A
1
2 X̃BX̃∗A 1

2 > O, η > 0, �(
η

α−1 − γ − q) >

p − 1, �(γ + q) > p − 1, and f̃6 = 0 elsewhere, where c̃2 is the normalizing constant,
different from c̃1. When α → 1, both models (7.2a.12) and (7.2a.13) converge to the
model f̃7 where

f̃7(X̃) = c̃3|det(A
1
2 X̃BX̃∗A

1
2 )|γ e−a η tr(A

1
2 X̃BX̃∗A

1
2 ) (7.2a.14)

for a > 0, η > 0, A > O, B > O, �(γ + q) > p − 1, A
1
2 X̃BX̃∗A 1

2 > O, and f̃7 = 0
elsewhere. The normalizing constants can be evaluated by following steps parallel to those
used in the real case. They respectively are:

c̃1 = |det(A)|q |det(B)|p[a(1 − α)]p(γ+q) Γ̃p(q)

πqp

Γ̃p(γ + q + η
1−α

+ p)

Γ̃p(γ + q)Γ̃p(
η

1−α
+ p)

(7.2a.15)

for η > 0, a > 0, α < 1, A > O, B > O, �(γ + q) > p − 1;

c̃2 = |det(A)|q |det(B)|p[a(α − 1)]p(γ+q) Γ̃p(q)

πqp

Γ̃p(
η

α−1)

Γ̃p(γ + q)Γ̃p(
η

α−1 − γ − q)
(7.2a.16)

for a > 0, α > 1, η > 0, A > O, B > O, �(γ +q) > p−1, �(
η

α−1 −γ −q) > p−1;

c̃3 = (aη)p(γ+q)|det(A)|q |det(B)|p Γ̃p(q)

πqpΓ̃p(γ + q)
(7.2a.17)

for a > 0, η > 0, A > O, B > O, �(γ + q) > p − 1.

7.2a.5. The Maxwell-Boltzmann and Raleigh cases in the complex domain

The complex counterparts of the Maxwell-Boltzmann and Raleigh cases may not be
available in the literature. Their densities can be derived from (7.2a.8). Letting p = 1 and
q = 1 in (7.2a.8), we have

f̃8(ỹ1) = bγ+1

πΓ̃ (γ + 1)
[|ỹ1|2]γ e−b|ỹ1|2, ỹ1 = y11 + iy12, i = √(−1),

= bγ+1

πΓ̃ (γ + 1)
[y2

11 + y2
12]γ e−b(y2

11+y2
12) (7.2a.18)
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for b > 0, �(γ + 1) > 0, − ∞ < y1j < ∞, j = 1, 2, and f̃8 = 0 elsewhere. We
may take γ = 1 as the Maxwell-Boltzmann case and γ = 1

2 as the Raleigh case. Then, for
γ = 1, we have

f̃9(ỹ1) = b2

π
|ỹ1|2e−b|ỹ1|2, ỹ1 = y11 + iy12

for b > 0, − ∞ < y1j < ∞, j = 1, 2, and f̃9 = 0 elsewhere. Note that in the

real case y12 = 0 so that the functional part of f̃6 becomes y2
11e−by2

11, − ∞ < y11 < ∞.
However, the normalizing constants in the real and complex cases are evaluated in different
domains. Observe that, corresponding to (7.2a.18), the normalizing constant in the real
case is bγ+ 1

2 /[π 1
2 Γ (γ + 1

2)]. Thus, the normalizing constant has to be evaluated separately.
Consider the integral

∫ ∞

−∞
y2

11e−by2
11dy11 = 2

∫ ∞

0
y2

11e−by2
11dy11 =

∫ ∞

0
u

3
2 −1e−budu =

√
π

2b
3
2

.

Hence,

f10(y11) = 2b
3
2√
π

y2
11e−by2

11, − ∞ < y11 < ∞, b > 0,

= 4b
3
2√
π

y2
11e−by2

11, 0 ≤ y11 < ∞, b > 0, (7.2a.19)

and f10 = 0 elsewhere. This is the real Maxwell-Boltzmann case. For the Raleigh case,
letting γ = 1

2 in (7.2a.18) yields

f̃11(ỹ1) = b
3
2

πΓ (3
2)

[|ỹ1|2] 1
2 e−b(|ỹ1|2), b > 0,

= 2b
3
2

π
3
2

[y2
11 + y2

12]
1
2 e−b(y2

11+y2
12), − ∞ < y1j < ∞, j = 1, 2, b > 0,

(7.2a.20)

and f̃11 = 0 elsewhere. Then, for y12 = 0, the functional part of f̃11 is |y11| e−by2
11 with

−∞ < y11 < ∞. The integral over y11 gives

∫ ∞

−∞
|y11| e−by2

11dy11 = 2
∫ ∞

0
y11 e−by2

11dy11 = b−1.
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Thus, in the Raleigh case,

f12(y11) = b |y11| e−by2
11, − ∞ < y11 < ∞, b > 0,

= 2 b y11 e−by2
11, 0 ≤ y11 < ∞, b > 0, (7.2a.21)

and f12 = 0 elsewhere. The normalizing constant in (7.2a.18) can be verified by making
use of the polar coordinate transformation: y11 = r cos θ, y12 = r sin θ , so that dy11 ∧
dy12 = r dr ∧ dθ , 0 < θ ≤ 2π, 0 ≤ r < ∞. Then,

∫ ∞

−∞

∫ ∞

−∞
[y2

11 + y2
12]γ e−(y2

11+y2
12)dy11 ∧ dy12 = 2π

∫ ∞

0
(r2)γ e−br2

rdr

= π b−(γ+1) Γ (γ + 1)

for b > 0, �(γ + 1) > 0.

Exercises 7.2

7.2.1. Supply a proof to (7.2.9) by using Theorem 4.2.3.

7.2.2. Derive the exact density of the determinant in (7.2.15) for p = 2.

7.2.3. Verify the results in (7.2.18) and (7.2.19).

7.2.4. Derive the normalizing constants c̃1 in (7.2a.12) and c̃2 in (7.2a.13).

7.2.5. Derive c̃3 in (7.2a.14) by integrating out over X̃.

7.2.6. Approximate c̃1 and c̃2 of Exercise 7.2.4 by making use of Stirling’s approxima-
tion, and then show that the result agrees with that in Exercise 7.2.5.

7.2.7. Derive (state and prove) for the complex case the lemmas corresponding to Lem-
mas 7.2.1 and 7.2.2.

7.3. Real Rectangular Matrix-Variate Type-1 and Type-2 Beta Densities

Let us begin with the real case. Let A > O be p × p and B > O be q × q where A

and B are real constant matrices. Let X = (xij ) be a p × q, q ≥ p, matrix of distinct real

scalar variables xij ’s as its elements, X being of full rank p. Then, A
1
2 XBX′A 1

2 > O is

real positive definite where A
1
2 is the positive definite square root of the positive definite

matrix A. Let |(·)| represent the determinant of (·) when (·) is real or complex, and |det(·)|
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be the absolute value of the determinant of (·) when (·) is in the complex domain. Consider
the following density:

g1(X) = C1|A 1
2 XBX′A

1
2 |γ |I − A

1
2 XBX′A

1
2 |β−p+1

2 (7.3.1)

for A > O, B > O, I −A
1
2 XBX′A 1

2 > O, �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 , and g1 = 0

elsewhere, where C1 is the normalizing constant. Accordingly, U = A
1
2 XBX′A 1

2 > O

and I−U > O or U and I−U are both positive definite. We now make the transformations
Y = A

1
2 XB

1
2 and S = YY ′. Then, proceeding as in the case of the rectangular matrix-

variate gamma density discussed in Sect. 7.2, and evaluating the final part involving S

with the help of a real positive definite matrix-variate type-1 beta integral, we obtain the
following normalizing constant:

C1 = |A| q
2 |B|p

2
Γp(

q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(β)Γp(γ + q
2 )

(7.3.2)

for A > O, B > O, �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 . Usually the parameters associated

with a statistical density are real, which is the case for γ and β. Nonetheless, the conditions
will be stated for general complex parameters. When the density of X is as given in g1, the
density of Y = A

1
2 XB

1
2 is given by

g2(Y ) = Γp(
q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(β)Γp(γ + q
2 )

|YY ′|γ |I − YY ′|β−p+1
2 (7.3.3)

for �(γ + q
2 ) >

p−1
2 , YY ′ > O, I − YY ′ > O, and g2 = 0 elsewhere. When X has the

density specified in (7.3.1), the density of S = YY ′ is given by

g3(S) = Γp(γ + q
2 + β)

Γp(β)Γp(γ + q
2 )

|S|γ+ q
2 −p+1

2 |I − S|β−p+1
2 (7.3.4)

for �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 , S > O, I − S > O, and g3 = 0 elsewhere,

which is the usual real matrix-variate type-1 beta density. Observe that the density g1(X)

is also available from the pathway form of the real matrix-variate gamma case introduced
in Sect. 7.2.

Example 7.3.1. Let U1 = A
1
2 XBX′A 1

2 , U2 = XBX′, U3 = B
1
2 X′AXB

1
2 and U4 =

X′AX. If X has the rectangular matrix-variate type-1 beta density given in (7.3.1), evaluate
the densities of U1, U2, U3 and U4 whenever possible.
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Solution 7.3.1. The matrix U1 is already present in the density of X, namely (7.3.1).
Now, we have to convert the density of X into the density of U1. Consider the transfor-
mations Y = A

1
2 XB

1
2 , S = YY ′ = U1 and the density of S is given in (7.3.4). Thus, U1

has a real matrix-variate type-1 beta density with the parameters γ + q
2 and β. Now, on

applying the same transformations as above with A = I , the density appearing in (7.3.4),
which is the density of U2, becomes

g3(U2)dU2 = Γp(γ + q
2 + β)

Γp(γ + q
2 )Γ (β)

|A|γ+ q
2 |U2|γ+ q

2 −p+1
2 |I − AU2|β−p+1

2 dU2 (i)

for �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 , A > O, U2 > O, I − A

1
2 U2A

1
2 > O, and

zero elsewhere, so that U2 has a scaled real matrix-variate type-1 beta distribution with
parameters (γ + q

2 , β) and scaling matrix A > O. For q > p, both X′AX and B
1
2 X′AXB

1
2

are positive semi-definite matrices whose determinants are thus equal to zero. Accordingly,
the densities do not exist whenever q > p. When q = p, U3 has a q×q real matrix-variate
type-1 beta distribution with parameters (γ + p

2 , β) and U4 is a scaled version of a type-1
beta matrix variable whose density is of the form given in (i) wherein B is the scaling
matrix and p and q are interchanged. This completes the solution.

7.3.1. Arbitrary moments

The h-th moment of the determinant of U = A
1
2 XBX′A 1

2 with h being arbitrary, is
available from the normalizing constant given in (7.3.2) on observing that when the h-th
moment is taken, the only change is that γ turns into γ + h. Thus,

E[|U |h] = E[|YY ′|h] = E[|S|h]
= Γp(γ + q

2 + h)

Γp(γ + q
2 )

Γp(γ + q
2 + β)

Γp(γ + q
2 + β + h)

(7.3.5)

=
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (γ + q
2 + β − j−1

2 )

Γ (γ + q
2 + β − j−1

2 + h)
(7.3.6)

= E[uh
1]E[uh

2] · · · E[uh
p] (7.3.7)

where u1, . . . , up are mutually independently distributed real scalar type-1 beta random
variables with the parameters (γ + q

2 − j−1
2 , β), j = 1, . . . , p, provided �(β) >

p−1
2

and �(γ + q
2 ) >

p−1
2 .
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7.3.2. Special case: p = 1

For the case p = 1, let the positive definite 1 × 1 matrix A be the scalar b > 0 and X

which is 1 × q, be equal to (x1, . . . , xq). Then,

AXBX′ = b(x1, . . . , xq)B

⎛

⎜
⎝

x1
...

xq

⎞

⎟
⎠

is a real quadratic form, the matrix of the quadratic form being B > O. Letting Y = XB
1
2 ,

dY = |B| 1
2 dX, and the density of Y , denoted by g4(Y ), is then given by

g4(Y ) = bγ+ q
2
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

|YY ′|γ

× |I − bYY ′|β−1, YY ′ > O, I − bYY ′ > O, �(γ + q

2
) > 0, �(β) > 0

= bγ+ q
2
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

[y2
1 + · · · + y2

q ]γ

× [1 − b(y2
1 + · · · + y2

q)]β−1, Y = (y1, . . . , yq), (7.3.8)

for b > 0, �(γ + 1) > 0, �(β) > 0, 1 − b(y2
1 + . . . + y2

q) > 0, and g4 = 0 elsewhere.
The form of the density in (7.3.8) presents some interest as it appears in various areas of
research. In reliability studies, a popular model for the lifetime of components corresponds
to (7.3.8) wherein γ = 0 in both the scalar and multivariate cases. When independently
distributed isotropic random points are considered in connection with certain geometrical
probability problems, a popular model for the distribution of the random points is the type-
1 beta form or (7.3.8) for γ = 0. Earlier results obtained assuming that γ = 0 and the
new case where γ 
= 0 in geometrical probability problems are discussed in Chapter 4 of
Mathai (1999). We will take (7.3.8) as the standard form of the real rectangular matrix-
variate type-1 beta density for the case p = 1 in a p × q, q ≥ p, real matrix X of rank
p. For verifying the normalizing constant in (7.3.8), one can apply Theorem 4.2.3. Letting

S = YY ′, dY = π
q
2

Γ (
q
2 )

|S| q
2 −1dS, which once substituted to dY in (7.3.8) yields a total

integral equal to one upon integrating out S with the help of a real matrix-variate type-1
beta integral (in this case a real scalar type-1 beta integral); accordingly, the constant part
in (7.3.8) is indeed the normalizing constant. In this case, the density of S = YY ′ is given
by

g5(S) = bγ+ q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

|S|γ+ q
2 −1|I − bS|β−1 (7.3.9)
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for S > O, b > 0, �(γ + q
2 ) > 0, �(β) > 0, and g5 = 0 elsewhere. Observe that this S

is actually a real scalar variable.
As obtained from (7.3.8), the type-1 beta form of the density in the real scalar case,

that is, for p = 1 and q = 1, is

g6(y1) = bγ+ 1
2

Γ (γ + 1
2 + β)

Γ (γ + 1
2)Γ (β)

[y2
1 ]γ [1 − by2

1 ]β−1, (7.3.10)

for b > 0, β > 0, γ + 1
2 > 0, − 1√

b
< y1 < 1√

b
, and g6 = 0 elsewhere. When the

support is 0 < y1 < 1√
b
, the above density which is symmetric, is multiplied by two.

7.3a. Rectangular Matrix-Variate Type-1 Beta Density, Complex Case

Consider the following function:

g̃1(X̃) = C̃1|det(A
1
2 X̃BX̃∗A

1
2 )|γ |det(I − A

1
2 X̃BX̃∗A

1
2 )|β−p (7.3a.1)

for A > O, B > O, �(β) > p − 1, �(γ + q) > p − 1, I − A
1
2 X̃BX̃∗A 1

2 > O, and
g̃1 = 0 elsewhere. The normalizing constant can be evaluated by proceeding as in the real
rectangular matrix-variate case. Let Ỹ = A

1
2 X̃B

1
2 so that S̃ = Ỹ Ỹ ∗, and then integrate

out S̃ by using a complex matrix-variate type-1 beta integral, which yields the following
normalizing constant:

C̃1 = |det(A)|q |det(B)|p Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
(7.3a.2)

for �(γ + q) > p − 1, �(β) > p − 1, A > O, B > O.

7.3a.1. Different versions of the type-1 beta density, the complex case

The densities that follow can be obtained from that specified in (7.3a.1) and certain
related transformations. The density of Ỹ = A

1
2 X̃B

1
2 is given by

g̃2(Ỹ ) = Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(Ỹ Ỹ ∗)|γ |det(I − Ỹ Ỹ ∗)|β−p (7.3a.3)

for �(β) > p − 1, �(γ + q) > p − 1, I − Ỹ Ỹ ∗ > O, and g̃2 = 0 elsewhere. The density
of S̃ = Ỹ Ỹ ∗ is the following:

g̃3(S̃) = Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(S̃)|γ+q−p|det(I − S̃)|β−p (7.3a.4)

for �(β) > p − 1, �(γ + q) > p − 1, S̃ > O, I − S̃ > O, and g̃3 = 0 elsewhere.
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7.3a.2. Multivariate type-1 beta density, the complex case

When p = 1, X̃ is the 1×q vector (x̃1, . . . , x̃q) and the 1×1 matrix A will be denoted
by b > 0. The resulting density will then have the same structure as that given in (7.3a.1)
with p replaced by 1 and A replaced by b > 0:

g̃4(X̃) = C̃2|det(X̃BX̃∗)|γ |det(I − bX̃BX̃∗)|β−1 (7.3a.5)

for B > O, b > 0, �(β) > p − 1, �(γ + q) > p − 1, I − bX̃BX̃∗ > O, and g̃4 = 0
elsewhere, where the normalizing constant C̃2 is

C̃2 = bγ+q |det(B)| Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
(7.3a.6)

for b > 0, B > O, �(β) > 0, �(γ + q) > 0. Letting Ỹ = X̃B
1
2 so that dỸ =

|det(B)|dX̃, the density of Ỹ reduces to

g̃5(Ỹ ) = bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
|det(Ỹ Ỹ ∗)|γ |det(I − bỸ Ỹ ∗)|β−1 (7.3a.7)

= bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
[|ỹ1|2 + · · · + |ỹq |2]γ [1 − b(|ỹ1|2 + · · · + |ỹq |2)]β−1

(7.3a.8)

for �(β) > 0, �(γ + q) > 0, 1 − b(|ỹ1|2 + · · · + |ỹq |2) > 0, and g̃5 = 0 elsewhere. The
form appearing in (7.3a.8) is applicable to several problems occurring in various areas, as
was the case for (7.3.8) in the real domain. However, geometrical probability problems do
not appear to have yet been formulated in the complex domain. Let S̃ = Ỹ Ỹ ∗, S̃ being in
this case a real scalar denoted by s whose density is

g̃6(s) = bγ+q Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
sγ+q−1(1 − bs)β−1, b > 0 (7.3a.9)

for �(β) > 0, �(γ + q) > 0, s > 0, 1 − bs > 0, and g̃6 = 0 elsewhere. Thus, s is real
scalar type-1 beta random variable with parameters (γ + q, β) and scaling factor b > 0.
Note that in the real case, the distribution was also a scalar type-1 beta random variable,
but having a different first parameter, namely, γ + q

2 , its second parameter and scaling
factor remaining β and b.
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Example 7.3a.1. Express the density (7.3a.5) explicitly for b = 5, p = 1, q = 2, β =
3, γ = 4, X̃ = [x̃1, x̃2] = [x1 + iy1, x2 + iy2], where xj , yj , j = 1, 2, are real variables,
i = √

(−1), and

B =
[

3 1 + i

1 − i 1

]

.

Solution 7.3a.1. Observe that since B = B∗, B is Hermitian. Its leading minors being

|(3)| = 3 > 0 and

∣
∣
∣
∣

3 1 + i

1 − i 1

∣
∣
∣
∣ = (3)(1) − (1 + i)(1 − i) = 3 − 2 = 1 > 0, B is also

positive definite. Letting Q = X̃BX̃∗,

Q = 3(x1 + iy1)(x1 − iy1) + (1)(x2 + iy2)(x2 − iy2) + (1 + i)(x1 + iy1)(x2 − iy2)

+ (1 − i)(x2 + iy2)(x1 − iy1)

= 3(x2
1 + y2

1) + (x2
2 + y2

2) + (1 + i)[x1x2 + y1y2 − i(x1y2 − x2y1)]
+ (1 − i)[x1x2 + y1y2 − i(x2y1 − x1y2)]

= 3(x2
1 + y2

1) + (x2
2 + y2

2) + 2(x1x2 + y1y2) + 2(x1y2 − x2y1). (i)

The normalizing constant being

bγ+q |det(B)| Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
= 56(1)

Γ (2)

π2

Γ (9)

Γ (6)Γ (3)

= 56

π2

(1!)(8!)
(5!)(2!) = 56(168)

π2
. (ii)

The explicit form of the density (7.3a.5) is thus the following:

g̃4(X̃) = 56(168)

π2
Q3[1 − 5Q]2, 1 − 3Q > 0, Q > 0,

and zero elsewhere, where Q is given in (i). It is a multivariate generalized type-1 complex-
variate beta density whose scaling factor is 5. Observe that even though X̃ is complex,
g̃4(X̃) is real-valued.

7.3a.3. Arbitrary moments in the complex case

Consider again the density of the complex p × q, q ≥ p, matrix-variate random
variable X̃ of full rank p having the density specified in (7.3a.1). Let Ũ = A

1
2 X̃BX̃∗A 1

2 .
The h-th moment of the absolute value of the determinant of Ũ , that is, E[|det(Ũ )|h], will
now be determined for arbitrary h. As before, note that when the expected value is taken,
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the only change is that the parameter γ is replaced by γ +h, so that the moment is available
from the normalizing constant present in (7.3a.2). Thus,

E[|det(Ũ )|h] = Γ̃p(γ + q + h)

Γ̃p(γ + q)

Γ̃p(γ + q + β)

Γ̃p(γ + q + β + h)
(7.3a.10)

=
p∏

j=1

Γ (γ + q + h − (j − 1))

Γ (γ + q − (j − 1))

Γ (γ + q + β − (j − 1))

Γ (γ + q + β − (j − 1) + h)
(7.3a.11)

= E[u1]hE[u2]h · · · E[up]h (7.3a.12)

where u1, . . . , up are independently distributed real scalar type-1 beta random variables
with the parameters (γ +q−(j−1), β) for j = 1, . . . , p. The results are the same as those
obtained in the real case except that the parameters are slightly different, the parameters
being (γ + q

2 − j−1
2 , β), j = 1, . . . , p, in the real domain. Accordingly, the absolute value

of the determinant of Ũ in the complex case has the following structural representation:

|det(Ũ)| = |det(A
1
2 X̃BX̃∗A

1
2 )| = |det(Ỹ Ỹ ∗)| = |det(S̃)| = u1 · · · up (7.3a.13)

where u1, . . . , up are mutually independently distributed real scalar type-1 beta random
variables with the parameters (γ + q − (j − 1), β), j = 1, . . . , p.

We now consider the scalar type-1 beta density in the complex case. Thus, letting
p = 1 and q = 1 in (7.3a.8), we have

g̃7(ỹ1) = bγ+1 1

π

Γ̃ (γ + 1 + β)

Γ̃ (γ + 1)Γ̃ (β)
[|ỹ1|2]γ [1 − b|ỹ1|2]β−1, ỹ1 = y11 + iy12

= bγ+1 1

π

Γ (γ + 1 + β)

Γ (γ + 1)Γ (β)
[y2

11 + y2
12]γ [1 − b(y2

11 + y2
12)]β−1 (7.3a.14)

for b > 0, �(β) > 0, �(γ ) > −1, − ∞ < y1j < ∞, j = 1, 2, 1 − b(y2
11 + y2

12) > 0,

and g̃7 = 0 elsewhere. The normalizing constant in (7.3a.14) can be verified by making
the polar coordinate transformation y11 = r cos θ, y12 = r sin θ , as was done earlier.

Exercises 7.3

7.3.1. Derive the normalizing constant C1 in (7.3.2) and verify the normalizing constants
in (7.3.3) and (7.3.4).

7.3.2. From E[|A 1
2 XBX′A 1

2 |]h or otherwise, derive the h-th moment of |XBX′|. What
is then the structural representation corresponding to (7.3.7)?
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7.3.3. From (7.3.7) or otherwise, derive the exact density of |U | for the cases (1): p =
2; (2): p = 3.

7.3.4. Write down the conditions on the parameters γ and β in (7.3.6) so that the exact
density of |U | can easily be evaluated for some p ≥ 4.

7.3.5. Evaluate the normalizing constant in (7.3.8) by making use of the general polar
coordinate transformation.

7.3.6. Evaluate the normalizing constant in (7.3a.2).

7.3.7. Derive the exact density of |det(Ũ )| in (7.3a.13) for (1): p = 2; (2): p = 3.

7.4. The Real Rectangular Matrix-Variate Type-2 Beta Density

Let us consider a p × q, q ≥ p, matrix X of full rank p and the following associated
density:

g8(X) = C3|AXBX′|γ |I + AXBX′|−(γ+ q
2 +β) (7.4.1)

for A > O, B > O, �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 , and g8 = 0 elsewhere. The

normalizing constant can be seen to be the following:

C3 = |A| q
2 |B|p

2
Γp(

q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(γ + q
2 )Γp(β)

(7.4.2)

for A > O, B > O, �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 . Letting Y = A

1
2 XB

1
2 , its density

denoted by g9(Y ), is

g9(Y ) = Γp(
q
2 )

π
qp
2

Γp(γ + q
2 + β)

Γp(γ + q
2 )Γp(β)

|YY ′|γ |I + YY ′|−(γ+ q
2 +β) (7.4.3)

for �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 , and g9 = 0 elsewhere. The density of S = YY ′ then

reduces to

g10(S) = Γp(γ + q
2 + β)

Γp(γ + q
2 )Γp(β)

|S|γ+ q
2 −p+1

2 |I + S|−(γ+ q
2 +β), (7.4.4)

for �(β) >
p−1

2 , �(γ + q
2 ) >

p−1
2 , and g10 = 0 elsewhere.
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7.4.1. The real type-2 beta density in the multivariate case

Consider the case p = 1 and A = b > 0 in (7.4.1). The resulting density has the
same structure, with A replaced by b and X being the 1 × q vector (x1, . . . , xq). Letting

Y = XB
1
2 , the following density of Y = (y1, . . . , yq), denoted by g11(Y ), is obtained:

g11 = bγ+ q
2
Γ (

q
2 )

π
q
2

Γ (γ + q
2 + β)

Γ (γ + q
2 )Γ (β)

[y2
1 + · · · + y2

q ]γ

× [1 + b(y2
1 + · · · + y2

q)]−(γ+ q
2 +β) (7.4.5)

for b > 0, �(γ + q
2 ) > 0, �(β) > 0, and g11 = 0 elsewhere. The density appearing

in (7.4.5) will be referred to as the standard form of the real rectangular matrix-variate
type-2 beta density. In this case, A is taken as A = b > 0 and Y = XB

1
2 . What might be

the standard form of the real type-2 beta density in the real scalar case, that is, when it is
assumed that p = 1, q = 1, A = b > 0 and B = 1 in (7.4.1)? In this case, it is seen from
(7.4.5) that

g12(y1) = bγ+ 1
2

Γ (γ + 1
2 + β)

Γ (γ + 1
2)Γ (β)

[y2
1 ]γ [1 + by2

1 ]−(γ+ 1
2 +β), − ∞ < y1 < ∞, (7.4.6)

for �(β) > 0, �(γ + 1
2) > 0, b > 0, and g12 = 0 elsewhere.

7.4.2. Moments in the real rectangular matrix-variate type-2 beta density

Letting U = A
1
2 XBX′A 1

2 , what would be the h-th moment of the determinant of U ,
that is, E[|U |h] for arbitrary h? Upon determining E[|U |h], the parameter γ is replaced
by γ + h while the other parameters remain unchanged. The h-th moment which is thus
available from the normalizing constant, is given by

E[|U |h] = Γp(γ + q
2 + h)

Γp(γ + q
2 )

Γp(β − h)

Γp(β)
(7.4.7)

=
p∏

j=1

Γ (γ + q
2 − j−1

2 + h)

Γ (γ + q
2 − j−1

2 )

Γ (β − j−1
2 − h)

Γ (β − j−1
2 )

(7.4.8)

= E[uh
1]E[uh

2] · · · E[uh
p] (7.4.9)

where u1, . . . , up are mutually independently distributed real scalar type-2 beta random
variables with the parameters (γ + q

2 − j−1
2 , β − j−1

2 ), j = 1, . . . , p. That is, (7.4.9) or
(7.4.10) gives a structural representation to the determinant of U as

|U | = |A 1
2 XBX′A

1
2 | = |YY ′| = |S| = u1 · · · up (7.4.10)
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where the uj ’s are mutually independently distributed real scalar type-2 beta random vari-
ables as specified above.

Example 7.4.1. Evaluate the density of u = |A 1
2 XBX′A 1

2 | for p = 2 and the general
parameters γ, q, β where X has a real rectangular matrix-variate type-2 beta density with
the parameter matrices A > O and B > O where A is p × p, B is q × q and X is a
p × q, q ≥ p, rank p matrix.

Solution 7.4.1. The general h-th moment of u can be determined from (7.4.8). Letting
p = 2, we have

E[uh] = Γ (γ + q
2 − 1

2 + h)Γ (γ + q
2 + h)

Γ (γ + q
2 − 1

2)Γ (γ + q
2 )

Γ (β − 1
2 − h)Γ (β − h)

Γ (β − 1
2)Γ (β)

(i)

for −γ − q
2 + 1

2 < �(h) < β − 1
2 , β > 1

2 , γ + q
2 > 1

2 . Since four pairs of gamma func-
tions differ by 1

2 , we can combine them by applying the duplication formula for gamma
functions, namely,

Γ (z)Γ (z + 1/2) = π
1
2 21−2zΓ (2z). (ii)

Take z = γ + q
2 − 1

2 + h and z = γ + q
2 − 1

2 in the first set of gamma ratios in (i) and
z = β − 1

2 − h and z = β − 1
2 in the second set of gamma ratios in (i). Then, we have the

following:

Γ (γ + q
2 − 1

2 + h)Γ (γ + q
2 + h)

Γ (γ + q
2 − 1

2)Γ (γ + q
2 )

= π
1
2 21−2γ−q+1−2hΓ (2γ + q − 1 + 2h)

π
1
2 21−2γ−q+1Γ (2γ + q − 1)

= 2−2hΓ (2γ + q − 1 + 2h)

Γ (2γ + q − 1)
(iii)

Γ (β − 1
2 − h)Γ (β − h)

Γ (β − 1
2)Γ (β)

= π
1
2 21−2β+1+2hΓ (2β − 1 − 2h)

π
1
2 21−2β+1Γ (2β − 1)

= 22hΓ (2β − 1 − 2h)

Γ (2β − 1)
, (iv)

the product of (iii) and (iv) yielding the simplified representation of the h-th moment of u

that follows:

E[uh] = Γ (2γ + q − 1 + 2h)

Γ (2γ + q − 1)

Γ (2β − 1 − 2h)

Γ (2β − 1)
.

Now, since E[uh] = E[u 1
2 ]2h ≡ E[yt ] with y = u

1
2 and t = 2h, we have

E[yt ] = Γ (2γ + q − 1 + t)

Γ (2γ + q − 1)

Γ (2β − 1 − t)

Γ (2β − 1)
. (v)
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As t is arbitrary in (v), the moment expression will uniquely determine the density of y.
Accordingly, y has a real scalar type-2 beta distribution with the parameters (2γ + q −
1, 2β − 1), and so, its density denoted by f (y), is

f (y)dy = Γ (2γ + q + 2β − 2)

Γ (2γ + q − 1)Γ (2β − 1)
y2γ+q−2(1 + y)−(2γ+q+2β−2)dy

= Γ (2γ + q + 2β − 2)

Γ (2γ + q − 1)Γ (2β − 1)

1

2
u− 1

2 uγ+ q
2 −1(1 + u

1
2 )−(2γ+q+2β−2)du.

Thus, the density of u, denoted by g(u), is the following:

g(u) = 1

2

Γ (2γ + q + 2β − 2)

Γ (2γ + q − 1)Γ (2β − 1)
uγ+ q−1

2 −1(1 + u
1
2 )−(2γ+q+2β−2)

for 0 ≤ u < ∞, and zero elsewhere, where the original conditions on the parameters
remain the same. It can be readily verified that g(u) is a density.

7.4.3. A pathway extension in the real case

Let us relabel f10(X) as specified in (7.2.16), as g13(X) in this section:

g13(X) = C4|AXBX′|γ |I − a(1 − α)A
1
2 XBX′A

1
2 | η

1−α (7.4.11)

for A > O, B > O, η > 0, a > 0, α < 1, 1 − a(1 −α)A
1
2 XBX′A 1

2 > O, and g13 = 0
elsewhere, where C4 is the normalizing constant. Observe that for α < 1, a(1 − α) > 0
and hence the model in (7.4.11) is a generalization of the real rectangular matrix-variate
type-1 beta density considered in (7.3.1). When α < 1, the normalizing constant C4 is
of the form given in (7.2.18). For α > 1, we may write 1 − α = −(α − 1), so that
−a(1−α) = a(α−1) > 0, α > 1 in (7.4.11) and the exponent η

1−α
changes to − η

α−1 ; thus,
the model appearing in (7.4.11) becomes the following generalization of the rectangular
matrix-variate type-2 beta density given in (7.4.1):

g14(X) = C5|AXBX′|γ |I + a(α − 1)A
1
2 XBX′A

1
2 |− η

α−1 (7.4.12)

for A > O, B > O, η > 0, a > 0, α > 1 and g14 = 0 elsewhere. The normalizing
constant C5 will then be different from that associated with the type-1 case. Actually, in
the type-2 case, the normalizing constant is available from (7.2.19). The model appearing
in (7.4.12) is a generalization of the real rectangular matrix-variate type-2 beta model
considered in (7.4.1). When α → 1, the model in (7.4.11) converges to a generalized form
of the real rectangular matrix-variate gamma model in (7.2.5), namely,

g15(X) = C6|AXBX′|γ e−a η tr(AXBX′) (7.4.13)
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where

C6 = (aη)p(γ+ q
2 )

|A| q
2 |B|p

2 Γp(
q
2 )

π
qp
2 Γp(γ + q

2 )
(7.4.14)

for a > 0, η > 0, A > O, B > O, �(γ + q
2 ) >

p−1
2 , and g15 = 0 elsewhere. More

properties of the model given in (7.4.11) have already been provided in Sect. 4.2. The real
rectangular matrix-variate pathway model was introduced in Mathai (2005).

7.4a. Complex Rectangular Matrix-Variate Type-2 Beta Density

Let us consider a full rank p × q, q ≥ p, matrix X̃ in the complex domain and the
following associated density:

g̃8(X̃) = C̃3 |det(AX̃BX̃∗)|γ |det(I + AX̃BX̃∗)|−(β+γ+q) (7.4a.1)

for A > O, B > O, �(β) > p − 1, �(γ + q) > p − 1, and g̃8 = 0 elsewhere, where
C̃3 is the normalizing constant. Let

Ỹ = A
1
2 X̃B

1
2 ⇒ dỸ = |det(A)|q |det(B)|pdX̃,

and make the transformation

S̃ = Ỹ Ỹ ∗ ⇒ dỸ = πqp

Γ̃p(q)
|det(S̃)|q−pdS̃.

Then, the integral over S̃ can be evaluated by means of a complex matrix-variate type-2
beta integral. That is,

∫

S̃

|det(S̃)|γ+q−p|det(I + S̃)|−(β+γ+q)dS̃ = Γ̃p(γ + q)Γ̃p(β)

Γ̃p(γ + q + β)
(7.4a.2)

for �(β) > p−1, �(γ +q) > p−1. The normalizing constant C̃3 as well as the densities
of Ỹ and S̃ can be determined from the previous steps. The normalizing constant is

C̃3 = |det(A)|q |det(B)|p Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
(7.4a.3)

for �(β) > p − 1, �(γ + q) > p − 1. The density of Ỹ , denoted by g̃9(Ỹ ), is given by

g̃9(Ỹ ) = Γ̃p(q)

πqp

Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(Ỹ Ỹ ∗)|γ |det(I + Ỹ Ỹ ∗)|−(γ+q+β) (7.4a.4)
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for �(β) > p − 1, �(γ + q) > p − 1, and g̃9 = 0 elsewhere. The density of S̃, denoted
by g̃10(S̃), is the following:

g̃10(S̃) = Γ̃p(γ + q + β)

Γ̃p(γ + q)Γ̃p(β)
|det(S̃)|γ+q−p|det(I + S̃)|−(β+γ+q) (7.4a.5)

for �(β) > p − 1, �(γ + q) > p − 1, and g̃10 = 0 elsewhere.

7.4a.1. Multivariate complex type-2 beta density

As in Sect. 7.3a, let us consider the special case p = 1 in (7.4a.1). So, let the 1 × 1
matrix A be denoted by b > 0 and the 1 × q vector X̃ = (x̃1, . . . , x̃q). Then,

AX̃BX̃∗ = bX̃BX̃∗ = b(x̃1, . . . , x̃q)B

⎛

⎜
⎝

x̃∗
1
...

x̃∗
q

⎞

⎟
⎠ ≡ b Ũ (a)

where, in the case of a scalar, an asterisk only designates a complex conjugate. Note that
when p = 1, Ũ = X̃BX̃∗ is a positive definite Hermitian form whose density, denoted by
g̃11(Ũ), is obtained as:

g̃11(Ũ ) = bγ+q |det(B)| Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
|det(Ũ )|γ |det(I + bŨ)|−(γ+q+β) (7.4a.6)

for �(β) > 0, �(γ + q) > 0 and b > 0, and g̃11 = 0 elsewhere. Now, letting X̃B
1
2 =

Ỹ = (ỹ1, . . . , ỹq), the density of Ỹ , denoted by g̃12(Ỹ ), is obtained as

g̃12(Ỹ ) = bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)
[|ỹ1|2+· · ·+|ỹq |2]γ [1+b(|ỹ1|2+· · ·+|ỹq |2)]−(γ+q+β)

(7.4a.7)
for �(β) > 0, �(γ + q) > 0, b > 0, and g̃12 = 0 elsewhere. The constant in (7.4a.7)
can be verified to be a normalizing constant, either by making use of Theorem 4.2a.3 or a
(2n)-variate real polar coordinate transformation, which is left as an exercise to the reader.

Example 7.4a.1. Provide an explicit representation of the complex multivariate density
in (7.4a.7) for p = 2, γ = 2, q = 3, b = 3 and β = 2.

Solution 7.4a.1. The normalizing constant, denoted by c̃, is the following:

c̃ = bγ+q Γ̃ (q)

πq

Γ̃ (γ + q + β)

Γ̃ (γ + q)Γ̃ (β)

= 35 Γ (3)

π3

Γ (7)

Γ (5)Γ (2)
= 35 (2!)

π3

(6!)
(4!)(1!) = (60)35

π3
. (i)
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Letting ỹ1 = y11 + iy12, ỹ2 = y21 + iy22, ỹ3 = y31 + iy32, y1j , y2j , y3j , j = 1, 2,

being real and i = √
(−1),

Q = |ỹ1|2 + |ỹ2|2 + |ỹ3|2 = (y2
11 + y2

12) + (y2
21 + y2

22) + (y2
31 + y2

32). (ii)

Thus, the required density, denoted by g̃12(Ỹ ) as in (7.4a.7), is given by

g̃12(Ỹ ) = c̃Q2(1 + 3Q)−7, − ∞ < yij < ∞, i = 1, 2, 3, j = 1, 2.

where c̃ is specified in (i) and Q, in (ii). This completes the solution.

The density in (7.4a.6) is called a complex multivariate type-2 beta density in the gen-
eral form and (7.4a.7) is referred to as a complex multivariate type-2 beta density in its
standard form. Observe that these constitute only one form of the multivariate case of a
type-2 beta density. When extending a univariate function to a multivariate one, there is
no such thing as a unique multivariate analogue. There exist a multitude of multivariate
functions corresponding to specified marginal functions, or marginal densities in statisti-
cal problems. In the latter case for instance, there are countless possible copulas associated
with some specified marginal distributions. Copulas actually encapsulate the various de-
pendence relationships existing between random variables. We have already seen that one
set of generalizations to the multivariate case for univariate type-1 and type-2 beta densities
are the type-1 and type-2 Dirichlet densities and their extensions. The densities appearing
in (7.4a.6) and (7.4a.7) are yet another version of a multivariate type-2 beta density in the
complex case.

What will be the resulting distribution when q = 1 in (7.4a.7)? The standard form of
this density then becomes the following, denoted by g̃13(ỹ1):

g̃13(ỹ1) = bγ+1 1

π

Γ (γ + β + 1)

Γ (γ + 1)Γ (β)
[|ỹ1|2]γ [1 + b|ỹ1|2]−(γ+1+β) (7.4a.8)

for �(β) > 0, �(γ + 1) > 0, b > 0, and g̃13 = 0 elsewhere. We now verify that this
is indeed a density function. Let ỹ1 = y11 + iy12, y11 and y12 being real scalar quantities
and i = √

(−1). When ỹ1 is in the complex plane, −∞ < y1j < ∞, j = 1, 2. Let
us make a polar coordinate transformation. Letting y11 = r cos θ and y12 = r sin θ ,
dy11 ∧ dy12 = r dr ∧ dθ , 0 ≤ r < ∞, 0 < θ ≤ 2π . The integral over the functional part
of (7.4a.8) yields
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∫

ỹ1

|ỹ1|2γ [1 + |ỹ1|2]−(γ+1+β)dỹ1 =
∫ ∞

−∞

∫ ∞

−∞
[y2

11 + y2
12]γ

× [1 + b(y2
11 + y2

12)]−(γ+1+β)dy11 ∧ dy12

=
∫ 2π

θ=0

∫ ∞

r=0
[r2]γ [1 + br2]−(γ+1+β)r dθ ∧ dr

= (2π)
(1

2

) ∫ ∞

t=0
tγ (1 + bt)−(γ+1+β)dt

which is equal to

π b−(γ+1) Γ (γ + 1)Γ (β)

Γ (γ + 1 + β)
.

This establishes that the function specified by (7.4a.8) is a density.

7.4a.2. Arbitrary moments in the complex type-2 beta density

Let us consider the h-th moment of |det(Ũ )| = |det(A
1
2 X̃BX̃∗A 1

2 )| in (7.4a.1). Since
the only change upon integration is that γ is replaced by γ +h, the h-th moment is available
from the normalizing constant in (7.4a.2):

E[|det(Ũ )|h] = Γp(γ + q + h)

Γp(γ + q)

Γp(β − h)

Γp(β)
(7.4a.9)

=
p∏

j=1

Γ (γ + q − (j − 1) + h)

Γ (γ + q − (j − 1))

Γ (β − (j − 1) − h)

Γ (β − (j − 1))
(7.4a.10)

= E[uh
1] · · · E[uh

p] (7.4a.11)

where u1, . . . , up mutually independently distributed real scalar type-2 beta random vari-
ables with the parameters (γ + q − (j − 1), β − (j − 1)), j = 1, . . . , p. Thus, |det(Ũ )|
has the structural representation

|det(Ũ)| = |det(A
1
2 X̃BX̃∗A

1
2 )| = |det(Ỹ Ỹ ∗)| = |det(S̃)| = u1 · · · up (7.4a.12)

where the u1, . . . , up are as previously defined. The density for a complex scalar type-2
beta random variable is provided in (7.4a.8).

7.4a.3. A pathway version of the complex rectangular matrix-variate type-1 beta
density

Consider the model specified in (7.2a.12), that is,

g̃14(X̃) = C̃4|det(A
1
2 X̃BX̃∗A

1
2 )|γ |det(I − a(1 − α)A

1
2 X̃BX̃∗A

1
2 )| η

1−α (7.4a.13)
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for a > 0, α < 1, A > O, B > O, η > 0, I −a(1−α)A
1
2 X̃BX̃∗A 1

2 > O, and g̃14 = 0
elsewhere, where C̃4 is the normalizing constant given in (7.2a.15). When α < 1, the
model appearing in (7.4a.13) is a generalization of the complex rectangular matrix-variate
type-1 beta model considered in (7.3a.1). When α > 1, we write 1−α = −(α−1), α > 1
and re-express g̃14 as

g̃15(X̃) = C̃5|det(A
1
2 X̃BX̃∗A

1
2 )|γ |det(I + a(α − 1)A

1
2 X̃BX̃∗A

1
2 )|− η

α−1 (7.4a.14)

for a > 0, α > 1, η > 0, A > O, B > O, and g̃15 = 0 elsewhere, where the
normalizing constant C̃5 is the same as the one in (7.2a.16). Observe that the model in
(7.4a.14) is a generalization of the complex rectangular matrix-variate type-2 beta model
in (7.4.1). When q → 1, the models in (7.4a.13) and (7.4a.14) both converge to the
following model:

g̃16(X̃) = C̃6|det(A
1
2 X̃BX̃∗A

1
2 )|γ e−a η tr(A

1
2 X̃BX̃∗A

1
2 ) (7.4a.15)

for a > 0, η > 0, A > O, B > O, and g̃16 = 0 elsewhere, where the normalizing
constant C̃6 is the same as that in (7.2a.17). The model specified in (7.4a.15) is a gener-
alization of the complex rectangular matrix-variate gamma model considered in (7.2a.1).
Thus, model in (7.4a.13) contains all the three models (7.4a.13), (7.4a.14), and (7.4a.15),
which are generalizations of the models given in (7.3a.1), (7.4a.1), and (7.2a.1), respec-
tively. The pathway model in the complex domain, namely (7.4a.13), was introduced in
Mathai and Provost (2006). Additional properties of the pathway model have already been
discussed in Sect. 7.2a.

Exercises 7.4

7.4.1. Following the instructions or otherwise, derive the normalizing constant C̃3 in
(7.4a.3).

7.4.2. By integrating over Ỹ , show that (7.4a.4) is a density.

7.4.3. Evaluate the normalizing constant in (7.4a.7) by using (1): Theorem 4.2a.3; (2): a
(2n)-variate real polar coordinate transformation.

7.4.4. Given the standard real matrix-variate type-2 beta model in (7.4.5), evaluate the
marginal joint density of y1, . . . , yr , r < p.

7.4.5. Evaluate the density in (7.4a.4) explicitly for p = 1 and q = 2.
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7.4.6. Given the standard complex matrix-variate type-2 beta model in (7.4a.7), evaluate
the joint marginal density of ỹ1, . . . , ỹr , r < p.

7.4.7. Derive the density of |det(Ũ )| in (7.4a.12) for the cases (1): p = 1; (2): p = 2.

7.4.8. Derive the density of |U | in (7.4.10) for (1): p = 2; (2): p = 3.

7.5,7.5a. Ratios Involving Rectangular Matrix-Variate Random Variables

Since scalar variables such as type-1 beta, type-2 beta, F, Student-t and Cauchy vari-
ables are all associated with ratios of independently distributed random variables, we will
explore ratios involving rectangular matrix-variate random variables. Such ratios will yield
the rectangular matrix-variate versions of the aforementioned ratios of scalar variables. Let
the p × n1, p ≤ n1, full rank matrix X1 and the p × n2, p ≤ n2, full rank matrix X2

be independently distributed real matrix-variate random variables having the rectangular
matrix-variate gamma densities specified in (7.2.5), that is,

fj (Xj ) = |Aj |
nj
2 |Bj |p

2 Γp(
nj

2 )

π
nj p

2 Γp(γj + nj

2 )
|AjXjBjX

′
j |γj e−tr(AjXjBjX

′
j ), j = 1, 2, (7.5.1)

for Aj > O, Bj > O, �(γj + nj

2 ) >
p−1

2 , and nj ≥ p where Aj is p × p and Bj is
nj × nj . Then, owing to the statistical independence of the variables, the joint density of
X1 and X2 is f (X1, X2) = f1(X1)f2(X2). Consider the ratios

U1 =
⎛

⎝
2∑

j=1

(

A
1
2
j XjBjX

′
jA

1
2
j

)
⎞

⎠

− 1
2 (

A
1
2
1 X1B1X

′
1A

1
2
1

)
⎛

⎝
2∑

j=1

(

A
1
2
j XjBjX

′
jA

1
2
j

)
⎞

⎠

− 1
2

(i)

and

U2 =
(

A
1
2
2 X2B2X

′
2A

1
2
2

)− 1
2
(

A
1
2
1 X1B1X

′
1A

1
2
1

)(

A
1
2
2 X2B2X

′
2A

1
2
2

)− 1
2

. (ii)

Let us derive the densities of U1 and U2. Letting Vj = A
1
2
j XjB

1
2
j , we have dXj =

|Aj |−
nj
2 |Bj |−p

2 dVj . Denoting the joint density of V1 and V2 by g(V1, V2), it follows that
f (X1, X2)dX1 ∧ dX2 = g(V1, V2)dV1 ∧ dV2 and so,

g(V1, V2)dV1∧dV2 =
⎧
⎨

⎩

2∏

j=1

Γp(
nj

2 )

π
nj p

2 Γp(γj + nj

2 )

⎫
⎬

⎭
|V1V

′
1|γ1|V2V

′
2|γ2e−tr(V1V

′
1+V2V

′
2)dV1∧dV2.
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Letting Wj = VjV
′
j , dVj = π

nj p

2

Γp(
nj
2 )

|Wj |
nj
2 −p+1

2 dWj, and the joint density of W1 and W2,

denoted by h(W1, W2), is the following:

h(W1, W2) =
⎧
⎨

⎩

2∏

j=1

1

Γp(γj + nj

2 )

⎫
⎬

⎭
|W1|γ1+ n1

2 −p+1
2 |W2|γ2+ n2

2 −p+1
2 e−tr(W1+W2). (7.5.2)

Note that U1 = (W1 + W2)
− 1

2 W1(W1 + W2)
− 1

2 and U2 = W
− 1

2
2 W1W

− 1
2

2 . Then, given
the relationship between independently distributed matrix-variate gamma variables and
a type-1 matrix-variate beta variable and a type-2 matrix-variate beta variable, U1 and
U2 are distributed as real matrix-variate type-1 beta and type-2 beta random variables,
respectively, both with the parameters (γ1 + n1

2 , γ2 + n2
2 ), that is,

U1 ∼ type-1 beta
(
γ1 + n1

2
, γ2 + n2

2

)
and U2 ∼ type-2 beta

(
γ1 + n1

2
, γ2 + n2

2

)
.

Thus, we have the following result:

Theorem 7.5.1. Let X1 of dimension p×n1, p ≤ n1, and X2 of dimension p×n2, p ≤
n2, be rank p matrices that are independently distributed rectangular real matrix-variate
gamma random variables whose densities are specified in (7.5.1). Then, as defined in
(i) and (ii), U1 and U2 are respectively real matrix-variate type-1 beta and type-2 beta
distributed with the same parameters (γ1 + n1

2 , γ2 + n2
2 ). Thus they have the following

densities, denoted by gj (Uj ), j = 1, 2 :

g1(U1)dU1 = c |U1|γ1+ n1
2 −p+1

2 |I − U1|γ2+ n2
2 −p+1

2 dU1, O < U1 < I, (7.5.3)

and zero elsewhere, and

g2(U2)dU2 = c |U2|γ1+ n1
2 −p+1

2 |I + U2|−(γ1+γ2+ n1
2 + n2

2 )dU2, U2 > O, (7.5.4)

where

c = Γp(γ1 + γ2 + n1
2 + n2

2 )

Γp(γ1 + n1
2 )Γp(γ2 + n2

2 )
, �

(
γj + nj

2

)
>

p − 1

2
, j = 1, 2.

Analogous derivations will yield the densities of Ũ1 and Ũ2, the corresponding matrix-
variate random variables in the complex domain:
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Theorem 7.5a.1. Let X̃1 of dimension p×n1, p ≤ n1, and X̃2 of dimension p×n2, p ≤
n2, be full rank rectangular matrix-variate complex gamma random variables that are
independently distributed whose densities are

f̃j (X̃j )dX̃j = |Aj |nj |Bj |pΓ̃p(nj )

πnjpΓ̃p(γj + nj )
|det(Aj X̃jBj X̃

∗
j )|γj e−tr(Aj X̃jBj X̃

∗
j )dX̃j (7.5a.1)

where Aj = A∗
j > O and Bj = B∗

j > O with Aj being p × p and Bj, nj × nj ,

p ≤ nj , j = 1, 2. Letting

Ũ1 =
( 2∑

j=1

A
1
2
j X̃jBj X̃

∗
jA

1
2
j

)− 1
2
(A

1
2
1 X̃1B1X̃

∗
1A

1
2
1 )
( 2∑

j=1

A
1
2
j X̃jBj X̃

∗
jA

1
2
j

)− 1
2

and

Ũ2 = (A
1
2
2 X̃2B2X̃

∗
2A

1
2
2 )−

1
2 (A

1
2
1 X̃1B1X̃

∗
1A

1
2
1 )(A

1
2
2 X̃2B2X̃

∗
2A

1
2
2 )−

1
2 , (7.5a.2)

the densities of Ũ1 and Ũ2, denoted by g̃j (Ũj ), j = 1, 2, are respectively given by

g̃1(Ũ1)dŨ1 = c̃ |det(Ũ1)|γ1+n1−p|det(I − Ũ1)|γ2+n2−pdŨ1, O < Ũ1 < I, (7.5a.3)

and

g̃2(Ũ2)dŨ2 = c̃ |det(Ũ2)|γ1+n1−p|det(I + Ũ2)|−(γ1+γ2+n1+n2)dŨ2, Ũ2 > O, (7.5a.4)

where

c̃ = Γ̃p(γ1 + γ2 + n1 + n2)

Γ̃p(γ1 + n1)Γ̃p(γ2 + n2)
, �(γj + nj ) > p − 1, j = 1, 2.

The densities specified in (7.5.4) and (7.5a.4) happen to be quite useful in real-life
applications. Connections of the type-2 beta distribution to the F-distribution, the Student-
t2 distribution and the distribution of the sample correlation coefficient when the pop-
ulation is Gaussian, have already been pointed out in the course of our previous dis-
cussions with respect to the scalar, vector variable and matrix-variate cases. Some fur-
ther relationships are next pointed out. Let {Y1, . . . , Yn} constitutes a simple random

sample where Yj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n, and the sample matrix be

denoted by Y = [Y1, Y2, . . . , Yn]; letting Ȳ = 1
n
[Y1 + · · · + Yn] and the matrix of

sample means be Ȳ = [Ȳ , . . . , Ȳ ], the sample sum of products (corrected) matrix is
S = (Y − Ȳ)(Y − Ȳ)′, which is unaffected by μ. We have determined that S follows
a real Wishart distribution having m = n − 1 degrees of freedom, and that when μ is
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known to be a null vector, YY′ is real Wishart matrix with n degrees of freedom. Now,

consider A
1
2 Yj

iid∼ Np(A
1
2 μ, A

1
2 ΣA

1
2 ); when μ = O, the sample sum of products matrix

is A
1
2 YY ′A 1

2 , which can be expressed in the form of the product of matrices appearing in
(7.5.1) with B = I . Hence, we can regard A

1
2 XBX′A 1

2 (or equivalently AXBX′ in the
determinant in (7.5.1)) as a weighted sample sum of products matrix with sample sizes n1

and n2. Then, the type-2 beta density in (7.5.4) with U2 replaced by n1
n2

U2 corresponds to
a generalized real rectangular matrix-variate F-density having n1 and n2 degrees of free-
dom where U2 is as defined in (ii). Moreover, for γ1 = 0 = γ2, this density will correspond
to a rectangular matrix-variate Student-t density. The material included in Sect. 7.5,7.5a
may not be available in the literature.

7.5.1. Multivariate F, Student-t and Cauchy densities

The densities appearing in (7.5.4) and (7.5a.4) for the p × p positive definite matrices
U2 and Ũ2 have dU2 and dŨ2 as differential elements. A positive definite matrix such as
U2, can be expressed as U2 = T T ′ where T of dimension p × n1, p ≤ n1, has rank
p, and we can write dU2 in terms of dT . We can also consider the format U2 = T CT ′
where C > O is an n1 ×n1 positive definite constant matrix. In other words, we can arrive
at the format in (7.4.1) from (7.5.4), and correspondingly obtain (7.4a.1) from (7.5a.4).
Let us re-examine the expressions given in (7.4.1) and (7.4a.1), which could be referred
to as rectangular matrix-variate F and Student-t densities in the real and complex cases
for specific values of the parameters β and γ . Now, let p = 1 and A = a > 0 in (7.4.1)
wherein a location parameter vector μ is inserted. The resulting density is

h(X)dX = aγ+ q
2 |B| 1

2 Γ (
q
2 )Γ (γ + q

2 + β)

π
q
2 Γ (γ + q

2 )Γ (β)
[(X − μ)B(X − μ)′]γ

× [1 + a(X − μ)B(X − μ)′]−(γ+ q
2 +β)dX (7.5.5)

where X and μ are 1 × q row vectors, the corresponding density in the complex domain,
denoted by h̃(X̃), being the following:

h̃(X̃)dX̃ = |a|γ+q |det(B)|Γ (q)Γ (γ + q + β)

πq Γ (γ + q)Γ (β)
[(X̃ − μ̃)B(X̃ − μ̃)∗]γ

× [1 + a(X̃ − μ̃)B(X̃ − μ̃)∗]−(γ+q+β)dX̃. (7.5a.5)

For specific values of the parameters, the densities appearing in (7.5.5) and (7.5a.5) can
be respectively called the multivariate F and Student-t densities in the real and complex
domains. With a view to model certain types of signal processes, (Kondo et al., 2020)
made use of a special form of the complex multivariate Student-t wherein γ = 0, a = 2

ν

and β = ν
2 , which is given next.
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7.5a.1. A complex multivariate Student-t having ν degrees of freedom

h̃1(X̃)dX̃ = 2qΓ (ν
2 + q)

(νπ)qΓ (ν
2 )|det(Σ)|

[
1 + 2

ν
(X̃ − μ̃)Σ−1(X̃ − μ̃)∗

]−( ν
2 +q)

dX̃. (7.5a.6)

A complex multivariate Cauchy density that, as well, is mentioned in Kondo et al. (2020),
can be obtained by letting ν = 1 in (7.5a.6). We conclude this section with its representa-
tion, denoted by h̃2(X̃):

7.5a.2. A complex multivariate Cauchy density

h̃2(X̃)dX̃ = 2q Γ (1
2 + q)

πq Γ (1
2)|det(Σ)| [1 + 2(X̃ − μ̃)Σ−1(X̃ − μ̃)∗]−(q+ 1

2 )dX̃. (7.5a.7)

Exercises 7.5

7.5.1. Derive the complex densities in (7.5a.3) and (7.5a.4).

7.5.2. Derive the normalizing constant in (7.5a.6) by integrating out the functional por-
tion of this density.

7.5.3. Derive the normalizing constant in (7.5a.7) by integrating out the functional por-
tion of this density.

7.5.4. Derive the density in (7.5a.6) from complex q-variate Gaussian densities.

7.5.5. Derive the density in (7.5a.7) from complex q-variate Gaussian densities.

7.6. Rectangular Matrix-Variate Dirichlet Density, Real Case

For the real matrix-variate type-1 and type-2 Dirichlet models involving sets of real
positive definite matrices, the reader is referred to Sects. 5.8.6 and 5.8.7. The correspond-
ing rectangular matrix-variate cases will be considered in this section. Let Aj > O, j =
1, . . . , k, be p × p real positive definite constant matrices, and Bj, j = 1, . . . , k, be
qj ×qj real positive definite constant matrices. Let Xj, j = 1, . . . , k, be p×qj , qj ≥ p,
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rank p real matrices whose elements are distinct real scalar variables. Then, consider the
real-valued scalar function of X1, . . . , Xk,

f1(X1, . . . , Xk) = Ck|A1X1B1X
′
1|γ1 · · · |AkXkBkX

′
k|γk

× |I − A
1
2
1 X1B1X

′
1A

1
2
1 − · · · − A

1
2
k XkBkX

′
kA

1
2
k |γk+1−p+1

2 (7.6.1)

for Aj > O, Bj > O, A
1
2
j XjBjX

′
jA

1
2
j > O, j = 1, . . . , k, I −∑k

j=1 A
1
2
j XjBjX

′
jA

1
2
j >

O, �(γj + qj

2 ) >
p−1

2 , j = 1, . . . , k, and f1 = 0 elsewhere, where Ck is the normalizing
constant. This normalizing constant can be evaluated as follows: Letting

Yj = A
1
2
j XjB

1
2
j ⇒ dYj = |Aj |

qj
2 |Bj |p

2 dXj, j = 1, . . . , k, (i)

the joint density of Y1, . . . , Yk, denoted by f2(Y1, . . . , Yk), is given by

f2(Y1, . . . , Yk) =
{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2

}
Ck|Y1Y

′
1|γ1 . . . |YkY

′
k|γk

× |I −
k∑

j=1

YjY
′
j |γk+1−p+1

2 . (7.6.2)

Now, let

Sj = YjY
′
j ⇒ dYj = π

qj p

2

Γp(
qj

2 )
|Sj |

qj
2 −p+1

2 dSj , j = 1, . . . , k. (ii)

Then, the joint density of S1, . . . , Sk, which follows, is a real matrix-variate type-1 Dirich-
let density:

f3(S1, . . . , Sk) = Ck

{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2
π

qj p

2

Γp(
qj

2 )

}

×
{ k∏

j=1

|Sj |γj+ qj
2 −p+1

2

}
|I − S1 − · · · − Sk|γk+1−p+1

2 (7.6.3)

for Sj > O, �(γj + qj

2 ) >
p−1

2 , j = 1, . . . , k. Next, on integrating out S1, . . . , Sk, by
making use of a type-1 real matrix-variate Dirichlet integral that was defined in Sect. 5.8.6,
we have

{∏k
j=1 Γp(γj + qj

2 )}Γp(γk+1)

Γp(
∑k+1

j=1 γj +∑k
j=1

qj

2 )
, �(γj + qj

2
) >

p − 1

2
, j = 1, . . . , k, (iii)
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and �(γk+1) >
p−1

2 .Then, as obtained from (i), (ii) and (iii), the normalizing constant is

Ck =
{ k∏

j=1

|Aj |
qj
2 |Bj |p

2
Γp(

qj

2 )

π
qj p

2

1

Γp(γj + qj

2 )

}

× Γp(γ1 + · · · + γk+1 + q1
2 + · · · + qk

2 )

{∏k
j=1 Γp(γj + qj

2 )}Γp(γk+1)
(7.6.4)

for Aj > O, Bj > O, qj ≥ p, �(γj + qj

2 ) >
p−1

2 , j = 1, . . . , k, and �(γk+1) >
p−1

2 .

7.6.1. Certain properties, real rectangular matrix-variate type-1 Dirichlet density

Letting U =∑k
j=1 A

1
2
j XjBjX

′
jA

1
2
j , what might be the distributions of U and I −U? In

the real scalar case, one could have easily evaluated the moments E[(1−u)h] for arbitrary
h, which would have automatically determined the distribution of 1 − u, and therefrom
that of u. In the matrix-variate case as well, one can readily determine the h-th moment of
the determinant of I − U , E[|I − U |h], and the unique resulting distribution. However,
the distribution of a determinant being unique does not imply that the distribution of the
corresponding matrix is unique. Thus, we have to resort to other approaches for obtaining
the distributions of U and I − U . Consider the following transformation:

Vj = A
1
2
j XjBjX

′
jA

1
2
j , j = 1, . . . , k − 1, Vk =

k∑

j=1

A
1
2
j XjBjX

′
jA

1
2
j = U.

Then A
1
2
k XkBkX

′
kA

1
2
k = U − V1 − · · · − Vk−1 and I −∑k

j=1 A
1
2
j XjBjX

′
jA

1
2
j = I − Vk =

I − U . Noting that

dX1 ∧ . . . ∧ dXk =
{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2
π

qj p

2

Γp(
qj

2 )

}
dV1 ∧ . . . ∧ dVk−1 ∧ dU, (7.6.5)

the joint density of V1, . . . , Vk−1, U, denoted by f3(V1, . . . , Vk−1, U), is seen to be

f3(V1, . . . , Vk−1, U) = Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

{∏k
j=1 Γp(γj + qj

2 )}Γp(γk+1)

{ k−1∏

j=1

|Vj |γj+ qj
2 −p+1

2

}

× |U − V1 − · · · − Vk−1|γk+ qk
2 −p+1

2 |I − U |γk+1−p+1
2 , (7.6.6)

where

|U − V1 − · · · − Vk−1| = |U | |I − U− 1
2 V1U

− 1
2 − · · · − U− 1

2 Vk−1U
− 1

2 |.
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Letting Wj = U− 1
2 VjU

− 1
2 , j = 1, . . . , k − 1, for fixed U we have

dV1 ∧ . . . ∧ dVk−1 = |U |(k−1)(
p+1

2 )dW1 ∧ . . . ∧ dWk−1.

Now, the joint density of W1, . . . , Wk−1 and U , denoted by f4(W1, . . . , Wk−1, U), is the
following:

f4(W1, . . . , Wk−1, U) = C′
k |U |

∑k
j=1(γj+ qj

2 )−p+1
2 |I − U |γk+1−p+1

2

{ k−1∏

j=1

|Wj |γj+ qj
2 −p+1

2

}

× |I − W1 − · · · − Wk−1|γk+ qk
2 −p+1

2 (7.6.7)

where C′
k is the normalizing constant. We then integrate out W1, . . . , Wk−1 by using a

(k − 1)-variate type-1 Dirichlet integral, this yielding the result:

{ k∏

j=1

Γp(γj + qj

2
)
}/

Γp

( k∑

j=1

(γj + qj

2

)
for �(γj + qj

2
) >

p − 1

2
, j = 1, . . . , k.

Accordingly, the marginal density of U is the following:

f5(U) = Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

Γp(
∑k

j=1(γj + qj

2 ))Γp(γk+1)
|U |

∑k
j=1(γj+ qj

2 )−p+1
2 |I − U |γk+1−p+1

2 (7.6.8)

for O < U < I, �(γj + qj

2 ) >
p−1

2 , j = 1, . . . , k, �(γk+1) >
p−1

2 , and f5 = 0

elsewhere. Thus, U is a real matrix-variate type-1 beta with the parameters (
∑k

j=1(γj +
qj

2 ), γk+1) and therefore that I −U is a real matrix-variate type-1 beta with the parameters

(γk+1,
∑k

j=1(γj + qj

2 )). These results are now stated as a theorem.

Theorem 7.6.1. Consider the density given in (7.6.1). Let U = ∑k
j=1 A

1
2
j XjBjX

′
jA

1
2
j .

Then, U has a real matrix-variate type-1 beta distribution whose parameters are
(
∑k

j=1(γj + qj

2 ), γk+1) and I − U is distributed as a real matrix-variate type-1 beta

with the parameters (γk+1,
∑k

j=1(γj + qj

2 )).

The h-th moment of the determinant of the matrix I − U can be evaluated either from
Theorem 7.6.1 or from Eq. (7.6.1). This h-th moment of the determinant, which can be
worked out from the normalizing constant appearing in (7.6.8), is

E[|I − U |h] = Γp(γk+1 + h)

Γp(γk+1)

Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

Γp(
∑k

j=1(γj + qj

2 ) + γk+1 + h)
(7.6.9)
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for �(γj + qj

2 ) >
p−1

2 , �(γk+1) >
p−1

2 . Observe that a representation of the h-th moment
of the determinant of U cannot be derived from (7.6.9). However, E[|U |h] can be readily
evaluated from Theorem 7.6.1:

E[|U |h] = Γp(
∑k

j=1(γj + qj

2 ) + h)

Γp(
∑k

j=1(γj + qj

2 ))

Γp(
∑k

j=1(γj + qj

2 ) + γk+1)

Γp(
∑k

j=1(γj + qj

2 ) + γk+1 + h)
(7.6.10)

for �(γj + qj

2 ) >
p−1

2 , j = 1, . . . , k, �(γk+1) >
p−1

2 . Upon expanding the Γp(·)’s in
terms of Γ (·)’s, the following structural representations are obtained:

|I − U | = u1 · · · up , (7.6.11)

|U | = v1 · · · vp , (7.6.12)

where u1, . . . , up are independently distributed real scalar type-1 beta random variables
with the parameters (γk+1 − j−1

2 ,
∑k

j=1(γj + qj

2 )), j = 1, . . . , k, and v1, . . . , vk are
independently distributed real scalar type-1 beta random variables with the parameters
(
∑k

j=1(γj + qj

2 ) − j−1
2 , γk+1), j = 1, . . . , k.

7.6.2. A multivariate version of the real matrix-variate type-1 Dirichlet density

For p = 1, consider the joint density of Y1, . . . , Yk in f2(Y1, . . . , Yk), which shall be
denoted by f6(Y1, . . . , Yk). Then,

f6(Y1, . . . ., Yk) =
{ k∏

j=1

Γ (
qj

2 )

π
qj
2

} Γ (
∑k

j=1(γj + qj

2 ) + γk+1)
{∏k

j=1 Γ (γj + qj

2 )
}
Γ (γk+1)

{ k∏

j=1

|YjY
′
j |γj

}

× |I − Y1Y
′
1 − · · · − YkY

′
k|γk+1−p+1

2 , (7.6.13)

the conditions on the parameters remaining as previously stated. Note that Yj is of the
form Yj = (yj1, . . . , yjqj

), so that YjY
′
j = y2

j1 + · · · + y2
jqj

. Thus, in light of its structure,
the density appearing in (7.6.13) has interesting properties. For instance, it can be ob-
served that all the subsets of Y1, . . . , Yk also have densities belonging to the same family.
Accordingly, the marginal density of Y1 is the following:
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f7(Y1) = Γ (
q1
2 )

π
q1
2

Γ (γ1 + q1
2 + γ2)

Γ (γ1 + q1
2 )Γ (γ2)

[y2
11 + · · · + y2

1q1
]γ1

× [1 − y2
11 − · · · − y2

1q1
]γ2+γ1+ q1

2 −p+1
2 (7.6.14)

for −∞ < y1r < ∞, r = 1, . . . , q1, 0 < y2
11 +· · ·+y2

1q1
< 1, �(γ1 + q1

2 ) > 0, �(γ2) >

0, and f7 = 0 elsewhere. As has already been mentioned, the structure in (7.6.14) is related
to geometrical probability problems involving type-1 beta distributed isotropic random
points. Thus, (7.6.13) suggests the possibility of generalizing such geometrical probabil-
ity problems in connection with a type-1 Dirichlet density as the underlying density for
the random points. This does not appear to have yet been discussed in the literature on
geometrical probability.

The complex case of the type-1 rectangular matrix-variate Dirichlet density, the real
and complex cases of the rectangular matrix-variate type-2 Dirichlet density and their
generalized forms can be similarly handled; hence, they will not be further discussed.
Certain of these cases are brought up in this section’s exercises.

Note 7.6.1. One could also consider a pathway version of the model appearing in
Eq. (7.6.1). Let us replace the second line in (7.6.1) by

|I − a(1 − α)(A
1
2
1 X1B1X

′
1A

1
2
1 + · · · + A

1
2
k XkBkX

′
kA

1
2
k )| η

1−α
−p+1

2

where a > 0, α < 1, η > 0 are real scalar and γk+1 by η
1−α

, and denote the resulting
moded by f8 whose corresponding equation number will be referred to as (7.6.15). Ob-
serve that (7.6.15) belongs to a generalized type-1 Dirichlet family of models and that the
new normalizing constant will be denoted Ck1. For α > 1, write −a(1−α) = a(α−1) > 0,
and then η

1−α
= − η

α−1 . Number the resulting model of (7.6.1) as f9, with (7.6.16) as the
associated equation number. Note that (7.6.16) is actually a generalized type-2 Dirichlet
model whose normalizing constant, denoted Ck2, will be different. Taking the limits as
α → 1− in (7.6.15) and α → 1+ in (7.6.16), both the models f8 in (7.6.15) and f9 in
(7.6.16) will converge to a model f10 whose associated equation number will be (7.6.17),
wherein the second line corresponding to the second line in (7.6.1) will be

e−a η tr(A
1
2
1 X1B1X

′
1A

1
2
1 +···+A

1
2
k XkBkX

′
kA

1
2
k ),

this limiting model having its own normalizing constant denoted by Ck3. As well, it can
be established that, under the above limiting process, both Ck1 and Ck2 will converge to
Ck3. Now, observe that the matrices X1, . . . , Xk in model f10 are mutually independently
distributed real rectangular matrix-variate gamma random variables. This turns out to be
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an unforeseen result as, in this case, the pathway parameter α is also seen to control the
dependence to independence transitional stages. Results analogous to those obtained in
Sects. 7.6, 7.6.1, and 7.6.2 could similarly be derived within the complex domain.

Exercises 7.6

7.6.1. Construct, in the complex domain, the rectangular matrix-variate type-1 Dirich-
let density corresponding to the density specified in (7.6.1) and determine the associated
normalizing constant.

7.6.2. Establish, in the complex domain, a theorem corresponding to Theorem 7.6.1.

7.6.3. Establish, for the complex case, the structural representations corresponding to
(7.6.11) and (7.6.12).

7.6.4. Construct a real rectangular matrix-variate type-2 Dirichlet density corresponding
to the density in (7.6.1).

7.6.5. Construct a complex rectangular matrix-variate type-2 Dirichlet density corre-
sponding to the density in (7.6.1).

7.6.6. When the p × qj matrices Xj ’s jointly have a real type-2 Dirichlet density with
the parameter matrices Aj > O, Bj > O as in (7.6.1) where Aj is p × p, Bj is qj × qj

and Xj is p × qj , qj ≥ p, j = 1, . . . , k, of full rank p, establish that U = [I +
∑k

j=1(A
1
2
j XjBjX

′
jA

1
2
j )]−1 has a real matrix-variate type-1 beta distribution and specify its

parameters. What about the density of
∑k

j=1(A
1
2
j XjBjX

′
jA

1
2
j ) in this case?

7.6.7. Answer the questions in Exercise 7.6.6 for the corresponding type-2 Dirichlet
density in the complex domain, replacing Xj by X̃j and X′

j by X̃∗
j .

7.6.8. For the real type-2 Dirichlet density in Exercise 7.6.4, determine E[|U |h] for U as
specified in Exercise 7.6.6.

7.6.9. Extend all the results obtained in Sect. 7.6 to the complex domain.

7.6.10. Derive, in the complex domain, results that are analogous to those obtained for
the real case in Note 7.6.1, while keeping a, η and α real.

7.7. Generalizations of the Real Rectangular Dirichlet Models

The first author and his collaborators have considered several types of generalizations
to the type-1 and type-2 Dirichlet models for real positive definite matrices and Hermi-
tian positive definite matrices. We will propose certain extensions of those results to rect-
angular matrix-variate cases, both in the real and complex domains. Again, let Xj be a
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p × qj , qj ≥ p, matrix of full rank p having distinct real scalar variables as its elements,
for j = 1, . . . , k. Let the constant real positive definite matrices Aj > O and Bj > O,
where Aj is p × p and Bj is qj × qj , j = 1, . . . , k, be as defined in Sect. 7.6. Consider
the real model

f11(X1, . . . , Xk) = Dk|A
1
2
1 X1B1X

′
1A

1
2
1 |γ1|I − A

1
2
1 X1B1X

′
1A

1
2
1 |β1

× |A
1
2
2 X2B2X

′
2A

1
2
2 |γ2|I −

2∑

j=1

A
1
2
j XjBjX

′
jA

1
2
j |β2 . . .

× |A
1
2
k XkBkX

′
kA

1
2
k |γk |I −

k∑

j=1

A
1
2
j XjBjX

′
jA

1
2
j |γk+1+βk−p+1

2 (7.7.1)

for �(γj + qj

2 ) >
p−1

2 , j = 1, . . . , k, �(αk+1) >
p−1

2 , and other conditions to be speci-
fied later, where Dk is the normalizing constant. For evaluating the normalizing constant,
consider the following transformations:

Zj = A
1
2
j XjB

1
2
j ⇒ dXj = |Aj |−

qj
2 |Bj |−p

2 dZj, j = 1, . . . , k, (i)

so that the model f11 changes to f12 where

f12(Z1, . . . , Zk) = Dk

{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2

}
|Z1Z

′
1|γ1

× |I − Z1Z
′
1|β1|Z2Z2|γ2

× |I − Z1Z
′
1 − Z2Z

′
2|β2 · · · |ZkZ

′
k|γk |I −

k∑

j=1

ZjZ
′
j |γk+βk−p+1

2 .

(7.7.2)

Now, letting

ZjZ
′
j = Sj ⇒ dZj = π

qj p

2

Γp(
qj

2 )
|Sj |

qj
2 −p+1

2 dSj , j = 1, . . . , k, (ii)
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the model becomes

f13(S1, . . . , Sk) =
{ k∏

j=1

|Aj |−
qj
2 |Bj |−p

2
π

qj p

2

Γp(
qj

2 )

}
|S1|γ1+ q1

2 −p+1
2

× |I − S1|β1|S2|γ2+ q2
2 −p+1

2 |I − S1 − S2|β2 · · ·

× |Sk|γk+ qk
2 −p+1

2 |I −
k∑

j=1

Sj |γk+βk−p+1
2 . (7.7.3)

Now, consider the transformation (5.8.20), namely,

S1 = Y1

S2 = (I − Y1)
1
2 Y2(I − Y1)

1
2

Sj = (I − Y1)
1
2 · · · (I − Yj−1)

1
2 Yj (I − Yj−1)

1
2 · · · (I − Y1)

1
2 (7.7.4)

for j = 2, . . . , k. Then Y1, . . . , Yk will be independently distributed real matrix-variate
type-1 beta random variables with the parameters (αj = γj + qj

2 , δj ), j = 1, . . . , k,

where

δj = γj+1+ qj+1

2
+· · ·+γk+1+ qk+1

2
+βj +· · ·+βk, j = 1, . . . , k, and qk+1 = 0. (iii)

The normalizing constant Dk is thus the following:

Dk =
⎧
⎨

⎩

k∏

j=1

|Aj |
qj
2 |Bj |p

2
Γp(

qj

2 )

π
qj p

2

⎫
⎬

⎭

Γp(
∑k

j=1(δj + αj ))
∏k

j=1[Γp(αj )Γp(δj )]
(7.7.5)

for αj >
p−1

2 , δj >
p−1

2 , j = 1, . . . , k, where the αj ’s and δj ’s are as previously given.
Properties parallel to those pointed out in Sects. 7.1–7.6 can also be studied for the model
specified in (7.7.1). The marginal distributions of subsets of the matrices X1, X2, . . . , Xk,

taken in the order, will belong to the same family of densities. There exist other general-
izations of the type-1 and type-2 Dirichlet models. For all such generalizations, one can
extend the results to the rectangular matrix-variate cases in both the real and complex
domains.
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Exercises 7.7

7.7.1. Develop the transformation corresponding to (7.7.4) for the real type-2 Dirichlet
case. Specify the Jacobians of the transformation (7.7.4) and the corresponding transfor-
mation for the type-2 case.

7.7.2. Verify the result for δj in (iii) following (7.7.4) and develop the expression corre-
sponding to δj for the type-2 Dirichlet case.

7.7.3. Derive the joint marginal density of X1, . . . , Xr, r < k, by integrating out the
matrices starting with Xk in (7.7.1).

7.7.4. Develop, in the complex domain, the model corresponding to (7.7.1) and derive its
associated normalizing constant.

7.7.5. If possible, derive the density of U = ∑k
j=1 A

1
2
j XjBjX

′
jA

1
2
j where the Xj ’s, j =

1, . . . , k, jointly have the density given in (7.7.1).
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Chapter 8
The Distributions of Eigenvalues and Eigenvectors

8.1. Introduction

We will utilize the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital let-
ters X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of let-
ters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will
for instance be denoted by A, B, C. A tilde will not be used on constant matrices unless
the point is to be stressed that the matrix is in the complex domain. Other notations will
remain unchanged.

Our objective in this chapter is to examine the distributions of the eigenvalues and
eigenvectors associated with a matrix-variate random variable. Letting W be such a p × p

matrix-variate random variable, its determinant is the product of its eigenvalues and its
trace, the sum thereof. Accordingly, the distributions of the determinant and the trace of
W are available from the distributions of simple functions of its eigenvalues. Actually,
several statistical quantities are associated with eigenvalues or eigenvectors. In order to
delve into such problems, we will require certain additional properties of the matrix-variate
gamma and beta distributions previously introduced in Chap. 5. As a preamble to the study
of the distributions of eigenvalues and eigenvectors, these will be looked into in the next
subsections for both the real and complex cases.

8.1.1. Matrix-variate gamma and beta densities, real case

Let W1 and W2 be statistically independently distributed p × p real matrix-variate
gamma random variables whose respective parameters are (α1, B) and (α2, B) with
�(αj ) >

p−1
2 , j = 1, 2, their common scale parameter matrix B being a real positive

definite constant matrix. Then, the joint density of W1 and W2, denoted by f (W1, W2), is
the following:

© The Author(s) 2022, corrected publication 2022
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f (W1, W2) =

⎧
⎪⎪⎨

⎪⎪⎩

|B|α1+α2

Γp(α1)Γp(α2)
|W1|α1−p+1

2 |W2|α2−p+1
2 e−tr(B(W1+W2))

B > O, Wj > O, �(αj ) >
p−1

2 , j = 1, 2,

0 elsewhere

. (8.1.1)

Consider the transformations

U1 = (W1 + W2)
− 1

2 W1(W1 + W2)
− 1

2 and U2 = W
− 1

2
2 W1W

− 1
2

2 , (8.1.2)

which are matrix-variate counterparts of the changes of variables u1 = w1
w1+w2

and u2 = w1
w2

in the real scalar case, that is, for p = 1. Note that the square roots in (8.1.2) are symmetric
positive definite matrices. Then, we have the following result:

Theorem 8.1.1. When the real matrices U1 and U2 are as defined in (8.1.2), then U1 is
distributed as a real matrix-variate type-1 beta variable with the parameters (α1, α2) and
U2, as a real matrix-variate type-2 beta variable with the parameters (α1, α2). Further,
U1 and U3 = W1+W2 are independently distributed, with U3 having a real matrix-variate
gamma distribution with the parameters (α1 + α2, B).

Proof: Given the joint density of W1 and W2 specified in (8.1.1), consider the transforma-
tion (W1,W2) → (U3 = W1 + W2, U = W1). On observing that its Jacobian is equal to
one, the joint density of U3 and U , denoted by f1(U3, U), is obtained as

f1(U3, U) dU3 ∧ dU = c |U |α1−p+1
2 |U3 − U |α2−p+1

2 e−tr(U3)dU3 ∧ dU (i)

where

c = |B|α1+α2

Γp(α1)Γp(α2)
. (ii)

Noting that

|U3 − U | = |U3| |I − U
− 1

2
3 UU

− 1
2

3 |,

we now let U1 = U
− 1

2
3 UU

− 1
2

3 for fixed U3, so that dU1 = |U3|−p+1
2 dU . Accordingly, the

joint density of U3 and U1, denoted by f2(U3, U1), is the following, observing that U1 is
as defined in (8.1.2) with W1 = U and U3 = W1 + W2:

f2(U3, U1) = c |U3|α1+α2−p+1
2 e−tr(U3)|U1|α1−p+1

2 |I − U1|α2−p+1
2 (iii)
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for �(α1) >
p−1

2 , �(α2) >
p−1

2 , U3 > O, O < U1 < I , and zero elsewhere. On
multiplying and dividing (iii) by Γp(α1 + α2), it is seen that U1 and U3 = W1 + W2 are
independently distributed as their joint density factorizes into the product of two densities
g(U1) and g1(U3), that is, f2(U1, U3) = g(U1)g1(U3) where

g(U1) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U1|α1−p+1

2 |I − U1|α2−p+1
2 , O < U1 < I, (8.1.3)

for �(α1) >
p−1

2 , �(α2) >
p−1

2 , and zero elsewhere, is a real matrix-variate type-1 beta
density with the parameters (α1, α2), and

g1(U3) = |B|α1+α2

Γp(α1 + α2)
|U3|α1+α2−p+1

2 e−tr(B U3), U3 > O, (8.1.4)

for B > O, �(α1 + α2) >
p−1

2 , and zero elsewhere, which is a real matrix-variate
gamma density with the parameters (α1 + α2, B). Thus, given two independently dis-
tributed p × p real positive definite matrices W1 and W2, where W1 ∼ gamma (α1, B),

B > O, �(α1) >
p−1

2 , and W2 ∼ gamma (α2, B), B > O, �(α2) >
p−1

2 , one has
U3 = W1 + W2 ∼ gamma (α1 + α2, B), B > O.

In order to determine the distribution of U2, we first note that the exponent in (8.1.1)
is tr(B(W1 + W2)) = tr[B 1

2 W1B
1
2 + B

1
2 W2B

1
2 ]. Letting Vj = B

1
2 WjB

1
2 , dVj =

|B|p+1
2 dWj , j = 1, 2, which eliminates B, the resulting joint density of V1 and V2, de-

noted by f3(V1, V2), being

f3(V1, V2) = 1

Γp(α1)Γp(α2)
|V1|α1−p+1

2 |V2|α2−p+1
2 e−tr(V1+V2), Vj > O, (8.1.5)

for �(αj ) >
p−1

2 , j = 1, 2, and zero elsewhere. Now, noting that tr[V1+V2] = tr[V
1
2

2 (I +
V

− 1
2

2 V1V
− 1

2
2 )V

1
2

2 ] and letting V = V
− 1

2
2 V1V

− 1
2

2 = U2 of (8.1.2) so that dV = |V2|−p+1
2 dV1

for fixed V2, the joint density of V and V2 = V3, denoted by f4(V , V3), is obtained as

f4(V , V3) = 1

Γp(α1)Γp(α2)
|V |α1−p+1

2 |V3|α1+α2−p+1
2 e−tr((I+V )

1
2 V3(I+V )

1
2 ) (8.1.6)

where tr[V
1
2

3 (I + V )V
1
2

3 ] was replaced by tr[(I + V )
1
2 V3(I + V )

1
2 ]. It then suffices to

integrate out V3 from the joint density specified in (8.1.6) by making use of a real matrix-
variate gamma integral, to obtain the density of V = U2 that follows:

g2(V ) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|V |α1−p+1

2 |I + V |−(α1+α2), V > O, (8.1.7)
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for �(αj ) >
p−1

2 , j = 1, 2, and zero elsewhere, which is a real matrix-variate type-2 beta
density whose parameters are (α1, α2). This completes the proof.

8.1a. Matrix-variate Gamma and Beta Densities, Complex Case

Parallel results can be obtained in the complex domain. If W̃1 and W̃2 are statisti-
cally independently distributed p×p Hermitian positive definite matrices having complex
matrix-variate gamma densities with the parameters (α1, B̃) and (α2, B̃), B̃ = B̃∗ > O,
where an asterisk designates a conjugate transpose, then their joint density, denoted by
f̃ (W̃1, W̃2), is given by

f̃ (W̃1, W̃2) = |det(B)|α1+α2

Γ̃p(α1)Γ̃p(α2)
|det(W̃1)|α1−p|det(W̃2)|α2−pe−tr(B̃(W̃1+W̃2)) (8.1a.1)

for B̃ > O, W̃1 > O, W̃2 > O, �(αj ) > p − 1, j = 1, 2, and zero elsewhere,
with |det(W̃j )| denoting the absolute value or modulus of the determinant of W̃j . Since
the derivations are similar to those provided in the previous subsection for the real case,
the next results will be stated without proof. Note that, in the complex domain, the square
roots involved in the transformations are Hermitian positive definite matrices.

Theorem 8.1a.1. Let the p × p Hermitian positive definite matrices W̃1 and W̃2 be
independently distributed as complex matrix-variate gamma variables with the parameters
(α1, B̃) and (α2, B̃), B̃ = B̃∗ > O, respectively. Letting Ũ3 = W̃1 + W̃2,

Ũ1 = (W̃1 + W̃2)
− 1

2 W̃1(W̃1 + W̃2)
− 1

2 = Ũ
− 1

2
3 W̃1Ũ

− 1
2

3 and Ũ2 = W̃
− 1

2
2 W̃1W̃

− 1
2

2 ,

then (1): Ũ3 is distributed as a complex matrix-variate gamma with the parameters
(α1 + α1, B̃), B̃ = B̃∗ > O, �(α1 + α2) > p − 1; (2): Ũ1 and Ũ3 are indepen-
dently distributed; (3): Ũ1 is distributed as a complex matrix-variate type-1 beta random
variable with the parameters (α1, α2); (4): Ũ2 is distributed as a complex matrix-variate
type-2 beta random variable with the parameters (α1, α2).

8.1.2. Real Wishart matrices

Since Wishart matrices are distributed as matrix-variate gamma variables whose pa-
rameters are αj = mj

2 , mj ≥ p, and B = 1
2Σ−1, Σ > O, we have the following

corollaries in the real and complex cases:

Corollary 8.1.1. Let the p × p real positive definite matrices W1 and W2 be indepen-
dently Wishart distributed, Wj ∼ Wp(mj , Σ), with mj ≥ p, j = 1, 2, degrees of
freedom, common parameter matrix Σ > O, and respective densities given by
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φj (Wj) = 1

2
pmj

2 Γp (
mj

2 )|Σ |mj
2

|Wj |
mj
2 −p+1

2 e− 1
2 tr(Σ−1Wj), j = 1, 2, (8.1.8)

and zero elsewhere. Then (1): U3 = W1 + W2 is Wishart distributed with m1 + m2 de-
grees of freedom and parameter matrix Σ > O, that is, U3 ∼ Wp(m1 +m2, Σ), Σ > O;

(2): U1 = (W1 + W2)
− 1

2 W1(W1 + W2)
− 1

2 = U
− 1

2
3 W1U

− 1
2

3 is a real matrix-variate type-1
beta random variable with the parameters (α1, α2), that is, U1 ∼ type-1 beta (m1

2 , m2
2 );

(3): U1 and U3 are independently distributed; (4): U2 = W
− 1

2
2 W1W

− 1
2

2 is a real
matrix-variate type-2 beta random variable with the parameters (α1, α2), that is, V ∼
type-2 beta (m1

2 , m2
2 ).

The corresponding results for the complex case are parallel with identical numbers of
degrees of freedom, m1 and m2, and parameter matrix Σ̃ = Σ̃∗ > O (Hermitian positive
definite). Properties associated with type-1 and type-2 beta variables hold as well in the
complex domain. Consider for instance the following results which are also valid in the
complex case. If U is a type-1 beta variable with the parameters (α1, α2), then I − U is a
type-1 beta variable with the parameters (α2, α1) and (I − U)− 1

2 U(I − U)− 1
2 is a type-2

beta variable with the parameters (α1, α2).

8.2. Some Eigenvalues and Eigenvectors, Real Case

Observe that when X, a p × p real positive definite matrix, has a real matrix-variate
gamma density with the parameters (α, B), B > O, �(α) >

p−1
2 , then Z = B

1
2 XB

1
2

has a real matrix-variate gamma density with the parameters (α, I ) where I is the identity
matrix. The corresponding result for a Wishart matrix is the following: Let W be a real
Wishart matrix having m degrees of freedom and Σ > O as its parameter matrix, that
is, W ∼ Wp(m, Σ), Σ > O, m ≥ p, then Z = Σ− 1

2 WΣ− 1
2 ∼ Wp(m, I), m ≥ p,

that is, Z is a Wishart matrix having m degrees of freedom and I as its parameter matrix.
If we are considering the roots of the determinantal equation |Ŵ1 − λŴ2| = 0 where
Ŵ1 ∼ Wp(m1, Σ) and Ŵ2 ∼ Wp(m2, Σ), Σ > O, mj ≥ p, j = 1, 2, and if Ŵ1 and

Ŵ2 are independently distributed, so will W1 = Σ− 1
2 Ŵ1Σ

− 1
2 and W2 = Σ− 1

2 Ŵ2Σ
− 1

2 be.
Then

|Σ− 1
2 Ŵ1Σ

− 1
2 − λΣ− 1

2 Ŵ2Σ
− 1

2 | = 0 ⇒ |Σ |− 1
2 |Ŵ1 − λŴ2| |Σ |− 1

2 = 0

⇒ |Ŵ1 − λŴ2| = 0. (8.2.1)

Thus, the roots of |W1 − λW2| = 0 and |Ŵ1 − λŴ2| = 0 are identical. Hence, without
any loss of generalily, one needs only consider the roots of Wj, Wj ∼ Wp(mj , I ), mj ≥
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p, j = 1, 2, when independently distributed Wishart matrices sharing a common matrix
parameter are involved. Observe that

|W1 − λW2| = 0 ⇒ |W− 1
2

2 W1W
− 1

2
2 − λI | = 0 (8.2.2),

which means that λ is an eigenvalue of W
− 1

2
2 W1W

− 1
2

2 when Wj
ind∼ Wp(mj , I ), j = 1, 2.

If Yj is an eigenvector corresponding to the eigenvalue λj , it must satisfy the equation

(W
− 1

2
2 W1W

− 1
2

2 )Yj = λjYj . (8.2.3)

Let the eigenvalues λj ’s be distinct so that λ1 > λ2 > · · · > λp. Actually, it can be shown

that Pr{λi = λj } = 0 almost surely for all i 
= j . When the eigenvalues of W
− 1

2
2 W1W

− 1
2

2

are distinct, then the eigenvectors are orthogonal since W
− 1

2
2 W1W

− 1
2

2 is symmetric. Thus,
in this case, there exists a set of p linearly independent mutually orthogonal eigenvectors.
Let Y1, . . . , Yp be a set of normalized mutually orthonormal eigenvectors and let Y =
(Y1, . . . , Yp) be the p × p matrix consisting of the normalized eigenvectors. Our aim is to
determine the joint density of Y and λ1, . . . , λp, and thereby the marginal densities of Y

and λ1, . . . , λp. To this end, we will need the Jacobian provided in the next theorem. For
its derivation and connection to other Jacobians, the reader is referred to Mathai (1997).

Theorem 8.2.1. Let Z be a p × p real symmetric matrix comprised of distinct real
scalar variables as its elements, except for symmetry, and let its distinct nonzero eigen-
values be λ1 > λ2 > · · · > λp, which are real owing to its symmetry. Let D =
diag(λ1, . . . , λp), dD = dλ1 ∧ . . .∧dλp, and P be a unique orthonormal matrix such that
PP ′ = I, P ′P = I, and Z = PDP ′. Then, after integrating out the differential element
of P over the full orthogonal group Op, we have

dZ = π
p2

2

Γp(
p
2 )

{ p−1∏

i=1

p∏

j=i+1

(λi − λj )
}

dD = π
p2

2

Γp(
p
2 )

{∏

i<j

(λi − λj )
}

dD. (8.2.4)

Corollary 8.2.1. Let g(Z) be a symmetric function of the p × p real symmetric matrix
Z—symmetric function in the sense that g(AB) = g(BA) whenever AB and BA are
defined, even if AB 
= BA. Let the eigenvalues of Z be distinct such that λ1 > λ2 > · · · >

λp, D = diag(λ1, . . . , λp) and dD = dλ1 ∧ . . . ∧ dλp. Then,

∫

Z

g(Z)dZ =
∫

D

g(D)
π

p2

2

Γp(
p
2 )

{∏

i<j

(λi − λj )
}

dD.
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Example 8.2.1. Consider a p × p real matrix X having a matrix-variate gamma density
with shape parameter α = p+1

2 and scale parameter matrix I , whose density is

f (X) = 1

Γp(
p+1

2 )
e−tr(X), X > O.

A variable having this density is also said to follow the real p × p matrix-variate expo-
nential distribution. Let p = 2 and denote the eigenvalues of X by ∞ > λ1 > λ2 > 0. It
follows from Corollary 8.2.1 that the joint density of λ1 and λ2, denoted by f1(D), with
D = diag(λ1, λ2), is given by

f1(D) dD = 1

Γ2(
2+1

2 )

π
22
2

Γ2(
2
2)

(λ1 − λ2) e−tr(D)dD.

Verify that f1(D) is a density.

Solution 8.2.1. Since f1(D) is nonnegative, it suffices to show that the total integral is
equal to 1. Excluding the constant part, the integral to be evaluated is the following:

∫ ∞

λ1=0

∫ λ1

λ2=0
(λ1 − λ2) e−(λ1+λ2)dλ1 ∧ dλ2

=
∫ ∞

λ1=0
λ1e−λ1

[ ∫ λ1

λ2=0
e−λ2dλ2

]
dλ1 −

∫ ∞

λ1=0
e−λ1

[ ∫ λ1

λ2=0
λ2e−λ2dλ2

]
dλ1

=
∫ ∞

λ1=0
λ1e−λ1[1 − e−λ1]dλ1

+
∫ ∞

0
λ1e−2λ1dλ1 −

∫ ∞

0
e−λ1dλ1 +

∫ ∞

0
e−2λ1dλ1

=
∫ ∞

0
λ1e−λ1dλ1 −

∫ ∞

0
e−λ1dλ1 +

∫ ∞

0
e−2λ1dλ1

= 1 − 1 + 1

2
= 1

2
. (i)

Let us now compute the constant part:

1

Γ2(
2+1

2 )

π
22
2

Γ2(
2
2)

= 1

Γ2(
3
2)

π2

Γ2(1)

= 1√
π(1

2

√
π)

π2

√
π

√
π

= 2. (ii)
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Since the product of (i) and (ii) gives 1, f1(D) is indeed a density.

Example 8.2.2. Consider a p×p matrix having a real matrix-variate type-1 beta density
with the parameters α = p+1

2 , β = p+1
2 , whose density, denoted by f (X), is

f (X) = Γp(p + 1)

Γp(
p+1

2 )Γp(
p+1

2 )
, O < X < I,

and zero elsewhere. This density f (X) is also referred to as a real p × p matrix-variate
uniform density. Let p = 2 and the eigenvalues of X be 1 > λ1 > λ2 > 0. Then, the
density of D = diag(λ1, λ2), denoted by f1(D), is

f1(D)dD = Γ2(2 + 1)

[Γ2(
2+1

2 )]2

π
22
2

Γ2(
2
2)

(λ1 − λ2) dD, 1 > λ1 > λ2 > 0,

and zero elsewhere. Verify that f1(D) is a density.

Solution 8.2.2. The constant part simplifies to the one:

Γ2(3)

[Γ2(
3
2)]2

π2

Γ2(1)
=

√
πΓ (3)Γ (5

2)

[√πΓ (3
2)Γ (2

2)]2

π2

√
πΓ (1)Γ (1

2)

=
√

π(2)(3
2)(1

2)
√

π

[√π(1
2)

√
π ]2

π2

√
π

√
π

= 6. (i)

Let us now consider the functional part of the integrand:
∫ 1

λ1=0

∫ λ1

λ2=0
(λ1 − λ2) dλ1 ∧ dλ2 =

∫ 1

0
λ2

1 dλ1 −
∫ 1

0

λ2
1

2
dλ1

= 1

2

∫ 1

0
λ2

1 dλ1 = 1

6
. (ii)

As the product of (i) and (ii) equals 1, it is verified that f1(D) is a density.

Example 8.2.3. Consider a p × p matrix having a matrix-variate gamma density with
shape parameter α and scale parameter matrix I . Let D = diag(λ1, . . . , λp) where ∞ >

λ1 > λ2 > · · · > λp > 0 are the eigenvalues of that matrix. The joint density of the λj ’s
or the density of D is then available as

f1(D) dD = π
p2

2

Γp(
p
2 )Γp(α)

[λ1 · · · λp]α−p+1
2 e−(λ1+···+λp)

[∏

i<j

(λi − λj )
]

dD.
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Even when α is specified, the integral representation of the density f1(D) will generally
only be expressible in terms of incomplete gamma functions or confluent hypergeometric
series, with simple functional forms being obtainable only for certain values of α and p.
Verify that f1(D) is a density for α = 7

2 and p = 2.

Solution 8.2.3. For those values of p and α, we have

[λ1λ2] 7
2 − 3

2 (λ1 − λ2)e
−(λ1+λ2) = [λ3

1λ
2
2 − λ2

1λ
3
2]e−(λ1+λ2)

whose integral over ∞ > λ1 > λ2 > 0 is the sum of (i) and (ii):

∫ ∞

λ1=0

∫ λ1

λ2=0
λ3

1λ
2
2e−(λ1+λ2)dλ2 ∧ dλ1 =

∫ ∞

λ1=0
λ3

1e−λ1
[ ∫ λ1

λ2=0
λ2

2e−λ2dλ2

]
dλ1

=
∫ ∞

λ1=0
[(−λ5

1 − 2λ4
1 − 2λ3

1)e
−2λ1 + 2λ3

1e−λ1]dλ1,

(i)

−
∫ ∞

λ1=0
λ2

1e−λ1
[ ∫ λ1

λ2=0
λ3

2e−λ2dλ2

]
dλ1

=
∫ ∞

0
[(λ5

1 + 3λ4
1 + 6λ3

1 + 6λ2
1)e

−2λ1 − 6λ2
1e−λ1]dλ1,

(ii)that is,
∫ ∞

0
[(λ4

1 + 4λ3
1 + 6λ2

1)e
−2λ1 + (2λ3

1 − 6λ2
1)e

−λ1]dλ1

= 2−5Γ (5) + 4(2−4)Γ (4) + 6(2−3)Γ (3) + 2Γ (4) − 6Γ (3)

= 4!
25

+ 4(3!)
24

+ 6(2!)
23

+ 2(3!) − 6(2!) = 15

4
. (iii)

Now, consider the constant part:

1

Γp(α)

π
p2

2

Γp(
p
2 )

= 1

Γ2(
7
2)

π2

Γ2(
2
2)

= 1√
π(5

2)(3
2)1

2

√
π(2!)

π2

√
π

√
π

= 4

15
. (iv)

The product of (iii) and (iv) giving 1, this verifies that f1(D) is a density when p = 2 and
α = 7

2 .
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8.2a. The Distributions of Eigenvalues in the Complex Case

The complex counterpart of Theorem 8.2.1 is stated next.

Theorem 8.2a.1. Let Z̃ be a p×p Hermitian matrix with distinct real nonzero eigenval-
ues λ1 > λ2 > · · · > λp. Let Q̃ be a p × p unique unitary matrix, Q̃Q̃∗ = I, Q̃∗Q̃ = I

such that Z̃ = Q̃DQ̃∗ where an asterisk designates the conjugate transpose. Then, after
integrating out the differential element of Q̃ over the full orthogonal group Õp, we have

dZ̃ = πp(p−1)

Γ̃p(p)

{∏

i<j

|λi − λj |2
}

dD. (8.2a.1)

Note 8.2a.1. When the unitary matrix Q̃ has diagonal elements that are real, then the
integral of the differential element over the full orthogonal group Õp will be the following:

∫

Õp

h̃(Q̃) = πp(p−1)

Γ̃p(p)
(8.2a.2)

where h̃(Q̃) = ∧[(dQ̃)Q̃∗]; the reader may refer to Theorem 4.4 and Corollary 4.3.1 of
Mathai (1997) for details. If all the elements comprising Q̃ are complex, then the numer-
ator in (8.2a.2) will be πp2

instead of πp(p−1). When unitary transformations are made
on Hermitian matrices such as Z̃ in Theorem 8.2a.1, the diagonal elements in the unitary
matrix Q̃ are real and hence the numerator in (8.2a.2) remains πp(p−1) in this case.

Note 8.2a.2. A corollary parallel to Corollary 8.2.1 also holds in the complex domain.

Example 8.2a.1. Consider a complex p × p matrix X̃ having a matrix-variate type-1
beta density with the parameters α = p and β = p, so that its density, denoted by f̃ (X̃),
is the following:

f̃ (X̃) = Γ̃p(2p)

Γ̃p(p)Γ̃p(p)
, O < X̃ < I,

which is also referred to as the p × p complex matrix-variate uniform density. Let D =
diag(λ1, . . . , λp) where 1 > λ1 > λ2 > · · · > λp > 0 are the eigenvalues of X̃. Then, the
density of D, denoted by f1(D), is given by

f1(D) dD = Γ̃p(2p)

[Γ̃p(p)]2

πp(p−1)

Γ̃p(p)

[∏

i<j

(λi − λj )
2
]

dD. (i)

Verify that (i) is a density for p = 2.
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Solution 8.2a.1. For Hermitian matrices the eigenvalues are real. Consider the integral
over (λ1 − λ2)

2:

∫ 1

λ1=0

[ ∫ λ1

λ2=0
(λ2

1 + λ2
2 − 2λ1λ2)dλ2

]
dλ1

=
∫ 1

λ1=0

[
λ3

1 + λ3
1

3
− 2

λ3
1

2

]
dλ1

=
∫ 1

0

λ3
1

3
dλ1 = 1

12
. (ii)

Let us now evaluate the constant part:

Γ̃p(2p)

[Γ̃p(p)]2

πp(p−1)

Γ̃p(p)
= Γ̃2(4)

[Γ̃2(2)]2

π2(1)

Γ̃2(2)

= πΓ (4)Γ (3)

π2[Γ (2)Γ (1)]2

π2

πΓ (2)Γ (1)
= 12. (iii)

The product of (ii) and (iii) equalling 1, the solution is complete.

Example 8.2a.2. Consider a p × p complex matrix X̃ having a matrix-variate gamma
density with the parameters (α = p, β = I ). Let D = diag(λ1, . . . , λp), where ∞ >

λ1 > · · · > λp > 0 are the eigenvalues of X̃. Denoting the density of D by f1(D), we
have

f1(D) = 1

Γ̃p(p)

πp(p−1)

Γ̃p(p)
e−(λ1+···+λp)

[∏

i<j

(λi − λj )
2
]
.

When α = p, this density is the p × p complex matrix-variate exponential density. Verify
that f1(D) is a density for p = 2.

Solution 8.2a.2. The constant part simplifies to the following:

1

Γ̃p(p)

πp(p−1)

Γ̃p(p)
= 1

Γ̃2(2)

π2(1)

Γ̃2(2)

= 1

πΓ (2)Γ (1)

π2

πΓ (2)Γ (1)
= 1, (i)
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and the integrals over the λj ’s are evaluated as follows:
∫ ∞

λ1=0

∫ λ1

λ2=0
(λ2

1 + λ2
2 − 2λ1λ2)e

−(λ1+λ2)dλ1 ∧ dλ2

=
∫ ∞

λ1=0
λ2

1e−λ1
[ ∫ λ1

λ2=0
e−λ2dλ2

]
dλ1 +

∫ ∞

λ1=0
e−λ1

[ ∫ λ1

λ2=0
λ2

2e−λ2dλ2

]
dλ1

− 2
∫ ∞

λ1=0
λ1e−λ1

[ ∫ λ1

λ2=0
λ2e−λ2dλ2

]
dλ1

=
∫ ∞

0
(−λ2

1 − λ2
1 − 2λ1 − 2 + 2λ2

1 + 2λ1)e
−2λ1dλ1

+
∫ ∞

0
(λ2

1 + 2 − 2λ1)e
−λ1dλ1 =

∫ ∞

0
(λ2

1 − 2λ1 + 2)e−λ1dλ1 − 2
∫ ∞

0
e−2λ1dλ1

= Γ (3) − 2Γ (2) + 2 − 2

2
= 1. (ii)

Now, taking the product of (i) and (ii), we obtain 1, and the result is verified.

8.2.1. Eigenvalues of matrix-variate gamma and Wishart matrices, real case

Let W1 and W2 be two p × p real positive definite matrix-variate random variables
that are independently distributed as matrix-variate gamma random variables with the pa-
rameters (α1, B) and (α2, B), respectively. When αj = mj

2 , mj ≥ p, j = 1, 2, with
m1, m2 = p, p + 1, . . . , and B = 1

2I , W1 and W2 are independently Wishart distributed
with m1 and m2 degrees of freedom, respectively; refer to the earlier discussion about the
elimination of the scale parameter matrix Σ > O in a matrix-variate Wishart distribution.
Consider the determinantal equation

|W1 − λW2| = 0 ⇒ |W− 1
2

2 W1W
− 1

2
2 − λI | = 0. (8.2.5)

Thus, λ is an eigenvalue of U2 = W
− 1

2
2 W1W

− 1
2

2 . It has already been established in The-

orem 8.1.1 that U2 = W
− 1

2
2 W1W

− 1
2

2 is distributed as a real matrix-variate type-2 beta
random variable with the parameters α1 and α2 whose density is

fu(U2) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U2|α1−p+1

2 |I + U2|−(α1+α2), (8.2.6)

for U2 > O, �(αj ) >
p−1

2 , j = 1, 2, and zero elsewhere. Note that this distribution is
free of the scale parameter matrix B. Writing U2 in terms of its eigenvalues and making
use of (8.2.4), we have the following result:
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Theorem 8.2.2. Let λ1 > λ2 > · · · > λp > 0 be the distinct roots of the determinantal

equation (8.2.5) or, equivalently, let the λj ’s be the eigenvalues of U2 = W
− 1

2
2 W1W

− 1
2

2 , as
defined in (8.2.5). Then, after integrating out over the full orthogonal group Op, the joint
density of λ1, . . . , λp, denoted by g1(D) with D = diag(λ1, . . . , λp), is obtained as

g1(D) = Γp(α1 + α2)

Γp(α1)Γp(α2)

{ p∏

j=1

λ
α1−p+1

2
j

}{ p∏

j=1

(1 + λj )
−(α1+α2)

}
(8.2.7)

× π
p2

2

Γp(
p
2 )

{∏

i<j

(λi − λj )
}

dD, dD = dλ1 ∧ . . . ∧ dλp.

Proof: Applying the transformation U2 = PDP ′, PP ′ = I, P ′P = I , where P is a
unique orthonormal matrix, to the density of U2 given in (8.2.6), it follows from Theo-
rem 8.2.1 that

dU2 = π
p2

2

Γp(
p
2 )

{∏

i<j

(λi − λj )
}

dD

after integrating out the differential element corresponding to the orthonormal matrix P .
On substituting |U2| = λ1 · · · λp and |I +U2| = (1 +λ1) · · · (1 +λp) in (8.2.6), the result
is established.

Note 8.2.1. When α1 = m1
2 , α2 = m2

2 , mj ≥ p, with m1, m2 = p, p + 1, . . . , in
Theorem 8.2.2, we have the corresponding result for real Wishart matrices having m1 and
m2 degrees of freedom and parameter matrix 1

2Ip.

Example 8.2.4. Let the p×p real matrix X have a real matrix-variate type-2 beta density
with the parameters α = p+1

2 and β = p+1
2 . Then, the joint density of its eigenvalues

λ1 > λ2 > · · · > λp > 0, or that of D = diag(λ1, . . . , λp), denoted by g1(D), is

g1(D) = Γp(p + 1)

[Γp(
p+1

2 )]2

π
p2

2

Γp(
p
2 )

[ p∏

j=1

(1 + λj )
−(p+1)

]∏

i<j

(λi − λj ).

Verify that g1(D) is a density for p = 2.

Solution 8.2.4. Consider the total integral for p = 2. The constant part is

Γp(p + 1)

[Γp(
p+1

2 )]2

π
p2

2

Γp(
p
2 )

= Γ2(3)

[Γ2(
3
2)]2

π2

Γ2(
2
2)

=
√

πΓ (3)Γ (5
2)

π [Γ (3
2)Γ (1)]2

π2

√
πΓ (1)Γ (1

2)

=
√

π(2)(3
2)(1

2)
√

π

π(1
4)π

π2

√
π

√
π

= 6, (i)
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and the integral part is obtained as follows:

∫ ∞

λ1=0

∫ λ1

λ2=0

(λ1 − λ2)

(1 + λ1)3(1 + λ2)3
dλ1 ∧ dλ2

=
∫ ∞

λ1=0

λ1

(1 + λ1)3

[ ∫ λ1

λ2=0

1

(1 + λ2)3
dλ2

]
dλ1

−
∫ ∞

λ1=0

1

(1 + λ1)3

[ ∫ λ1

λ2=0

λ2

(1 + λ2)3
dλ2

]
dλ1. (ii)

The first integral over λ2 in (ii) is

∫ λ1

λ2=0

1

(1 + λ2)3
dλ2 = 1

2

[
1 − 1

(1 + λ1)2

]
;

then, integrating with respect to λ1 yields

1

2

∫ ∞

λ1=0

λ1

(1 + λ1)3

[
1 − 1

(1 + λ1)2

]
dλ1 = 1

2

{Γ (2)Γ (1)

Γ (3)
− Γ (2)Γ (3)

Γ (5)

}

= 1

2

{1

2
− 1

12

}
= 5

24
. (iii)

Now, after integrating by parts, the second integral over λ2 in (ii) is the following:

∫ λ1

λ2=0

λ2

(1 + λ2)3
dλ2 = 1

2

[
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
;

then, integrating with respect to λ1 gives

−1

2

∫ ∞

λ1=0

1

(1 + λ1)3

[
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
dλ1

= 1

2

[Γ (2)Γ (3)

Γ (5)
− 1

2
+ 1

3

]
= − 1

24
. (iv)

Combining (iii) and (iv), the sum is

5

24
− 1

24
= 1

6
. (v)

Finally, the product of (i) and (v) is 1, which verifies that f (D) is indeed a density when
p = 2.
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8.2a.1. Eigenvalues of complex matrix-variate gamma and Wishart matrices

A parallel result can be obtained in the complex domain. Let W̃1 and W̃2 be indepen-
dently distributed p×p complex matrix-variate gamma random variables with parameters
(α1, B̃) and (α2, B̃), B̃ = B̃∗ > O, �(αj ) > p − 1, j = 1, 2. Consider the determinan-
tal equation

[det(W̃1 − λW̃2)] = 0 ⇒ [det(W̃
− 1

2
2 W̃1W̃

− 1
2

2 − λI)] = 0. (8.2a.3)

It follows from Theorem 8.1a.1 that Ũ2 = W̃
− 1

2
2 W̃1W̃

− 1
2

2 has a complex matrix-variate
type-2 beta distribution with the parameters (α1, α2), whose associated density is

f̃u(Ũ2) = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)
|det(Ũ2)|α1−p|det(I + Ũ2)|−(α1+α2) (8.2a.4)

for Ũ2 = Ũ∗
2 > O, �(αj ) > p − 1, j = 1, 2, and zero elsewhere. Observe that the

distribution of Ũ2 is free of the scale parameter matrix B̃ > O and that W̃1 and W̃2 are
Hermitian positive definite so that their eigenvalues λ1 > · · · > λp > 0, assumed to be
distinct, are real and positive. Writing Ũ2 in terms of its eigenvalues and making use of
(8.2a.1), we have the following result:

Theorem 8.2a.2. Let Ũ2 = W̃
− 1

2
2 W̃1W̃

− 1
2

2 and its distinct eigenvalues λ1 > · · · > λp >

0 be as defined in the determinantal equation (8.2a.3). Then, after integrating out the
differential element corresponding to the unique unitary matrix Q̃, Q̃Q̃∗ = I, Q̃∗Q̃ = I ,
such that Ũ2 = Q̃DQ̃∗, with D = diag(λ1, . . . , λp), the joint density of λ1, . . . , λp,
denoted by g̃1(D̃), is obtained as

g̃1(D) dD = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)

[ p∏

j=1

λ
α1−p

j

][ p∏

j=1

(1 + λj )
]−(α1+α2)

(8.2a.5)

×
[∏

i<j

|λi − λj |2
]πp(p−1)

Γ̃p(p)
dD, dD = dλ1 ∧ . . . ∧ dλp,

where

Γ̃p(α) = π
p(p−1)

2 Γ (α)Γ (α − 1) · · · Γ (α − p + 1), �(α) > p − 1. (8.2a.6)
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Example 8.2a.3. Let the p × p matrix X̃ have a complex matrix-variate type-2 beta
density with the parameters (α = p, β = p). Let its eigenvalues be λ1 > · · · > λp > 0
and their joint density be denoted by g̃1(D), D = diag(λ1, . . . , λp). Then,

g̃1(D) = Γ̃p(2p)

[Γ̃p(p)]2

πp(p−1)

Γ̃p(p)

[ p∏

j=1

1

(1 + λj )2p

]∏

i<j

(λi − λj )
2.

Verify that g̃1(D) is a density for p = 2.

Solution 8.2a.3. Since the total integral must be unity, let us integrate out the λj ’s. The
constant part is the following:

Γ̃p(2p)

[Γ̃p(p)]2

πp(p−1)

Γ̃p(p)
= Γ̃2(4)

[Γ̃2(2)]2

π2

Γ̃2(2)

= πΓ (4)Γ (3)

π2

π2

π
= 12. (i)

Now, consider the integrals over λ1 and λ2, noting that (λ1 − λ2)
2 = λ2

1 + λ2
2 − 2λ1λ2:

∫ ∞

λ1=0

∫ λ1

λ2=0

[λ2
1 + λ2

2 − 2λ1λ2]
(1 + λ1)4(1 + λ2)4

dλ1 ∧ dλ2

=
∫ ∞

λ1=0

λ2
1

(1 + λ1)4

[ ∫ λ1

λ2=0

1

(1 + λ2)4
dλ2

]
dλ1

+
∫ ∞

λ1=0

1

(1 + λ1)4

[ ∫ λ1

λ2=0

λ2
2

(1 + λ2)4
dλ2

]
dλ1

− 2
∫ ∞

λ1=0

λ1

(1 + λ1)4

[ ∫ λ1

λ2=0

λ2

(1 + λ2)4
dλ2

]
dλ1. (ii)

As they appear in (ii), the integrals over λ2 are

∫ λ1

λ2=0

1

(1 + λ2)4
dλ2 = 1

3

[
1 − 1

(1 + λ1)3

]
, (iii)
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∫ λ1

λ2=0

λ2
2

(1 + λ2)4
dλ2 = 1

3

[
− λ2

1

(1 + λ1)3
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
, (iv)

∫ λ1

λ2=0

λ2

(1 + λ2)4
dλ2 = 1

3

[
− λ1

(1 + λ1)3
+ 1

2
− 1

2

1

(1 + λ1)2

]
; (v)

then, integrating with respect to λ1 yields
∫ ∞

λ1=0

λ2
1

(1 + λ1)4

[1

3

(
1 − 1

(1 + λ1)3

)]
dλ1

= 1

3

[Γ (3)Γ (1)

Γ (4)
− Γ (3)Γ (4)

Γ (7)

]
, (vi)

∫ ∞

λ1=0

1

(1 + λ1)4

(1

3

)[
− λ2

1

(1 + λ1)3
− λ1

(1 + λ1)2
+ 1 − 1

1 + λ1

]
dλ1

= −1

3

[Γ (3)Γ (4)

Γ (7)
+ Γ (2)Γ (4)

Γ (6)
− Γ (1)Γ (3)

Γ (4)
+ Γ (1)Γ (4)

Γ (5)

]
, (vii)

−2
∫ ∞

λ1=0

λ1

(1 + λ1)4

(1

3

)[
− λ1

(1 + λ1)3
+ 1

2
− 1

2

1

(1 + λ1)2

]
dλ1

= 1

3

[
2
Γ (3)Γ (4)

Γ (7)
− Γ (2)Γ (2)

Γ (4)
+ Γ (2)Γ (4)

Γ (6)

]
. (viii)

Summing (vi),(vii) and (viii), we have

1

3

[
2
Γ (3)Γ (1)

Γ (4)
− Γ (1)Γ (4)

Γ (5)
− Γ (2)Γ (2)

Γ (4)

]
= 1

3

[ 4

3! − 1

4
− 1

3!
]

= 1

12
. (ix)

As the product of (ix) and (i) is 1, the result is established. Note that since 2p is a positive
integer, the method of integration by parts works for a general p when the first parameter
in the type-2 beta density α is equal to p. However,

∏
i<j (λi − λj ) will be difficult to

handle for a general p.

Example 8.2a.4. Give an explicit representation of (8.2a.5) for p = 3, α1 = 4 and
α2 = 3.

Solution 8.2a.4. For p = 3, α1 −p = 4 − 3 = 1, α1 +α2 = 4 + 3 = 7, p(p − 1) = 6.
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The constant part is the following:

Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)

πp(p−1)

Γ̃p(p)
= Γ̃3(7)

Γ̃3(4)Γ̃3(3)

π3(2)

Γ̃3(3)

= Γ (7)Γ (6)Γ (5)

π3[Γ (4)Γ (3)Γ (2)][Γ (3)Γ (2)Γ (1)]
× π6

π3Γ (3)Γ (2)Γ (1)
= 43200, (i)

the functional part being the product of

( p∏

j=1

λ
α1−p

j

)( p∏

j=1

(1 + λj )
−(α1+α2)

)
= (λ1λ2λ3)[(1 + λ1)(1 + λ2)(1 + λ3)]−7 (ii)

and ∏

i<j

(λi − λj )
2 = (λ1 − λ2)

2(λ1 − λ3)
2(λ2 − λ3)

2. (iii)

Multiplying (i), (ii) and (iii) yields the answer.

8.2.2. An alternative procedure in the real case

This section describes an alternative procedure that is presented in Anderson (2003).
The real case will first be discussed. Let W1 and W2 be independently distributed real p×p

matrix-variate gamma random variables with the parameters (α1, B), (α2, B), B >

O, �(αj ) >
p−1

2 , j = 1, 2. We are considering the determinantal equation

|W1 − λW2| = 0 ⇒ |W1 − μ(W1 + W2)| = 0

⇒ |W1 − μ

1 − μ
W2| = 0 (8.2.8)

⇒ |(W1 + W2)
− 1

2 W1(W1 + W2)
− 1

2 − μI | = 0

where λ = μ
1−μ

. Thus, μ is an eigenvalue of U1 = (W1 + W2)
− 1

2 W1(W1 + W2)
− 1

2 . It
follows from Theorem 8.1.1 that he joint density of W1 and W2, denoted by f (W1, W2),
can be written as

f (W1, W2) = g(U1)g1(U3) (8.2.9)

where U1 = (W1 + W2)
− 1

2 W1(W1 + W2)
− 1

2 and U3 = W1 + W2 are independently dis-
tributed. Further,

g(U1) = Γp(α1 + α2)

Γp(α1)Γp(α2)
|U1|α1−p+1

2 |I − U1|α2−p+1
2 , O < U1 < I, (8.2.10)
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for �(αj ) >
p−1

2 , j = 1, 2, and g(U1) = 0 elsewhere, is a real matrix-variate type-1 beta
density, and

g1(U3) = |B|α1+α2

Γp(α1 + α2)
|U3|α1+α2−p+1

2 e−tr(B U3) (8.2.11)

for B > O, �(α1+α2) >
p−1

2 , and g1(U3) = 0 elsewhere, is a real matrix-variate gamma
density with the parameters (α1 + α2, B), B > O. Now, consider the transformation
U1 = PDP ′, PP ′ = I, P ′P = I , where D = diag(μ1, . . . , μp), μ1 > · · · > μp > 0
being the distinct eigenvalues of the real positive definite matrix U1, and the orthonormal
matrix P is unique. Given the density of U1 specified in (8.2.10), the joint density of
μ1, . . . , μp, denoted by g4(D), which is obtained after integrating out the differential
element corresponding to P , is

g4(D)dD = Γp(α1 + α2)

Γp(α1)Γp(α2)

[ p∏

j=1

μ
α1−p+1

2
j

][ p∏

j=1

(1 − μj)
α2−p+1

2

]

× π
p2

2

Γp(
p
2 )

[∏

i<J

(μi − μj)
]
dD. (8.2.12)

Hence, the following result:

Theorem 8.2.3. The joint density of the eigenvalues μ1 > · · · > μp > 0 of the determi-
nantal equation in (8.2.8) is given by the expression appearing in (8.2.12), which is equal
to the density specified in (8.2.7).

Proof: It has already been established in Theorem 8.1.1 that U1 = (W1+W2)
− 1

2 W1 (W1+
W2)

− 1
2 has the real matrix-variate type-1 beta density given in (8.2.10). Now, make the

transformation U1 = PDP ′ where D = diag(μ1, . . . , μp) and the orthonormal matrix,
P is unique. Then, the first part is established from Theorem 8.2.2. It follows from (8.2.8)
that λ = μ

1−μ
or μ = λ

1+λ
with dμ = 1

(1+λ)2 dλ and μ = 1 − 1
1+λ

. Observe that
∏

i<j (μi −
μj) =∏i<j

(λi−λj )

(1+λi)(1+λj )
and that, in this product’s denominator, 1+λi appears p−1 times

for i = 1, . . . , p. The exponent of 1
1+λi

is α1 − p+1
2 + α2 − p+1

2 + 2 + (p − 1) = α1 + α2.
On substituting these values in (8.2.12), a perfect agreement with (8.2.7) is established,
which completes the proof.

Example 8.2.5. Provide an explicit representation of (8.2.12) for p = 3, α1 = 4 and
α2 = 3.
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Solution 8.2.5. Note that p+1
2 = 3+1

2 = 2, α1 − p+1
2 = 4 − 2 = 2 and α2 − p+1

2 =
3 − 2 = 1. The constant part is

Γp(α1 + α2)

Γp(α1)Γp(α2)

π
p2

2

Γp(
p
2 )

= Γ3(7)

Γ3(4)Γ3(3)

π
9
2

Γ3(
3
2)

= (6!)(5!)(11
2 )(9

2)(7
2)(5

2)(3
2)(1

2)
√

π

π
3
2 (3!)(2!)(1!)(5

2)(3
2)(1

2)
√

π(3
2)2!(1

2)
√

π1!

× π
9
2

π
3
2 (1

2)
√

π
√

π
= 831600, (i)

the functional part being the product of

( p∏

j=1

μ
α1−p+1

2
j

)( p∏

j=1

(1 − μj)
α2−p+1

2

)
= (μ1μ2μ3)

2[(1 − μ1)(1 − μ2)(1 − μ3)]1 (ii)

and ∏

i<j

(μi − μj) = (μ1 − μ2)(μ1 − μ3)(μ2 − μ3). (iii)

The product of (i), (ii) and (iii) yields the answer.

8.2.3. The joint density of the eigenvectors in the real case

In order to establish the joint density of the eigenvectors, we will proceed as follows,
our starting equation being |W1 − λW2| = 0. Let λj be a root of this equation and let Yj

be the corresponding vector. Then,

W1Yj = λjW2Yj ⇒ (W1 + λjW1)Yj = λj (W1 + W2)Yj (8.2.13)

⇒ W1Yj = λj

1 + λj

(W1 + W2)Yj = μj(W1 + W2)Yj (i)

⇒ (W1 + W2)
−1W1Yj = μjYj . (ii)

This shows that Yj is the eigenvector corresponding to the eigenvalue μj of (W1 +
W2)

−1W1 or, equivalently, of (W1 + W2)
− 1

2 W1(W1 + W2)
− 1

2 = U1 which is a real matrix-
variate type-1 beta random variable. Since the μj ’s are distinct, μ1 > · · · > μp > 0 and
the matrix is symmetric, the eigenvectors Y1, . . . , Yp are mutually orthogonal. Consider
the equation

W1Yj = μj(W1 + W2)Yj . (iii)



The Distributions of Eigenvalues and Eigenvectors 569

For i 
= j , we also have
W1Yi = μi(W1 + W2)Yi. (iv)

Premultiplying (iii) by Y ′
i and (iv) by Y ′

j , and observing that W ′
1 = W1, it follows that

(Y ′
i W1Yj )

′ = Y ′
jW1Yi . Since both are real 1 × 1 matrices and one is the transpose of the

other, they are equal. Then, on subtracting the resulting right-hand sides, we obtain

0 = μjY
′
i (W1 + W2)Yj − μiY

′
j (W1 + W2)Yi = (μj − μi)Y

′
i (W1 + W2)Yj .

Since Y ′
i (W1 +W2)Yj = Y ′

j (W1 +W2)Yi by the previous argument and μi 
= μj , we must
have

Y ′
i (W1 + W2)Yj = 0 for all i 
= j. (v)

Let us normalize Yj as follows:

Y ′
j (W1 + W2)Yj = 1, j = 1, 2, . . . , p. (vi)

Then, combining (v) and (vi), we have

Y ′(W1 + W2)Y = I, Y = (Y1, . . . , Yp), (vii)

which is the p × p matrix of the normalized eigenvectors. Thus,

W1 + W2 = (Y ′)−1Y−1 = Z′Z, Z = Y−1

⇒ dY = |Z|−2pdZ or dZ = |Y |−2pdY,

which follows from an application of Theorem 1.6.6. We are seeking the joint density of
Y1, . . . , Yp or the density of Y . The density of W1 + W2 = U3 denoted by g1(U3), is
available from (8.2.11) as

g1(U3)dU3 = |B|α1+α2

Γp(α1 + α2)
|U3|α1+α2−p+1

2 e−tr(B U3)dU3

= |B|α1+α2

Γp(α1 + α2)
|Z′Z|α1+α2−p+1

2 e−tr(BZZ′)d(Z′Z). (8.2.14)

Letting U3 = Z′Z, ascertain the connection between the differential elements dZ and dU3

from Theorem 4.2.3 for the case q = p. Then,

dZ = π
p2

2

Γp(
p
2 )

|U3|p
2 −p+1

2 dU3 ⇒ dU3 = Γp(
p
2 )

π
p2
2

|Z′Z| 1
2 dZ.
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Hence, the density of Z, denoted by gz(Z), is the following:

gz(Z) dZ = |B|α1+α2

Γp(α1 + α2)

Γp(
p
2 )

π
p2
2

|Z′Z|α1+α2−p
2 e−tr(BZ′Z)dZ,

so that the density of Y = Z−1, denoted by g5(Y ), is given by

g5(Y ) dY = |B|α1+α2

Γp(α1 + α2)
|Y |−2p|YY ′|−(α1+α2)+p

2 e−tr(B(YY ′)−1)dY

=
{ |B|α1+α2

Γp(α1+α2)
|YY ′|−(α1+α2+p

2 )e−tr(B(YY ′)−1)dY

0, elsewhere.
(8.2.15)

Then, we have the following result:

Theorem 8.2.4. Let W1 and W2 be independently distributed p × p real matrix-variate
gamma random variables with parameters (α1, B), (α2, B), B > O, �(αj ) >
p−1

2 , j = 1, 2. Consider the equation

|W1 − λW2| = 0 ⇒ W1Yj = λjW2Yj , j = 1, . . . , p,

where Yj is a vector corresponding to the root λj of the determinantal equation. Let
λ1 > · · · > λp > 0 be its distinct roots, which are also the eigenvalues of the ma-

trix W
− 1

2
2 W1W

− 1
2

2 . The eigenvalues λ1, . . . , λp and the linearly independent orthogonal
eigenvectors Y1, . . . , Yp are independently distributed. The joint density of the eigenval-
ues λ1, . . . , λp is available from Theorem 8.2.2 and the joint density of the eigenvectors is
given in (8.2.15).

Example 8.2.6. Illustrate the steps to show that the solutions of the determinantal equa-

tion |W1 − λW2| = 0 are also the eigenvalues of W
− 1

2
2 W1W

− 1
2

2 for the following matrices:

W1 =
[

3 1
1 3

]

, W2 =
[

2 1
1 2

]

.

Solution 8.2.6. First, let us assess whether W1 and W2 are positive definite matrices.
Clearly, W1 = W ′

1 and W2 = W ′
2 are symmetric and their leading minors are positive:

|(2)| = 2 > 0,

∣
∣
∣
∣
2 1
1 2

∣
∣
∣
∣ = 3 > 0 ⇒ W2 > O; |(3)| > 0,

∣
∣
∣
∣
3 1
1 3

∣
∣
∣
∣ = 8 > 0 ⇒ W1 > O.
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Consider the determinantal equation |W1 − λW2| = 0, that is,
∣
∣
∣
∣

[
3 1
1 3

]

− λ

[
2 1
1 2

]∣
∣
∣
∣ = (3 − 2λ)2 − (1 − λ)2 = 0, (i)

whose roots are λ1 = 2, λ2 = 4
3 . Let us determine W

− 1
2

2 . To this end, let us evaluate the
eigenvalues and eigenvectors of W2. The eigenvalues of W2 are the values of ν satisfying
the equation |W2−νI | = 0 ⇒ (2−ν)2−12 = 0 ⇒ ν1 = 3 and ν2 = 1 are the eigenvalues
of W2. An eigenvector corresponding to ν1 = 3 is given by

[
2 − ν1 1

1 2 − ν1

] [
x1

x2

]

=
[

0
0

]

⇒ x1 = 1, x2 = 1,

is one solution, the normalized eigenvector corresponding to ν1 = 3 being Y1 whose
transpose is Y ′

1 = 1√
2
[1, 1]. Similarly, an eigenvector associated with ν2 = 1 is x1 =

1, x2 = −1, which once normalized becomes Y2 whose transpose is Y ′
2 = 1√

2
[1, −1]. Let

Λ = diag(3, 1) be the diagonal matrix of the eigenvalues of W2. Then,

W2[Y1, Y2] = [Y1, Y2]Λ ⇒ W2 = 1

2

[
1 1
1 −1

] [
3 0
0 1

] [
1 1
1 −1

]

.

Observe that W2, W−1
2 , W

1
2

2 and W
− 1

2
2 share the same eigenvectors Y1 and Y2. Hence,

W
1
2

2 = 1

2

[
1 1
1 −1

] [√
3 0

0 1

] [
1 1
1 −1

]

⇒

W
− 1

2
2 = 1

2

[
1 1
1 −1

][ 1√
3

0

0 1

][
1 1
1 −1

]

,

and

T = W
− 1

2
2 W1W

− 1
2

2 = 1

4

[
1 1
1 −1

][ 1√
3

0

0 1

][
1 1
1 −1

] [
3 1
1 3

]

×
[

1 1
1 −1

][ 1√
3

0

0 1

][
1 1
1 −1

]

= 1

12

[
20 −4
−4 20

]

.

The eigenvalues of T are 1
12 times the solutions of (20 − δ)2 − 42 = 0 ⇒ δ1 = 24 and

δ2 = 16. Thus, the eigenvalues of T are 24
12 = 2 and 16

12 = 4
3 , which are the solutions of the

determinantal equation (i). This verifies the result.
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8.2a.2. An alternative procedure in the complex case

Let W̃1 and W̃2 be independently distributed p × p complex matrix-variate gamma
random variables with the parameters (α1, B̃), (α2, B̃), B̃ = B̃∗ > O, �(αj ) >

p − 1, j = 1, 2. We are considering the roots λj ’s and the corresponding eigenvectors
Yj ’s of the determinantal equation

det(W̃1 − λW̃2) = 0 ⇒ W̃1Ỹj = λjW̃2Ỹj , j = 1, . . . , p

⇒ det(W̃
− 1

2
2 W̃1W̃

− 1
2

2 − λI) = 0. (8.2a.7)

Let the eigenvalues λ1, . . . , λp of W̃
− 1

2
2 W̃1W̃

− 1
2

2 > O be distinct and such that λ1 > · · · >

λp > 0, noting that for Hermitian matrices, the eigenvalues are real. We are interested
in the joint distributions of the eigenvalues λ1, . . . , λp and the eigenvectors Ỹ1, . . . , Ỹp.
Alternatively, we will consider the equation

det(W̃1 − μ(W̃1 + W̃2)) = 0 ⇒ det
(
W̃1 − μ

1 − μ
W̃2

)
= 0, λ = μ

1 − μ
. (8.2a.8)

Proceeding as in the real case, one can observe that the joint density of W̃1 and W̃2,
denoted by f̃ (W̃1, W̃2), can be factorized into the product of the density of Ũ1 =
(W̃1 +W̃2)

− 1
2 W̃1(W̃1 +W̃2)

− 1
2 , denoted by g̃(Ũ1), which is a complex matrix-variate type-

1 beta random variable with the parameters (α1, α2), and the density of Ũ3 = W̃1 + W̃2,
denoted by g̃1(Ũ3), which is a complex matrix-variate gamma density with the parameters
(α1 + α2, B̃), B̃ > O. That is,

f̃ (W̃1, W̃2) dW̃1 ∧ dW̃2 = g̃(Ũ1)g̃1(Ũ3) dŨ1 ∧ dŨ3 (8.2a.9)

where

g̃(Ũ1) = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)
|det(Ũ1)|α1−p|det(I − Ũ1)|α2−p (8.2a.10)

for O < Ũ1 < I, �(αj ) > p − 1, j = 1, 2, and g̃ = 0 elsewhere, and

g̃1(Ũ3) = |det(B)|α1+α2

Γ̃p(α1 + α2)
|det(Ũ3)|α1+α2−pe−tr(B̃ Ũ3) (8.2a.11)

for Ũ3 = Ũ∗
3 > O, �(α1 + α2) > p − 1, and B̃ = B̃∗ > O, and zero elsewhere.

Note that by making the transformation Ũ1 = QDQ∗ with QQ∗ = I, Q∗Q = I,

and D = diag(μ1, . . . , μp), the joint density of μ1, . . . , μp, as obtained from (8.2a.10),
is given by
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g̃2(D) dD = Γ̃p(α1 + α2)

Γ̃p(α1)Γ̃p(α2)

[ p∏

j=1

μ
α1−p

j

][ p∏

j=1

(1 − μj)
α2−p

]

× πp(p−1)

Γ̃p(p)

[∏

i<j

(μi − μj)
2
]

dD; (8.2a.12)

also refer to Note 8.2a.1. Then, we have the following result on observing that the joint
density of λ1, . . . , λp is available from (8.2a.12) by making the substitution λ = μ

1−μ
or

μ = λ
1+λ

. Note that dμj = 1
(1+λj )2 dλj , 1 − μj = 1

1+λj
, and

∏

i<j

(μi − μj)
2 =

∏

i<j

(λi − λj )
2

(1 + λi)2(1 + λj )2

whose denominator contains p − 1 times (1 + λj )
2 for each j = 1, . . . , p. Thus, the final

exponent of 1
1+λj

is (α1 − p) + (α2 − p) + 2 + 2(p − 1) = α1 + α2. Hence, the following
result:

Theorem 8.2a.3. In the complex case, the joint density of the eigenvalues μ1 > · · · >

μp > 0 of the determinantal equation in (8.2a.8) is given by the expression appearing in
(8.2a.12), which is equal to the density specified in (8.2a.5).

We now consider the joint density of the eigenvectors Ỹ1, . . . , Ỹp, which will be avail-
able from (8.2a.11), thus establishing that the set of eigenvalues λ1, . . . , λp and the eigen-
vectors Ỹ1, . . . , Ỹp are independently distributed. For determining the joint density of the
eigenvectors, we start with the equation

W̃1Ỹj = μj(W̃1 + W̃2)Yj , j = 1, . . . , p, (i)

observing that λj and μj share the same eigenvector Ỹj . That is,

W̃1Ỹi = μi(W̃1 + W̃2)Ỹi, i = 1, . . . , p. (ii)

We continue as in the real case, showing that Ỹ ∗
i (W̃1 + W̃2)Ỹj = 0 for all i 
= j . Then, we

normalize Ỹj as follows: Ỹ ∗
j (W̃1+W̃2)Ỹj = 1, j = 1, . . . , p. Letting Ỹ = (Ỹ1, . . . , Ỹp) be

the p × p matrix of the normalized eigenvectors, we have Ỹ ∗(W̃1 + W̃2)Ỹ = I ⇒ Ũ1 =
W̃1 + W̃2 = (Ỹ ∗)−1(Ỹ )−1. Letting (Ỹ )−1 = Z̃ so that Z̃∗Z̃ = (Ỹ Ỹ ∗)−1 and applying

Theorem 4.2a.3, d(Z̃∗Z̃) = Γ̃p(p)

πp(p−1) dZ̃. Hence, given the density of W̃1 + W̃2 specified in

(8.2a.11), the density of Z̃, denoted by g̃3(Z̃), is obtained as

g̃3(Z̃)dZ̃ = |det(B̃)|α1+α2

Γ̃p(α1 + α2)

Γ̃p(p)

πp(p−1)
|det(Z̃∗Z̃)|α1+α2−pe−tr(B̃Z̃∗Z̃)dZ̃. (8.2a.13)
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Now noting that Z̃ = Ỹ−1 ⇒ dZ̃ = |det(Ỹ ∗Ỹ )|−pdỸ from an application of Theo-
rem 1.6a.6, and substituting in (8.2a.13), we obtain the following density of Ỹ , denoted by
g̃4(Ỹ ):

g̃4(Ỹ )dỸ = |det(B̃)|α1+α2

Γ̃p(α1 + α2)

Γ̃p(p)

πp(p−1)
|det(Ỹ Ỹ ∗)|−α1−α2e−tr(B̃(Ỹ ∗)−1Ỹ−1)dỸ (8.2a.14)

for B̃ = B̃∗ > O, �(α1 + α2) > p − 1, and zero elsewhere.

Example 8.2a.5. Show that the roots of the determinantal equation det(W̃1 − λW̃2) =
0 are the same as the eigenvalues of W̃

− 1
2

2 W̃1W̃
− 1

2
2 for the following Hermitian positive

definite matrices:

W̃1 =
[

3 1 − i

1 + i 3

]

, W̃2 =
[

3
√

2(1 + i)√
2(1 − i) 3

]

.

Solution 8.2a.5. Let us evaluate the eigenvalues and eigenvectors of W̃2. Consider the
equation det(W̃2 − μI) = 0 ⇒ (3 − μ)2 − 22 = 0 ⇒ μ1 = 5 and μ2 = 1 are the
eigenvalues of W̃2. An eigenvector corresponding to μ1 = 5 must satisfy the equation

[
3 − 5

√
2(1 + i)√

2(1 − i) 3 − 5

] [
x1

x2

]

=
[

0
0

]

⇒ −2x1 + √
2(1 + i)x2 = 0√

2(1 − i)x1 − 2x2 = 0
.

Since it is a singular system of linear equations, we can solve any one of them for x1 and
x2. For x2 = 1, we have x1 = 1√

2
(1 + i). Thus, one eigenvector is

X̃1 =
[

1√
2
(1 + i)

1

]

⇒ X̃∗
1X̃1 = 2 ⇒ Ỹ1 = 1√

2

[
1√
2
(1 + i)

1

]

where Ỹ1 is the normalized eigenvector obtained from X̃1. Similarly, corresponding to the
eigenvalue μ2 = 1, we have the normalized eigenvector

Ỹ2 = 1√
2

[
− 1√

2
(1 + i)

1

]

and W̃2[Ỹ1, Ỹ2] = [Ỹ1, Ỹ2]
[

5 0
0 1

]

,

so that

W̃2 = 1

2

[
1√
2
(1 + i) − 1√

2
(1 + i)

1 1

][
5 0
0 1

][ 1√
2
(1 − i) 1

− 1√
2
(1 − i) 1

]

,
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observing that the above format is W̃2 = ỸDỸ ∗ with Ỹ = [Ỹ1, Ỹ2] and D = diag(5, 1),

the diagonal matrix of the eigenvalues of W̃2. Since W̃2, W̃
1
2

2 , W̃−1
2 and W̃

− 1
2

2 share the
same eigenvectors, we have

W̃
1
2

2 = 1

2

[
1√
2
(1 + i) − 1√

2
(1 + i)

1 1

][√
5 0

0 1

][ 1√
2
(1 − i) 1

− 1√
2
(1 − i) 1

]

⇒

W̃
− 1

2
2 = 1

2

[
1√
2
(1 + i) − 1√

2
(1 + i)

1 1

][
1√
5

0

0 1

][
1√
2
(1 − i) 1

− 1√
2
(1 − i) 1

]

= 1

2

[
1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

. (i)

It is easily verified that

W̃
− 1

2
2 W̃

− 1
2

2 = 1

4

[
1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

×
[

1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

= 1

5

[
3 −√

2(1 + i)

−√
2(1 − i) 3

]

= W̃−1
2 .

Letting Q = W̃
− 1

2
2 W̃1W̃

− 1
2

2 , we have

Q = 1

4

[
1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

][
3 1 − i

1 + i 3

]

×
[

1√
5

+ 1 ( 1√
5

− 1) 1√
2
(1 + i)

( 1√
5

− 1) 1√
2
(1 − i) 1√

5
+ 1

]

= 1

4

⎡

⎣
62

5 −12
5

√
2(1 + i) + 4√

5
(1 − i)

−12
5

√
2(1 − i) + 4√

5
(1 + i) 62

5

⎤

⎦ . (ii)
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The eigenvalues of 4Q can be determined by solving the equation

(62

5
− ν
)2 −

[
− 12

5

√
2(1 + i) + 4√

5
(1 − i)

][
− 12

5

√
2(1 + i) + 4√

5
(1 − i)

]
= 0 ⇒

(62

5
− ν
)2 − 42

52
(46) = 0 ⇒

ν = 4

5
(9 ± √

46). (iii)

Thus, the eigenvalues of Q, denoted by δ, are

δ = 1

5
(9 ± √

46). (iv)

Now, let us consider the determinantal equation det(W̃1 − λW̃2) = 0, that is,
∣
∣
∣
∣

3(1 − λ) (1 − i) − λ
√

2(1 + i)

(1 + i) − λ
√

2(1 − i) 3(1 − λ)

∣
∣
∣
∣ = 0,

which yields

32(1 − λ)2 − [(1 + i) − λ
√

2(1 − i)][(1 − i) − λ
√

2(1 + i)] = 0 ⇒
32(1 − λ)2 − [(1 − √

2λ)2 + (1 + √
2λ)2] = 0 ⇒

λ = 1

5
(9 ± √

46). (v)

The eigenvalues obtained in (iv) and (v) being identical, the result is established.

8.3. The Singular Real Case

If a p × p real matrix-variate gamma distribution with parameters (α, β) and B > O

is singular and positive semi-definite, its p × p-variate density does not exist. When α =
m
2 , m ≥ p, and B = 1

2Σ−1, Σ > O, the gamma density is called a Wishart density with
m degrees of freedom and parameter matrix Σ > O. If the rank of the gamma or Wishart
matrices is r < p, in which case they are positive semi-definite, the resulting distributions
are said to be singular. It can be shown that, in this instance, we have in fact nonsingular
r × r-variate gamma or Wishart distributions. In order to establish this, the matrix theory
results presented next are required.

Let A = A′ ≥ O (non-negative definite) be a p × p real matrix of rank r < p, and the
elementary matrices E1, E2, . . . , Ek be such that by operating on A, one has

Ek · · · E2E1AE′
1E

′
2 · · · E′

k =
[

Ir O1

O2 O3

]
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where O1, O2 and O3 are null matrices, with O3 being of order (p − r) × (p − r). Then,

A = E−1
1 · · · E−1

k

[
Ir O1

O2 O3

]

E′−1
k · · · E′−1

1 = Q

[
Ir O1

O2 O3

]

Q′

where Q is a product of inverses of elementary matrices and hence, nonsingular. Letting

Q =
[
Q11 Q12

Q21 Q22

]

, Q11 being r × r and Q22, (p − r) × (p − r),

Q

[
Ir O1

O2 O3

]

=
[
Q11 Q12

Q21 Q22

] [
Ir O

O O

]

=
[
Q11 O

Q21 O

]

.

Note that

Q

[
Ir O

O O

]

Q′ =
[
Q11Q

′
11 Q11Q

′
21

Q21Q
′
11 Q21Q

′
21

]

=
[
Q11

Q21

]

[Q′
11, Q

′
21] = A1A

′
1

where A1 =
[
Q11

Q21

]

which is a full rank p × r matrix, r < p, so that the r columns of

A1 are all linearly independent. This result can also be established by appealing to the fact
that when A ≥ O, its eigenvalues are non-negative, and A being symmetric, there exists
an orthonormal matrix P, PP ′ = I, P ′P = I, such that

A = P

[
D O

O O

]

P ′ = λ1P1P
′
1 + · · · + λrP1P

′
r + 0Pr+1P

′
r+1 + · · · + 0PpP ′

p = P(1)DP ′
(1),

D = diag(λ1, . . . , λr), P(1) = [P1, . . . , Pr ], P = [P1, . . . , Pr, . . . , Pp],
where P1, . . . , Pp are the columns of the orthonormal matrix P , λ1, . . . , λr, 0, . . . , 0 are
the eigenvalues of A where λj > 0, j = 1, . . . , r, and P(1) contains the first r columns
of P . The first r eigenvalues must be positive since A is a non-negative definite matrix of
rank r . Now, we can write A = P(1)DP ′

(1) = A1A
′
1, with A1 = P(1)D

1
2 . Observe that A1

is p × r and of rank r < p. Thus, we have the following result:

Theorem 8.3.1. LetA = A′ be a real p×p positive semi-definite matrix,A ≥ O, of rank
r < p. Then, A can be represented in the form A = A1A

′
1 where A1 is a p × r , r < p,

matrix of rank r or, equivalently, the r columns of the p × r matrix A1 are all linearly
independent.

In the case of Wishart matrices, we can interpret Theorem 8.3.1 as follows: Let the p×1
vector random variable Xj have a nonsingular Gaussian distribution whose mean value is
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the null vector and covariance matrix Σ is positive definite. Let the Xj ’s, j = 1, . . . , n,

be independently distributed, that is, Xj
iid∼ Np(O, Σ), Σ > O, j = 1, . . . , n. Letting

the p × n sample matrix be X = [X1, . . . , Xn], the joint density of X1, . . . , Xn or that of
X, denoted by f (X), is the following:

f (X)dX = 1

(2π)
np
2 |Σ | n

2
e− 1

2

∑n
j=1 X′

jΣ
−1Xj dX

= 1

(2π)
np
2 |Σ | n

2
e− 1

2 tr(Σ−1XX′)dX . (8.3.1)

Letting W = XX′, the p×p matrix W will be positive definite provided n ≥ p; otherwise,
that is when n < p, W will be singular. Let us consider the case n ≥ p first. This will also
provide a derivation of the real Wishart density which was earlier obtained as a special
case of real matrix-variate gamma density. Observe that we can write dX in terms of dW

by applying Theorem 4.2.3, namely,

dX = π
np
2

Γp(n
2 )

|W | n
2 −p+1

2 dW.

Therefore, if the density of W is denoted by f1(W), then f1(W) is available from (8.3.1)
by expressing dX in terms of dW . That is,

f1(W) = 1

2
np
2 Γp(n

2 )|Σ | n
2
|W | n

2 −p+1
2 e− 1

2 tr(Σ−1W) (8.3.2)

for n ≥ p, W > O, Σ > O, and f1(W) = 0 elsewhere. This is the density of a
nonsingular Wishart distribution with n degrees of freedom, n ≥ p, and parameter matrix
Σ > O, which is denoted W ∼ Wp(n, Σ), Σ > O, n ≥ p. It has previously been

shown that when Xj
iid∼ Np(μ, Σ), j = 1, . . . , n, where μ 
= O is the common p × 1

mean value vector and Σ is the positive definite covariance matrix,

W = (X − X̄)(X − X̄)′ ∼ Wp(n − 1, Σ), Σ > O for n − 1 ≥ p,

where X̄ = [X̄, . . . , X̄], X̄ = 1
n
(X1 + · · · + Xn). Thus, we have the following result:

Theorem 8.3.2. Let Xj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , n. Let X = [X1, . . . , Xn]

and W = XX′. Then, when μ = O, the p × p positive definite matrix W ∼
Wp(n, Σ), Σ > O for n ≥ p. If μ 
= O, W = (X− X̄)(X− X̄)′ ∼ Wp(n−1, Σ), Σ >

O, for n − 1 ≥ p, where X̄ = [X̄, . . . , X̄], X̄ = 1
n
(X1 + · · · + Xn).
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Now, consider the case n < p. Let us denote n as r < p in order to avoid any confusion
with n as specified in the nonsingular case. Letting X be as previously defined, X is a real
matrix of order p × r , n = r < p. Let T1 = XX′ and T2 = X′X where X′X is an r × r

positive definite matrix since X and X′ are full rank matrices of rank r < p. Thus, all the
eigenvalues of T2 = X′X are positive and the eigenvalues of T1 are either positive or equal
to zero since T1 is a real positive semi-definite matrix. Letting λ be a nonzero eigenvalue
of T2, consider the following determinant, denoted by δ, which is expanded in two ways
by making use of certain properties of the determinants of partitioned matrices that are
provided in Sect. 1.3:

δ =
∣
∣
∣
∣

√
λIp X
X′ √

λIr

∣
∣
∣
∣ = |√λIp| |√λIr − X′(

√
λIp)−1X|

= (
√

λ)p−r |λIr − X′X|;
δ = 0 ⇒ |λIr − X′X| = 0, (8.3.3)

which shows that λ is an eigenvalue of X′X. Now expand δ as follows:

δ = |√λIr | |√λIp − X(
√

λIr)
−1X′|

= (
√

λ)−p+r |λIp − XX′|;
δ = 0 ⇒ |λIp − XX′| = 0, (8.3.4)

so that all the r nonzero eigenvalues of T2 = X′X are also eigenvalues of T1 = XX′, the
remaining eigenvalues of T1 being zeros. As well, one has |Ir −X′X| = |Ip −XX′|. These
results are next stated as a theorem.

Theorem 8.3.3. Let X be a p × r matrix of full rank r < p. Let the real p × p positive
semi-definite matrix T1 = XX′ and the r × r real positive definite matrix T2 = X′X. Then,
(a) the r positive eigenvalues of T2 are identical to those of T1, the remaining eigenvalues
of T1 being equal to zero; (b) |Ir − X′X| = |Ip − XX′|.

Additional results relating the p-variate real Gaussian distribution to the real Wishart
distribution are needed in connection with the singular case. Let the p × 1 vector Xj have
a p-variate real Gaussian distribution whose mean value is the null vector and covariance

matrix is positive definite, with Xj
iid∼ Np(O, Σ), Σ > O, j = 1, . . . , r, r < p.

Let X = [X1, . . . , Xr ] be a p × r matrix, which, in this instance, is also the sample
matrix. We are seeking the distribution of T1 = XX′ when r < p, where T1 corresponds
to a singular Wishart matrix. Letting T be an r × r lower triangular matrix with positive
diagonal elements, and G be an r ×p, r < p, semiorthonormal matrix, that is, GG′ = Ir ,
we have the representation X′ = T G, so that
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dX′ =
{ r∏

j=1

t
p−j

jj

}
dT h(G), p ≥ r, (8.3.5)

where h(G) is a differential element associated with G. Then, on applying Theorem 4.2.2,
we have

∫

Vr,p

h(G) = 2r π
pr
2

Γr(
p
2 )

, p ≥ r, (8.3.6)

where Vr,p is the Stiefel manifold or the space of semi-orthonormal r×p, r < p, matrices.
Observe that the density of X′, denoted by fX′(X′), is the following:

fX′(X′) dX′ = e− 1
2

∑r
j=1 X′

jΣ
−1Xj

(2π)
pr
2 |Σ | r

2
dX′ = e− 1

2 tr(X′Σ−1X)

(2π)
pr
2 |Σ | r

2
dX′.

Let T2 = X′Σ−1X or simply T2 = X′X when Σ = I ; note that Σ will vanish upon letting
Y = Σ− 1

2X ⇒ dY = |Σ |− r
2 dX. Now, on expressing dX′ in terms of dT2 by making use

of Theorem 4.2.3, the following result is obtained:

Theorem 8.3.4. Let Xj
iid∼ Np(μ, Σ), Σ > O, j = 1, . . . , r, r < p. Let X =

[X1, . . . , Xr ], X̄ = 1
r
(X1 + · · · + Xr) and X̄ = (X̄, . . . , X̄). Letting T2 = X′Σ−1X or

T2 = X′X when Σ = I , T2 has the following density, denoted by ft(T2), when μ = O:

ft(T2) = 1

2
pr
2 Γr(

p
2 )

|T2|p
2 − r+1

2 e− 1
2 tr(T2), T2 > O, r ≤ p, (8.3.7)

and zero elsewhere. Note that the r × r matrix T2 = X′X or T2 = X′Σ−1X when Σ 
= I,

has a Wishart distribution with p degrees of freedom and parameter matrix I , that is,
T2 ∼ Wr(p, I), r ≤ p. When μ 
= O, T2 = (X − X̄)′Σ−1(X − X̄) has a Wishart
distribution with p−1 degrees of freedom or, equivalently, T2 ∼ Wr(p−1, I ), r ≤ p−1.

8.3.1. Singular Wishart and matrix-variate gamma distributions, real case

We now consider the case of a singular matrix-variate gamma distribution. Let the
p × 1 vector Xj have a p-variate real Gaussian distribution whose mean value is the null

vector and covariance matrix is positive definite, with Xj
iid∼ Np(O, Σ), Σ > O, j =

1, . . . , r, r < p. For convenience, let Σ = Ip. Let X = [X1, . . . , Xr ] be the p × r sample
matrix. Then, for r ≥ p, XX′ is distributed as a Wishart matrix with r ≥ p degrees of
freedom, that is, XX′ ∼ Wp(r, I ), r ≥ p. This result still holds for any positive definite
matrix Σ ; it suffices then to replace I by Σ . What about the distribution of XX′ if r < p,
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which corresponds to the singular case? In this instance, the real matrix XX′ ≥ O (positive
semi-definite) and the density of X, denoted by f1(X), is the following:

f1(X) dX = e− 1
2 tr(XX′)

(2π)
rp
2

dX. (8.3.8)

Let W2 be a p × p nonsingular Wishart matrix with n ≥ p degrees of freedom, that is,
W2 ∼ Wp(n, I ). Let X and W2 be independently distributed. Then, the joint density of X
and W2, denoted by f2(X, W2), is given by

f2(X, W2) = e− 1
2 tr(XX′+W2)

(2π)
pr
2 2

np
2 Γp(n

2 )
|W2| n

2 −p+1
2

for W2 > O, XX′ ≥ O, n ≥ p, r < p. Letting U = XX′ + W2 > O, and the joint
density of U and X be denoted by f3(X, U), we have

f3(X, U) = e− 1
2 tr(U)

(2π)
pr
2 2

np
2 Γp(n

2 )
|U − XX′| n

2 −p+1
2 , n ≥ p, r < p,

where
|U − XX′| = |U | |I − U− 1

2XX′U− 1
2 |.

Letting V = U− 1
2X for fixed U , dV = |U | r

2 dX, and the joint density of U and V , denoted
by f4(U, V ), is then

f4(U, V ) = |U | n+r
2 −p+1

2 e− 1
2 tr(U)

(2π)
pr
2 2

n
2 Γp(n

2 )
|I − V V ′| n

2 −p+1
2 . (8.3.9)

Note that U and V are independently distributed. By integrating out U with the help of a
real matrix-variate gamma integral, we obtain the density of V , denoted by f5(V ), as

f5(V ) = c |I − V V ′| n
2 −p+1

2 = c |I − V ′V | n
2 −p+1

2 , (8.3.10)

in view of Theorem 8.3.3(b), where V is p × r, r < p, c being the normalizing constant.
Thus, we have the following result:

Theorem 8.3.5. Let X = [X1, . . . , Xr ] and Xj
iid∼ Np(O, I), j = 1, . . . , r, r < p.

Let the p × p real positive definite matrix W2 be Wishart distributed with n degrees of
freedom, that is, W2 ∼ Wp(n, I ). Let U = XX′ + W2 > O and let V = U− 1

2X where V
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is a p × r, r < p, matrix of full rank r . Observe that V V ′ ≥ O (positive semi-definite).
Then, the densities of the r × p matrix V ′ and the matrix S = V ′V , respectively denoted
by f5(V ) and f6(S), are as follows, U and V being independently distributed:

f5(V ) = Γr(
p
2 )

π
pr
2

Γr(
n+r

2 )

Γr(
p
2 )Γr(

n−p+r
2 )

|I − V ′V | n
2 −p+1

2 , (8.3.11)

and

f6(S) = Γr(
n+r

2 )

Γr(
p
2 )Γr(

n−p+r
2 )

|S|p
2 − r+1

2 |I − S| n−p+r
2 − r+1

2 , n ≥ p, r < p, S > O. (8.3.12)

Proof: In light of Theorem 8.3.3(b), |Ip − V V ′| = |Ir − V ′V |. Observe that V V ′ is
p × p and positive semi-definite whereas V ′V is r × r and positive definite. As well,
n
2 − p+1

2 = n−p+r
2 − r+1

2 . Letting S = V ′V and expressing dV ′ in terms of dS by applying
Theorem 4.2.3, then for r < p,

dV ′ = π
rp
2

Γr(
p
2 )

|S|p
2 − r+1

2 dS. (i)

Now, integrating out S by making use of a type-1 beta integral, we have
∫

S>O

|S|p
2 − r+1

2 |I − S| n−p+1
2 − r+1

2 dS = Γr(
p
2 )Γr(

n−p+r
2 )

Γr(
n+r

2 )
(ii)

for n ≥ p, r < p. The normalizing constants in (8.3.11) and (8.3.12) follow from (i) and
(ii) . This completes the proofs.

At this juncture, we are considering the singular version of the determinantal equation
in (8.2.8). Let W1 and W2 be independently distributed p × p real matrices where W1 =
XX′, X = [X1, . . . , Xr ] with Xj

iid∼ Np(O, I), j = 1, . . . , r, r < p, and the positive
definite matrix W2 ∼ Wp(n, I ), n ≥ p. The equation

|W1 − μ(W1 + W2)| = O ⇒ |XX′ − μ(XX′ + W2)| = 0

⇒ |U− 1
2XX′U− 1

2 − μIp| = 0, U = XX′ + W2 > O

⇒ |V V ′ − μIp| = 0,

which, in turn, implies that μ is an eigenvalue of V V ′ ≥ O and all the eigenvalues are
positive or zero. However, it follows from (8.3.3) and (8.3.4) that

|V V ′ − μIp| = 0 ⇒ |V ′V − μIr | = 0.

Hence, the following result:
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Theorem 8.3.6. LetX be a p×r matrix whose columns are iidNp(O, I) and r < p. Let
W1 = XX′ ≥ O which is a p×p positive semi-definite matrix,W2 > O be a p×p Wishart
distributed matrix having n degrees of freedom, that is, W2 ∼ Wp(n, I ), n ≥ p, and let

W1 and W2 be independently distributed. Then, U = W1 + W2 > O and V = U− 1
2 X are

independently distributed. Moreover,

|W1 − μ(W1 + W2)| = 0 ⇒ |V ′V − μIr | = 0

where the roots μj > 0, j = 1, . . . , r, are the eigenvalues of V ′V > O, and the eigen-
values of V V ′ are μj > 0, j = 1, . . . , r, with the remaining p − r eigenvalues of V V ′
being equal to zero.

Let S = PDP ′, D = diag(μ1, . . . , μr), PP ′ = Ir, P ′P = Ir . Then, on applying
Theorem 8.2.2,

dS = π
r2
2

Γr(
r
2)

[∏

i<j

(μi − μj)
]
dD

after integrating out over the differential element associated with the orthonormal matrix
P . Substituting in f6(S) of Theorem 8.3.5 yields the following result:

Theorem 8.3.7. Let μ1, . . . , μr be the nonzero roots of the determinantal equation

|W1 − μ(W1 + W2)| = 0 where W1 = XX′, X = [X1, . . . , Xr ], Xj
iid∼ Np(O, I), j =

1, . . . , r < p, W2 ∼ Wp(n, I ), n ≥ p, and W1 and W2 be independently distributed. Let-
ting μ1 > μ2 > · · · > μr > 0, r < p, the joint density of the nonzero roots μ1, . . . , μr ,
denoted by fμ(μ1, . . . , μr), is given by

fμ(μ1, . . . , μr) = π
r2
2

Γr(
r
2)

Γr(
n+r

2 )

Γr(
p
2 )Γr(

n−p+r
2 )

×
[ r∏

j=1

μ
p
2 − r+1

2
j

][ r∏

j=1

(1 − μj)
n−p+r

2 − r+1
2

][∏

i<j

(μi − μj)
]
. (8.3.13)

It can readily be observed from (8.3.9) that U = XX′ +W2 and V = U− 1
2 X are indeed

independently distributed.
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8.3.2. A direct evaluation as an eigenvalue problem

Consider the singular version of the original determinantal equation

|W1 − λW2| = 0 ⇒ |W− 1
2

2 W1W
− 1

2
2 − λI | = 0 (8.3.14)

where W1 is singular, W2 is nonsingular, and W1 and W2 are independently distributed.
Thus, the roots λj ’s of the equation |W1 − λW2| = 0 coincide with the eigenvalues of

the matrix U = W
− 1

2
2 W1W

− 1
2

2 . Let W2 be a real nonsingular matrix-variate gamma or

Wishart distributed matrix. Let W1 = XX′, X = [X1, . . . , Xr ], Xj
iid∼ Np(O, Σ), Σ >

O, j = 1, . . . , r, r < p, or, equivalently, the p × r , r < p, matrix X is a simple
random sample from this p-variate real Gaussian population. We will take Σ = I without
any loss of generality. In this case, X is a p × r full rank matrix with r < p. Let W2 ∼
Wp(n, I ), n ≥ p, that is, W2 is a nonsingular Wishart matrix with n degrees of freedom
and parameter matrix I , and W1 ≥ O (positive semi-definite). Then, the joint density of X
and W2, denoted by f7(X, W2), is the following:

f7(X, W2) = e− 1
2 tr(XX′)|W2| n

2 −p+1
2 e− 1

2 tr(W2)

(2π)
nr
2 2

np
2 Γp(n

2 )
. (i)

Consider the exponent

−1

2
tr(XX′ + W2) = −1

2
tr[W2(I + W

− 1
2

2 XX′W− 1
2

2 )] = −1

2
tr(W2(I + V V ′))

where V = W
− 1

2
2 X ⇒ dX = |W2| r

2 dV for fixed W2. The joint density of W2 and V ,
denoted by f8(V , W2), is then

f8(V , W2) = |W2| n
2 + r

2 −p+1
2 e− 1

2 tr(W2(I+V V ′))

(2π)
pr
2 2

np
2 Γp(n

2 )
. (ii)

Observe that V V ′ = W
− 1

2
2 XX′W− 1

2
2 = U of (8.3.14). Integrating out W2 in (ii) by using

a real matrix-variate gamma integral, we obtain the marginal density of V , denoted by
f9(V ), as

f9(V )dV = Γp(n+r
2 )

Γp(n
2 )π

pr
2

|I + V V ′|−( n+r
2 )dV (iii)

where V V ′ ≥ O (positive semi-definite). Note that

|Ip + V V ′| = |Ir + V ′V |, V V ′ ≥ O, V ′V > O (positive definite),
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which follows from Theorem 8.3.3(b). This last result can also be established by expanding
the following determinant in two ways as was done in (8.3.3) and (8.3.4):

∣
∣
∣
∣

Ip V

−V ′ Ir

∣
∣
∣
∣ = |Ip| |Ir + V ′V | = |Ir | |Ip + V V ′|
⇒ |Ir + V ′V | = |Ip + V V ′|.

Hence, the density of V ′ must be of the following form where c1 is the normalizing con-
stant:

f10(V
′)dV ′ = c1|I + V ′V |−( n+r

2 )dV ′, n ≥ p, r < p. (iv)

On applying Theorem 4.2.3, (iv) can be transformed into a function of S1 = V ′V > O, S1

being of order r × r . Then,

dV ′ = π
pr
2

Γr(
p
2 )

|S1|p
2 − r+1

2 dS1.

Substituting the above expression for dV ′ in f10(V
′) and then integrating over the r × r

matrix S1 > O, we have

∫

V ′
f10(V

′)dV ′ = c1
π

pr
2

Γr(
p
2 )

Γr(
p
2 )Γr(

n+r−p
2 )

Γr(
n+r

2 )
= 1.

Accordingly, the density of V ′ is the following:

f10(V
′)dV ′ = Γr(

p
2 )

π
pr
2

Γr(
n+r

2 )

Γr(
p
2 )Γr(

n+r−p
2 )

|I + V ′V |−( n+r
2 )dV ′. (8.3.15)

Note that Γr(
p
2 ) cancels out. Then, by re-expressing dV ′ in terms of dS1 in (8.3.15), the

density of S1 = V ′V is obtained as

f11(S1) = Γr(
n+r

2 )

Γr(
p
2 )Γr(

n+r−p
2 )

|S1|p
2 − r+1

2 |I + S1|−( n+r
2 ) (8.3.16)

for S1 = V ′V > O, n ≥ p, r < p, and zero elsewhere, which is a real r × r matrix-
variate type-2 beta density with the parameters (

p
2 ,

n+r−p
2 ). Thus, the following result:

Theorem 8.3.8. Let W1 = XX′, X = [X1, . . . , Xr ], Xj
iid∼ Np(O, I), j = 1, . . . , r,

r < p, W2 ∼ Wp(n, I ), n ≥ p, and W1 and W2 be independently distributed. Let
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V = W
− 1

2
2 X, V V ′ ≥ O and S1 = V ′V > O. Then, |Ip +V V ′| = |Ir +V ′V | = |Ir +S1|.

The density of V ′ is given in (8.3.15) and that of S1, which is specified in (8.3.16), is a real
matrix-variate type-2 beta density with the parameters (

p
2 ,

n+r−p
2 ). Moreover, the positive

semi-definite matrix S2 = W
− 1

2
2 XX′W− 1

2
2 is distributed, almost surely, as S1, which has a

nonsingular real matrix-variate type-2 beta distribution with the parameters (
p
2 ,

n+r−p
2 ).

Observe that this theorem also holds when Xj
iid∼ Np(O, Σ), Σ > O and

W2 ∼ Wp(n, Σ), Σ > O, and the distribution of S2 will still be free of Σ . Con-
verting (8.3.16) in terms of the eigenvalues of S1, which are also the nonzero eigen-

values of S2 = W
− 1

2
2 XX′W− 1

2
2 of (8.3.14), we have the following density, denoted by

f12(λ1, . . . , λr)dD, D = diag(λ1, . . . , λr), assuming that the eigenvalues are distinct and
such that λ1 > λ2 > · · · > λr > 0:

f12(λ1, . . . , λr)dD = Γr(
n+r

2 )

Γr(
p
2 )Γr(

n+r−p
2 )

πr2

Γr(
r
2)

×
[ r∏

j=1

λ
p
2 − r+1

2
j

][ r∏

j=1

(1 + λj )
−( n+r

2 )
][∏

i<j

(λi − λj )
]
dD. (8.3.17)

Theorem 8.3.9. Let W2 and X be as defined in (8.3.14). Then, the joint density of the

nonzero eigenvalues λ1, . . . , λr of S2 = W
− 1

2
2 XX′W− 1

2
2 , which are assumed to be distinct

and such that λ1 > · · · > λr > 0, is given in (8.3.17).

In (8.3.13) we have obtained the joint density of the nonzero roots μ1 > · · · > μr of
the determinantal equation

|XX′ − μ(XX′ + W2)| = 0 ⇒ |XX′ − λW2| = 0, λ = μ

1 − μ
, μ = λ

1 + λ
,

⇒ |W− 1
2

2 XX′W− 1
2

2 − λI | = 0. (8.3.18)

Hence, making the substitution μj = λj

1+λj
in (8.3.13) should yield the density appearing

in (8.3.17). This will be stated as a theorem.

Theorem 8.3.10. When μj = λj

1+λj
or λj = μj

1−μj
, the distributions of the μj ’s or the

λj ’s, as respectively specified in (8.3.13) and (8.3.17), coincide.



The Distributions of Eigenvalues and Eigenvectors 587

8.3a. The Singular Complex Case

The matrix manipulations that were utilized in the real case also apply in the complex
domain. The following result parallels Theorem 8.3.1:

Theorem 8.3a.1. Let the p × p matrix A = A∗ ≥ O be a Hermitian positive semi-
definite matrix of rank r < p, where A∗ designate the conjugate transpose of A. Then, A
can be represented as A = A1A

∗
1 where A1 is p × r, r < p, of rank r , that is, all the

columns of A1 are linearly independent.

A derivation of the Wishart matrix in the complex case can also be worked out from
a complex Gaussian distribution. In earlier chapters, we have derived the Wishart density
as a particular case of the matrix-variate gamma density, whether in the real or complex
domain. Let the p × 1 complex vectors X̃j , j = 1, . . . , n, be independently distributed as
p-variate complex Gaussian random variables with the null vector as their mean value and

a common Hermitian positive definite covariance matrix, that is, X̃j
iid∼ Ñp(O, Σ), Σ =

Σ∗ > O for j = 1, . . . , n. Let the p × n matrix X̃ = [X̃1, . . . , X̃n] be the simple random
sample matrix from this complex Gaussian population. Then, the density of X̃, denoted by
f̃ (X̃), is given by

f̃ (X̃) = e−∑n
j=1 X̃∗

j Σ−1X̃j

πnp|det(Σ)|n = e−tr(Σ−1X̃X̃∗)

πnp|det(Σ)|n , (8.3a.1)

for n ≥ p. Let the p × p Hermitian positive definite matrix X̃X̃∗ = W̃ . For n ≥ p, it
follows from Theorem 4.2a.3 that

dX̃ = πnp

Γ̃p(n)
|det(W̃ )|n−pdW̃ (8.3a.2)

where dX̃ = dY1 ∧ dY2, X̃ = Y1 + iY2, i = √−1, Y1, Y2 being real p × n matrices.
Given (8.3a.1) and (8.3a.2), the density of W̃ , denoted by f̃1(W̃ ), is obtained as

f̃1(W̃ ) = |det(W̃ )|n−pe−tr(Σ−1W̃ )

Γ̃p(n)|det(Σ)|n , W̃ = W̃ ∗ > O, n ≥ p, (8.3a.3)

and zero elsewhere; this is the complex Wishart density with n degrees of freedom and
parameter matrix Σ > O, which is written as W̃ ∼ W̃p(n, Σ), Σ > O, n ≥ p. If

X̃j ∼ Ñp(μ̃, Σ), Σ > O, then letting ¯̃
X = 1

n
(X̃1 + · · · + X̃n),

¯̃X = (
¯̃
X, . . . ,

¯̃
X) and

W̃ = (X̃ − ¯̃X)(X̃ − ¯̃X)∗, (8.3a.4)
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we have W̃ ∼ W̃p(n − 1, Σ), n − 1 ≥ p, Σ > O, or W̃ has a Wishart distribution with
n − 1 instead of n degrees of freedom, μ̃ 
= O being eliminated by subtracting the sample
mean. The remainder of this section is devoted to the distribution of X̃X̃∗ for n < p, that
is, in the singular case. Proceeding as in the real case, we have

det(Ip − X̃X̃∗) = det(Ir − X̃∗X̃) (8.3a.5)

where X̃X̃∗ ≥ O is p × p, whereas the r × r , r < p, matrix X̃∗X̃ > O. Then, we have
the following result:

Theorem 8.3a.2. Let T̃1 = X̃X̃∗ and T̃2 = X̃∗X̃. Then, the eigenvalues of T̃2 are all real
and positive and the nonzero eigenvalues of T̃1 are identical to those of T̃2, the remaining
ones being equal to zero.

The complex counterpart of Theorem 8.3.4 that follows can be derived using steps
parallel to those utilized in the real case.

Theorem 8.3a.3. Let the p × 1 complex vectors X̃j
iid∼ Ñp(μ̃, Σ), Σ > O, j =

1, . . . , r . Let X̃ = [X̃1, . . . , X̃r ] be the simple random sample matrix from this complex
p-variate Gaussian population. Let T̃2 = X̃∗Σ−1X̃ or T̃2 = X̃∗X̃ if Σ = Ip. Then, the
density of T̃2, denoted by f̃u(T̃2), is the following:

f̃u(T̃2) = 1

Γ̃r (p)
|det(T̃2)|p−re−tr(T̃2), T̃2 > O, r ≤ p, (8.3a.6)

so that T̃2 ∼ W̃r(p, I ), that is, T̃2 has a complex Wishart distribution with p degrees of

freedom. If μ̃ 
= O, let T̃2 = (X̃− ¯̃X)∗(X̃− ¯̃X) or T̃2 = (X̃− ¯̃X)∗Σ−1(X̃− ¯̃X) when Σ 
= I

with ¯̃X = (
¯̃
X, . . . ,

¯̃
X)wherein ¯̃

X = 1
r
(X̃1+· · ·+X̃r). Then, T̃2 ∼ W̃r(p−1, I ), r ≤ p−1.

8.3a.1. Singular gamma or singular Gaussian distribution, complex case

Let X̃ = [X̃1, . . . , X̃r ] where the p × 1 vectors X̃1, . . . , X̃r are independently dis-
tributed as complex Gaussian vectors whose mean value is the null vector and covariance

matrix is I , that is, X̃j
iid∼ Ñp(O, I), j = 1, . . . , r, r < p. Then, the density of X̃,

denoted by f̃1(X̃), is

f̃1(X̃) = e−tr(X̃X̃∗)

πnp
. (8.3a.7)

Let r < p so that X̃X̃∗ ≥ O (Hermitian positive semi-definite). Let the p × p Hermitian
positive definite matrix W̃2 have a Wishart density with n ≥ p degrees of freedom and
parameter matrix I , that is, W̃2 ∼ W̃p(n, I ), n ≥ p. Further assume that X̃ and W̃2 are



The Distributions of Eigenvalues and Eigenvectors 589

independently distributed. Then, the joint density of X̃ and W̃2, denoted by f̃2(X̃, W̃2), is
the following:

f̃2(X̃, W̃2) = e−tr(X̃X̃∗+W̃2)|det(W̃2)|n−p

πnpΓ̃p(n)
, n ≥ p, r < p, (8.3a.8)

where X̃ is p × r , r < p. Letting the p ×p matrix Ũ = X̃X̃∗ + W̃2 > O, the joint density
of Ũ and X̃, denoted by f̃3(X̃, Ũ ), is given by

f̃3(X̃, Ũ ) = e−tr(Ũ)|det(Ũ − X̃X̃∗)|n−p

πnp Γ̃p(n)
, n ≥ p, r < p.

Letting Ũ = Ũ∗ > O, one has

|det(Ũ − X̃X̃∗)| = |det(Ũ )| |det(I − Ũ− 1
2 X̃X̃∗Ũ− 1

2 )|
= |det(Ũ )| |det(I − Ṽ Ṽ ∗)|, Ṽ = Ũ− 1

2 X̃,

where Ṽ is a p × r matrix of rank r < p. Since dX̃ = |det(Ũ )|rdṼ for fixed Ũ , the joint
density of Ũ and Ṽ is as follows:

f̃4(Ũ , Ṽ ) = |det(Ũ)|n+r−pe−tr(Ũ)

πnpΓ̃p(n)
|det(Ip − Ṽ Ṽ ∗)|n−p. (8.3a.9)

As has been previously noted,

|det(Ip − Ṽ Ṽ ∗)| = |det(Ir − Ṽ ∗Ṽ )|
where Ṽ ∗Ṽ is an r × r Hermitian positive definite matrix. Since f̃4(Ũ , Ṽ ) can be fac-
torized, Ũ and Ṽ are independently distributed, and the marginal density of Ṽ , denoted
by f̃5(Ṽ ), is of the following form, after integrating out Ũ with the help of a complex
matrix-variate gamma integral:

f̃5(Ṽ
∗)dṼ = c̃ |det(I − Ṽ Ṽ ∗)|n−pdṼ = c̃ |det(I − Ṽ ∗Ṽ )|n−pdṼ ∗ (8.3a.10)

where c̃ is the normalizing constant. Now, proceeding as in the real case, the following
result is obtained:

Theorem 8.3a.4. Let the p × 1 complex vectors X̃j
iid∼ Ñp(O, I), j = 1, . . . , r , and

X̃ = [X̃1, . . . , X̃r ] be the p × r full rank sample matrix with r < p. Let W̃2 be a p × p
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Hermitian positive definite matrix having a nonsingular Wishart density with n degrees of
freedom and parameter matrix I , that is, W̃2 ∼ W̃p(n, I ), n ≥ p, and assume that W̃2

and X̃ are independently distributed. Let Ũ = X̃X̃∗ + W̃2 be Hermitian positive definite,
Ṽ = Ũ− 1

2 X̃ and S̃ = Ṽ ∗Ṽ . Then, Ũ and Ṽ are independently distributed and the densities
of Ṽ and S̃, respectively denoted by f̃5(Ṽ ) and f̃6(S̃), are

f̃5(Ṽ ) = Γ̃r (p)

πpr

Γ̃r(n + r)

Γ̃r(p)Γ̃r(n − p + r)
|det(I − Ṽ ∗Ṽ )|n−p, r < p, (8.3a.11)

and

f̃6(S̃) = Γ̃r (n + r)

Γ̃r(p)Γ̃r(n − p + r)
|det(S̃)|p−r |det(I − S̃)|n−p, n ≥ p, r < p, (8.3a.12)

observing that n − p = (n + r − p) − r .

Let W̃1 = X̃X̃∗ where the p × r matrix X̃ is the previously defined sample matrix
arising from a standard complex Gaussian population. Let W̃2 ∼ W̃p(n, I ) and assume
that W̃1 and W̃2 are independently distributed. Letting Ũ = X̃X̃∗ + W̃2 > O, consider the
determinantal equation

det(W̃1 − μ(W̃1 + W̃2)) = 0. (i)

Then, as in the real case, the following result can be obtained:

Theorem 8.3a.5. Let W̃1, W̃2, Ṽ and Ũ be as previously defined. Then,

det(W̃1 − μ(W̃1 + W̃2)) = 0 ⇒ det(Ṽ ∗Ṽ − μIr) = 0. (ii)

This establishes that the roots μj ’s of the determinantal equation (i) coincide with the
eigenvalues of Ṽ ∗Ṽ , and since Ṽ ∗Ṽ > O, the eigenvalues are real and positive. Let the
eigenvalues be distinct, in which case μ1 > · · · > μr > 0. Then, steps parallel to those
utilized in the real case will yield the following result:

Theorem 8.3a.6. Let μ1, . . . , μr be the nonzero roots of the equation

det(W̃1 − μ(W̃1 + W̃2)) = 0

where W̃1 and W̃2 are as previously defined. Let μ1 > · · · > μr > 0, r < p, and let
D = diag(μ1, . . . , μr). Then, the joint density of the eigenvalues μ1, . . . , μr , denoted by
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f̃μ(μ1, . . . , μr), which is available from (8.3a.12) and the relationship between dS̃ and
dD, is the following:

f̃μ(μ1, . . . , μr)dD = πr(r−1)

Γ̃r (r)

Γ̃r(n + r)

Γ̃r(p)Γ̃r(n − p + r)

×
[ r∏

j=1

μ
p−r

j

][ r∏

j=1

(1 − μj)
n−p
][∏

i<j

(μi − μj)
2
]
dD. (8.3a.13)

8.3a.2. A direct method of evaluation in the complex case

The steps of the derivations being analogous to those utilized in the real case, the
corresponding theorems will simply be stated for the complex case. Let W̃1 = X̃X̃∗ be

a p × p singular Wishart matrix where the p × r matrix X̃ = [X̃1, . . . , X̃r ], X̃j
iid∼

Ñp(O, I), j = 1, . . . , r, and r < p. That is, X̃ is a simple random sample matrix from
this complex Gaussian population. Let W̃2 > O have a complex Wishart distribution with
n degrees of freedom and parameter matrix I , that is, W̃2 ∼ W̃p(n, I ), n ≥ p, and assume
that W̃1 and W̃2 be independently distributed. Consider the initial equation

det(W̃1 − λW̃2) = 0 ⇒ det(W̃
− 1

2
2 W̃1W̃

− 1
2

2 − λI) = 0, (8.3a.14)

whose roots are λ1, . . . , λr, 0, . . . , 0, and the additional equation det(W̃1−μ(W̃1+W̃2)) =
0, whose roots will be denoted by μ1, . . . , μr, 0, . . . , 0. In the following theorems, the λj ’s
and μj ’s will refer to these two sets of roots.

Theorem 8.3a.7. Let W̃1 = XX∗, X = [X1, . . . , Xr ], Xj
iid∼ Ñp(O, I), j = 1, . . . , r,

and r < p. Let W̃2 ∼ W̃p(n, I ), n ≥ p, be a nonsingular complex Wishart matrix
with n degrees of freedom and parameter matrix I . Further assume that W̃1 and W̃2 are

independently distributed. Let Ṽ = W̃
− 1

2
2 X̃, Ṽ Ṽ ∗ ≥ O, Ṽ ∗Ṽ > O, and S̃1 = Ṽ ∗Ṽ > O.

Then, det(Ip + Ṽ Ṽ ∗) = det(Ir + Ṽ ∗Ṽ ) = det(Ir + S̃1), and the densities of Ṽ ∗ and S̃1

are respectively given by

f̃10(Ṽ
∗)dṼ ∗ = Γ̃r (p)

πp(p−1)

Γ̃r (n + r)

Γ̃r(p)Γ̃r(n + r − p)
|det(I + Ṽ ∗Ṽ )|−(n+r)dṼ ∗ (8.3a.15)

and

f̃11(S̃1) = Γ̃r (n + r)

Γ̃r(p)Γ̃r(n + r − p)
|det(S̃1)|p−r |det(I + S̃1)|−(n+r), (8.3a.16)
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which is a complex matrix-variate type-2 beta distribution with the parameters (p, n −
p + r). Additionally, the positive semi-definite matrix S̃2 = W̃

− 1
2

2 X̃X̃∗W̃− 1
2

2 is distributed,
almost surely, as S̃1, which has a nonsingular complex matrix-variate type-2 beta distri-
bution with the parameters (p, n − p + r).

Theorem 8.3a.8. Let W̃2 and X̃ be as defined in Theorem 8.3a.7. Then, the joint density

of the nonzero eigenvalues λ1, . . . , λr of S̃2 = W̃
− 1

2
2 X̃X̃∗W̃− 1

2
2 , which are assumed to be

distinct and such that λ1 > · · · > λr > 0, is given by

f̃13(λ1, . . . , λr)dD = Γ̃r (n + r)

Γ̃r(p)Γ̃r(n − p + r)

πr(r−1)

Γ̃r (r)

×
[ r∏

j=1

λ
p−r

j

][ r∏

j=1

(1 + λj )
−(n+r)

][∏

i<j

(λi − λj )
2
]
dD,

(8.3a.17)

where D = diag(λ1, . . . , λr).

Theorem 8.3a.9. When μj = λj

1+λj
or λj = μj

1−μj
, the distributions of the μj ’s and λj ’s,

as respectively defined in (8.3a.13) and (8.3a.17), coincide.

8.4. The Case of One Wishart or Gamma Matrix in the Real Domain

If we only consider a single p × p gamma matrix W with parameters (α, B), B >

O, �(α) >
p−1

2 , whose density is

f (W) = |B|α
Γp(α)

|W |α−p+1
2 e−tr(BW), W > O, B > O, �(α) >

p − 1

2
, (8.4.1)

and zero elsewhere, then it can readily be determined that Z = B
1
2 W has the density

f1(Z) = 1

Γp(α)
|Z|α−p+1

2 e−tr(Z), Z > O, �(α) >
p − 1

2
, (8.4.2)

and zero elsewhere. When α = m
2 and B = 1

2I , Z has a Wishart density with m ≥ p

degrees of freedom and parameter matrix I , its density being given by

f2(Z) = 1

2
mp
2 Γp(m

2 )
|Z|m

2 −p+1
2 e− 1

2 tr(Z) (8.4.3)



The Distributions of Eigenvalues and Eigenvectors 593

for m ≥ p, and zero elsewhere. Since Z is symmetric, there exists an orthonormal matrix
P, PP ′ = I, P ′P = I , such that Z = PDP ′ with D = diag(λ1, . . . , λp) where
λj > 0, j = 1, . . . , p, are the (assumed distinct) positive eigenvalues of Z, Z being
positive definite. Consider the equation ZQj = λjQj where the p × 1 vector Qj is an
eigenvector corresponding to the eigenvalue λj . Since the eigenvalues are distinct, the
eigenvectors are orthogonal to each other. Let Qj be the normalized eigenvector, Q′

jQj =
1, j = 1, . . . , p, Q′

iQj = 0, for all i 
= j . Letting Q = [Q1, . . . , Qp], this p ×p matrix
Q is such that

ZQ = QD ⇒ Z = QDQ′ ⇒ Q = P, P = [P1, . . . , Pp]
where P1, . . . , Pp are the columns of the p × p matrix P . Yet, P need not be unique as
P ′

jPj = 1 ⇒ (−Pj)
′(−Pj) = 1. In order to make it unique, let us require that the first

nonzero element of each of the vectors P1, . . . , Pp be positive. Considering the transfor-
mation Z = PDP ′, it follows from Theorem 8.2.1 that, before integrating over the full
orthogonal group,

dZ =
{∏

i<j

(λi − λj )
}

dD h(P ) (8.4.4)

where h(P ) is a differential element associated with the unique matrix of eigenvectors P ,
as is explained in Mathai (1997). The integral over h(P ) gives

∫

Op

h(P ) = π
p2

2

Γp(
p
2 )

(8.4.5)

where Op is the full orthogonal group of p × p orthonormal matrices. On observing that
|Z| =∏p

j=1 λj and tr(Z) = λ1 +· · ·+λp, it follows from (8.4.3) and (8.4.4) that the joint
density of the eigenvalues λ1, . . . , λp and the matrix of eigenvectors P can be expressed
as

f3(D, P ) dD ∧ dP = [∏p

j=1 λj ]m
2 −p+1

2 e− 1
2

∑p
j=1 λj [∏i<j (λi − λj )]

2
mp
2 Γp(m

2 )
dD h(P ). (8.4.6)

Thus, the marginal density of λ1, . . . , λp can be obtained by integrating out P . Denoting
this marginal density by f4(λ1, . . . , λp), we have

f4(λ1, . . . , λp) dD = π
p2

2

Γp(
p
2 )

[∏p

j=1 λj ]m
2 −p+1

2 e− 1
2

∑p
j=1 λj

2
mp
2 Γp(m

2 )

[∏

i<j

|λi − λj |
]
dD, (8.4.7)
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and zero elsewhere. The density of P is then the remainder of the joint density. Denoting
it by f5(P ), we have the following:

f5(P ) dP = Γp(
p
2 )

π
p2
2

h(P ), PP ′ = I, (8.4.8)

where P = [P1, . . . , Pp], the first nonzero element of Pj being positive for j = 1, . . . , p,
so as to make P unique. Hence, the following result:

Theorem 8.4.1. Let the p × p real positive definite matrix Z have a Wishart density
with m ≥ p degrees of freedom and parameter matrix I . Let λ1, . . . , λp be the distinct
positive eigenvalues of Z in decreasing order and the p × p orthonormal matrix P be the
matrix of normalized eigenvectors corresponding to the λj ’s. Then, {λ1, . . . , λp} and P

are independently distributed, with the densities of {λ1, . . . , λp} and P being respectively
given in (8.4.7) and (8.4.8).

8.4a. The Case of One Wishart or Gamma Matrix, Complex Domain

Let W̃ be a p × p complex gamma distributed matrix, W̃ = W̃ ∗ > O, whose density
is

f̃ (W̃ ) = |det(B̃)|α
Γ̃p(α)

|det(W̃ )|α−pe−tr(B̃W̃ ), W̃ > O, B̃ > O, �(α) > p − 1. (8.4a.1)

Letting Z̃ = B̃
1
2 W̃ , Z̃ has the density

f̃1(X̃) = 1

Γ̃p(α)
|det(Z̃)|α−pe−tr(Z̃), X̃ > O, �(α) > p − 1. (8.4a.2)

If α = m, m = p, p + 1, . . . in (8.4a.2), then we have the following Wishart density
having m degrees of freedom in the complex domain:

f̃2(Z̃) = 1

Γ̃p(m)
|det(Z̃)|m−pe−tr(Z̃). (8.4a.3)

Consider a unique unitary matrix P̃ , P̃ P̃ ∗ = I, P̃ ∗P̃ = I such that P̃ ∗Z̃P̃ =
diag(λ1, . . . , λp) where λ1, . . . , λp are the eigenvalues of Z̃, which are real and positive
since Z̃ is Hermitian positive definite. Letting the eigenvalues be distinct and such that
λ1 > λ2 > · · · > λp > 0, observe that

dZ̃ =
{∏

i<j

|λi − λj |2
}

dD h̃(P̃ ) (8.4a.4)



The Distributions of Eigenvalues and Eigenvectors 595

where h̃(P̃ ) is the differential element corresponding to the unique unitary matrix P̃ . Then,
as established in Mathai (1997),

∫

Õp

h̃(P̃ ) = πp(p−1)

Γ̃p(p)
(8.4a.5)

where Õp is the full unitary group. Thus, the joint density of the eigenvalues λ1, . . . , λp

and their associated normalized eigenvectors, denoted by f̃3(D, P̃ ), is

f̃3(D, P̃ ) dD ∧ dP̃ = [∏p

j=1 λj ]m−pe−∑p
j=1 λj

Γ̃p(m)

[∏

i<j

|λi − λj |2
]
dD h̃(P̃ ). (8.4a.6)

Then, integrating out P̃ with the help of (8.4a.5), the marginal density of the eigenvalues
λ1 > · · · > λp > 0, denoted by f̃4(λ1, . . . , λp), is the following:

f̃4(λ1, . . . , λp) dD = πp(p−1)

Γ̃p(p)

[∏p

j=1 λj ]m−pe−∑p
j=1 λj

Γ̃p(m)

[∏

i<j

|λi − λj |2
]

dD. (8.4a.7)

Thus, the joint density of the normalized eigenvectors forming P̃ , denoted by f̃5(P̃ ), is
given by

f̃5(P̃ ) dP̃ = Γ̃p(p)

πp(p−1)
h̃(P̃ ). (8.4a.8)

These results are summarized in the following theorem.

Theorem 8.4a.1. Let Z̃ have the density appearing in (8.4a.3). Then, the joint density
of the distinct eigenvalues λ1 > · · · > λp > 0 of Z̃ is as given in (8.4a.7) and the joint
density of the associated normalized eigenvectors comprising the unitary matrix P is as
specified in (8.4a.8).
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Chapter 9
Principal Component Analysis

9.1. Introduction

We will adopt the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital let-
ters X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of let-
ters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will
for instance be denoted by A, B, C. A tilde will not be used on constant matrices unless
the point is to be stressed that the matrix is in the complex domain. The determinant of
a square matrix A will be denoted by |A| or det(A) and, in the complex case, the abso-
lute value or modulus of the determinant of A will be denoted as |det(A)|. When matrices
are square, their order will be taken as p × p, unless specified otherwise. When A is a
full rank matrix in the complex domain, then AA∗ is Hermitian positive definite where
an asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix
X. Letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.

The requisite theory for the study of Principal Component Analysis has already been
introduced in Chap. 1, namely, the problem of optimizing a real quadratic form that is sub-
ject to a constraint. We shall formulate the problem with respect to a practical situation
consisting of selecting the most “relevant” variables in a study. Suppose that a scientist
would like to devise a “good health” index in terms of certain indicators. After select-
ing a random sample of individuals belonging to a population that is homogeneous with
respect to a variety of factors, such as age group, racial background and environmental
conditions, she managed to secure measurements on p = 15 variables, including for in-
stance, x1: weight, x2: systolic pressure, x3: blood sugar level, and x4: height. She now
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faces a quandary as there is an excessive number of variables and some of them may not
be relevant to her investigation. A methodology is thus required for discarding the unim-
portant ones. As a result, the number of variables will be reduced and the interpretation
of the results, possibly facilitated. So, what might be the most pertinent variables in any
such study? If all the observations of a particular variable xj are concentrated around a
certain value, μj , then that variable is more or less predetermined. As an example, sup-
pose that the height of the individuals comprising a study group is neighboring 1.8 meters
and that, on the other hand, it is observed that the weight measurements are comparatively
spread out. On account of this, while height is not a particularly consequential variable
in connection with this study, weight is. Accordingly, we can utilize the criterion: the
larger the variance of a variable, the more relevant this variable is. Let the p × 1 vector
X, X′ = (x1, . . . , xp), encompass all the variables on which measurements are avail-
able. Let the covariance matrix associated with X be Σ , that is, Cov(X) = Σ . Since
linear functions also contain individual variables, we may consider linear functions such
as u = a1x1 + · · · + apxp = A′X = X′A, a prime designating a transpose, where

X =

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xp

⎤

⎥
⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎢
⎣

a1

a2
...

ap

⎤

⎥
⎥
⎥
⎦

and Σ = (σij ) =

⎡

⎢
⎢
⎢
⎣

σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p
...

...
. . .

...

σp1 σp2 . . . σpp

⎤

⎥
⎥
⎥
⎦

. (9.1.1)

Then,
Var(u) = Var(A′X) = Var(X′A) = A′ΣA. (9.1.2)

9.2. Principal Components

As will be explained further, the central objective in connection with the derivation of
principal components consists of maximizing A′ΣA. Such an exercise would indeed prove
meaningless unless some constraint is imposed on A, considering that, for an arbitrary
vector A, the minimum of A′ΣA occurs at zero and the maximum, at +∞, Σ = E[X −
E(X)][X − E(X)]′ being either positive definite or positive semi-definite. Since Σ is
symmetric and non-negative definite, its eigenvalues, denoted by λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,
are real. Moreover, Σ being symmetric, there exists an orthonormal matrix P, PP ′ =
I, P ′P = I, such that

P ′ΣP = diag(λ1, . . . , λp) ≡ Λ =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp

⎤

⎥
⎥
⎥
⎦

(9.2.1)
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and

Σ = PΛP ′ = λ1P1P
′
1 + · · · + λpPpP ′

p , (9.2.2)

where P1, . . . , Pp constitute the columns of P , Pi denoting a normalized eigenvector cor-
responding to λi, i = 1, . . . , p; this is expounded for instance in Mathai and Haubold
(2017a). Note that all real symmetric matrices, including those having repeated eigenval-
ues, can be diagonalized. Since the optimization problem is pointless when A is arbitrary,
the search for an optimum shall be confined to vectors A such that A′A = 1, that is, vectors
lying on the unit sphere in �p. Without any loss of generality, the coefficients of the linear
function can be selected so that the Euclidean norm of the coefficient vector is unity, in
which case a minimum and a maximum will both exist. Hence, the problem can be restated
as follows:

Maximize A′ΣA subject to A′A = 1. (i)

We will resort to the method of Lagrangian multipliers to optimize A′ΣA subject to the
constraint A′A = 1. Let

φ1 = A′ΣA − λ(A′A − 1) (ii)

where λ is a Lagrangian multiplier. Differentiating φ1 with respect to A and equating the
result to a null vector (vector/matrix derivatives are discussed in Chap. 1, as well as in
Mathai 1997), we have the following:

∂φ1

∂A
= O ⇒ 2ΣA − 2λA = O ⇒ ΣA = λA. (iii)

On premultiplying (iii) by A′, we have

A′ΣA = λA′A = λ. (9.2.3)

In order to obtain a non-null solution for A in (iii), the coefficient matrix Σ − λI has to
be singular or, equivalently, its determinant has to be zero, that is, |Σ − λI | = 0, which
implies that λ is an eigenvalue of Σ , A being the corresponding eigenvector. Thus, it
follows from (9.2.3) that the maximum of the quadratic form A′ΣA, subject to A′A = 1,
is the largest eigenvalue of Σ :

max
A′A=1

[A′ΣA] = λ1 = the largest eigenvalue of Σ.

Similarly,
min

A′A=1
[A′ΣA] = λp = the smallest eigenvalue of Σ. (9.2.4)
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Since Var(A′X) = A′ΣA = λ, the largest variance associated with a linear combina-
tion A′X wherein the vector A is normalized, is equal to λ1, the largest eigenvalue of Σ ,
and letting A1 be the normalized (A′

1A1 = 1) eigenvector corresponding λ1, u1 = A′
1X

will be that linear combination of X having the maximum variance. Thus, u1 is called
the first principal component which is the linear function of X having the maximum vari-
ance. Although normalized, the vector A1 is not unique, as (−A1)

′(−A1) is also equal to
one. In order to ensure the unicity, we will require that the first nonzero element of A1—
and the other p − 1 normalized eigenvectors—be positive. Recall that since Σ is a real
symmetric matrix, the λj ’s are real and so are the corresponding eigenvectors. Consider
the second largest eigenvalue λ2 and determine the associated normalized eigenvector A2;
then u2 = A′

2X will be the second principal component. Since the matrix P that di-
agonalizes Σ into the diagonal matrix of its eigenvalues is orthonormal, the normalized
eigenvectors A1, A2, . . . , Ap are necessarily orthogonal to each other, which means that
the corresponding principal components u1 = A′

1X, u2 = A′
2X, . . . , up = A′

pX will be
uncorrelated. Let us see whether uncorrelated normalized eigenvectors could be obtained
by making use of the above procedure. When constructing A2, we can impose an addi-
tional condition to the effect that A′X should be uncorrelated with A′

1X, A′
1ΣA1 being

equal to λ1, the largest eigenvalue of Σ . The covariance between A′X and A′
1X is

Cov(A′X, A′
1X) = A′Cov(X)A1 = A′ΣA1 = A′

1ΣA. (9.2.5)

Hence, we may require that A′ΣA1 = A′
1ΣA = 0. However,

0 = A′ΣA1 = A′(ΣA1) = A′λ1A1 = λ1A
′A1 ⇒ A′A1 = 0. (iv)

Observe that λ1 > 0, noting that Σ would be a null matrix if its largest eigenvalue were
equal to zero, in which case no optimization problem would remain to be solved. Consider

φ2 = A′ΣA − 2μ1(A
′ΣA1 − 0) − μ2(A

′A − 1) (v)

where μ1 and μ2 are the Lagrangian multipliers. Now, differentiating φ2 with respect to A

and equating the result to a null vector, we have the following:

∂φ2

∂A
= O ⇒ 2ΣA − 2μ1(ΣA1) − 2μ2A = O. (vi)

Premultiplying (vi) by A′
1 yields

A′
1ΣA − μ1A

′
1ΣA1 − μ2A

′
1A = 0 ⇒ 0 − μ1λ1 − 0 ⇒ μ1 = 0, (vii)
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which entails that the added condition of uncorrelatedness with u1 = A′
1X is superfluous.

When determining Aj , we could require that A′X be uncorrelated with the principal com-
ponents u1 = A′

1X, . . . , uj−1 = A′
j−1X; however, as it turns out, these conditions become

redundant when optimizing A′ΣA subject to A′A = 1. Thus, after determining the nor-
malized eigenvector Aj (whose first nonzero element is positive) corresponding the j -th
largest eigenvalue of Σ , we form the j -th principal component, uj = A′

jX, which will
necessarily be uncorrelated with the preceding principal components. The question that
arises at this juncture is whether all of u1, . . . , up are needed or a subset thereof would
suffice? For instance, we could interrupt the computations when the variance of the prin-
cipal component uj = A′

jX, namely λj , falls below a predetermined threshold, in which
case we can regard the remaining principal components, uj+1, . . . , up, as unimportant
and omit the associated calculations. In this way, a reduction in the number of variables is
achieved as the original number of variables p is reduced to j < p principal components.
However, this reduction in the number of variables could be viewed as a compromise since
the new variables are linear functions of all the original ones and so, may not be as inter-
pretable in a real-life situation. Other drawbacks will be considered in the next section.
Observe that since Var(uj ) = λj , j = 1, . . . , p, the fraction

ν1 = λ1
∑p

j=1 λj

= the proportion of the total variation accounted for by u1, (9.2.6)

and letting r < p,

νr =
∑r

j=1 λj
∑p

j=1 λj

= the proportion of total variation accounted for by u1, . . . , ur . (9.2.7)

If ν1 = 0.7, ν1 accounts for 70% of the total variation in the original variables or 70% of
the total variation is due to the first principal component. If r = 3 and ν3 = 0.99, then
the sum of the first three principal components accounts for 99% of the total variation. We
can also use this percentage of the total variation as a stopping rule for the determination
of the principal components. For example when νr of (9.2.7) is say, greater than or equal
to 95%, we may interrupt the determination of the principal components beyond ur .

Example 9.2.1. Even though reducing the number of variables is a main objective of
Principal Component Analysis, for illustrative purposes, we will consider a case involving
three variables, that is, p = 3. Compute the principal components associated with the
following covariance matrix:

V =
⎡

⎣
3 −1 0

−1 3 1
0 1 3

⎤

⎦ .
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Solution 9.2.1. Let us verify that V is positive definite. The leading minors of V = V ′
being

|(3)| = 3 > 0,

∣
∣
∣
∣

3 −1
−1 3

∣
∣
∣
∣ = 32 − (−1)2 = 8 > 0,

∣
∣
∣
∣
∣
∣

3 −1 0
−1 3 1

0 1 3

∣
∣
∣
∣
∣
∣

= 3[32 − (−1)2] − (−1)[(−1)(3) − 0] = 21 > 0,

V > O. Let us compute the eigenvalues of V . Consider the equation |V − λI | = 0 ⇒
(3−λ)[(3−λ)2−1]−(3−λ) = 0 ⇒ (3−λ)[(3−λ)2−2] = 0 ⇒ (3−λ)(3−λ±√

2) = 0.
Hence the eigenvalues are λ1 = 3 + √

2, λ2 = 3, λ3 = 3 − √
2. Let us compute an

eigenvector corresponding to λ1 = 3 + √
2. Consider (V − λ1I )X = O, that is,

⎡

⎣
3 − λ1 −1 0
−1 3 − λ1 1

0 1 3 − λ1

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ . (i)

There are three linear equations involving the xj ’s in (i). Since the matrix V − λI is
singular, we need only consider any two of these three linear equations and solve to obtain
a solution. Let the first equation be −√

2x1 −x2 = 0 ⇒ x2 = −√
2x1, and the second one

be −x1 − √
2x2 + x3 = 0 ⇒ −x1 + 2x1 + x3 = 0 ⇒ x3 = −x1. Now, one solution is

X1 =
⎡

⎣
1

−√
2

−1

⎤

⎦ , which once normalized is A1 = 1

2

⎡

⎣
1

−√
2

−1

⎤

⎦ .

Observe that X1 also satisfies the third equation in (i) and that

A′
1V A1 = 1

4
[1, −√

2, −1]
⎡

⎣
3 −1 0

−1 3 1
0 1 3

⎤

⎦

⎡

⎣
1

−√
2

−1

⎤

⎦

= 1

4
[3(1)2 + 3(−√

2)2 + 3(−1)2 − 2(1)(−√
2) + 2(−√

2)(−1)]
= 3 + √

2 = λ1.

Thus, the first principal component, denoted by u1, is

u1 = A′
1X = 1

2
[x1 − √

2x2 − x3]. (ii)
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Now, consider an eigenvector corresponding to λ2 = 3. (V − λ2I )X = O provides the
first equation: −x2 = 0 ⇒ x2 = 0, the third equation giving −x1 + x3 = 0 ⇒ x1 = x3.
Therefore, one solution for X is

X2 =
⎡

⎣
1
0
1

⎤

⎦ whose normalized form is A2 = 1√
2

⎡

⎣
1
0
1

⎤

⎦ ,

so that the second principal component is

u2 = 1√
2
[x1 + x3]. (iii)

It can readily be checked that A′
2V A2 = 3 = λ2. Let us now obtain an eigenvector

corresponding to the eigenvalue λ3 = 3−√
2. Consider the linear system (V −λ3)X = O.

The first equation is
√

2x1 − x2 = 0 ⇒ x2 = √
2x1, and the third one gives x2 + √

2x3 =
0 ⇒ x2 = −√

2x3. One solution is

X3 =
⎡

⎣
1√
2

−1

⎤

⎦ , its normalized form being A3 = 1

2

⎡

⎣
1√
2

−1

⎤

⎦ .

The third principal component is then

u3 = 1

2
[x1 + √

2x2 − x3]. (iv)

It is easily verified that A′
3V A3 = λ3 = 3 − √

2. As well,

Var(u1) = 1

4
[Var(x1) + 2 Var(x2) + Var(x3) − 2

√
2 Cov(x1, x2)

− 2 Cov(x1, x3) + 2
√

2 Cov(x2, x3)]
= 1

4
[3 + 2 × 3 + 3 + 2

√
2(−1) − 2(0) + 2

√
2]

= 1

4
[3 × 4 + 4

√
2] = 3 + √

2 = λ1.

Similar calculations will confirm that Var(u2) = 3 = λ2 and Var(u3) = 2 − √
2 = λ3.

Now, consider the covariance between u1 and u2:

Cov(u1, u2) = 1√
2
[Var(x1) + Cov(x1, x3) − √

2 Cov(x1, x2) − √
2 Cov(x2, x3)

− Cov(x3, x1) − Var(x3)]
= 1

4
[ 3 + 0 + √

2 − √
2 − 0 − 0 − 3 ] = 0.
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It can be likewise verified that Cov(u1, u3) = 0 and Cov(u2, u3) = 0. Note that u1, u2,

and u3 respectively account for 49.1%, 33.3% and 17.6% of the total variation. As none of
these proportions is negligibly small, all three principal components are deemed relevant
and, in this instance, it is not indicated to reduce the number of the original variables.
Although we still end up with as many variables, the uj ’s, j = 1, 2, 3, are uncorrelated,
which was not the case for the original variables.

9.3. Issues to Be Mindful of when Constructing Principal Components

Since variances and covariances are expressed in units of measurement, principal com-
ponents also depend upon the scale on which measurements on the individual variables are
made. If we change the units of measurement, the principal components will differ. Sup-
pose that xj is multiplied by a real scalar constant dj , j = 1, . . . , p, where some of the
dj ’s are not equal to 1. This is equivalent to changing the units of measurement of some
of the variables. Let

X =
⎡

⎢
⎣

x1
...

xp

⎤

⎥
⎦ , Y =

⎡

⎢
⎣

d1x1
...

dpxp

⎤

⎥
⎦ = DX, D =

⎡

⎢
⎢
⎢
⎣

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...

0 0 · · · dp

⎤

⎥
⎥
⎥
⎦

, (9.3.1)

and consider the linear functions A′X and A′Y . Then,

Var(A′X) = A′ΣA, Var(A′Y ) = A′Var(DX)A = A′DΣDA. (9.3.2)

Since the eigenvalues of Σ and DΣD differ, so will the corresponding principal com-
ponents, and if the original variables are measured in various units of measurements, it
would be advisable to attempt to standardize them. Letting R denote the correlation ma-
trix which is scale-invariant, observe that the covariance matrix Σ = Σ1R Σ1 where
Σ1 = diag(σ1, . . . , σp), σ 2

j being the variance of xj , j = 1, . . . , p. Thus, if the orig-
inal variables are scaled by the inverses of their associated standard deviations, that
is, xj

σj
or equivalently, via the transformation Σ−1

1 X, the resulting covariance matrix is

Cov(Σ−1
1 X) = R, the correlation matrix. Accordingly, constructing the principal compo-

nents by making use of R instead of Σ , will mitigate the issue stemming from the scale of
measurement.

If λ1, . . . , λp are the eigenvalues of Σ , then λk
1, . . . , λ

k
p will be the eigenvalues of Σk.

Moreover, λ and λk will share the same eigenvectors. Note that the collection (λk
1, . . . , λ

k
p)

will be well separated compared to the set (λ1, . . . , λp) when the λi’s are distinct and
greater than one. Hence, in some instances, it might be preferable to construct principal
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components by making use of Σk for an appropriate value of k instead of Σ . Observe that,
in certain situations, it is not feasible to provide a physical interpretation of the principal
components which are a linear function of the original x1, . . . , xp. Nonetheless, they can
at times be informative by pointing to the average of certain variables (for example, u2

in the previous numerical example) or by eliciting contrasts between two sets of variables
(for example, u3 in the previous numerical example, which opposes x3 to x1 and x2).

To illustrate how the eigenvalues of a correlation matrix are determined, we revisit Ex-
ample 9.2.1 wherein the variances of the xj ’s or the diagonal elements of the covariance
matrix are all equal to 3. Thus, in this case, the correlation matrix is R = 1

3V , and the
eigenvalues of R will be 1

3 times the eigenvalues of V . However, the normalized eigen-
vectors will remain identical to those of V , and therefore the principal components will
not change. We now consider an example wherein the diagonal elements of the covariance
matrix are different.

Example 9.3.1. Let X′ = (x1, x2, x3) where the xj ’s are real scalar random variables.
Compute the principal components resulting from R, the correlation matrix of X, where

R =
⎡

⎢
⎣

1 0 1√
6

0 1 − 1√
6

1√
6

− 1√
6

1

⎤

⎥
⎦ .

Solution 9.3.1. Let us compute the eigenvalues of R. Consider the equation

|R − λI | = 0 ⇒ (1 − λ)
[
(1 − λ)2 − 1

6

]
− 1√

6

[
− 1√

6
(1 − λ)

]
= 0

⇒ (1 − λ)
[
(1 − λ)2 − 1

3

]
= 0.

Thus, the eigenvalues are λ1 = 1 + 1√
3
, λ2 = 1, λ3 = 1 − 1√

3
. Let us compute an

eigenvector corresponding to λ1 = 1 + 1√
3
. Consider the system (R − λ1I )X = O. The

first equation is

− 1√
3
x1 + 1√

6
x3 = 0 ⇒ x1 = 1√

2
x3,

the second equation being

− 1√
3
x2 − 1√

6
x3 = 0 ⇒ x2 = − 1√

2
x3.
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Let us take x3 = √
2. Then, an eigenvector corresponding to λ1 is

X1 =
⎡

⎣
1

−1√
2

⎤

⎦ , and its normalized form is A1 = 1

2

⎡

⎣
1

−1√
2

⎤

⎦ .

Let us verify that the third equation is also satisfied by X1 or A1. This is the case since
1√
6

+ 1√
6

−
√

2√
3

= 0, and the first principal component is indeed u1 = 1
2 [x1 − x2 + √

2x3].
As well, the variance of u1 is equal to λ1:

Var(u1) = 1

4
[Var(x1) + Var(x2) + 2Var(x3) − 2Cov(x1, x2)

+ 2
√

2Cov(x1, x3) − 2
√

2Cov(x2, x3)]

= 1

4

[
1 + 1 + 2 + 2

√
2√
6

+ 2
√

2√
6

]
= 1 + 1√

3
= λ1.

Let us compute an eigenvector corresponding to the eigenvalue λ2 = 1. Consider the linear
system (R − λ2I )X = O. The first equation, 1√

6
x3 = 0, gives x3 = 0 and the second one

also yields x3 = 0; as for the third one, x1√
6

− x2√
6

= 0 ⇒ x1 = x2. Letting x1 = 1, an
eigenvector is

X2 =
⎡

⎣
1
1
0

⎤

⎦ , its normalized form being given by A2 = 1√
2

⎡

⎣
1
1
0

⎤

⎦ .

Thus, the second principal component is u2 = 1√
2
[x1 + x2]. In the case of λ3, we consider

the system (R − λ3I )X = O whose first equation is

1√
3
x1 + 1√

6
x3 = 0 ⇒ x1 = − 1√

2
x3,

the second one being
x2√

3
+ x3√

6
= 0 ⇒ x2 = 1√

2
x3.

Letting x3 = √
2, an eigenvector corresponding to λ3 is

X3 =
⎡

⎣
−1

1√
2

⎤

⎦ , its normalized form being A3 = 1

2

⎡

⎣
−1

1√
2

⎤

⎦ .
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For the matrix [A1, A2, A3] to be uniquely determined, we may multiply A3 by −1 so that
the first nonzero element is positive. Hence, the third principal component is u3 = 1

2 [x1 −
x2 − √

2x3]. As was shown in the case of u1, it can also be verified that Var(u2) = 1 =
λ2, Var(u3) = λ3 = 1 − 1√

3
, Cov(u1, u2) = 0, Cov(u1, u3) = 0 and Cov(u2, u3) = 0.

We note that

λ1

λ1 + λ2 + λ3
= 1 + 1/

√
3

3
≈ 0.525,

λ1 + λ2

λ1 + λ2 + λ3
= 2 + 1/

√
3

3
≈ 0.859.

Thus, almost 53% of the total variation is accounted for by the first principal component
and nearly 86% of the total variation is due to the first two principal components.

9.4. The Vector of Principal Components

Observe that the determinant of a matrix is the product of its eigenvalues and that its
trace is the sum of its eigenvalues, that is, |Σ | = λ1 · · · λp and tr(Σ) = λ1 + · · · + λp.
As previously pointed out, the determinant of a covariance matrix corresponds to Wilks’
concept of generalized variance. Let us consider the vector of principal components. The
principal components are uj = A′

jX, with Var(uj ) = A′
jΣAj = λj , j = 1, . . . , p, and

Cov(ui, uj ) = 0 for all i 
= j . Thus,

U =
⎡

⎢
⎣

u1
...

up

⎤

⎥
⎦ =

⎡

⎢
⎣

A′
1X
...

A′
pX

⎤

⎥
⎦⇒ Cov(U) = Λ =

⎡

⎢
⎢
⎢
⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp

⎤

⎥
⎥
⎥
⎦

. (9.4.1)

The determinant of the covariance matrix is the product λ1 · · · λp and its trace, the sum
λ1 + · · · + λp. Hence the following result:

Theorem 9.4.1. Let X be a p × 1 real vector whose associated covariance matrix is Σ .
Let the principal components of X be denoted by uj = A′

jX with Var(uj ) = A′
jΣAj =

λj = j -th largest eigenvalue of Σ , and U ′ = (u1, . . . , up) with Cov(U) ≡ Σu. Then,
|Σu| = |Σ | = product of the eigenvalues, λ1 · · · λp, and tr(Σu) = tr(Σ) = sum of the
eigenvalues, λ1 + · · · + λp. Observe that the determinant as well as the eigenvalues and
the trace are invariant with respect to orthonormal transformations or rotations of the
coordinate axes.
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Let A = [A1, A2, . . . , Ap]. Then

ΣA = AΛ, A′A = I, A′ΣA = Λ. (9.4.2)

Note that U ′ = (u1, . . . , up) where u1, . . . , up are linearly independent. We have not
assumed any distribution for the p × 1 vector X so far. If the p × 1 vector X has a p-
variate nonsingular Gaussian distribution, that is, X ∼ Np(O, Σ), Σ > O, then

uj ∼ N1(0, λj ), U ∼ Np(O, Λ). (9.4.3)

Since Principal Components involve variances or covariances, which are free of any loca-
tion parameter, we may take the mean value vector to be a null vector without any loss of
generality. Then, E[uj ] = 0 by assumption, Var(uj ) = A′

jΣAj = λj , j = 1, . . . , p and

Cov(U) = Λ = diag(λ1, . . . , λp). Accordingly, λ1
λ1+···+λp

is the proportion of the total
variance accounted for by the largest eigenvalue λ1, where λ1 is equal to the variance of
the first principal component. Similarly, λ1+···+λr

λ1+···+λp
is the proportion of the total variance

due to the first r principal components, r ≤ p.

Example 9.4.1. Let X ∼ N3(μ, Σ), Σ > O, where

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , μ =
⎡

⎣
1
0

−1

⎤

⎦ , Σ =
⎡

⎣
2 0 1
0 2 −1
1 −1 3

⎤

⎦ .

Derive the densities of the principal components of X.

Solution 9.4.1. Let us determine the eigenvalues of Σ . Consider the equation

|Σ − λI | = 0 ⇒
∣
∣
∣
∣
∣
∣

2 − λ 0 1
0 2 − λ −1
1 −1 3 − λ

∣
∣
∣
∣
∣
∣
= 0

⇒ (2 − λ)[(2 − λ)(3 − λ) − 1] − (2 − λ) = 0

⇒ (2 − λ)[λ2 − 5λ + 4] = 0 ⇒ λ1 = 4, λ2 = 2, λ3 = 1.

Let us compute an eigenvector corresponding to λ1 = 4. Consider the linear system (Σ −
λ1I )X = O, whose first equation gives −2x1 + x3 = 0 or x1 = 1

2x3, the second equation,
−2x2 − x3 = 0, yielding x2 = −1

2x3. Letting x3 = 2, one solution is

X1 =
⎡

⎣
1

−1
2

⎤

⎦ , and its normalized form is A1 = 1√
6

⎡

⎣
1

−1
2

⎤

⎦ .



Principal Component Analysis 609

Thus, the first principal component is u1 = A′
1X = 1√

6
[x1 − x2 + 2x3] with E[u1] =

1√
6
[1 − 0 − 2] = − 1√

6
and

Var(u1) = 1

6
[Var(x1) + Var(x2) + 4Var(x3) − 2Cov(x1, x2)

+ 4Cov(x1, x3) − 4Cov(x2, x3)]
= 1

6
[2 + 2 + 4 × 3 − 2(0) + 4(1) − 4(−1)] = 4 = λ1.

Since u1 is a linear function of normal variables, u1 has the following Gaussian distribu-
tion:

u1 ∼ N1

(
− 1√

6
, 4
)
.

Let us compute an eigenvector corresponding to λ2 = 2. Consider the system (Σ −
λ2I )X = O, whose first and second equations give x3 = 0, the third equation
x1 − x2 + x3 = 0 yielding x1 = x2. Hence, one solution is

X2 =
⎡

⎣
1
1
0

⎤

⎦ , its normalized form being A2 = 1√
2

⎡

⎣
1
1
0

⎤

⎦ ,

and the second principal component is u2 = A′
2X = 1√

2
[x1 + x2] with E[u2] = 1√

2
[1 +

0] = 1√
2
. Let us verify that the variance of u2 is λ2 = 2:

Var(u2) = 1

2
[Var(x1) + Var(x2) + 2Cov(x1, x2)] = 1

2
[2 + 2 + 2(0)] = 2 = λ2.

Hence, u2 has the following real univariate normal distribution:

u2 ∼ N1

( 1√
2

, 2
)
.

We finally construct an eigenvector associated with λ3 = 1. Consider the linear system
(Σ − λ3I )X = O. In this case, the first equation is x1 + x3 = 0 ⇒ x1 = −x3 and the
second one is x2 − x3 = 0 or x2 = x3. Let x3 = 1. One eigenvector is

X3 =
⎡

⎣
−1

1
1

⎤

⎦ , its normalized form being A3 = 1√
3

⎡

⎣
−1

1
1

⎤

⎦ .
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In order to ensure the uniqueness of the matrix [A1, A2, A3], we may multiply A3 by −1
to ensure that the first nonzero element is positive. Then, the third principal component is
u3 = 1√

3
[x1 − x2 − x3] with E[u3] = 1√

3
[1 − 0 + 1] = 2√

3
. The variance of u3 is indeed

equal to λ3 as

Var(u3) = 1

3
[Var(x1) + Var(x2) + Var(x3) − 2Cov(x1, x2)

− 2Cov(x1, x3) + 2Cov(x2, x3)]
= 1

3
[2 + 2 + 3 − 2(0) − 2(1) + 2(−1)] = 1.

Thus,

u3 ∼ N1

( 2√
3

, 1
)
.

It can easily be verified that Cov(u1, u2) = 0, Cov(u1, u3) = 0 and Cov(u2, u3) = 0.
Accordingly, letting

U =
⎡

⎣
u1

u2

u3

⎤

⎦ =
⎡

⎣
A′

1X

A′
2X

A′
3X

⎤

⎦ ,

Cov(U) =
⎡

⎣
A′

1ΣA1 A′
1ΣA2 A′

1ΣA3

A′
2ΣA1 A′

2ΣA2 A′
2ΣA3

A′
3ΣA1 A′

3ΣA2 A′
3ΣA3

⎤

⎦ =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ .

As well, ΣAj = λjAj , j = 1, 2, 3, that is,

⎡

⎣
2 0 1
0 2 −1
1 −1 3

⎤

⎦

⎡

⎢
⎣

1√
6

1√
2

1√
3

− 1√
6

1√
2

− 1√
3

2√
6

0 − 1√
3

⎤

⎥
⎦ =

⎡

⎢
⎣

1√
6

1√
2

1√
3

− 1√
6

1√
2

− 1√
3

2√
6

0 − 1√
3

⎤

⎥
⎦

⎡

⎣
4 0 0
0 2 0
0 0 1

⎤

⎦ .

This completes the computations.

9.4.1. Principal components viewed from differing perspectives

Let X be a p × 1 real vector whose covariance matrix is Cov(X) = Σ > O. Assume
that E(X) = O. Then, X′Σ−1X = c > 0 is commonly referred to as an ellipsoid of
concentration, centered at the origin of the coordinate system, with X′X being the square
of the distance between the origin and a point X on the surface of this ellipsoid. A prin-
cipal axis of this ellipsoid is defined when this squared distance has a stationary point.
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The stationary points are determined by optimizing X′X subject to X′Σ−1X = c > 0.
Consider

w = X′X − λ(X′Σ−1X − c),
∂w

∂X
= O ⇒ 2X − 2λΣ−1X = O

⇒ Σ−1X = 1

λ
X ⇒ ΣX = λX (i)

where λ is a Lagrangian multiplier. It is seen from (i) that λ is an eigenvalue of Σ and X

is the corresponding eigenvector. Letting λ1 ≥ λ2 ≥ · · · ≥ λp > 0 be the eigenvalues and
A1, . . . , Ap be the corresponding eigenvectors, A1, . . . , Ap give the principal axes of this
ellipsoid of concentration. It follows from (i) that

c = A′
jΣ

−1Aj = 1

λj

A′
jAj ⇒ A′

jAj = λjc.

Thus, the length of the j -th principal axis is 2
√

A′
jAj = 2

√
λj c.

As another approach, consider a plane passing through the origin. The equation of this
plane will be β ′X = 0 where β is a p × 1 constant vector and X is the p × 1 vector of the
coordinate system. Without any loss of generality, let β ′β = 1. Let the p × 1 vector Y be
a point in the Euclidean space. The distance between this point and the plane is then β ′Y .
Letting Y be a random point such that E(Y ) = O and Cov(Y ) = Σ > O, the expected
squared distance from this point to the plane is E[β ′Y ]2 = E[β ′YY ′β] = β ′E(YY ′)β =
β ′Σβ. Accordingly, the two-dimensional planar manifold of closest fit to the point Y is
that plane whose coefficient vector β is such that β ′Σβ is minimized subject to β ′β = 1.
This, once again, leads to the eigenvalue problem encountered in principal component
analysis.

9.5. Sample Principal Components

When X ∼ Np(O, Σ), Σ > O, the maximum likelihood estimator of Σ is Σ̂ = 1
n
S

where n > p is the sample size and S is the sample sum of products matrix, as defined
for instance in Mathai and Haubold (2017b). In general, whether Σ is nonsingular or
singular and X is p-variate Gaussian or not, we may take Σ̂ as an estimate of Σ . The
sample eigenvalues and eigenvectors are then available from Σ̂β = kβ where β 
= O

is a p × 1 eigenvector corresponding to the eigenvalue k of Σ̂ = 1
n
S. For a non-null

β, (Σ̂ − kI)β = O ⇒ Σ̂ − kI is singular or |Σ̂ − kI | = 0 and k is a solution of

|Σ̂ − kI | = 0 ⇒ (Σ̂ − kj I )Bj = O, j = 1, . . . , p. (9.5.1)

We may only consider the normalized eigenvectors Bj such that B ′
jBj = 1, j = 1, . . . , p.

If the eigenvalues of Σ are distinct, it can be shown that the eigenvalues of Σ̂ are also
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distinct, k1 > k2 > · · · > kp almost surely. Note that even though B ′
jBj = 1, Bj is not

unique as one also has (−Bj)
′(−Bj) = 1. Thus, we require that the first nonzero element

of Bj be positive to ensure uniqueness. Since Σ̂ is a real symmetric matrix, its eigenvalues
k1, . . . , kp are real, and so are the corresponding normalized eigenvectors B1, . . . , Bp. As
well, there exist a full set of orthonormal eigenvectors B1, . . . , Bp, B ′

jBj = 1, B ′
jBi =

0, i 
= j, j = 1, . . . , p, such that for B = (B1, . . . , Bp),

B ′Σ̂B = K = diag(k1, . . . , kp), Σ̂B = BK and Σ̂ = k1B1B
′
1 +· · ·+kpBpB ′

p. (9.5.2)

Also, observe that k1
k1+···+kp

is the proportion of the total variation in the data which is

accounted for by the first principal component. Similarly, k1+···+kr

k1+···+kp
is the proportion of the

total variation due to the first r principal components, r ≤ p.

Example 9.5.1. Let X be a 3×1 vector of real scalar random variables, X′ = [x1, x2, x3],
with E[X] = μ and covariance matrix Cov(X) = Σ > O where both μ and Σ are
unknown. Let the following observation vectors be a simple random sample of size 5 from
this population:

X1 =
⎡

⎣
1
1
0

⎤

⎦ , X2 =
⎡

⎣
−1

1
0

⎤

⎦ , X3 =
⎡

⎣
1

−1
−1

⎤

⎦ , X4 =
⎡

⎣
−1
−1
−1

⎤

⎦ , X5 =
⎡

⎣
0
0
2

⎤

⎦ .

Compute the principal components of X from an estimate of Σ that is based on those
observations.

Solution 9.5.1. An estimate of Σ is Σ̂ = 1
n
S where n is the sample size and S is the

sample sum of products matrix. In this case, n = 5. We first compute S. To this end, we
determine the sample average vector, the sample matrix, the deviation matrix and finally
S. The sample average is X̄ = 1

n
[X1 + X2 + X3 + X4 + X5] and the sample matrix is

X = [X1, X2, X3, X4, X5]. The matrix of sample means is X̄ = [X̄, X̄, X̄, X̄, X̄]. The
deviation matrix is Xd = X − X̄ and the sample sum of products matrix S = XdX′

d =
[X − X̄][X − X̄]′. Based on the given random sample, these quantities are
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X̄ = 1

5

⎧
⎨

⎩

⎡

⎣
1
1
0

⎤

⎦+
⎡

⎣
−1

1
0

⎤

⎦+
⎡

⎣
1

−1
−1

⎤

⎦+
⎡

⎣
−1
−1
−1

⎤

⎦+
⎡

⎣
0
0
2

⎤

⎦

⎫
⎬

⎭
=
⎡

⎣
0
0
0

⎤

⎦ ,

X = [X1, X2, X3, X4, X5] =
⎡

⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤

⎦ ,

Xd = [X1 − X̄, X2 − X̄, X3 − X̄, X4 − X̄, X5 − X̄]

=
⎡

⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤

⎦ ,

S =
⎡

⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤

⎦

⎡

⎣
1 −1 1 −1 0
1 1 −1 −1 0
0 0 −1 −1 2

⎤

⎦

′

=
⎡

⎣
4 0 0
0 4 2
0 2 6

⎤

⎦ .

An estimate of Σ is Σ̂ = 1
n
S = 1

5S. However, since the eigenvalues of Σ̂ are those of

S multiplied by 1
5 and the normalized eigenvectors of Σ̂ and S will then be identical, we

will work with S. The eigenvalues of S are available from the equation |S − λI | = 0. That
is, (4−λ)[(4−λ)(6−λ)−4] = 0 ⇒ (4−λ)[λ2 −10λ+20] = 0 ⇒ λ1 = 5+√

5, λ2 =
4, λ3 = 5 − √

5. An eigenvector corresponding to λ1 = 5 + √
5 can be determined from

the system (S − λ1I )X = O wherein first equation gives x1 = 0 and the third one yields
2x2 + (1 − √

5)x3 = 0. Taking x3 = 2, x2 = −(1 − √
5), and it is easily verified that

these values also satisfy the second equation. Thus, an eigenvector, denoted by Y1, is the
following:

Y1 =
⎡

⎣
0√

5 − 1
2

⎤

⎦ with its normalized form being A1 = 1
√

10 − 2
√

5

⎡

⎣
0√

5 − 1
2

⎤

⎦ ,

so that the first principal component is u1 = 1√
10−2

√
5
[(√5 − 1)x2 + 2x3]. Let us verify

that the variance of u1 equals λ1:
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Var(u1) = 1

10 − 2
√

5
[(√5 − 1)2Var(x2) + 4Var(x3) + 2(

√
5 − 1)Cov(x2, x3)]

= 1

10 − 2
√

5
[(6 − 2

√
5)(4) + 4(6) + 2(

√
5 − 1)(4)] = 20(5 + √

5)

20

= 5 + √
5 = λ1.

An eigenvector corresponding to λ2 = 4 is available from (S − λ2I )X = O. The first
equation shows that all variables are arbitrary. The second and third equations yield x3 = 0
and x2 = 0. Taking x1 = 1, an eigenvector corresponding to λ2 = 4, denoted by Y2, is

Y2 =
⎡

⎣
1
0
0

⎤

⎦ which is already normalized so that A2 =
⎡

⎣
1
0
0

⎤

⎦ .

Thus, the second principal component is u2 = x1 and its variance is Var(x1) = 4. An
eigenvector corresponding to λ3 = 5 − √

5 can be determined from the linear system
(S − λ3I )X = O whose first equation yields x1 = 0, the third one giving 2x2 + (1 +√

5)x3 = 0. Taking x3 = 2, x2 = −(1 + √
5), and it is readily verified that these values

satisfy the second equation as well. Then, an eigenvector, denoted by Y3, is

Y3 =
⎡

⎣
0

−(
√

5 + 1)

2

⎤

⎦ , its normalized form being A3 = 1
√

10 + 2
√

5

⎡

⎣
0

−(
√

5 + 1)

2

⎤

⎦ .

In order to select the matrix [A1, A2, A3] uniquely, we may multiply A3 by −1 so
that the first nonzero element is positive. Thus, the third principal component is u3 =

1√
10+2

√
5
[(1 + √

5)x2 − 2x3] and, as the following calculations corroborate, its variance

is indeed equal to λ3:

Var(u3) = 1
√

10 + 2
√

5
[(1 + √

5)2Var(x2) + 4Var(x3) − 4(1 + √
5)Cov(x2, x3)]

= 1

2(5 + √
5)

[4(6 + 2
√

5) + 4(6) − 4(1 + √
5)(2)] = 20

5 + √
5

= 5 − √
5 = λ3.

Additionally,
λ1

λ1 + λ2 + λ3
= 5 + √

5

14
≈ 0.52,
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that is, approximately 52% of the total variance is due to u1 or nearly 52% of the total
variation in the data is accounted for by the first principal component. Also observe that

S[A1, A2, A3] = [A1, A2, A3]D, D = diag(5 + √
5, 4, 5 − √

5) or

S = [A1, A2, A3]D
⎡

⎣
A′

1
A′

2
A′

3

⎤

⎦ .

That is,

S =
⎡

⎣
4 0 0
0 4 2
0 2 6

⎤

⎦

=

⎡

⎢
⎢
⎣

0 1 0√
5−1√

10−2
√

5
0 − (1+√

5)√
10+2

√
5

2√
10−2

√
5

0 2√
10+2

√
5

⎤

⎥
⎥
⎦

⎡

⎣
5 + √

5 0 0
0 4 0
0 0 5 − √

5

⎤

⎦

⎡

⎢
⎢
⎣

0
√

5−1√
10−2

√
5

2√
10−2

√
5

1 0 0

0 − (1+√
5)√

10+2
√

5

2√
10+2

√
5

⎤

⎥
⎥
⎦ ,

which completes the computations.

9.5.1. Estimation and evaluation of the principal components

If X ∼ Np(O, Σ), Σ > O, then the maximum likelihood estimator of Σ , denoted
by Σ̂ = 1

n
S where n is the sample size and S is the sample sum of products matrix.

How can one evaluate the eigenvalues and eigenvectors in order to construct the principal
components? One method consists of solving the polynomial equation |Σ−λI | = 0 for the
population eigenvalues λ1, . . . , λp, or |Σ̂ − kI | = 0 for obtaining the sample eigenvalues
k1 ≥ k2 ≥ · · · ≥ kp. Direct evaluation of k by solving the determinantal equation is not
difficult when p is small. However, for large values of p, one has to resort to mathematical
software or some iterative process. We will illustrate such an iterative process for the
population values λ1 > λ2 > · · · > λp and the corresponding normalized eigenvectors
A1, . . . , Ap (using our notations). Let us assume that the eigenvalues are distinct. Consider
the following equation for determining the eigenvalues and eigenvectors:

ΣAj = λjAj , j = 1, . . . , k. (9.5.3)

Take any initial p-vector Wo that is not orthogonal to A1, the eigenvector corresponding
to the largest eigenvalue λ1. If Wo is orthogonal to A1, then, in the iterative process, Wj

will not reach A1. Let Yo = 1√
W ′

oWo

Wo be the normalized W0. Consider the equation

ΣYj−1 = Wj, that is, ΣY0 = W1, ΣY1 = W2, . . . , Yj = 1
√

(W ′
jWj)

Wj , j = 1, . . . .

(9.5.4)
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Halt the iteration when Wj approximately agrees with Wj−1, that is, Wj converges to some
W which will then be λ1A1 or Yj converges to Y1. At each stage, compute the quadratic
form δj = Y ′

jΣYj and make sure that δj is increasing. Suppose that Wj converges to some
W for certain values of j or as j → ∞. At that stage, the equation is ΣY = W where
Y = 1√

W ′W W , the normalized W . Then, the equation is ΣY = √
W ′WY . In other words,√

W ′W = λ1 and Y = A1, which are the largest eigenvalue of Σ and the corresponding
eigenvector A1. That is,

lim
j→∞

√
W ′

jWj = λ1

lim
j→∞

[
1

√
(W ′

jWj)
Wj

]

= lim
j→∞ Yj = A1.

The rate of convergence in (9.5.4) depends upon the ratio λ2
λ1

. If λ2 is close to λ1, then the
convergence will be very slow. Hence, the larger the difference between λ1 and λ2, the
faster the convergence. It is thus indicated to raise Σ to a suitable power m and initiate the
iteration on this Σm so that the difference between the resulting λ1 and λ2 be magnified
accordingly, λm

j , j = 1, . . . , p, being the eigenvalues of Σm. If an eigenvalue is equal to
one, then Σ must first be multiplied by a constant so that all the resulting eigenvalues of Σ

are well separated, which will not affect the eigenvectors. As well, observe that Σ and Σm,
m = 1, 2, . . . , share the same eigenvectors even though the eigenvalues are λj and λm

j ,
j = 1, . . . , p, respectively; in other words, the normalized eigenvectors remain the same.
After obtaining the largest eigenvalue λ1 and the corresponding normalized eigenvector
A1, consider

Σ2 = Σ − λ1A1A
′
1, Σ = λ1A1A

′
1 + λ2A2A

′
2 + · · · + λpApA′

p,

where Aj is the column eigenvector corresponding to λj so that AjA
′
j is a p × p matrix

for j = 1, 2, . . . , p. Now, carry out the iteration on Σ2, as was previously done on Σ .
This will produce λ2 and the corresponding normalized eigenvector A2. Note that λ2 is the
largest eigenvalue of Σ2. Next, consider

Σ3 = Σ2 − λ2A2A
′
2

and continue this process until all the required eigenvectors are obtained. Similarly, for
small p, the sample eigenvalues k1 ≥ k2 ≥ · · · ≥ kp are available by solving the equation
|Σ̂ − kI | = 0; otherwise, the sample eigenvalues and eigenvectors can be computed by
applying the iterative process described above with Σ replaced by Σ̂ , λj interchanged
with kj and Bj substituted to the eigenvector Aj , j = 1, . . . , p.
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Example 9.5.2. Principal component analysis is especially called for when the number
of variables involved is large. For the sake of illustration, we will take p = 2. Consider the
following 2 × 2 covariance matrix

Σ =
[

2 −1
−1 1

]

= Cov(X), X =
[
x1

x2

]

.

Construct the principal components associated with this matrix while working with the
symbolic representations of the eigenvalues λ1 and λ2 rather than their actual values.

Solution 9.5.2. Let us first evaluate the eigenvalues of Σ in the customary fashion. Con-
sider

|Σ − λI | = 0 ⇒ (2 − λ)(1 − λ) − 1 = 0 ⇒ λ2 − 3λ + 1 = 0 (i)

⇒ λ1 = 1

2
[3 + √

5], λ2 = 1

2
[3 − √

5].
Let us compute an eigenvector corresponding to the largest eigenvalue λ1. Then,

[
2 −1

−1 1

] [
x1

x2

]

= λ1

[
x1

x2

]

⇒
(2 − λ1)x1 − x2 = 0

−x1 + (1 − λ1)x2 = 0. (ii)

Since the system is singular, we need only solve one of these equations. Letting x2 = 1 in
(ii), x1 = (1−λ1). For illustrative purposes, we will complete the remaining steps with the
general parameters λ1 and λ2 rather than their numerical values. Hence, one eigenvector is

C =
[

1 − λ1

1

]

, ‖C‖ =
√

1 + (1 − λ1)2 ⇒ A1 = 1

‖C‖C = 1
√

1 + (1 − λ1)2

[
1 − λ1

1

]

.

Thus, the principal components are the following:

u1 = 1

‖C‖C′X = 1
√

1 + (1 − λ1)2
{(1 − λ1)x1 + x2}

u2 = 1
√

1 + (1 − λ2)2
{(1 − λ2)x1 + x2}.

Let us verify that Var(u1) = λ1 and Var(u2) = λ2. Note that

‖C‖2 = 1 + (1 − λ1)
2 = λ2

1 − 2λ1 + 2 = (λ2
1 − 3λ1 + 1) + λ1 + 1 = λ1 + 1, (iii)
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given the characteristic equation (i). However,

Var(C′X) = Var((1 − λ1)x1 + x2)

= (1 − λ1)
2Var(x1) + Var(x2) + 2(1 − λ1)Cov(x1, x2)

= 2(1 − λ1)
2 + 1 − 2(1 − λ1)

= 2λ2
1 − 2λ1 + 1 = 2(λ2

1 − 3λ1 + 1) + 4λ1 − 1 = 4λ1 − 1, (iv)

given (i), the characteristic (or starting) equation. We now have Var(C ′X) = Var((1 −
λ1)x1 + x2) = 4λ1 − 1 from (iv) and ‖C‖ = λ1 + 1 from (iii). Hence, we must have
Var(C′X) = ‖C‖2λ1 = [1 + (1 − λ1)

2]λ1 = (λ1 + 1)λ1 from (iii). Since

λ1(λ1 + 1) = λ2
1 + λ1 = (λ2

1 − 3λ1 + 1) + 4λ1 − 1 = 4λ1 − 1,

agrees with (iv), the result is verified for u1. Moreover, on replacing λ1 by λ2, we have
Var(u2) = λ2.

9.5.2. L1 and L2 norm principal components

For any p × 1 vector Y , Y ′ = (y1, . . . , yp), where y1, . . . , yp are real quantities, the
L2 and L1 norms are respectively defined as follows:

‖Y‖2 = (y2
1 + · · · + y2

p)
1
2 = [Y ′Y ] 1

2 ⇒ ‖Y‖2
2 = Y ′Y (9.5.5)

‖Y‖1 = |y1| + |y2| + · · · + |yp| =
p∑

j=1

|yj |. (9.5.6)

In Sect. 9.5, we set up the principal component analysis on the basis of the sample sum of
products matrix, assuming a p-variate real population, not necessarily Gaussian, having
μ as its mean value vector and Σ > O as its covariance matrix. Then, we considered
Xj, j = 1, . . . , n, iid vector random variables, that is, a simple random sample of size
n from this population such that E[Xj ] = μ and Cov(Xj ) = Σ > O, j = 1, . . . , n.
We denoted the sample matrix by X = [X1, . . . , Xn], the sample average by X̄ = 1

n
[X1 +

· · ·+Xn], the matrix of sample means by X̄ = [X̄, . . . , X̄] and the sample sum of products
matrix by S = [X − X̄][X − X̄]′. If the population mean value vector is the null vector,
that is, μ = O, then we can take S = XX′. For convenience, we will consider this case.
For determining the sample principal components, we then maximized

A′XX′A subject to A′A = 1
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where A is an arbitrary constant vector that will result in the coefficient vector of the
principal components. This can also be stated in terms of maximizing the square of an L2
norm subject to A′A = 1, that is,

max
A′A=1

‖A′X‖2
2. (9.5.7)

When carrying out statistical analyses, it turns out that the L2 norm is more sensitive to
outliers than the L1 norm. If we utilize the L1 norm, the problem corresponding to (9.5.7)
is

max
A′A=1

‖A′X‖1. (9.5.8)

Observe that when μ = O, the sum of products matrix can be expressed as

S = XX′ =
p∑

j=1

XjX
′
j , X = [X1, . . . , Xn],

where Xj is the j -th column of X or j -th sample vector. Then, the initial optimization
problem can be restated as follows:

max
A′A=1

‖A′X‖2
2 = max

A′A=1

n∑

j=1

A′XjX
′
jA = max

A′A=1

n∑

j=1

‖A′Xj‖2
2 , (9.5.9)

and the corresponding L1 norm optimization problem can be formulated as follows:

max
A′A=1

‖A′X‖1 = max
A′A=1

n∑

j=1

‖A′Xj‖1. (9.5.10)

We have obtained exact analytical solutions for the coefficient vector A in (9.5.9); however,
this is not possible when attempting to optimize (9.5.10) subject to A′A = 1. Thankfully,
iterative procedures are available in this case.

Let us consider a generalization of the basic principal component analysis. Let W be a
p ×m, m < p, matrix of full rank m. Then, the general problem in L2 norm optimization
is the following:

max
W ′W=I

tr(W ′SW) = max
W ′W=I

n∑

j=1

‖W ′Xj‖2
2 (9.5.11)

where I is the m × m identity matrix, the corresponding L1 norm optimization problem
being

max
W ′W=I

n∑

j=1

‖WXj‖1. (9.5.12)
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In Sect. 9.4.1, we have considered a dual problem of minimization for constructing prin-
cipal components. The dual problems of minimization corresponding to (9.5.11) and
(9.5.12) can be stated as follows:

min
W ′W=I

n∑

j=1

‖Xj − WW ′Xj‖2
2 (9.5.13)

with respect to the L2 norm, and

min
W ′W=I

n∑

j=1

‖Xj − WW ′Xj‖1 (9.5.14)

with respect to the L1 norm. The form appearing in (9.5.13) suggests that the construction
of principal components by making use of the L2 norm is also connected to general model
building, Factor Analysis and related topics. The general mathematical problem pertaining
to the basic structure in (9.5.13) is referred to as low-rank matrix factorization. Readers
interested in such statistical or mathematical problems may refer to the survey article, Shi
et al. (2017). L1 norm optimization problems are for instance discussed in Kwak (2008)
and Nie and Huang (2016).

9.6. Distributional Aspects of Eigenvalues and Eigenvectors

Let us examine the distributions of the variances of the sample principal components
and the coefficient vectors in the sample principal components. Let A be a p × p or-
thonormal matrix whose columns are denoted by A1, . . . , Ap, so that A′

jAj = 1, A′
iAj =

0, i 
= j, or AA′ = I, A′A = I . Let uj = A′
jX be the sample principal components

for j = 1, . . . , p. Let the p × 1 vector X have a nonsingular normal density with the null
vector as its mean value vector, that is, X ∼ Np(O, Σ), Σ > O. We can assume that
the Gaussian distribution has a null mean value vector without any loss of generality since
we are dealing with variances and covariances, which are free of any location parameter.
Consider a simple random sample of size n from this normal population. Letting S denote
the sample sum of products matrix, the maximum likelihood estimate of Σ is Σ̂ = 1

n
S.

Given that S has a Wishart distribution having n− 1 degrees of freedom, the density of Σ̂ ,
denoted by f (Σ̂), is given by

f (Σ̂) = n
mp
2

|2Σ |m
2 Γp(m

2 )
|Σ̂ |m

2 −p+1
2 e− n

2 tr(Σ−1Σ̂),

where Σ is the population covariance matrix and m = n − 1, n being the sample size.
Let k1, . . . , kp be the eigenvalues of Σ̂ ; it was shown that k1 ≥ k2 ≥ · · · ≥ kp > 0 are
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actually the variances of the sample principal components. Letting Bj, j = 1, . . . , p,

denote the coefficient vectors of the sample principal components and B = (B1, . . . , Bp),
it was established that B ′Σ̂B = diag(k1, . . . , kp) ≡ D. The first nonzero component of
Bj is required to be positive for j = 1, . . . , p, so that B be uniquely determined. Then,
the joint density of B and D is available by transforming Σ̂ in terms of B and D. Let the
joint density of B and D and the marginal densities of D and B be respectively denoted
by g(D, B), g1(D) and g2(B). In light of the procedures and results presented in Chap. 8
or in Mathai (1997), we have the following joint density:

g(D, B)dD ∧ dB = n
mp
2

|2Σ |m
2 Γp(m

2 )

{ p∏

j=1

kj

}m
2 −p+1

2
{∏

i<j

(ki − kj )
}

× e− n
2 tr((B ′Σ−1B)D)h(B)dD (9.6.1)

where h(B) is the differential element corresponding to B, which is given in Chap. 8 and
in Mathai (1997). The marginal densities of D and B are not explicitly available in a
convenient form for a general Σ . In that case, they can only be expressed in terms of
hypergeometric functions of matrix argument and zonal polynomials. See, for example,
Mathai et al. (1995) for a discussion of zonal polynomials. However, when Σ = I , the
joint and marginal densities are available in closed forms. They are

g(D, B)dD ∧ dB = n
mp
2

2
mp
2 Γp(m

2 )

{ p∏

j=1

kj

}m
2 −p+1

2
{∏

i<j

(ki − kj )
}

e− n
2 (k1+···+kp)h(B)dD,

(9.6.2)

g1(D) = n
mp
2

2
mp
2 Γp(m

2 )

π
p2

2

Γp(
p
2 )

{ p∏

j=1

kj

}m
2 −p+1

2
e− n

2 (k1+···+kp)
{∏

i<j

(ki − kj )
}
,

(9.6.3)

g2(B)dB = Γp(
p
2 )

π
p2
2

h(B), BB ′ = I = B ′B, k1 > k2 > · · · > kp > 0. (9.6.4)

Given the representation of the joint density g(D, B) appearing in (9.6.2), it is readily seen
that D and B are independently distributed. Similar results are obtainable for Σ = σ 2I

where σ 2 > 0 is a real scalar quantity and I is the identity matrix.

Example 9.6.1. Show that the function g1(D) given in (9.6.3) is a density for p =
2, n = 6, m = 5, and derive the density of k1 for this special case.
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Solution 9.6.1. We have p+1
2 = 3

2 , m
2 − 3

2 = 1. As g1(D) is manifestly nonnegative, it
suffices to show that the total integral equals 1. When p = 2 and n = 6, the constant part
of (9.6.3) is the following:

n
mp
2

2
mp
2 Γp(m

2 )

π
p2

2

Γp(
p
2 )

= 65

25Γp(5
2)

π2

Γ2(1)

= 35

√
πΓ (5

2)Γ (2
2)

π2

√
πΓ (1)

√
π

= 35

√
π(3

2)(1
2)

√
π

π2

√
π

√
π

= 4(34). (i)

As for the integral part, we have

∫ ∞

k1=0

∫ k1

k2=0
k1k2(k1 − k2)e

−3(k1+k2)dk1 ∧ dk2

=
∫ ∞

k1=0
k2

1e−3k1
[ ∫ k1

k2=0
k2e−3k2dk2

]
dk1 −

∫ ∞

k1=0
k1e−3k1

[ ∫ k1

k2=0
k2

2e−3k2dk2

]
dk1

=
∫ ∞

k1=0

(
k2

1e−3k1
[

− k1

3
e−3k1 + 1

32
(1 − e−3k1)

]

− k1e−3k1
[

− k2
1

3
e−3k1 − 2k1

32
e−3k1 + 2

33
(1 − e−3k1)

])
dk1 (ii)

= −1

3
[Γ (4)6−4] + 1

9
[Γ (3)3−3] − 1

32
[Γ (3)6−3]

+ 1

3
[Γ (4)6−4] + 2

32
[Γ (3)6−3] − 2

33
[Γ (2)3−2] + 2

32
[Γ (2)6−2]

= 1

32
[Γ (3)6−3] + 2

33
[Γ (2)6−2] + 1

32
[Γ (3)3−3] − 2

33
[Γ (2)3−2]

=
[1

4
+ 2

4
+ 2 − 2

] 1

35
= 1

4(34)
. (iii)

The product of (i) and (iii) being equal to 1, this establishes that g1(D) is indeed a density
function for p = 2 and n = 6. On integrating out k2, the resulting integrand appearing in
(ii) yields the marginal density of k1. Denoting the marginal density of k1 by g11(k1), after
some simplifications, we have

g11(k1) = 4(34)
{(k2

1

32
+ 2k1

33

)
e−6k1 +

(k2
1

32
− 2k1

33

)
e−3k1

}
, 0 < k1 < ∞,
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and zero elsewhere. Similarly, given g1(D), the marginal density of k2 is obtained by
integrating out k1 from k2 to ∞. This completes the computations.

9.6.1. The distributions of the largest and smallest eigenvalues

One can determine the distribution of the j -th largest eigenvalue kj and thereby, the
distribution of the largest one, k1, as well as that of the smallest one, kp. Actually, many
authors have been investigating the problem of deriving the distributions of the eigenvalues
of a central Wishart matrix and matrix-variate type-1 beta and type-2 beta distributions.
Some of the test statistics discussed in Chap. 6 can also be treated as eigenvalue problems
involving real and complex type-1 beta matrices. Let k1 > k2 > · · · > kp > 0 be the
eigenvalues of the real sampling distribution of a Wishart matrix generated from a p-
variate real Gaussian sample. Then, as given in (9.6.3), the joint density of k1, . . . , kp,
denoted by g1(D), is the following:

g1(D)dD = n
mp
2

2
mp
2 Γp(m

2 )

π
p2

2

Γp(
p
2 )

{ p∏

j=1

k
m
2 −p+1

2
j

}
e− n

2 (k1+···+kp)
{∏

i<j

(ki − kj )
}

dD (9.6.5)

where m = n − 1 is the number of degrees of freedom, n being the sample size. More
generally, we may consider a p × p real matrix-variate gamma distribution having α as
its shape parameter and aI, a > 0, as its scale parameter matrix, I denoting the identity
matrix. Noting that the eigenvalues of aS are equal to the eigenvalues of S multiplied
by the scalar quantity a, we may take a = 1 without any loss of generality. Let g(S)dS

denote the density of the resulting gamma matrix and g(D) be g(S) expressed in terms
of λ1 > λ2 > · · · > λp > 0, the eigenvalues of S. Then, given the Jacobian of the
transformation S → D specified in (9.6.7), the joint density of λ1, . . . , λp, denoted by
g1(D) is obtained as

g(D)dS = π
p2

2

Γp(α)Γp(
p
2 )

{ p∏

j=1

λ
α−p+1

2
j

}
e−(λ1+···+λp)

{∏

i<j

(λi − λj )
}

dD ≡ g1(D)dD

(9.6.6)
where dD = dλ1 ∧ . . . ∧ dλp. The corresponding p × p complex matrix-variate gamma
distribution will have real eigenvalues, also denoted by λ1 > · · · > λp > 0, the matrix
S̃ being Hermitian positive definite in this case. Then, in light of the relationship (9.6a.2)
between the differential elements of S̃ and D, the joint density of λ1, . . . , λp, denoted by
g̃1(D), is given by
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g̃(D)dS̃ = πp(p−1)

Γ̃p(α)Γ̃p(p)

{ p∏

j=1

λ
α−p

j

}
e−(λ1+···+λp)

{∏

i<j

(λi − λj )
2
}

dD ≡ g̃1(D)dD

(9.6a.1)
where g̃(D) is g̃(S̃) expressed in terms of D, g̃(S̃) denoting the density function of a
matrix-variate gamma random variable whose shape parameter and scale parameter matrix
are α and I , respectively.

As explained for instance in Mathai (1997), when S and S̃ are the p × p gamma
matrices in the real and complex domains, the integration over the Stiefel manifold yields

dS = π
p2

2

Γp(
p
2 )

{∏

i<j

(λi − λj )
}

dD (9.6.7)

and

dS̃ = πp(p−1)

Γ̃p(p)

{∏

i<j

(λi − λj )
2
}

dD, (9.6a.2)

respectively. When endeavoring to derive the marginal density of λj for any fixed j , the
difficulty arises from the factor

∏
i<j (λi − λj ). So, let us first attempt to simplify this

factor.

9.6.2. Simplification of the factor
∏

i<j (λi − λj )

It is well known that one can write
∏

i<j (λi − λj ) as a Vandermonde determinant
which, incidentally, has been utilized in connection with nonlinear transformations in
Mathai (1997). That is,

∏

i<j

(λi − λj ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ
p−1
1 λ

p−2
1 . . . λ1 1

λ
p−1
2 λ

p−2
2 . . . λ2 1

...
...

. . .
...

...

λ
p−1
p λ

p−2
p . . . λp 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ |A| = |(aij )|, (9.6.8)

where the (i, j)-th element aij = λ
p−j

i for all i and j . We could consider a cofactor
expansion of the determinant, |A|, consisting of expanding it in terms of the elements and
their cofactors along any row. In this case, it would be advantageous to do so along the
i-th row as the cofactors would then be free of λi and the coefficients of the cofactors
would only be powers of λi . However, we would then lose the symmetry with respect to
the elements of the cofactors in this instance. Since symmetry is required for the procedure
to be discussed, we will consider the general expansion of a determinant, that is,
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|A| =
∑

K

(−1)ρKa1k1a2k2 · · · apkp
=
∑

K

(−1)ρKλ
p−k1
1 λ

p−k2
2 · · · λp−kp

p (9.6.9)

where K = (k1, . . . , kp) and (k1, . . . , kp) is a given permutation of the numbers
(1, 2, . . . , p). Defining ρK as the number of transpositions needed to bring (k1, . . . , kp)

into the natural order (1, 2, . . . , p), (−1)ρK will correspond to a − sign for the corre-
sponding term if ρK is odd, the sign being otherwise positive. For example, for p = 3, the
possible permutations are (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1), so that
there are 3! = 6 terms. For the sequence (1, 2, 3), k1 = 1, k2 = 2 and k3 = 3; for the
sequence (1, 3, 2), k1 = 1, k2 = 3 and k3 = 2, and so on,

∑
K representing the sum of

all such terms multiplied by (−1)ρK . For (1, 2, 3), ρK = 0 corresponding to a plus sign;
for (1, 3, 2), ρK = 1 corresponding to a minus sign, and so on. Other types of expansions
of |A| could also be utilized. As it turns out, the general expansion given in (9.6.9) is the
most convenient one for deriving the marginal densities.

In the complex case,

∏

i<j

(λi − λj )
2 = |A|2 = |AA′| = |A′A|

where

A′ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ
p−1
1 λ

p−1
2 . . . λ

p−1
p

λ
p−2
1 λ

p−2
2 . . . λ

p−2
p

...
...

. . .
...

1 1 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= [α1, α2, . . . , αp], αj =

⎡

⎢
⎢
⎢
⎢
⎣

λ
p−1
j

λ
p−2
j
...

1

⎤

⎥
⎥
⎥
⎥
⎦

. (i)

Observe that αj only contains λj and that A′A = α1α
′
1 + · · · + αpα′

p, so that for instance

the (i, j)-th element in α1α
′
1 is λ

2p−(i+j)

1 . Accordingly, the (i, j)-th element of α1α
′
1 +

· · · + αpα′
p is

∑p

r=1 λ
2p−(i+j)
r . Thus, letting B = A′A = (bij ), bij = ∑p

r=1 λ
2p−(i+j)
r .

Now, consider the expansion (9.6.9) of |B|, that is,

∏

i<j

(λi − λj )
2 = |B| = |A′A| =

∑

K

(−1)ρKb1k1b2k2 · · · bpkp
(ii)

where K = (k1, . . . , kp) and (k1, . . . , kp) is a permutation of the sequence (1, 2, . . . , p).
Note that
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b1k1 = λ
2p−(1+k1)

1 + λ
2p−(1+k1)

2 + · · · + λ2p−(1+k1)
p

b2k2 = λ
2p−(2+k2)

1 + λ
2p−(2+k2)

2 + · · · + λ2p−(2+k2)
p

...

bpkp
= λ

2p−(p+kp)

1 + λ
2p−(p+kp)

2 + · · · + λ
2p−(p+kp)
p . (iii)

Let us write
b1k1b2k2 · · · bpkp

=
∑

r1,...,rp

λ
r1
1 · · · λrp

p . (iv)

Then,
∏

i<j

(λi − λj )
2 = |B| =

∑

K

(−1)ρK

[ ∑

r1,...,rp

λ
r1
1 · · · λrp

p

]
(9.6a.3)

where the rj ’s, j = 1, . . . , p, are nonnegative integers. We may now express the joint
density of the eigenvalues in a systematic way.

9.6.3. The distributions of the eigenvalues

The joint density of λ1, . . . , λp as specified in (9.6.6) and (9.6a.1) can be expressed as
follows. In the real case,

f (D)dD = π
p2

2

Γp(
p
2 )Γp(α)

( p∏

j=1

λ
α−p+1

2
j

)
e−(λ1+···+λp)

(∑

K

(−1)ρKλ
p−k1
1 · · · λp−kp

p

)
dD

= π
p2

2

Γp(
p
2 )Γp(α)

∑

K

(−1)ρK (λ
m1
1 · · · λmp

p ) e−(λ1+···+λp)dD (9.6.10)

with

mj = α − p + 1

2
+ p − kj . (i)

In the complex case, the joint density is

f̃ (D)dD = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑

K

(−1)ρK

∑

r1,...,rp

(λ
α−p+r1
1 · · · λα−p+rp

p ) e−(λ1+···+λp)dD

= πp(p−1)

Γ̃p(p)Γ̃p(α)

∑

K

(−1)ρK

∑

r1,...,rp

(λ
m1
1 · · · λmp

p ) e−(λ1+···+λp)dD (9.6a.4)
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with mj = α − p + rj and rj as defined in (9.6a.3). For convenience, we will use the
same symbol mj for both the real and complex cases; however, in the real case, mj =
α − p+1

2 + p − kj and, in the complex case, mj = α − p + rj .

The distributions of the largest, smallest and j -th largest eigenvalues were consid-
ered by many authors. Earlier works mostly dealt with eigenvalue problems associated
with testing hypotheses on the parameters of one or more real Gaussian populations. In
such situations, a one-to-one function of the likelihood ratio statistics could be explored in
terms of the eigenvalues of a real type-1 beta distributed matrix-variate random variable.
In a series of papers, Pillai constructed the distributions of the seven largest eigenvalues
in the type-1 beta distribution and produced percentage points as well; the reader may re-
fer for example to Pillai (1964) and the references therein. In a series of papers including
Khatri (1964), Khatri addressed the distributions of eigenvalues in the real and complex
domains. In a series of papers, Krishnaiah and his co-authors dealt with various distribu-
tional aspects of eigenvalues, see for instance Krishnaiah et al. (1973). Clemm et al. (1973)
computed upper percentage points of the distribution of the eigenvalues of the Wishart ma-
trix. James (1964) considered the eigenvalue problem of different types of matrix-variate
random variables and determined their distributions in terms of functions of matrix ar-
guments and zonal polynomials. In a series of papers Davis, dealt with the distributions
of eigenvalues by creating and solving systems of differential equations, see for example
Davis (1972). Edelman (1991) discussed the distributions and moments of the smallest
eigenvalue of Wishart type matrices. Johnstone (2001) examined the distribution of the
largest eigenvalue in Principal Component Analysis. Recently, Chiani (2014) and James
and Lee (2021) discussed the distributions of the eigenvalues of Wishart matrices. The
methods employed in these papers lead to representations of the distributions of eigen-
values in terms of Pfaffians of skew symmetric matrices, incomplete gamma functions,
multiple integrals, functions of matrix argument and zonal polynomials, ratios of determi-
nants, solutions of differential equations, and so on. None of those methods yield tractable
forms for the distribution or density functions of eigenvalues.

In the next subsections, we provide, in explicit forms, the exact distributions of any of
the j -th largest eigenvalue of a general real or complex matrix-variate gamma type matrix,
either as finite sums when a certain quantity is a positive integer or as a product of infinite
series in the general non-integer case. These include, for instance, the distributions of the
largest and smallest eigenvalue as well as the joint distributions of several of the largest or
smallest eigenvalues, and readily apply to the real and complex Wishart distributions.
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9.6.4. Density of the smallest eigenvalue λp in the real matrix-variate gamma case

We will initially examine the situation where mj = α − p+1
2 + p − kj is an integer, so

that mj in the real matrix-variate gamma case is a positive integer. We will integrate out
λ1, . . . , λp−1 to obtain the marginal density of λp. Since mj is a positive integer, we can
integrate by parts. For instance,

∫ ∞

λ1=λ2

λ
m1
1 e−λ1dλ1 = [−λ

m1
1 e−λ1]∞λ2

+ [−m1λ
m1−1
1 e−λ1]∞λ2

+ · · · + [−e−λ1]∞λ2

=
m1∑

μ1=0

m1!
(m1 − μ1)! λ

m1−μ1
2 e−λ2, (i)

and integrating λ1, . . . , λj−1 gives the following:
∫

λ1

∫

λ2

· · ·
∫

λj−1

λ
m1
1 · · · λmj−1

j−1 e−(λ1+···+λj−1)dλ1 ∧ . . . ∧ dλj−1

=
m1∑

μ1=0

m1!
(m1 − μ1)!

m1−μ1+m2∑

μ2=0

(m1 − μ1 + m2)!
2μ2+1(m1 − μ1 + m2 − μ2)! · · ·

×
m1−μ1+···+mj−1∑

μj−1=0

(m1 − μ1 + · · · + mj−1)!
(j − 1)μj−1+1(m1 − μ1 + · · · + mj−1 − μj−1)!λ

m1−μ1+···+mj−1−μj−1
j e−jλj

≡ φj−1(λj ). (ii)

Hence, the following result:

Theorem 9.6.1. When mj = α − p+1
2 +p − kj is a positive integer, where mj is defined

in (9.6.10), the marginal density of the smallest eigenvalue λp of the p × p real gamma
distributed matrix with parameters (α, I ), denoted by f1p(λp), is the following:

f1p(λp)dλp

= cK φp−1(λp) λ
mp
p e−λp

= cK

m1∑

μ1=0

m1!
(m1 − μ1)!

m1−μ1+m2∑

μ2=0

(m1 − μ1 + m2)!
2μ2+1(m1 − μ1 + m2 − μ2)! · · ·

m1−μ1+···+mp−1∑

μp−1=0

× (m1 − μ1 + · · · + mp−1)!
(p − 1)μp−1+1(m1 − μ1 + · · · + mp−1 − μp−1)!λ

m1−μ1+···+mp−1−μp−1+mp

p−1 e−pλpdλp

(9.6.11)
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for 0 < λp < ∞, where

cK = π
p2

2

Γp(
p
2 )Γp(α)

∑

K

(−1)ρK ,

φj−1(λj ) is specified in (ii) and K = (k1, . . . , kp) is defined in (9.6.9).

In the complex p × p matrix-variate gamma case, rj is as defined in (9.6a.3) and the
expression for φj−1(λj ) given in (ii) remains the same with the exception that mj in the
complex case is mj = α−p+rj . Then, in the complex domain, the density of λp, denoted
by f̃1p(λp), is the following:

Theorem 9.6a.1. When mj = α − p + rj is a positive integer, where rj is defined
in (9.6a.3), the density of the smallest eigenvalue of the complex matrix-variate gamma
distribution is the following:

f̃1p(λp)dλp

= c̃K φp−1(λp) λ
mp
p e−pλp

= c̃K

m1∑

μ1=0

m1!
(m1 − μ1)!

m1−μ1+m2∑

μ2=0

(m1 − μ1 + m2)!
2μ2+1(m1 − μ1 + m2 − μ2)! · · ·

m1−μ1+···+mp−1∑

μp−1=0

× (m1 − μ1 + · · · + mp−1)!
(p − 1)μp−1+1(m1 − μ1 + · · · + mp−1 − μp−1)!

λ
m1−μ1+···+mp−1−μp−1+mp

p−1 e−pλpdλp

(9.6a.5)

for 0 < λp < ∞, where

c̃K = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑

K

(−1)ρK

∑

r1,...,rk

.

Note 9.6.1. In the complex Wishart case, α = m where m is the number of degrees of
freedom, which is a positive integer. Hence, Theorem 9.6a.1 gives the final result in the
general case for that distribution. One can obtain the joint density of the p−j +1 smallest
eigenvalues from φj−1(λj ) as defined in (ii), both in the real and complex cases. If the
scale parameter matrix of the gamma distribution is of the form aI where a > 0 is a
real scalar and I is the identity matrix, then the distributions of the eigenvalues can also
be obtained from the proposed procedure since for any square matrix B, the eigenvalues
of aB are a νj ’s where the νj ’s are the eigenvalues of B. In the case of real Wishart
distributions originating from a sample of size n from a p-variate Gaussian population
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whose covariance matrix is the identity matrix, the λj ’s are multiplied by the constant
a = n

2 . If the Wishart matrix is not an estimator obtained from the sample values, they
should only be multiplied by a = 1

2 in the real case, no multiplicative constant being
necessary in the complex Wishart case.

9.6.5. Density of the largest eigenvalue λ1 in the real matrix-variate gamma case

Consider the case of mj = α − p+1
2 + p − kj being an integer first. Then, in the real

case, mj is as defined in (9.6.10). One has to integrate out λp, . . . , λ2 in order to obtain
the marginal density of λ1. As the initial step, consider the integration of λp, that is,

Step 1 integral :
∫ λp−1

λp=0
λ

mp
p e−λpdλp

= [−λ
mp
p e−λp ]λp−1

0 + · · · + [−mp! e−λp ]λp−1
0

= mp! −
mp∑

νp=0

mp!
(mp − νp)!λ

mp−νp

p−1 e−λp−1 . (i)

Now, multilying each term by λ
mp−1
p−1 e−λp−1 and integrating by parts, we have the second

step integral:

Step 2 integral

= mp!
∫ λp−2

λp−1=0
λ

mp−1
p−1 e−λp−1dλp−1 −

mp∑

νp=0

mp!
(mp − νp)!

∫ λp−2

λp−1=0
λ

mp−νp+mp−1
p−1 e−2λp−1dλp−1

= mp! mp−1! − mp!
mp−1∑

νp−1=0

mp−1!
(mp−1 − νp−1)!λ

mp−1−νp−1
p−2 e−λp−2

−
mp∑

νp=0

mp!
(mp − νp)!

(mp − νp + mp−1)!
2mp−νp+mp−1

+
mp∑

νp=0

mp!
(mp − νp)!

mp−νp+mp−1∑

νp−1=0

(mp − νp + mp−1)!
2νp−1+1(mp − νp + mp−1 − νp−1)!

λ
mp−νp+mp−1−νp−1
p−2 e−2λp−2 .

(ii)

At the j -th step of integration, there will be 2j terms of which 2j

2 = 2j−1 will be positive
and 2j−1 will be negative. All the terms at the j -th step can be generated by 2j sequences
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of zeros and ones. Each sequence (each row) consists of j positions with a zero or one
occupying each position. Depending on whether the number of ones in a sequence is odd
or even, the corresponding term will start with a minus or a plus sign, respectively. The
following are the sequences, where the last column indicates the sign of the term:

Step 1:
0 +
1 − , Step 2:

0 0 +
0 1 −
1 0 −
1 1 +

, Step 3:

0 0 0 +
0 0 1 −
0 1 0 −
0 1 1 +

, Step 3:

1 0 0 −
1 0 1 +
1 1 0 +
1 1 1 −

Step 4:

0 0 0 0 +
0 0 0 1 −
0 0 1 0 −
0 0 1 1 +

,

0 1 0 0 −
0 1 0 1 +
0 1 1 0 +
0 1 1 1 −

,

1 0 0 0 −
1 0 0 1 +
1 0 1 0 +
1 0 1 1 −

,

1 1 0 0 +
1 1 0 1 −
1 1 1 0 −
1 1 1 1 +

.

All the terms at the j -th step can be written down by using the following rules:

(1): If the first entry in a sequence (row) is zero, then the corresponding factor in the term
is mp! ;

(2): If the first entry in a sequence is 1, then the corresponding factor in the term is
∑mp

νp=0
mp!

(mp−νp)! or this sum multiplied by λ
mp−νp

p−1 e−λp−1 if this 1 is the last entry in the
sequence;

(3): If the r-th and (r−1)-th entries in the sequence both equal zero, then the corresponding
factor in the term is mp−r+1! ;

(4): If the r-th entry in the sequence is zero and the (r − 1)-th entry is 1, then the cor-
responding factor in the term is (nr−1+mp−r+1)!

(ηr−1+1)
nr−1+mp−r+1+1 , where nr−1 is the argument of the

denominator factorial and (ηr−1)
νp−r+2+1 is the factor in the denominator corresponding

to the (r − 1)-th entry;

(5): If the r-th entry in the sequence is 1 and the (r − 1)-th entry is zero, then the cor-
responding factor in the term is

∑mp−r+1
νp−r+1=0

mp−r+1!
(mp−r+1−νp−r+1)! or this sum multiplied by

λ
mp−r+1−νp−r+1
p−r e−λp−r if this 1 is the last entry in the sequence;

(6): If the r-th and (r − 1)-th entries in the sequence are both equal to 1, then the corre-
sponding factor in the term is

∑nr−1+mp−r+1
νp−r+1=0

(nr−1+mp−r+1)!
(ηr−1+1)

νp−r+1 (nr−1+mp−r+1−νp−r+1)! or this sum

multiplied by λ
nr−1+mp−r+1−νp−r+1
p−r e−(ηr−1+1)λp−r if this 1 is the last entry in the sequence,

where nr−1 and ηr−1 are defined in rule (4). By applying the above rules, let us write down
the terms at step 3, that is, j = 3. The sequences are then the following:
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Step 3 sequences:

0 0 0 +
0 0 1 −
0 1 0 −
0 1 1 +

,

1 0 0 −
1 0 1 +
1 1 0 +
1 1 1 −

. (iii)

The corresponding terms in the order of the sequences are the following:

Step 3 integral

= mp!mp−1!mp−2! − mp!mp−1!
mp−2∑

νp−2=0

mp−2!
(mp−2 − νp−2)!λ

mp−2−νp−2
p−3 e−λp−3

− mp!
mp−1∑

νp−1=0

mp−1!
(mp−1 − νp−1)!

(mp−1 − νp−1 + mp−2)!
2mp−1−νp−1+mp−2+1

+ mp!
mp−1∑

νp−1=0

(mp−1)!
(mp−1 − νp−1)!

mp−1−νp−1+mp−2∑

νp−2=0

(mp−1 − νp−1 + mp−2)!
2νp−2+1(mp−1 − νp−1 + mp−2 − νp−2)!

× λ
mp−1−νp−1+mp−2−νp−2
p−3 e−2λp−3

−
mp∑

νp=0

mp!
(mp − νp)!

(mp − νp + mp−1)!
2mp−νp+mp−1

mp−2!

+
mp∑

νp=0

mp!
(mp − νp)!

(mp − νp + mp−1)!
2mp−νp+mp−1+1

mp−2∑

νp−2=0

mp−2!
(mp−2 − νp−2)!λ

mp−2−νp−2
p−3 e−λp−3

+
mp∑

νp=0

mp!
(mp − νp)!

mp−νp+mp−1∑

νp−1=0

(mp − νp + mp−1)!
(mp − νp + mp−1 − νp−1)!

× (mp − νp + mp−1 − νp−1 + mp−2)!
3mp−νp+mp−1−νp−1+mp−2

−
mp∑

νp=0

mp!
(mp − νp)!

mp−νp+mp−1∑

νp−1=0

(mp − νp + mp−1)!
2νp−1+1(mp − νp + mp−1 − νp−1)!

×
mp−νp+mp−1−νp−1+mp−2∑

νp−2=0

(mp − νp + mp−1 − νp−1 + mp−2)!
3νp−2+1(mp − νp + mp−1 − νp−1 + mp−2 − νp−2)!

× λ
mp−νp+mp−1−νp−1+mp−2−νp−2
p−3 e−3λp−3 . (iv)

The terms in (iv) are to be multiplied by λ
mp−3
p−3 e−λp−3 to obtain the final result if we are

stopping, that is, if p = 4. The terms in (iv) can be verified by multiplying the step 2
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integral by λ
mp−2
p−2 e−λp−2 and then integrating (ii), term by term. Denoting the sum of the

terms at the j -th step by ψj(λp−j ), the density of the largest eigenvalue λ1, denoted by
f11(λ1), is the following:

Theorem 9.6.2. When mj = α − p+1
2 + p − kj is a positive integer and ψj(λp−j ) is as

defined in the preceding paragraph, where kj is given in (9.6.10), the density of λ1 in the
real matrix-variate gamma case, denoted by f11(λ1), is the following:

f11(λ1)dλ1 = π
p2

2

Γp(α)Γp(
p
2 )

∑

K

(−1)ρk ψp−1(λ1) λ
m1
1 e−λ1 dλ1, 0 < λ1 < ∞, (9.6.12)

where it is assumed that mj is a positive integer.

In the corresponding complex case, the procedure is parallel and the expression for
ψj(λp−j ) remains the same, except that mj will then be equal to α − p + rj , where rj
is defined in (9.6a.3). Assuming that mj is a positive integer and letting the density in the
complex case be denoted by f̃11(λ1), we have the following result:

Theorem 9.6a.2. Letting mj = α − p + rj be a positive integer and ψj(λp−j ) have the
same representation as in the real case except that mj = α − p + rj , in the complex case,
the density of λ1, denoted by f̃11(λ1), is the following:

f̃11(λ1)dλ1 = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑

K

(−1)ρK

∑

r1,...,rk

ψp−1(λ1) λ
m1
1 e−λ1 dλ1, 0 < λ1 < ∞.

(9.6a.6)

Note 9.6.2. One can also compute the density of the j -th eigenvalue λj from Theo-
rems 9.6.1 and 9.6.2. For obtaining the density of λj , one has to integrate out λ1, . . . , λj−1

and λp, λp−1, . . . , λj+1, the resulting expressions being available from the (j − 1)-
th step when integrating λ1, . . . , λj−1 and from the (p − j)-th step when integrating
λp, λp−1, . . . , λj+1.

9.6.6. Density of the largest eigenvalue λ1 in the general real case

By general case, it is meant that mj = α− p+1
2 +p−kj is not a positive integer. In the

real Wishart case, mj will then be a half-integer; however in the general gamma case α can
be any real number greater than p−1

2 . In this general case, we will expand the exponential
part and then integrate term by term. That is,
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Step 1 integral:
∫ λp−1

λp=0
λ

mp
p e−λpdλp =

∞∑

νp=0

(−1)νp

νp!
∫ λp−1

λp=0
λ

mp+νp
p dλp

=
∞∑

νp=0

(−1)νp

νp!
1

(mp + νp + 1)
λ

mp+νp+1
p−1 . (i)

Continuing this process, we have

Step j integral =
∞∑

νp=0

(−1)νp

νp!
1

mp + νp + 1

∞∑

νp−1=0

(−1)νp−1

νp−1!
1

mp + νp + mp−1 + νp−1 + 2

· · ·
∞∑

νp−j+1=0

(−1)νp−j+1

νp−j+1!
1

mp + νp + · · · + mp−j+1 + νp−j+1 + j

≡ Δj(λp−j ). (ii)

Then, in the general real case, the density of λ1, denoted by f21(λ1), is the following:

Theorem 9.6.3. When mj = α − p+1
2 + p − kj is not a positive integer, where kj is as

specified in (9.6.10), the density of the largest eigenvalue λ1 in the general real matrix-
variate gamma case, denoted by f21(λ1), is given by

f21(λ1)dλ1 = π
p2

2

Γp(
p
2 )Γp(α)

∑

K

(−1)ρKΔp−1(λ1) λ
m1
1 e−λ1dλ1, 0 < λ1 < ∞, (9.6.13)

where Δj(λp−j ) is defined in (ii).

The corresponding density of λ1 in the general situation of the complex matrix-variate
gamma distribution is given in the next theorem. Observe that in the complex Wishart case,
mj is an integer and hence there is no general case to consider.

Theorem 9.6a.3. When mj = α − p + rj is not a positive integer, where rj is as defined
in (9.6a.3), the density of λ1 in the complex case, denoted by f̃21(λ1), is given by

f̃21(λ1)dλ1 = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑

K

(−1)ρK

∑

r1,...,rp

Δp−1(λ1) λ
m1
1 e−λ1dλ1, 0 < λ1 < ∞,

(9.6a.7)
where the Δj(λp−j ) has the representation specified in (ii) except that mj = α − p + rj .
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9.6.7. Density of the smallest eigenvalue λp in the general real case

Once again, ‘general case’ is understood to mean that mj = α − p+1
2 + p − kj is

not a positive integer, where kj is defined in (9.6.10). For the real Wishart distribution,
‘general case’ corresponds to mj being a half-integer. In order to determine the density
of the smallest eigenvalue, we will integrate out λ1, . . . , λp−1. We initially evaluate the
following integral:

Step 1 integral:
∫ ∞

λ1=λ2

λ
m1
1 e−λ1dλ1 = Γ (m1 + 1) −

∫ λ2

λ1=0
λ

m1
1 e−λ1dλ1

= Γ (m1 + 1) −
∞∑

μ1=0

(−1)μ1

μ1!
1

m1 + μ1 + 1
λ

m1+μ1+1
2 . (i)

The second step consists of integrating out λ2 from the expression obtained in (i) multi-
plied by λ

m2
2 e−λ2 :

Step 2 integral:

Γ (m1 + 1)

∫ ∞

λ2=λ3

λ
m2
2 e−λ2dλ2 −

∞∑

μ1=0

(−1)μ1

μ1!
1

m1 + μ1 + 1

∫ ∞

λ2=λ3

λ
m1+μ1+m2+1
2 e−λ2dλ2

= Γ (m1 + 1)Γ (m2 + 1) − Γ (m1 + 1)

∞∑

μ2=0

(−1)μ2

μ2!
1

m2 + μ2 + 1
λ

m2+μ2+1
3

−
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
Γ (m1 + μ1 + m2 + 2)

+
∞∑

μ1=0

(−1)μ1

μ1!
1

m1 + μ1 + 1

∞∑

μ2=0

(−1)μ2

μ2!
λ

m1+μ1+m2+μ2+2
3

m1 + μ1 + m2 + μ2 + 2
. (ii)

A pattern is now seen to emerge. At step j, there will be 2j terms, of which 2j−1 will start
with a plus sign and 2j−1 will start with a minus sign. All the terms at the j -th step are
available from the 2j sequences of zeros and ones provided in Sect. 9.6.5. The terms can
be written down by utilizing the following rules:

(1): If the sequence starts with a zero, then the corresponding factor in the term is Γ (m1 +
1);

(2): If the sequence starts with a 1, then the corresponding factor in the term is
∑∞

μ1=0
(−1)μ1

μ1!
1

m1+μ1+1 or this series multiplied by λ
m1+μ1+1
2 if this 1 is the last entry in the

sequence;

(3): If the r-th entry in the sequence is a zero and the (r − 1)-th entry in the sequence is
also zero, then the corresponding factor in the term is Γ (mr + 1);
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(4): If the r-th entry in the sequence is a zero and the (r − 1)-th entry in the sequence
is a 1, then the corresponding factor in the term is Γ (nr−1 + mr + 1) where nr−1 is the
denominator factor in the (r − 1)-th factor excluding the factorial;

(5): If the r-th entry in the sequence is 1 and the (r − 1)-th entry is zero, then the corre-
sponding factor in the term is

∑∞
μr=0

(−1)μ1

μr !
1

mr+μr+1 or this series multiplied by λ
mr+μr+1
r+1

if this 1 happens to be the last entry in the sequence;

(6): If the r-th entry in the sequence is 1 and the (r − 1)-th entry is also 1, then the
corresponding factor in the term is

∑∞
μr=0

(−1)μr

μr !
1

nr−1+mr+μr+1 or this series multiplied by

λ
nr−1+mr+μr+1
r+1 if this 1 is the last entry in the sequence, where nr−1 is the factor appearing

in the denominator of the (r − 1)-th factor excluding the factorial.

These rules enable one to write down all the terms at any step. For example for j = 3,
that is, at the third step, the terms are available from the following step 3 sequences:

0 0 0 +
0 0 1 −
0 1 0 −
0 1 1 +

,

1 0 0 −
1 0 1 +
1 1 0 +
1 1 1 −

.

The terms corresponding to the sequences in the order are the following:

Step 3 integral

= Γ (m1 + 1)Γ (m2 + 1)Γ (m3 + 1)

− Γ (m1 + 1)Γ (m2 + 1)

∞∑

μ3=0

(−1)μ3

μ3!
1

m3 + μ3 + 1
λ

m3+μ3+1
4

− Γ (m1 + 1)

∞∑

μ2=0

(−1)μ2

μ2!(m2 + μ2 + 1)
Γ (m2 + μ2 + m3 + 2)

+ Γ (m1 + 1)

∞∑

μ2=0

(−1)μ2

μ2!
1

m2 + μ2 + 1

∞∑

μ3=0

(−1)μ3

μ3!
λ

m2+μ2+m3+μ3+2
4

m2 + μ2 + m3 + μ3 + 2

−
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
Γ (m1 + μ1 + m2 + 2)Γ (m3 + 1)

+
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
Γ (m1 + μ1 + m2 + 2)

∞∑

μ3=0

(−1)μ3

μ3!
λ

m3+μ3+1
4

(m3 + μ3 + 1)
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+
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)

∞∑

μ2=0

(−1)μ2

μ2!(m1 + μ1 + m2 + μ2 + 2)

× Γ (m1 + μ1 + m2 + μ2 + m3 + 3)

−
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)

∞∑

μ2=0

(−1)μ2

μ2!(m1 + μ1 + m2 + μ2 + 2)

×
∞∑

μ3=0

(−1)μ3

μ3!
λ

m1+μ1+m2+μ2+m3+μ3+3
4

(m1 + μ1 + m2 + μ2 + m3 + μ3 + 3)
. (iii)

Then, the step j will be the following, denoted by wj(λj+1):

wj(λj+1) = Γ (m1 + 1) · · · Γ (mj + 1) − · · · + (−1)j
∞∑

μ1=0

(−1)μ1

μ1!(m1 + μ1 + 1)
· · ·

×
∞∑

μj=0

(−1)μj

μj !
λ

m1+μ1+···+mj+μj+j

j+1

(m1 + μ1 + · · · + mj + μj + j)
. (iv)

Theorem 9.6.4. The density of λp for the general real matrix-variate gamma distribu-
tion, denoted by f2p(λp), is the following:

f2p(λp)dλp = π
p2

2

Γp(
p
2 )Γp(α)

∑

K

(−1)ρK wp−1(λp) λ
mp
p e−λp dλp, 0 < λp < ∞,

(9.6.14)
where the wj(λj+1) is defined in (iv).

The corresponding distribution of λp for a general complex matrix-variate gamma dis-
tribution, denoted by f̃2p(λp), is the following:

Theorem 9.6a.4. In the general complex case, in which instance mj = α −p + rj is not
a positive integer, rj being as defined in (9.6a.3), the density of the smallest eigenvalue λp,
denoted by f̃2p(λp), is given by

f̃2p(λp)dλp = πp(p−1)

Γ̃p(p)Γ̃p(α)

∑

K

(−1)ρK

∑

r1,...,rp

wp−1(λp) λ
mp
p e−λp dλp, 0 < λp < ∞,

(9.6a.8)
where wj(λj+1) has the representation given in (iv) above for the real case, except that
mj = α − p + rj .
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Note 9.6.3. In the complex Wishart case, α = m where m > p − 1 is the number of
degrees of freedom, which is a positive integer. Hence, in this instance, one would simply
apply Theorem 9.6a.1. It should also be observed that one can integrate out λ1, . . . , λj−1

by using the procedure described in Theorem 9.6.4 and integrate out λp, . . . , λj+1 by
employing the procedure provided in Theorem 9.6.3, and thus derive the density of λj

or the joint density of any set of successive λj ’s. In a similar manner, one can obtain the
density of λj or the joint density of any set of successive λj ’s in the complex domain by
making use of the procedures outlined in Theorems 9.6a.3 and 9.6a.4.
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Chapter 10

Canonical Correlation Analysis

10.1. Introduction

We will keep utilizing the same notations in this chapter. More specifically, lower-
case letters x, y, . . . will denote real scalar variables, whether mathematical or random.
Capital letters X, Y, . . . will be used to denote real matrix-variate mathematical or random
variables, whether square or rectangular matrices are involved. A tilde will be placed above
letters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices
will for instance be denoted by A, B, C. A tilde will not be used on constant matrices
unless the point is to be stressed that the matrix is in the complex domain. The determinant
of a square matrix A will be denoted by |A| or det(A) and, in the complex case, the absolute
value or modulus of the determinant of A will be denoted as |det(A)|. When matrices are
square, their order will be taken as p × p, unless specified otherwise. When A is a full
rank matrix in the complex domain, then AA∗ is Hermitian positive definite where an
asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix
X. Letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.
The necessary theory for the study of Canonical Correlation Analysis has already been

introduced in Chap. 1, including the problem of optimizing a real bilinear form subject
to two quadratic form constraints. This topic happens to be connected to the prediction
problem. In regression analysis, the objective consists of seeking the best prediction func-
tion of a real scalar variable y based on a collection of preassigned real scalar variables
x1, . . . , xk. It was previously determined that the regression of y on x1, . . . , xk, or the best
predictor of y at preassigned values of x1, . . . , xk, is the conditional expectation of y at
the specified values of x1, . . . , xk, that is, E[y|x1, . . . , xk] where E denotes the expected
value. In this case, best is understood to mean ‘in the minimum mean square’ sense. Now,
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consider the following generalization of this problem. Suppose that we wish to determine
the best prediction function for a set of real scalar variables y1, . . . , yq, on the basis of
a collection of real scalar variables x1, . . . , xp, where p needs not be equal to q. Since
individual variables are available from linear functions of those variables, we will convert
the problem into one of predicting a linear function of y1, . . . , yq from an arbitrary linear
function of x1, . . . , xp, and vice versa if we are interested in determining the association
between two sets of variables. Let the linear functions be u = α1x1 + · · · + αpxp = α′X
with α′ = (α1, . . . , αp) and X′ = (x1, . . . , xp) and v = β1y1 + · · · + βqyq = β ′Y
with β ′ = (β1, . . . , βq) and Y ′ = (y1, . . . , yq), where the coefficient vectors α and β are
arbitrary. Let us provide an interpretion of best predictor in the case of two linear func-
tions. As a criterion, we may make use of the maximum joint scatter, that is, the joint
variation in u and v as measured by the covariance between u and v or, equivalently, the
maximum scale-free covariance, namely, the correlation between u and v, and optimize
this joint variation. Given the properties of linear functions of real scalar variables, we ob-
tain the variances of linear functions and covariance between linear functions as follows:
Var(u) = α′Σ11α, Var(v) = β ′Σ22β, Cov(u, v) = α′Σ12β = β ′Σ21α, Σ ′

12 = Σ21,
where Σ11 > O and Σ22 > O are the variance-covariance matrices of X and Y , re-
spectively, and Σ12 = Σ ′

21 accounts for the covariance between X and Y . Letting the

augmented vector Z =
[
X

Y

]

and its associated covariance matrix be Σ , we have

Σ = Cov

[
X

Y

]

=
[

Cov(X) Cov(X, Y )

Cov(Y, X) Cov(Y )

]

≡
[
Σ11 Σ12

Σ21 Σ22

]

.

Our aim is to maximize α′Σ12β = β ′Σ21α. When the coefficient vectors α and β are
unrestricted, the optimization of α′Σ12β proves meaningless since the quantity α′Σ12β

can vary from −∞ to ∞. Consequently, we impose the constraints, α′Σ11α = 1 and
β ′Σ22β = 1, to the coefficient vectors α and β. Accordingly, the mathematical problem
consists of optimizing α′Σ12β subject to α′Σ11α = 1 and β ′Σ22β = 1.

Letting

w = α′Σ12β − ρ1

2
(α′Σ11α − 1) − ρ2

2
(β ′Σ22β − 1) (i)

where ρ1 and ρ2 are the Lagrangian multipliers, we differentiate w with respect to α and
β and equate the resulting functions to null vectors. When differentiating with respect to
β, we may utilize the equivalent form β ′Σ21α = α′Σ12β. We then obtain the following
equations:
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∂

∂α
w = O ⇒ Σ12β − ρ1Σ11α = O (ii)

∂

∂β
w = O ⇒ Σ21α − ρ2Σ22β = O. (iii)

On pre-multiplying (ii) by α′ and (iii), by β ′, and using the fact that α′Σ11α = 1 and
β ′Σ22β = 1, one has ρ1 = ρ2 ≡ ρ and α′Σ12β = ρ. Thus,

[−ρΣ11 Σ12

Σ21 −ρΣ22

] [
α

β

]

=
[
O

O

]

(10.1.1)

and

Cov(α′X, β ′Y ) = α′Σ12β = β ′Σ21α = ρ. (10.1.2)

Hence, the maximum value of Cov(α′X, β ′Y ) yields the largest ρ. It follows from (ii) that
α = 1

ρ
Σ−1

11 Σ12β which, once substituted in (iii) yields

[Σ21Σ
−1
11 Σ12 − ρ2Σ22]β = O ⇒ [Σ−1

22 Σ21Σ
−1
11 Σ12 − ρ2I ]β = O.

This entails that ρ2 = λ, an eigenvalue of B = Σ−1
22 Σ21Σ

−1
11 Σ12 or its symmetrized

form Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 , and that β is a corresponding eigenvector. Similarly, by ob-
taining a representation of β from (iii), substituting it in (ii) and proceeding as above, it
is seen that ρ2 = λ is an eigenvalue of A = Σ−1

11 Σ12Σ
−1
22 Σ21 or its symmetrized form

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 , and that α is a corresponding eigenvector. Hence manifestly, all
the nonzero eigenvalues of A coincide with those of B. If p ≤ q and Σ12 is of full rank
p, then A > O (real positive definite) and B ≥ O (real positive semi-definite), whereas
if q ≤ p and Σ21 is of full rank p, then A ≥ O (real positive semi-definite) and B > O

(real positive definite). If p = q and Σ12 is of full rank p, then A and B are both positive
definite. If p ≤ q and Σ12 is of full rank p, then one should start with A and compute all
the p nonzero eigenvalues of A since A will be of lower order; on the other hand, if q ≤ p

and Σ21 is of full rank q, then one ought to begin with B and determine all the nonzero
eigenvalues of B. Thus, one can obtain the common nonzero eigenvalues of A and B or
their symmetrized forms by making use of one of these sets of steps. Let us denote the
largest value of these common eigenvalues λ = ρ2 by λ(1) and the corresponding eigen-
vectors with respect to A and B, by α(1) and β(1), where the eigenvectors are normalized
via the constraints α′

(1)Σ11α(1) = 1 and β ′
(1)Σ22β(1) = 1. Then, (u1, v1) ≡ (α′

(1)X, β ′
(1)Y )

is the first pair of canonical variables in the sense that u1 is the best predictor of v1 and
v1 is the best predictor of u1. Similarly, letting ρ2

(i) = λ(i) be the i-th largest common
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eigenvalue of A and B and the corresponding eigenvectors such that α′
(i)Σ11α(i) = 1 and

β ′
(i)Σ22β(i) = 1, be denoted by α(i) and β(i), the i-th largest correlation between u = α′X

and v = β ′Y will be equal to α′
(i)Σ12β(i) = ρ(i) = √

λ(i), i = 1, . . . , p, p denoting the
common number of nonzero eigenvalues of A and B, and occur when u = ui = α′

(i)X

and v = vi = β ′
(i)Y , ui and vi being the i-th pair of canonical variables. Clearly, Var(ui)

and Var(vi), i = 1, . . . , p, are both equal to one. Once again, best is taken to mean ‘in the
minimum mean square’ sense. Hence, the following results:

Theorem 10.1.1. Letting Σ , A, B, ρ, α(i), β(i), ui and vi be as previously defined,

max
α′Σ11α=1, β ′Σ22β=1

[α′Σ12β] = α′
(1)Σ12β(1) = ρ(1) (10.1.3)

where ρ(1) is the largest ρ or the largest canonical correlation, that is, the largest corre-
lation between the first pair of canonical variables, u = α′X and v = β ′Y, which is equal
to the correlation between u1 and v1, with ρ2

(1) = λ(1), the common largest eigenvalue of
A and B. Similarly, we have

min
α′Σ11α=1, β ′Σ22β=1

[α′Σ12β] = α′
(p)Σ12β(p) = ρ(p) (10.1.4)

where ρ(p),which is the smallest nonzero value of ρ with ρ2
(p) = λ(p), the common smallest

nonzero eigenvalue of A and B, represents the smallest canonical correlation between u

and v or the correlation between up and vp

This maximum correlation between the linear functions α′X and β ′Y or the correlation
between the best predictors u1 and v1 or the maximum value of ρ is called the first canon-
ical correlation between the sets X and Y in the sense the correlation between u1 and v1

attains its maximum value. When p = 1 or q = 1, the canonical correlation becomes the
multiple correlation, and when p = 1 and q = 1, it is simply the correlation between two
real scalar random variables. The matrix of the nonzero eigenvalues of A and B, denoted
by Λ, is Λ = diag(λ(1), . . . , λ(p)) when p ≤ q and Σ12 is of full rank p; otherwise, p is
replaced by q in Λ.

It should be noted that, for instance, the canonical variable β ′Y such that β satisfies
the constraint β ′Σ22β = 1 is identical to b′Σ−1/2

22 Y such that b′b = 1 since β ′Σ22β =
b′Σ−1/2

22 Σ22Σ
−1/2
22 b = b′b. Accordingly, letting the λ(i)’s as well as A and B be as previ-

ously defined, our definition of a canonical variable, that is, ui = α′
(i)X and vi = β ′

(i)Y,

coincides with the customary one, that is, u∗
i = a′

iΣ
−1/2
11 X where ai is the eigenvector

with respect to B which is associated with λ(i) and normalized by requiring that a′
iai = 1,
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and v∗
i = b′

iΣ
−1/2
22 Y where bi is an eigenvector with respect to B corresponding to λ(i)

and such that b′
ibi = 1. It can be readily proved that the canonical variables u∗

1, . . . , u
∗
p (or

equivalently the ui’s) are uncorrelated, as Cov(u∗
i , u

∗
j ) = a′

iΣ
−1/2
11 Σ11Σ

−1/2
11 aj = 0 for

i 
= j since the normed eigenvectors ai are orthogonal to one another. It can be similarly
established that the v∗

i ’s or, equivalently, the vi’s are uncorrelated. Clearly, Cov(u∗
i , u

∗
j ) =

Cov(ui, uj ) = 1 and Cov(v∗
i , v

∗
j ) = Cov(vi, vj ) = 1. We now demonstrate that, for i 
= k,

the canonical variables, ui and vk are uncorrelated. First, consider the equation A a = λ a,
that is,

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 a = λ a.

On pre-multiplying both sides by Σ
− 1

2
22 Σ21Σ

− 1
2

11 , we obtain B b = λ b where b =
Σ

− 1
2

22 Σ21Σ
− 1

2
11 a. Thus, if λ and a constitute an eigenvalue-eigenvector pair for A, then

λ and b must also form an eigenvalue-eigenvector pair for B, and vice versa with

a = Σ
− 1

2
11 Σ12Σ

− 1
2

22 b. By definition, Cov(u∗
i , v

∗
k )= a′

iΣ
− 1

2
11 Σ12Σ

− 1
2

22 bk where the vector

bk = θ Σ
− 1

2
22 Σ21Σ

− 1
2

11 ak, θ being a positive constant such that the Euclidean norm of
bk is one. Note that since b′

kbk = θ2 a′
k A a′

k = θ2 a′
k λ(k) ak = 1, θ must be equal to

1/
√

λ(k). Thus, bk = Σ
− 1

2
22 Σ21Σ

− 1
2

11 ak/
√

λ(k) with Σ
− 1

2
11 ak = α(k) and bk = Σ

1
2

22β(k),
which is equivalent to (iii) with α = α(k), β = β(k) and ρ = ρ(k), that is, β(k) =
Σ−1

22 Σ21α(k)/ρ(k). Then, Cov(u∗
i , v

∗
k ) = a′

iΣ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 ak/
√

λ(k) = the (i, k)th
element of diag(λ(1), . . . , λ(p))/

√
λ(k), which is equal to 0 whenever i 
= k. As expected,

Cov(u∗
k, v

∗
k ) = √

λ(k) = ρ(k), and Cov(ui, vk) = α′
(i)Σ12β(k)

(iii)= α′
(i)Σ12Σ

−1
22 Σ21α(k)/ρ(k)

= a′
iΣ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 ak/
√

λ(k) = Cov(u∗
i , v

∗
k ) for i, k = 1, . . . , p, assuming that

p ≤ q and Σ12 is of full rank; if p ≥ q and Σ12 is of full rank, A and B will then share q

nonzero eigenvalues.

10.1.1. An invariance property

An interesting property of canonical correlations is now pointed out. Consider the fol-
lowing nonsingular transformations of X and Y : Let X1 = A1X and Y1 = B1Y where
A1 is a p × p nonsingular constant matrix and B1 is a q × q constant nonsingular matrix
so that |A1| 
= 0 and |B1| 
= 0. Now, consider the linear functions α′X1 = α′A1X and
β ′Y1 = β ′B1Y whose variances and covariance are as follows:

Var(α′Y1) = Var(α′A1Y ) = α′A1Σ11A
′
1α, Var(β ′Y1) = Var(β ′B1Y ) = β ′B1Σ22B

′
1β

Cov(α′X1, β
′Y1) = α′A1Σ12B

′
1β = β ′B1Σ21A

′
1α.



646 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

On imposing the conditions Var(α′X1) = 1 and Var(β ′Y1) = 1, and maximizing
Cov(α′X1, β ′Y1) by means of the previously used procedure, we arrive at the equations

A1Σ12B
′
1β − ρ1A1Σ11A

′
1α = 0 (iv)

−ρ2B1Σ22B
′
1β + B1Σ21A

′
1α = 0. (v)

On pre-multiplying (iv) by α′ and (v) by β ′, one has ρ1 = ρ2 ≡ ρ, say. Equations (iv) and
(v) can then be re-expressed as

[−ρA1Σ11A
′
1 A1Σ12B

′
1

B1Σ21A
′
1 −ρB1Σ22B

′
1

] [
α

β

]

=
[
O

O

]

⇒
[
A1 O

O B1

] [−ρΣ11 Σ12

Σ21 −ρΣ22

] [
A′

1 O

O B ′
1

] [
α

β

]

=
[
O

O

]

.

Taking the determinant of the coefficient matrix and equating it to zero to determine the
roots, we have

∣
∣
∣
∣

[
A1 O

O B1

] [−ρΣ11 Σ12

Σ21 −ρΣ22

] [
A′

1 O

O B ′
1

]∣
∣
∣
∣ = 0 ⇒ (10.1.5)

∣
∣
∣
∣
−ρΣ11 Σ12

Σ21 −ρΣ22

∣
∣
∣
∣ = 0. (10.1.6)

As can be seen from (10.1.6), (10.1.1) and (10.1.5) have the same roots ρ, which means
that the canonical correlation ρ is invariant under nonsingular linear transformations. Ob-
serve that when Σ12 is of full rank p and p ≤ q, ρ(1), . . . , ρ(p) corresponding to the
nonzero roots of (10.1.1) or (10.1.6), encompasses all the canonical correlations, so that,
in that case, we have a matrix of canonical correlations. Hence, the following result:

Theorem 10.1.2. Let X, a p × 1 vector of real scalar random variables x1, . . . , xp, and
Y, a q × 1 vector of real scalar random variables y1, . . . , yq, have a joint distribution.
Then, the canonical correlations between X and Y are invariant under nonsingular linear
transformations, that is, the canonical correlations betweenX and Y are the same as those
between A1X and B1Y where |A1| 
= 0 and |B1| 
= 0.

10.2. Pairs of Canonical Variables

As previously explained, λ(1) which denotes the largest eigenvalue of the matrix

A = Σ−1
11 Σ12Σ

−1
22 Σ21 or its symmetrized form Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 , as well the largest
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eigenvalue of B = Σ−1
22 Σ21Σ

−1
11 Σ12 or Σ

− 1
2

22 Σ21Σ
−1
11 Σ12Σ

− 1
2

22 , also turns out to be equal
to ρ2

(1), the square of the largest root of equation (10.1.1). Having evaluated λ(1), we com-
pute the corresponding eigenvectors α(1) and β(1) and normalize them via the constraints
α′

(1)Σ11α(1) = 1 and β ′
(1)Σ22β(1) = 1, which produces the first pair of canonical variables:

(u1, v1) = (α′
(1)X, β ′

(1)Y ). We then take the second largest nonzero eigenvalue of A or
B, denote it by λ(2), compute the corresponding eigenvectors α(2) and β(2) and normal-
ize them so that α′

(2)Σ11α(2) = 1 and β ′
(2)Σ22β(2) = 1, which yields the second pair of

canonical variables: (u2, v2) = (α′
(2)X, β ′

(2)Y ). Continuing this process with all of the
p nonzero eigenvalues if p ≤ q and Σ12 is of full rank p, or with all of the q nonzero
eigenvalues if q ≤ p and Σ21 is of full rank q, will produce a complete set of canonical
variables pairs: (ui, vi) = (α′

(i)X, β ′
(i)Y ), i = 1, . . . , p or q.

Since the symmetrized forms of A and B are symmetric and nonnegative definite,
all of their eigenvalues will be nonnegative and all nonzero eigenvalues will be positive.
As is explained in Chapter 1 and Mathai and Haubold (2017a), all the eigenvalues of
real symmetric matrices are real and for such matrices, there exists a full set of orthog-
onal eigenvectors whether some of the roots are repeated or not. Hence, α′

(j)X will be
uncorrelated with all the linear functions α′

(r)X, r = 1, 2, . . . , j − 1, and β ′
(j)Y will be

uncorrelated with β ′
(r)Y, r = 1, 2, . . . , j −1. When constructing the second pair of canon-

ical variables, we may impose the condition that the second linear functions α′X and β ′Y
must be uncorrelated with the first pair α′

(1)X and β ′
(1)Y, respectively, by taking two more

Lagrangian multipliers, adding the conditions Cov(α′X, α′
(1)X) = α′Σ11α(1) = 0 and

β ′Σ22β(1) = 0 to the optimizing function w and carrying out the optimization. We will
then realize that these additional conditions are redundant and that the original optimizing
equations are recovered, as was observed in the case of Principal Components. Similarly,
we could incorporate the conditions α′Σ11α(r) = 0, r = 1, . . . , j − 1 when constructing
α(j) and similar conditions when constructing β(j). However, these uncorrelatedness con-
ditions will become redundant in the optimization procedure. Note that λ(1) = ρ2

(1) is the
square of the first canonical correlation. Thus, the first canonical correlation is denoted by
ρ(1). Similarly λ(r) = ρ2

(r) is the square of the r-th canonical correlation, r = 1, . . . , p

when p ≤ q and Σ12 is of full rank p. That is, ρ(1), . . . , ρ(p), the p nonzero roots of
(10.1.1) when p ≤ q and Σ12 is of full rank p, are canonical correlations, ρ(r) being
called the r-th canonical correlation which is the r-th largest root of the determinantal
equation (10.1.1). If p ≤ q and Σ12 is not of full rank p, then there will be fewer nonzero
canonical correlations.



648 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

Example 10.2.1. Let Z =
[
X

Y

]

be a 5 × 1 real vector random variable where X is 3 × 1

and Y is 2 × 1. Let the covariance matrix of Z be Σ where

Σ =

⎡

⎢
⎢
⎢
⎢
⎣

3 1 0 1 0
1 2 0 0 1
0 0 3 1 1
1 0 1 2 1
0 1 1 1 2

⎤

⎥
⎥
⎥
⎥
⎦

=
[
Σ11 Σ12

Σ21 Σ22

]

, Σ11 =
⎡

⎣
3 1 0
1 2 0
0 0 3

⎤

⎦ ,

Σ22 =
[

2 1
1 2

]

, Σ21 =
[

1 0 1
0 1 1

]

, Σ12 =
⎡

⎣
1 0
0 1
1 1

⎤

⎦ .

Construct the pairs of canonical variables.

Solution 10.2.1. We need the following quantities:

Σ−1
22 = 1

3

[
2 −1

−1 2

]

, Σ−1
11 = 1

15

⎡

⎣
6 −3 0

−3 9 0
0 0 5

⎤

⎦ ,

Σ−1
22 Σ21 = 1

3

[
2 −1

−1 2

] [
1 0 1
0 1 1

]

= 1

3

[
2 −1 1

−1 2 1

]

,

Σ−1
11 Σ12 = 1

15

⎡

⎣
6 −3 0

−3 9 0
0 0 5

⎤

⎦

⎡

⎣
1 0
0 1
1 1

⎤

⎦ = 1

15

⎡

⎣
6 −3

−3 9
5 5

⎤

⎦ ;

A = Σ−1
11 Σ12Σ

−1
22 Σ21,

B = Σ−1
22 Σ21Σ

−1
11 Σ12 = 1

45

[
2 −1 1

−1 2 1

]
⎡

⎣
6 −3

−3 9
5 5

⎤

⎦

= 1

45

[
20 −10

−7 26

]

.

Let us compute the eigenvalues of B since it is 2×2 whereas A is 3×3. The characteristic
equation of 45B is (20 − λ)(26 − λ) − 70 = 0 ⇒ λ2 − 46λ + 450 = 0. The roots
are λ1 = 23 + √

79, λ2 = 23 − √
79. Hence, the eigenvalues of B are ρj = λj

45 , that
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is, ρ1 = 23+√
79

45 , ρ2 = 23−√
79

45 . We have denoted the second set of real scalar random
variables by Y, Y ′ = [y1, y2]. An eigenvector corresponding to ρ1 is available from
(B − ρ1I )Y = O. Since the right-hand side is null, we may omit the denominator. The
first equation is then (−3 −√

79)y1 − 10y2 = 0. Taking y1 = 1, y2 = − 1
10(3 +√

79). It is
easily verified that these values will also satisfy the second equation in (B − ρ1I )Y = O.
An eigenvector, denoted by β1, is the following:

β1 =
[

1
− 1

10(3 + √
79)

]

.

We normalize β1 through β ′
1Σ22β1 = 1. To this end, consider

β ′
1Σ22β1 = [1, − 1

10
(3 + √

79)]
[

2 1
1 2

] [
1

− 1
10(3 + √

79)

]

= 1

25
(79 − 2

√
79).

Hence a normalized β1, denoted by β(1), and the corresponding canonical variable v1 are
the following:

β(1) = 5
√

79 − 2
√

79

[
1

− 1
10(3 + √

79)

]

, v1 = 5
√

79 − 2
√

79
[y1 − 1

10
(3 + √

79)y2].

The second eigenvalue of B is ρ2 = 1
45(23 − √

79). An eigenvector corresponding to ρ2

is available from the equation (B − ρ2I )Y = O. The second equation gives −7y1 + (3 +√
79)y2 = 0. Taking y2 = 1, y1 = 1

7(3 + √
79). Hence, an eigenvector corresponding to

ρ2, denoted by β2, is the following:

β2 =
[

1
7(3 + √

79)

1

]

.

We normalize this vector through the constraint β ′
2Σ22β2 = 1. Consider

β ′
2Σ22β2 =

[1

7
(3 + √

79, 1)
] [2 1

1 2

] [
1
7(3

√
79)

1

]

= 1

49
(316 + 26

√
79).

Hence, the normalized eigenvector, denoted by β(2), and the corresponding canonical vari-
able v2 are

β(2) = 7
√

316 + 26
√

79

[
1
7(3 + √

79)

1

]

, v2 = 7
√

316 + 26
√

79
[1

7
(3 + √

79)y1 + y2].
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We will obtain the eigenvectors resulting from (A − ρ1I )X = O from the eigenvector β1

instead of solving the equation relating to A, as the presence of the term 3+√
79 can make

the computations tedious. From equation (ii) of Sect. 10.1, we have

α1 = 1

ρ1
Σ−1

11 Σ12β1

=
√

45
√

23 + √
79

( 1

15

)
⎡

⎣
6 −3

−3 9
5 5

⎤

⎦
[

1
− 1

10(3 + √
79)

]

=
√

45

15(
√

23 + √
79)

⎡

⎣
6 + 3

10(3 + √
79)

−3 − 9
10(3 + √

79)

5 − 5
10(3 + √

79)

⎤

⎦ .

Let us normalize this vector by requiring that α′
1Σ11α1 = 1 or α′

1Σ11α1 =
1
ρ2

1
β ′

1Σ21Σ
−1
11 Σ12β1 = γ 2

1 , say:

γ 2
1 = 45

15(23 + √
79)

[
1, − 1

10
(3 + √

79)
] [1 0 1

0 1 1

]

×
⎡

⎣
6 −3

−3 9
5 5

⎤

⎦
[

1
− 1

10(3 + √
79)

]

= 45

15(23 + √
79)

[
1, − 1

10
(3 + √

79)
] [11 2

2 14

] [
1

− 1
10(3 + √

79)

]

= 45

15(23 + √
79)(25)

[553 + 11
√

79].

Hence, the normalized α1, denoted by α(1), is the following:

α(1) = α1

|γ1| = 5
√

(15)

√

(553 + 11
√

79)

⎡

⎣
6 + 3

10(3 + √
79)

−3 − 9
10(3 + √

79)

5 − 5
10(3 + √

79)

⎤

⎦ ,

so that the corresponding canonical variable is

u1 = 5
√

(15)

√

(553 + 11
√

79)

{[
6 + 3

10
(3 + √

79)
]
x1 −

[
3 + 9

10
(3 + √

79)
]
x2

+
[
5 − 1

2
(3 + √

79)
]
x3

}
.
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Now, from the formula α2 = 1
ρ2

Σ−1
11 Σ12β2, we have

α2 =
√

45
√

(23 − √
79)

( 1

15

)
⎡

⎣
6 −3

−3 9
5 5

⎤

⎦
[

1
7(3 + √

79)

1

]

=
√

45

15(
√

23 − √
79)

⎡

⎣

6
7(3 + √

79) − 3
−3

7(3 + √
79) + 9

5
7(3 + √

79) + 5

⎤

⎦ .

Let us normalize this vector via the constraint α′
2Σ11α2 = 1 or

α′
2Σ11α2 = 1

ρ2
2

β ′
2Σ21Σ

−1
11 Σ12β2 = γ 2

2 ,

say. Thus,

γ 2
2 = 45

15(23 − √
79)

[1

7
(3 + √

79), 1
] [11 2

2 14

] [
1
7(3 + √

79)

1

]

= 45

15(23 − √
79)

[ 1

49
(1738 + 94

√
79)
]
,

and the normalized vector α2, denoted by α(2), is

α(2) = α2

|γ2| = 7
√

15
√

(1738 + 94
√

79)

⎡

⎣

6
7(3 + √

79) − 3
−3

7(3 + √
79) + 9

5
7(3 + √

79) + 5

⎤

⎦ ,

so that the second canonical variable is

u2 = 7
√

15
√

(1738 + 94
√

79)

{[6

7
(3 + √

79) − 3
]
x1 −

[3

7
(3 + √

79) + 9
]
x2

+
[5

7
(3 + √

79) + 5
]
x3

}
.

Hence, the canonical pairs are (u1, v1), (u2, v2) where uj is the best predictor of vj and
vice versa for j = 1, 2. The pair of canonical variables (u2, v2) has the second largest
canonical correlation. It is easy to verify that Cov(u1, u2) = 0 and Cov(v1, v2) = 0.
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10.3. Estimation of the Canonical Correlations and Canonical Variables

Consider a simple random sample of size n from a population designated by the (p +
q) × 1 real vector

(
X

Y

)

. Let the (corrected) sample sum of products matrix be denoted by

S =
[
S11 S12

S21 S22

]

, S11 is p × p, S22 is q × q,

where S11 is the sample sum of products matrix corresponding to the sample from the
subvector X, whose (i, j)th element is of the form

∑n
k=1(xik − x̄i)(xjk − x̄j ) with the

matrix (xik) denoting a sample of size n from X, S22 is the sample sum of products matrix
corresponding to the subvector Y and 1

n
S12 is the sample covariance between X and Y .

Thus, denoting the estimates by hats, the estimates of Σ11, Σ22 and Σ12 are Σ̂11 = 1
n
S11,

Σ̂22 = 1
n
S22 and Σ̂12 = 1

n
S12, respectively. These will also be the maximum likelihood

estimates if we assume normality, that is, if

Z =
(

X

Y

)

∼ Np+q(ν, Σ), Σ > O, Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, (10.3.1)

where Σ11 = Cov(X) > O, Σ22 = Cov(Y ) > O and Σ12 = Cov(X, Y ). For the
estimates of these submatrices, equation (10.1.1) will take the following form:

∣
∣
∣
∣
−tΣ̂11 Σ̂12

Σ̂21 −tΣ̂22

∣
∣
∣
∣ = 0 ⇒

∣
∣
∣
∣
−tS11 S12

S21 −tS22

∣
∣
∣
∣ = 0 (10.3.2)

where t is the sample canonical correlation; the reader may also refer to Mathai and
Haubold (2017b). Letting ρ̂ = t be the estimated canonical correlation, whenever p ≤
q, t2 is an eigenvalue of the sample canonical correlation matrix given by

Σ̂
− 1

2
11 Σ̂12Σ̂

−1
22 Σ̂21Σ̂

− 1
2

11 = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 = R
− 1

2
11 R12R

−1
22 R21R

− 1
2

11 . (10.3.3)

Note that we have chosen the symmetric format for the sample canonical correlation ma-
trix. Observe that the sample size n is omitted from the middle expression in (10.3.3) as
it gets canceled. As well, the middle expression is expressed in terms of sample correla-
tion matrices in the last expression appearing in (10.3.3). The conversion from a sample
covariance matrix to a sample correlation matrix has previously been explained. Letting
S = (sij ) denote the sample sum of products matrix, we can write

S = S1RS1, S1 = diag(
√

s11, . . . ,
√

sp+q,p+q ), R = (rij ) =
[
R11 R12

R21 R22

]

,
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where rij is the (i, j)th sample correlation coefficient, and for example, R11 is the p × p

submatrix within the (p + q) × (p + q) matrix R. We will examine the distribution of t2

when the population covariance submatrix Σ12 = O, as well as when Σ12 
= O, in the
case of a (p + q)-variate real Gaussian population as given in (10.3.1), after considering
an example to illustrate the computations of the canonical correlation ρ resulting from
(10.1.1) and presenting an iterative procedure.

Example 10.3.1. Let X and Y be two real bivariate vector random variables and Z =[
X

Y

]

. Consider the following simple random sample of size 5 from Z:

Z1 =

⎡

⎢
⎢
⎣

1
2
1

−1

⎤

⎥
⎥
⎦ , Z2 =

⎡

⎢
⎢
⎣

2
0

−1
1

⎤

⎥
⎥
⎦ , Z3 =

⎡

⎢
⎢
⎣

2
1
0

−1

⎤

⎥
⎥
⎦ , Z4 =

⎡

⎢
⎢
⎣

0
1
1
0

⎤

⎥
⎥
⎦ , Z5 =

⎡

⎢
⎢
⎣

0
1

−1
1

⎤

⎥
⎥
⎦ .

Construct the sample pairs of canonical variables.

Solution 10.3.1. Let us use the standard notation. The sample matrix is Z =
[Z1, . . . , Z5], the sample average Z̄ = 1

5 [Z1 + · · · + Z5], the matrix of sample averages is
Z̄ = [Z̄, . . . , Z̄], the deviation matrix is Zd = [Z1 − Z̄, . . . , Z5 − Z̄] and the sample sum
of products matrix is S = Zd Z′

d . These quantities are the following:

Z =

⎡

⎢
⎢
⎣

1 2 2 0 0
2 0 1 1 1
1 −1 0 1 −1

−1 1 −1 0 1

⎤

⎥
⎥
⎦ , Z̄ =

⎡

⎢
⎢
⎣

1
1
0
0

⎤

⎥
⎥
⎦ ,

Zd =

⎡

⎢
⎢
⎣

0 1 1 −1 −1
1 −1 0 0 0
1 −1 0 1 −1

−1 1 −1 0 1

⎤

⎥
⎥
⎦ , S =

⎡

⎢
⎢
⎣

4 −1 −1 −1
−1 2 2 −2
−1 2 4 −3
−1 −2 −3 4

⎤

⎥
⎥
⎦ ,

where, as per our notation,

S11 =
[

4 −1
−1 2

]

, S12 =
[−1 −1

2 −2

]

,

S21 =
[ −1 2

−1 −2

]

, S22 =
[

4 −3
−3 4

]

.
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We need to compute the following items:

S−1
11 = 1

7

[
2 1
1 4

]

, S−1
22 = 1

7

[
4 3
3 4

]

,

S−1
11 S12 = 1

7

[
2 1
1 4

] [−1 −1
2 −2

]

= 1

7

[
0 −4
7 −9

]

,

S−1
22 S21 = 1

7

[
4 3
3 4

] [ −1 2
−1 −2

]

= 1

7

[ −7 2
−7 −2

]

.

The matrices A and B are then the following (using the same notation as for the population
values for convenience):

A = S−1
11 S12S

−1
22 S21 = 1

72

[
0 −4
7 −9

] [ −7 2
−7 −2

]

= 2

72

[
14 4
7 16

]

,

B = S−1
22 S21S

−1
11 S12 = 1

72

[ −7 2
−7 −2

] [
0 −4
7 −9

]

= 2

72

[
7 5

−7 23

]

.

If the population covariance matrix of Z is Σ , an estimate of Σ is S
n

where S is the sample
sum of products matrix and n is the sample size, which is also the maximum likelihood
estimate of Σ if Z is Gaussian distributed. Instead of using S

n
, we will work with S since

the normalized eigenvectors of S and S
n

are identical, although the eigenvalues of S
n

are 1
n

times the eigenvalues of S.

The eigenvalues of A are 2
72 times the solution of (14 − λ)(16 − λ) − 28 = 0 ⇒

λ1 = 15 + √
29, λ2 = 15 − √

29, so that the eigenvalues of A, denoted by λ11 and λ12,
are λ11 = ( 2

72 )(15 + √
29), λ12 = 2

72 (15 − √
29). The eigenvalues of B are 2

72 times the

solutions of (7 − ν)(23 − ν) + 35 = 0 ⇒ ν1 = 15 + √
29, ν2 = 15 − √

29, so that the
eigenvalues of B, denoted by ν21 and ν22, are ν21 = 2

72 (15 + √
29), ν22 = 2

72 (15 − √
29),

which, as expected, are the same as those of A. Corresponding to λ11, an eigenvector from
A is available from the equation

[
14 − (15 + √

29) 4
7 16 − (15 + √

29)

] [
x1

x2

]

=
[

0
0

]

,

deleting 2
72 from both sides. Thus, one solution is

α1 =
[

4/[1 + √
29]

1

]

.
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Let us normalize this vector through the constraint α′
1S11α1 = 1. Since

α′
1S11α1 = [ 4

1 + √
29

, 1]
[

4 −1
−1 2

][ 4
1+√

29
1

]

= 2

72
(116 − 11

√
29),

the normalized eigenvector, denoted by α(1), and the corresponding sample canonical vari-
able, denoted by u1, are

α(1) = 7√
2
√

116 − 11
√

29

[
4

1+√
29

1

]

and u1 = 7√
2
√

116 − 11
√

29

[
4

1 + √
29

x1 + x2

]

.

The eigenvalues of B are also the same as ν1 = 15+√
29, ν2 = 15−√

29. Let us compute
an eigenvector corresponding to the eigenvalue ν1 obtained from B. This eigenvector can
be determined from the equation

[−8 − √
29 5

−7 8 − √
29

] [
y1

y2

]

=
[

0
0

]

which gives one solution as

β1 =
[

5/(8 + √
29)

1

]

.

Let us normalize under the constraint β ′
1S22β1 = 1. Since

β ′
1S22β1 = [ 5

8 + √
29

, 1]
[

4 −3
−3 4

][ 5
8+√

29
1

]

= 2

72
(116 − 11

√
29),

the normalized eigenvector, denoted by β(1), and the corresponding canonical variable
denoted by v1, are the following:

β(1) = 7√
2
√

116 − 11
√

29

[
5

8+√
29

1

]

and v1 = 7√
2
√

116 − 11
√

29

[
5

8 + √
29

y1 + y2

]

.

Therefore, one pair of canonical variables is (u1, v1) where u1 is the best predictor of v1

and vice versa. Now, consider λ2 = 15 − √
29 and ν2 = 15 − √

29. Proceed as in the
above case to obtain the second pair of canonical variables (u2, v2).



656 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

10.3.1. An iterative procedure

Without any loss of generality, let p ≤ q. We will illustrate the procedure for the
population values for convenience. Consider the matrix A as previously defined, that is,
A = Σ−1

11 Σ12Σ
−1
22 Σ21, and ρ, the canonical correlation which is a solution of (10.1.1)

with ρ2 = λ where λ is an eigenvalue of A. When p is small, we may directly solve
the determinantal equation (10.1.1) and evaluate the roots which are the canonical cor-
relations. We are now illustrating the computations for the population values. When p is
large, direct evaluation could prove tedious without resorting to computational software
packages. In this case, the following iterative procedure may be employed. Let λ be an
eigenvalue of A and α the corresponding eigenvector. We want to evaluate λ = ρ2 and
α, but we cannot solve (10.1.1) directly when p is large. In that case, take an initial trial
vector γ0 and normalize it via the constraint γ ′

0 Σ11γ0 = 1 so that α′
0 Σ11α0 = 1, α0 being

the normalized γ0. Then, α0 = 1√
γ ′

0Σ11γ0
γ0. Now, consider the equation

A α0 = γ1.

If α0 happens to be the eigenvector α(1) corresponding to the largest eigenvalue λ(1) of
A then A α0 = λ(1)α(1); A α0 = γ1 ⇒ γ ′

1Σ11γ1 = λ2
(1)α

′
(1)Σ11α(1) = λ2

(1) since

α′
(1)Σ11α(1) = 1. Then ρ2

(1) = λ(1) =
√

γ ′
1Σ11γ1. This gives the motivation for the it-

erative procedure. Consider the equation

A αi = γi+1, αi = 1
√

γ ′
i Σ11γi

γi, i = 0, 1, . . . (i)

Continue the iteration process. At each stage compute δi = α′
iΣ11αi while ensuring that δi

is increasing. Halt the iteration when γj = γj−1 approximately, that is, when αj = αj−1

approximately, which indicates that γj converges to some vector γ . At this stage, the
normalized γ is α(1), the eigenvector corresponding to the largest eigenvalue λ(1) of A.
Then, the largest eigenvalue λ(1) of A is given by λ(1) = √

γ ′Σ11γ . Thus, as a result of
the iteration process specified by equation (i),

lim
j→∞ αj = α(1) and +

√
lim

j→∞ γ ′
jΣ11γj = λ(1). (ii)

These initial iterations produce the largest eigenvalue λ(1) = ρ2
(1) and the corresponding

eigenvector α(1). From (10.1.1), we have

Σ−1
22 Σ21α = ρ β ⇒ 1

ρ
Σ−1

22 Σ21α = β. (iii)
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Substitute the computed ρ(1) and α(1) in (iii) to obtain β(1), the eigenvector corresponding

to the largest eigenvalue λ(1) of B = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 . This completes the first stage
of the iteration process. Now, consider A2 = A − λ(1)α(1)α

′
(1). Observe that α(1)α

′
(1) is a

p × p matrix. In general, we can express a symmetric matrix in terms of its eigenvalues
and normalized eigenvectors as follows:

A = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 = λ(1)α(1)α
′
(1) + λ(2)α(2)α

′
(2) + · · · + λ(p)α(p)α

′
(p), (iv)

as explained in Chapter 1 or Mathai and Haubold (2017a). Carry out the second stage of the
iteration process on A2 as indicated in (i). This will produce the second largest eigenvalue
λ(2) of A and the corresponding eigenvector α(2). Then, compute the corresponding β(2)

via the procedure given in (iii). This will complete the second stage. For the next stage,
consider

A3 = A2 − λ(2)α(2)α
′
(2) = A − λ(1)α(1)α

′
(1) − λ(2)α(2)α

′
(2)

and perform the iterative steps (i) to (iv). This will produce λ(3), α(3) and β(3). Keep
on iterating until all the p eigenvalues λ(1), . . . , λ(p) of A as well as α(j) and β(j), the
corresponding eigenvectors of A and B are obtained for j = 1, . . . , p.

In the case of sample eigenvalues and eigenvectors, start with the sample matrices

Â = Σ̂
− 1

2
11 Σ̂12Σ̂

−1
22 Σ̂21Σ̂

− 1
2

11 = R
− 1

2
11 R12R

−1
22 R21R

− 1
2

11

B̂ = Σ̂
− 1

2
22 Σ̂21Σ̂

−1
11 Σ̂12Σ̂

− 1
2

22 = R
− 1

2
22 R21R

1
11R12R

− 1
2

22 .

Carry out the iteration steps (i) to (iv) on Â to obtain the sample eigenvalues, denoted by
ρ̂(j) = t(j), j = 1, . . . , p for p ≤ q, where t(j) is the j -th sample canonical correlation,
and the corresponding eigenvectors of Â denoted by a(j) as well as those of B̂ denoted by
b(j).

Example 10.3.2. Consider the real vectors X′ = (x1, x2), Y ′ = (y1, y2, y3), and let
Z′ = (X′, Y ′) where x1, x2, y1, y2, y3 are real scalar random variables. Let the covariance
matrix of Z be Σ > O where

Cov(Z) = Cov

[
X

Y

]

= Σ =
[
Σ11 Σ12

Σ21 Σ22

]

, Σ12 = Σ ′
21,

Cov(X) = Σ11, Cov(Y ) = Σ22, Cov(X, Y ) = Σ12,

with

Σ11 =
[

2 1
1 2

]

, Σ12 =
[

1 1 1
1 −1 1

]

, Σ22 =
⎡

⎣
1 1 0
1 2 0
0 0 1

⎤

⎦ .
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Consider the problem of predicting X from Y and vice versa. Obtain the best predictors
by constructing pairs of canonical variables.

Solution 10.3.2. Let us first compute the inverses Σ−1
11 , Σ−1

22 and Σ−1
11 Σ12, Σ−1

22 Σ21.
We are taking the non-symmetric form of A as the symmetric form requires more cal-
culations. Either way, the eigenvalues are identical. On directly applying the formula
C−1 = 1

|C| × [the matrix of cofactors]′, we have

Σ−1
11 = 1

3

[
2 −1

−1 2

]

, Σ−1
22 =

⎡

⎣
2 −1 0

−1 1 0
0 0 1

⎤

⎦ ,

Σ−1
11 Σ12 = 1

3

[
2 −1

−1 2

] [
1 1 1
1 −1 1

]

= 1

3

[
1 3 1
1 −3 1

]

,

Σ−1
22 Σ21 =

⎡

⎣
2 −1 0

−1 1 0
0 0 1

⎤

⎦

⎡

⎣
1 1
1 −1
1 1

⎤

⎦ =
⎡

⎣
1 3
0 −2
1 1

⎤

⎦ .

Thus, the non-symmetric forms of A and B are

A = Σ−1
11 Σ12Σ

−1
22 Σ21 = 1

3

[
1 3 1
1 −3 1

]
⎡

⎣
1 3
0 −2
1 1

⎤

⎦ = 1

3

[
2 −2
2 10

]

,

B = Σ−1
22 Σ21Σ

−1
11 Σ12 = 1

3

⎡

⎣
1 3
0 −2
1 1

⎤

⎦
[

1 3 1
1 −3 1

]

= 1

3

⎡

⎣
4 −6 4

−2 6 −2
2 0 2

⎤

⎦ .

Let us compute the eigenvalues of 3A. Consider

∣
∣
∣
∣
2 − λ −2

2 10 − λ

∣
∣
∣
∣ = 0 ⇒ (2−λ)(10−

λ) + 4 = 0, which gives

λ = 12 ±√(12)2 − 4(24)

2
= 6 + 2

√
3, 6 − 2

√
3,

the eigenvalues of A being λ(1) = 2 + 2
3

√
3, λ(2) = 2 − 2

3

√
3. These are the squares

of the canonical correlation coefficient ρ resulting from (10.1.1). Let us determine the
eigenvectors corresponding to λ(1) and λ(2). Our notations for the linear functions of X

and Y are u = α′X and v = β ′Y ; in this case, α′ = (α1, α2) and β ′ = (β1, β2, β3).
Then, the eigenvector α, corresponding to λ(1) is obtained from the equation
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[2
3 − (2 + 2

3

√
3) −2

3
2
3

10
3 − (2 + 2

3

√
3)

] [
α1

α2

]

=
[

0
0

]

⇒ (i)

− (2 + √
3)α1 − α2 = 0 ⇒ α1 = 1, α2 = −(2 + √

3).

Observe that since (i) is a singular system of linear equations, we need only consider one
equation and we can preassign a value for α1 or α2. Taking α1 = 1, let us normalize the
resulting vector via the constraint α′Σ11α = 1. Since

α′Σ11α = [1 −(2 + √
3)
]
[

2 1
1 2

] [
1

−(2 + √
3)

]

= 12 + 6
√

3 ≡ γ1 ,

the normalized α, denoted by α(1), is

α(1) = 1√
γ1

[
1

−(2 + √
3)

]

⇒ u1 = 1√
γ1

[x1 − (2 + √
3)x2]. (ii)

Now, the eigenvector corresponding to the second eigenvalue λ(2) is such that

[2
3 − (2 − 2

3

√
3) −2

3
2
3

10
3 − (2 − 2

3

√
3)

] [
α1

α2

]

=
[

0
0

]

⇒

(−2 + √
3)α1 − α2 = 0 ⇒ α1 = 1, α2 = −2 + √

3.

Since

α′Σ11α = [1 −2 + √
3
]
[

2 1
1 2

] [
1

−2 + √
3

]

= 12 − 6
√

3 ≡ γ2,

the normalized α such that α′Σ11α = 1 is

α(2) = 1√
γ2

[
1

−2 + √
3

]

⇒ u2 = 1√
γ2

[x1 + (−2 + √
3)x2]. (iii)

Observe that computing the eigenvalues of B from the equation |B − λ(j)I | = 0 will be
difficult. However, we know that they are λ(1) and λ(2) as given above, the third one being
equal to zero. So, let us first verify that 3λ(1) is an eigenvalue of 3B. Consider
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|3B − (6 + 2
√

3)I | =
∣
∣
∣
∣
∣
∣

4 − (6 + 2
√

3) −6 4
−2 6 − (6 + 2

√
3) −2

2 0 2 − (6 + 2
√

3)

∣
∣
∣
∣
∣
∣

= 2 × 2 × 2

∣
∣
∣
∣
∣
∣

1
√

3 1
−(1 + √

3) −3 2
1 0 −(2 + √

3)

∣
∣
∣
∣
∣
∣

= 8

∣
∣
∣
∣
∣
∣

1
√

3 1
0

√
3 3 + √

3
0 −√

3 −(3 + √
3)

∣
∣
∣
∣
∣
∣
= 0.

The operations performed are the following: Taking out 2 from each row; interchanging
the second and the first rows; adding (1 + √

3) times the first row to the second row and
adding minus one times the first row to the third row. Similarly, it can be verified that
λ(2) is also an eigenvalue of B. Moreover, since the third row of B is equal to the sum
of its first two rows, B is singular, which means that the remaining eigenvalue must be
zero. In Example 10.2.1, we made use of the formula resulting from (ii) of Sect. 10.1
for determining the second set of canonical variables. In this case, they will be directly
computed from B to illustrate a different approach. Let us now determine the eigenvectors
with respect to B, corresponding to λ(1) and λ(2):

B = Σ−1
22 Σ21Σ

−1
11 Σ12 = 1

3

⎡

⎣
4 −6 4

−2 6 −2
2 0 2

⎤

⎦ ;

(B − λ(1)I )β = O

⇒
⎡

⎣

4
3 − (6

3 + 2
3

√
3) −6

3
4
3

−2
3

6
3 − (6

3 + 2
3

√
3) −2

3
2
3 0 2

3 − (6
3 + 2

3

√
3)

⎤

⎦

⎡

⎣
β1

β2

β3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦

⇒
⎡

⎣
−(1 + √

3) −3 2
−1 −√

3 −1
1 0 −(2 + √

3)

⎤

⎦

⎡

⎣
β1

β2

β3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .
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This yields the equations

−(1 + √
3)β1 − 3β2 + 2β3 = 0 (iv)

−β1 − √
3β2 − β3 = 0 (v)

β1 − (2 + √
3)β3 = 0, (vi)

whose solution in terms of an arbitrary β3 is β2 = −(1 + √
3)β3 and β1 = (2 + √

3)β3.
Taking β3 = 1, we have the solution, β3 = 1, β2 = −(1 + √

3), β1 = (2 + √
3). Let us

normalize the resulting vector via the constraint β ′Σ22β = 1:

β ′Σ22β = [ 2 + √
3 −(1 + √

3) 1
]
⎡

⎣
1 1 0
1 2 0
0 0 1

⎤

⎦

⎡

⎣
2 + √

3
−(1 + √

3)

1

⎤

⎦

= 6 + 2
√

3 = δ1.

Thus, the normalized β, denoted by β(1), is

β(1) = 1√
δ1

⎡

⎣
2 + √

3
−(1 + √

3)

1

⎤

⎦⇒

v1 = 1√
δ1

[(2 + √
3)y1 − (1 + √

3)y2 + y3]. (vii)

Observe that we could also have utilized (iii) of Sect. 10.3.1 to evaluate β(1) and β(2)

from α(1) and α(2). Consider the second eigenvalue λ(2) = 6
3 − 2

3

√
3 and the equation

(B − λ(2)I )β = O, that is,

⎡

⎣

4
3 − (6

3 − 2
3

√
3) −6

3
4
3

−2
3

6
3 − (6

3 − 2
3

√
3) −2

3
2
3 0 2

3 − (6
3 − 2

3

√
3)

⎤

⎦

⎡

⎣
β1

β2

β3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦⇒
⎡

⎣
−1 + √

3 −3 2
−1

√
3 −1

1 0 −2 + √
3

⎤

⎦

⎡

⎣
β1

β2

β3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ ,
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which leads to the equations

(−1 + √
3)β1 − 3β2 + 2β3 = 0 (viii)

−β1 + √
3β2 − β3 = 0 (ix)

β1 + (−2 + √
3)β3 = 0. (x)

Thus, when β3 = 1, β1 = 2−√
3 and β2 = √

3−1. Subject to the constraint β ′Σ22β = 1,
we have

β ′Σ22β = [(2 − √
3) (

√
3 − 1) 1

]
⎡

⎣
1 1 0
1 2 0
0 0 1

⎤

⎦

⎡

⎣
2 − √

3√
3 − 1
1

⎤

⎦

= 6 − 2
√

3 = δ2.

Hence, the normalized β is

β(2) = 1√
δ2

⎡

⎣
2 − √

3√
3 − 1
1

⎤

⎦⇒

v2 = 1√
δ2

[(2 − √
3)y1 + (

√
3 − 1)y2 + y3]. (xi)

The reader may also verify that this solution for β(2) is identical to that coming from (iii)
of Sect. 10.3.1. Thus, the canonical pairs are the following: From (ii) and (vii), we have
the first canonical pair (u1, v1), the second pair (u2, v2) resulting from (iii) and (xi). This
means u1 is the best predictor of v1 and vice versa, and that u2 is the second best predictor
of v2 and vice versa.

Let us ensure that no computational errors have been committed. Consider

α′
(1)Σ12β(1) = 1√

γ1δ1
[1, −(2 + √

3)]
[

1 1 1
1 −1 1

]
⎡

⎣
2 + √

3
−(1 + √

3)

1

⎤

⎦

= 1√
γ1δ1

4(3 + 2
√

3),

with
γ1δ1 = 6(2 + √

3)2(3 + √
3) = 12(9 + 5

√
3),
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so that

[α′
(1)Σ12β(1)]2

γ1δ1
= 16(3 + 2

√
3)2

12(9 + 5
√

3)

= 16(21 + 12
√

3)

12(9 + 5
√

3)
= 4(7 + 4

√
3)

9 + 3
√

3)
= 4(7 + 4

√
3)(9 − 5

√
3)

6

= 2

3
(3 + √

3) = 2 + 2√
3

= 2 + 2

3

√
3 = λ(1) : the largest eigenvalue of A,

which corroborates the results obtained for α(1), β(1) and λ(1). Similarly, it can be verified
that α(2), β(2) and λ(2) have been correctly computed.

10.4. The Sampling Distribution of the Canonical Correlation Matrix

Consider a simple random sample of size n from Z =
[
X

Y

]

. Let the (p + q) × (p + q)

sample sum of products matrix be denoted by S and let Z have a real (p + q)-variate
standard Gaussian density. Then S has a real (p + q)-variate Wishart distribution with the
identity matrix as its parameter matrix and m = n − 1 degrees of freedom, n being the
sample size. Letting the density of S be denoted by f (S),

f (S) = |S|m
2 −p+q−1

2

2
m(p+q)

2 Γp+q(
m
2 )

e− 1
2 tr(S), S > O, m ≥ p + q. (10.4.1)

Let us partition S as follows:

S =
[
S11 S12

S21 S22

]

, S11 is p × p, S22 is q × q,

and let dS = dS11 ∧ dS22 ∧ dS12. Note that tr(S) = tr(S11) + tr(S22) and

|S| = |S22| |S11 − S12S
−1
22 S21|

= |S22| |S11| |I − S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 |.
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Letting U = S
− 1

2
11 S12S

− 1
2

22 ], dU = |S11|− q
2 |S22|−p

2 dS12 for fixed S11 and S22, so that the
joint density of S11, S22 and S12 is given by

f1(S)dS11 ∧ dS22 ∧ dS12 = |S11|m
2 −p+1

2 e− 1
2 tr(S11)

2
mp
2 Γp(m

2 )
dS11

× |S22|m
2 − q+1

2 e− 1
2 tr(S22)

2
mq
2 Γq(

m
2 )

dS22

× Γp(m
2 )Γq(

m
2 )

Γp+q(
m
2 )

|I − UU ′|m
2 −p+q−1

2 dU. (10.4.2)

It is seen from (10.4.2) that S11, S22 and U are mutually independently distributed, and
so are S11, S22 and W = UU ′. Further, S11 ∼ Wp(m, I) and S22 ∼ Wq(m, I). Note that

W = UU ′ = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 is the sample canonical correlation matrix. It follows
from Theorem 4.2.3 of Chapter 4, that for p ≤ q and U of full rank p,

dU = π
pq
2

Γp(
q
2 )

|W | q
2 −p+1

2 dW. (10.4.3)

After integrating out S11 and S22 from (10.4.2) and substituting for dS12, we obtain the
following representation of the density of W :

f2(W) = π
pq
2

Γp(
q
2 )

Γp(m
2 )Γq(

m
2 )

Γp+q(
m
2 )

|W | q
2 −p+1

2 |I − W |m−q
2 −p+1

2 ,

where

Γq(
m
2 )

Γp+q(
m
2 )

= π
q(q−1)

4

π
(p+q)(p+q−1)

4

Γ (m
2 ) · · · Γ (m

2 − q−1
2 )

Γ (m
2 ) · · · Γ (m

2 − p+q−1
2 )

= 1

π
pq
2 Γp(

m−q
2 )

.

Hence, the density of W is

f2(W) = Γp(m
2 )

Γp(
q
2 )Γp(

m−q
2 )

|W | q
2 −p+1

2 |I − W |m−q
2 −p+1

2 . (10.4.4)

Thus, the following result:

Theorem 10.4.1. Let Z, S, S11, S22, S12, U and W be as defined above. Then, for
p ≤ q and U of full rank p, the p × p canonical correlation matrix W = UU ′ has the
real matrix-variate type-1 beta density with the parameters (

q
2 ,

m−q
2 ) that is specified in

(10.4.4) with m ≥ p + q, m = n − 1.
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When q ≤ p and S21 is of full rank q, the canonical correlation matrix W1 = U ′U =
S

− 1
2

22 S21S
−1
11 S12S

− 1
2

22 will have the density given in (10.4.4) with p and q interchanged.
Suppose that p ≤ q and we would like to consider the density of W1 = U ′U . In this case
U ′U is real positive semi-definite as the rank of U is p ≤ q. However, on expanding the
following determinant in two different ways:

∣
∣
∣
∣
Ip U

U ′ Iq

∣
∣
∣
∣ = |Ip − UU ′| = |Iq − U ′U |,

it follows from (10.4.2) that the q × q matrix U ′U has a distribution that is equivalent to
that of the p×p matrix UU ′, as given in (10.4.4). The distribution of the sample canonical
correlation matrix has been derived in Mathai (1981) for a Gaussian population under the
assumption that Σ12 
= O.

10.4.1. The joint density of the eigenvalues and eigenvectors

Without any loss of generality, let p ≤ q and U be of full rank p. Let W denote the
sample canonical correlation matrix whose density is as given in (10.4.4) for the case when
the population canonical matrix is a null matrix. Let the eigenvalues of W be distinct and
such that 1 > ν1 > ν2 > · · · > νp > 0. Observe that νj = r2

(j) where r(j), j = 1, . . . , p

are the sample canonical correlations. For a unique p × p orthonormal matrix Q, QQ′ =
I, Q′Q = I , we have Q′WQ = diag(ν1, . . . , νp) ≡ D. Consider the transformation from
W to D and the normalized eigenvectors of W , which constitute the columns of Q. Then,
as is explained in Theorem 8.2.1 or Theorem 4.4 of Mathai (1997),

dW =
[∏

i<j

(νi − νj )
]
dD ∧ h(Q) (10.4.5)

where h(Q) = ∧[(dQ)Q′] is the differential element associated with Q, and we have the
following result:

Theorem 10.4.2. The joint density of the distinct eigenvalues 1 > ν1 > ν2 > · · · >

νp > 0, p ≤ q, of W = UU ′ whose density is specified in (10.4.4), U being assumed to
be of full rank p, and the normalized eigenvectors corresponding to ν1, . . . , νp, denoted
by f3(D, Q), is the following:

f3(D, Q)dD ∧ h(Q) = Γp(m
2 )

Γp(
q
2 )Γp(

m−q
2 )

[ p∏

j=1

ν
q
2 −p+1

2
j

][ p∏

j=1

(1 − νj )
m−q

2 −p+1
2

]

×
[∏

i<j

(νi − νj )
]
dD ∧ h(Q) (10.4.6)
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where h(Q) is as defined in (10.4.5). To obtain the joint density of the squares of the
sample canonical correlations r2

(j) and the corresponding canonical vectors, it suffices to

replace νj by r2
(j), 1 > r2

(1) > · · · > r2
(p) > 0, − 1 < r(j) < 1, j = 1, . . . , p.

The joint density of the eigenvalues can be determined by integrating out h(Q) from
(10.4.6) in this real case. It follows from Theorem 4.2.2 that

∫

Op

h(Q) = π
p2

2

Γp(
p
2 )

, (10.4.7)

this result being also stated in Mathai (1997). For the complex case, the expression on the
right-hand side of (10.4.7) is πp(p−1)/Γ̃p(p). Hence, the joint density of the eigenvalues
or, equivalently, the density of D and the density of Q are the following:

Theorem 10.4.3. When p ≤ q and U is of full rank p, the joint density of the distinct
eigenvalues 1 > ν1 > · · · > νp > 0 of the canonical correlation matrix W in (10.4.4),
which is available from (10.4.6) and denoted by f4(D), is

f4(D) = Γp(m
2 )

Γp(
q
2 )Γp(

m−q
2 )

π
p2

2

Γp(
p
2 )

[ p∏

j=1

ν
q
2 −p+1

2
j

]

×
[ p∏

j=1

(1 − νj )
m−q

2 −p+1
2

][∏

i<j

(νi − νj )
]
, (10.4.8)

and the joint density of the normalized eigenvectors associated with W , denoted by f5(Q),
is given by

f5(Q) = Γp(
p
2 )

π
p2
2

h(Q) (10.4.9)

where h(Q) is as defined in (10.4.5).

To obtain the joint density of the squares of the sample canonical correlations r2
(j), one

should replace νj by r2
(j), j = 1, 2, . . . , p, in (10.4.8).

Example 10.4.1. Verify that (10.4.8) is a density for p = 2, m − q = p + 1, with q

being a free parameter.
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Solution 10.4.1. For m − q = p + 1, p = 2, the right-hand side of (10.4.8) becomes

Γp(
q+p+1

2 )

Γp(
q
2 )Γp(

p+1
2 )

π
p2

2

Γp(
p
2 )

(ν1ν2)
q−(p+1)

2 (ν1 − ν2)

= Γ2(
q+3

2 )

Γ2(
q
2 )Γ2(

p+1
2 )

π2

Γ2(1)
(ν1ν2)

m−3
2 (ν1 − ν2). (i)

The constant part simplifies as follows:

Γ2(
q+3

2 )

Γ2(
q
2 )Γ2(

p+1
2 )

π2

Γ2(1)
= Γ (

q+3
2 )Γ (

q+2
2 )

√
π [Γ (

q
2 )Γ (

q−1
2 )][Γ (3

2)Γ (1)]
π2

√
πΓ (1)Γ (1

2)
; (ii)

now, noting that

Γ
(q + 3

2

)
=
(q + 1

2

)(q − 1

2

)
Γ
(q − 1

2

)
and Γ

(q + 2

2

)
= q

2
Γ
(q

2

)
,

and substituting these values in (ii), the constant part becomes

(
q+1

2 )(
q−1

2 )(
q
2 )√

π(1
2)

√
π

π2

√
π

√
π

= (q − 1)q(q + 1)

4
. (iii)

Let us show that the total integral equals 1. The integral part is the following:

∫ 1

ν1=0

∫ ν1

ν2=0
(ν1ν2)

q−3
2 (ν1 − ν2)dν1 ∧ dν2

=
∫ 1

0
ν

q−1
2

1

[ ∫ ν1

ν2=0
ν

q−3
2

2 dν2

]
dν1 −

∫ 1

0
ν

q−3
2

1

[ ∫ ν1

ν2=0
ν

q−1
2

2 dν2

]
dν1

=
∫ 1

0

ν
q−1
1

(
q−1

2 )
dν1 −

∫ 1

0

ν
q−1
1

(
q+1

2 )
dν1 = 1

q(
q−1

2 )
− 1

q(
q+1

2 )

= 4

(q − 1)q(q + 1)
. (iv)

The product of (iii) and (iv) being equal to 1, this verifies that (10.4.8) is a density for
m − q = p + 1, p = 2. This completes the computations.
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10.4.2. Testing whether the population canonical correlations equal zero

In its symmetric form, whenever Σ12 = O, the population canonical correlation matrix

is a null matrix, that is, Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 = O. Thus, when Σ12 = O, the canonical
correlations are equal to zero and vice versa. As was explained in Sect. 6.8.2, we have a
one-to-one function of u4, the likelihood ratio criterion for testing this hypothesis in the
case of a Gaussian distributed population. It was established that

u4 = |S|
|S11| |S22| = |I − S

− 1
2

11 S12S
−1
22 S21S

− 1
2

11 | = |I − UU ′| = |I − W | =
p∏

j=1

(1 − r2
(j))

(10.4.10)
where r(j), j = 1, . . . , p, are the sample canonical correlations. It can also be seen from
(10.4.2) that, when U is of full rank p, U has a rectangular matrix-variate type-1 beta
distribution and W = UU ′ has a real matrix-variate type-1 beta distribution. Since it has
been determined in Sect. 6.8.2, that under Ho, the h-th moment of u4 for an arbitrary h is
given by

E[uh
4|Ho] = c

∏p+q

j=p+1 Γ (m
2 − j−1

2 + h)
∏q

j=1 Γ (m
2 − j−1

2 + h)
, m = n − 1, (10.4.11)

where n is the sample size and c is such that E[u0
4|Ho] = 1, the density of u4 is expressible

in terms of a G-function. It was also shown in the same section that −n ln u4 is asymp-
totically distributed as a real chisquare random variable having (p+q)(p+q−1)

2 − p(p−1)
2 −

q(q−1)
2 = p q degrees of freedom, which corresponds to the number of parameters re-

stricted by the hypothesis Σ12 = O since there are p q free parameters in Σ12. Thus, the
following result:

Theorem 10.4.4. Consider the hypothesis Ho : ρ(1) = · · · = ρ(p) = 0, that is, the popu-
lation canonical correlations ρ(j), j = 1, . . . , p, are all equal to zero, which is equivalent
to the hypothesis Ho : Σ12 = O. Let u4 denote the (2/n)-th root of the likelihood ratio
criterion for testing this hypothesis. Then, as the sample size n → ∞, under Ho,

− n ln u4 = −2 ln(the likelihood ratio criterion) → χ2
pq , (10.4.12)

χ2
ν denoting a real chisquare random variable having ν degrees of freedom.

An illustrative numerical example has already been presented in Chap. 6.
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Note 10.1. We have initially assumed that Σ > O, Σ11 > O and Σ22 > O. However,
Σ12 = Σ ′

21 may or may not be of full rank or some of its elements could be equal to
zero. Note that Σ12Σ

−1
22 Σ21 is either positive definite or positive semi-definite. Whenever

p ≤ q and Σ12 is of rank p, Σ12Σ
−1
22 Σ21 > O and, in this instance, all the p canonical

correlations are positive. If Σ12 is not of full rank, then some of the eigenvalues of W as
previously defined, as well as the corresponding canonical correlations will be equal to
zero and, in the event that q ≤ p, similar statements would hold with respect to Σ21, W ′
and the resulting canonical correlations. This aspect will not be further investigated from
an inferential standpoint.

Note 10.2. Consider the regression of X on Y , that is, E[X|Y ], when Z =
(

X

Y

)

has the

following real (p + q)-variate normal distribution:

Z ∼ Np+q(μ, Σ), Σ > O, Σ =
[
Σ11 Σ12

Σ21 Σ22

]

,

Σ11 = Cov(X) > O is p × p, Σ22 = Cov(Y ) > O is q × q.

Then, from equation (3.3.5), we have

E[X|Y ] = μ(1) + Σ12Σ
−1
22 (Y − μ(2))

where μ′ = (μ′
(1), μ

′
(2)) and

Cov(X|Y ) = Σ11 − Σ12Σ
−1
22 Σ21.

Regression analysis is performed on the conditional space where Y is either composed of
non-random real scalar variables or given values of real scalar random variables, whereas
canonical correlation analysis is carried out in the entire space of Z. Clearly, these tech-
niques involve distinct approaches. When Y is given values of random variables, then
Σ12 and Σ22 can make sense. In this instance, the hypothesis Ho : Σ12 = O, in which
case the regression coefficient matrix is a null matrix or, equivalently, the hypothesis
that Y does not contribute to predicting X, implies that the canonical correlation matrix

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 is as well a null matrix. Accordingly, in this case, the ‘no regres-
sion’ hypothesis Σ12 = O (no contribution of Y in predicting X) is equivalent to the
hypothesis that the canonical correlations are equal to zero and vice versa.

10.5. The General Sampling Distribution of the Canonical Correlation Matrix

Let the (p + q) × 1 real vector random variable Z =
[
X

Y

]

∼ Np+q(μ, Σ), Σ > O.

Consider a simple random sample of size n from this Gaussian population and let the
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sample sum of products matrix S be partitioned as in the preceding section. Let the sample
canonical correlation matrix be denoted by R and the corresponding population canonical
correlation, by P , that is,

R = S
− 1

2
11 S12S

−1
22 S21S

− 1
2

11 and P = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 .

We now examine the distribution of R, assuming that P 
= O. Letting the determinant of
I − R be denoted by u, we have

u = |I − R| = |S11 − S12S
−1
22 S21||S11|−1 = |S|

|S11| |S22| .

Thus, the h-th moment of u is

E[uh] = E
[ |S|
|S11| |S22|

]h = E[|S|h|S11|−h|S22|−h].

Since S, S11 and S22 are functions of S, we can integrate out over the density of S, namely
the Wishart density with m = n − 1 degrees of freedom and parameter matrix Σ > O.
Then for m ≥ p + q,

E[uh] = 1

|2Σ |m
2 Γp+q(

m
2 )

∫

S>O

[ |S|
|S11| |S22|

]h|S|m
2 −p+q+1

2 e− 1
2 tr(Σ−1S)dS. (10.5.1)

Let us substitute S to 1
2S so that 2 will vanish from the factors containing 2, and let us

replace |S11|−h and |S22|−h by equivalent integrals:

|S11|−h = 1

Γp(h)

∫

Y1>O

|Y1|h−p+1
2 e−tr(Y2S11)dY1, �(h) >

p − 1

2
;

|S22|−h = 1

Γq(h)

∫

Y2>O

|Y2|h− q+1
2 e−tr(Y2S22)dY2, �(h) >

q − 1

2
.

Then,

E[uh] = 1

|Σ |m
2 Γp+q(

m
2 )

1

Γp(h)Γq(h)

∫

Y1>O

∫

Y2>O

|Y1|h−p+1
2 |Y2|h− q+1

2

∫

S>O

|S|m
2 +h−p+q+1

2

× e−tr(Σ−1S+YS)dS ∧ dY1 ∧ dY2 (10.5.2)

where

tr(YS) = tr
{(

Y1 O

O Y2

)(
S11 S12

S21 S22

)}
= tr(Y1S11) + tr(Y2S22), Y =

(
Y1 O

O Y2

)

.
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Integrating over S in (10.5.2) gives

E[uh] = Γp+q(
m
2 + h)

Γp+q(
m
2 )

1

|Σ |m
2 Γp(h)Γq(h)

∫

Y1>O

∫

Y2>O

|Y1|h−p+1
2 |Y2|h− q+1

2

× |Σ−1 + Y |−(m
2 +h)dY1 ∧ dY2.

Let

Σ−1 =
[
Σ11 Σ12

Σ21 Σ22

]

⇒ [Σ−1 + Y ] =
[
Σ11 + Y1 Σ12

Σ21 Σ22 + Y2

]

.

Then, the determinant can be expanded as follows:

|Σ−1 + Y | = |Σ22 + Y2| |Σ11 + Y1 − Σ12(Σ22 + Y2)
−1Σ21|

= |Σ22 + Y2| |Y1 + B|, B = Σ11 − Σ12(Σ22 + Y2)
−1Σ21,

so that

|Σ−1 + Y |−(m
2 +h) = |Σ22 + Y2|−(m

2 +h)|I + B−1Y1|−(m
2 +h)|B|−(m

2 +h).

Collecting the factors containing Y1 and integrating out, we have

1

Γp(h)

∫

Y1>O

|Y1|h−p+1
2 |I + B−1Y1|−(m

2 +h)dY1 = Γp(m
2 )

Γp(m
2 + h)

|B|h, �(h) >
p − 1

2
,

and |B|−(m
2 +h)|B|h = |B|−m

2 . Noting that

∣
∣
∣
∣
Σ11 Σ12

Σ21 Σ22 + Y2

∣
∣
∣
∣ =

{
|Σ11| |Σ22 + Y2 − Σ21(Σ11)−1Σ12|
|Σ22 + Y2| |Σ11 − Σ12(Σ22 + Y2)

−1Σ21| = |Σ22 + Y2| |B|,

|B| can be expressed in the following form:

|B| = |Σ11| |Y2 + C|
|Σ22 + Y2| , C = Σ22 − Σ21(Σ11)−1Σ12 = Σ−1

22 , (i)

so that,

|B|−m
2 = |Σ11|−m

2 |Y2 + Σ−1
22 |−m

2 |Y2 + Σ22|m
2 ⇒

|B|−m
2 |Y + Σ22|−(m

2 +h) = |Σ11|−m
2 |Y2 + Σ−1

22 |−m
2 |Y2 + Σ22|−h. (ii)
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Collecting all the factors containing Y2 and integrating out, we have the following:

1

Γq(h)

∫

Y2>O

|Y2|h− q+1
2 |Y2 + Σ−1

22 |−m
2 |Y2 + Σ22|−hdY2

= |Σ22|m
2 +h

Γq(h)

∫

Y2>O

|Y2|h− q+1
2 |I + Σ

1
2

22Y2Σ
1
2

22|−
m
2

× |Σ
1
2

22Y2Σ
1
2

22 + Σ
1
2

22Σ
22Σ

1
2

22|−hdY2

= |Σ22|m
2

Γq(h)

∫

W>O

|W |h− q+1
2 |I + W |−m

2 |W + Σ
1
2

22Σ
22Σ

1
2

22|−hdW, W = Σ
1
2

22Y2Σ
1
2

22,

(iii)

as W = Σ
1
2

22Y2Σ
1
2

22 ⇒ dY2 = |Σ22|− q+1
2 dW . Now, letting W = U−1 − I , so that dW =

|U |−(q+1)dU with O < U < I , the expression in (iii), denoted by δ, becomes

δ = |Σ22|m
2

Γq(h)

∫

O<U<I

|U |m
2 − q+1

2 |I − U |h− q+1
2 |I − AU |−hdU

where A = I −Σ
1
2

22Σ
22Σ

1
2

22. Note that since |Σ |m
2 = |Σ22|m

2 |Σ11 −Σ12(Σ22)
−1Σ21|m

2 =
|Σ22|m

2 |Σ11|−m
2 , |Σ |m

2 in the denominator of the constant part gets canceled out, the re-
maining constant expression being

Γp+q(
m
2 + h)

Γp+q(
m
2 )

Γp(m
2 )

Γp(m
2 + h)

. (iv)

The integral part of δ can be evaluated by making use of Euler’s representation of a Gauss’
hypergeometric function of matrix argument, which as given in formula (5.2.15) of Mathai
(1997), is

Γq(a)Γq(c − a)

Γq(c)
2F1(a, b; c;X) =

∫

O<Z<I

|Z|a− q+1
2 |I − Z|c−a− q+1

2 |I − XZ|−bdZ

where O < Z < I and O < X < I are q × q real matrices. Thus, δ can be expressed as
the follows:

δ = Γq(
m
2 )Γq(h)

Γq(
m
2 + h)Γq(h)

2F1

(m

2
, h; m

2
+ h; I − Σ

1
2

22Σ
22Σ

1
2

22

)
,

so that

E[uh] = Γp+q(
m
2 + h)Γp(m

2 )

Γp+q(
m
2 )Γp(m

2 + h)

Γq(
m
2 )

Γq(
m
2 + h)

2F1

(m

2
, h; m

2
+h; I −Σ

1
2

22Σ
22Σ

1
2

22

)
. (10.5.3)
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For p ≤ q, it follows from the definition of the matrix-variate gamma function that
Γp+q(α) = π−p q/2 Γq(α)Γp(α − q/2). Thus, the constant part in (10.5.3) simplifies to

Γp(m
2 − q

2 + h)

Γp(m
2 − q

2 )

Γp(m
2 )

Γp(m
2 + h)

.

Then,

E[uh] = Γp(
m−q

2 + h)

Γp(
m−q

2 )

Γp(m
2 )

Γp(m
2 + h)

2F1

(m

2
, h; m

2
+ h; I − Σ

1
2

22Σ
22Σ

1
2

22

)
(10.5.4)

for m ≥ p + q, �(h) > −m
2 + p−1

2 + q
2 , p ≤ q. Had Y2 been integrated out first instead

of Y1, we would have ended up with a hypergeometric function having I −Σ
1
2

11Σ
11Σ

1
2

11 as
its argument, that is,

E[uh] = Γp(
m−q

2 + h)

Γp(
m−q

2 )

Γp(m
2 )

Γp(m
2 + h)

2F1

(m

2
, h; m

2
+ h; I − Σ

1
2

11Σ
11Σ

1
2

11

)
. (10.5.5)

10.5.1. The sampling distribution of the multiple correlation coefficient

When p = 1 and q > 1, r2
1(1...q) is equal to the square of the sample multiple correla-

tion coefficient r1(1...q). In this case, the argument in (10.5.5) is a real scalar quantity that
is equal to 1 − σ11σ

11, the real matrix-variate Γp(·) functions are simply Γ (·) functions
and u = 1 − r2

1(1...q). Letting y = r2
1(1...q), E[1 − y]h is available from (10.5.5) for p = 1

and the argument of the 2F1 hypergeometric function is then

1 − σ11σ
11 = 1 − σ11(σ11 − Σ12Σ

−1
22 Σ21)

−1 = − Σ12Σ
−1
22 Σ21

σ11 − Σ12Σ
−1
22 Σ21

. (10.5.6)

By taking the inverse Mellin transform of (10.5.5) for h = s−1 and p = 1, we can express
the density f (y) of the square of the sample multiple correlation as follows:

f (y) = (1 − ρ2)
m
2 Γ (m

2 )

Γ (
m−q

2 )Γ (
q
2 )

y
q
2 −1(1 − y)

m−q
2 −1

2F1

(m

2
,
m

2
; q

2
; ρ2y

)
(10.5.7)

where ρ2 is the population multiple correlation squared, that is, ρ2 =
[Σ12Σ

−1
22 Σ21]/σ11. We can verify the result by computing the h-th moment of 1 − y



674 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

in (10.5.7). The h-th moment can be determined as follows by expanding the 2F1 function
and then integrating:

E[1 − y]h = (1 − ρ2)
m
2 Γ (m

2 )

Γ (
m−q

2 )Γ (
q
2 )

∞∑

k=0

(m
2 )k(

m
2 )k

(
q
2 )k

(ρ2)k

k!

×
∫ 1

0
y

q
2 +k−1(1 − y)

m−q
2 +h−1dy,

the integral part being

Γ (
q
2 + k)Γ (

m−q
2 + h)

Γ (m
2 + h + k)

= Γ (
q
2 )Γ (

m−q
2 + h)

Γ (m
2 + h)

(
q
2 )k

(m
2 + h)k

,

so that

E[1 − y]h = (1 − ρ2)
m
2
Γ (

m−q
2 + h)

Γ (
m−q

2 )

Γ (m
2 )

Γ (m
2 + h)

2F1

(m

2
,
m

2
; m

2
+ h; ρ2

)
. (10.5.8)

On applying the relationship,

2F1(a, b; c; z) = (1 − z)−b
2F1

(
c − a, b; c; z

z − 1

)
, (10.5.9)

we have

2F1

(m

2
,
m

2
; m

2
+ h; ρ2

)
= (1 − ρ2)−

m
2 2F1

(
h,

m

2
; m

2
+ h; ρ2

ρ2 − 1

)
,

with
ρ2

ρ2 − 1
= − Σ12Σ

−1
22 Σ21

σ11 − Σ12Σ
−1
22 Σ21

,

which agrees with (10.5.6). Observe that (1 − ρ2)
m
2 gets canceled out so that (10.5.8)

agrees with (10.5.5) for p = 1.

We can also obtain a representation of the density of the sample canonical correlation
matrix whose M-transform is as given in (10.5.5) for p ≤ q. This can be achieved by
duplicating the steps utilized for the particular case considered in this section, which yields
the following density:
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f (R) = |I − P |m
2 Γp(m

2 )

Γp(
m−q

2 )Γp(
q
2 )

|R| q
2 −p+1

2 |I − R|m−q
2 −p+1

2

× 2F1

(m

2
,
m

2
; q

2
;P

1
2 RP

1
2

)
(10.5.10)

where P = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 is the population canonical correlation matrix. Note
that a function giving rise to a certain M-transform need not be unique. However, by mak-
ing use of the Laplace transform and its inverse in the real matrix-variate case, Mathai
(1981) has shown that the function specified in (10.5.10) is actually the unique density
of R.

Exercises 10

10.1. In Example 10.3.2, verify that

[α′
(2)Σ12β(2)]2

γ2δ2
= λ2

where λ2 is the second largest eigenvalue of the canonical correlation matrix A.

10.2. In Example 10.3.2, use equation (10.1.1) or equation (ii) preceding it with ρ1 =
ρ2 = ρ and evaluate β(1) and β(2) from α(1) and α(2). Obtain β first, normalize it subject
to the constraint β ′Σ22β = 1 and then obtain β(1) and β(2). Then verify the results

[α′
(1)Σ12β(1)]2

γ1δ1
= λ1 and

[α′
(2)Σ12β(2)]2

γ2δ2
= λ2

where λ1 and λ2 are the largest and second largest eigenvalues of the canonical correlation
matrix A.

10.3. Let

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , Y =
[
y1

y2

]

, Cov(X) = Σ11 =
⎡

⎣
1 1 0
1 3 0
0 0 4

⎤

⎦ ,

Cov(Y ) = Σ22 =
[

2 −1
−1 3

]

, Cov(X, Y ) =
⎡

⎣
1 0

−1 1
1 0

⎤

⎦ ,
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where x1, x2, x3, y1, y2 are real scalar random variables. Evaluate the following where
the notations of this chapter are utilized: (1): The canonical correlations ρ(1) and
ρ(2); (2): The first pair of canonical variables (u1, v1) by direct evaluation as done in
Example 10.3.2; (3): Verify that

[β ′
(1)Σ21α(1)]2

γ1δ1
= λ1 : the largest eigenvalue of B

where B = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 ; (4): Evaluate the second pair of canonical variables
(u2, v2) by using equation (10.1.1) for constructing α(1) and α(2) after obtaining β(1) and
β(2); (5): Verify that

[β ′
(2)Σ21α(2)]2

γ2δ2
= λ2 : the second largest eigenvalue of B.

10.4. Repeat Problem 10.3 with X, Y and their associated covariance matrices defined as
follows:

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , Y =
⎡

⎣
y1

y2

y3

⎤

⎦ , Cov(X) = Σ11 =
⎡

⎣
2 0 0
0 2 2
0 2 3

⎤

⎦ ,

Cov(Y ) = Σ22 =
⎡

⎣
2 2 0
2 3 0
0 0 2

⎤

⎦ , Cov(X, Y ) = Σ12 =
⎡

⎣
1 1 1
1 −1 1

−1 1 −1

⎤

⎦

where x1, x2, x3, y1, y2, y3 are real scalar random variables. As well, compute the three
pairs of canonical variables.

10.5. Show that the M-transform in (10.5.5) is available from the density specified in
(10.5.10).
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Chapter 11
Factor Analysis

11.1. Introduction

We will utilize the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital let-
ters X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of let-
ters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will
for instance be denoted by A, B, C. A tilde will not be used on constant matrices unless
the point is to be stressed that the matrix is in the complex domain. In the real and com-
plex cases, the determinant of a square matrix A will be denoted by |A| or det(A) and,
in the complex case, the absolute value or modulus of the determinant of A will be de-
noted as |det(A)|. When matrices are square, their order will be taken as p × p, unless
specified otherwise. When A is a full rank matrix in the complex domain, then AA∗ is
Hermitian positive definite where an asterisk designates the complex conjugate transpose
of a matrix. Additionally, dX will indicate the wedge product of all the distinct differen-
tials of the elements of the matrix X. Thus, letting the p × q matrix X = (xij ) where
the xij ’s are distinct real scalar variables, dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix

X̃ = X1 + iX2, i = √
(−1), where X1 and X2 are real, dX̃ = dX1 ∧ dX2.

Factor analysis is a statistical method aiming to identify a relatively small number
of underlying (unobserved) factors that could explain certain interdependencies among a
larger set of observed variables. Factor analysis also proves useful for analyzing causal
mechanisms. As a statistical technique, Factor Analysis was originally developed in con-
nection with psychometrics. It has since been utilized in operations research, finance and
biology, among other disciplines. For instance, a score available on an intelligence test
will often assess several intellectual faculties and cognitive abilities. It is assumed that a
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certain linear function of the contributions from these various mental factors is producing
the final score. Hence, there is a parallel to be made with analysis of variance as well as
design of experiments and linear regression models.

11.2. Linear Models from Different Disciplines

In order to introduce the current topic, we will first examine a linear regression model
and an experimental design model.

11.2.1. A linear regression model

Let x be a real scalar random variable and let t1, . . . , tr be either r real fixed numbers
or given values of r real random variables. Let the conditional expectation of x, given
t1, . . . , tr , be of the form

E[x|t1, . . . , tr ] = ao + a1t1 + · · · + ar tr

or the corresponding model be

x = ao + a1t1 + · · · + ar tr + e

where ao, a1, . . . , ar are unknown constants, t1, . . . , tr are given values and e is the error
component or the sum total of contributions coming from unknown or uncontrolled factors
plus the experimental error. For example, x might be an inflation index with respect to a
particular base year, say 2010. In this instance, t1 may be the change or deviation in the
average price per kilogram of certain staple vegetables from the base year 2010, t2 may
be the change or deviation in the average price of a kilogram of rice compared to the base
year, t3 may be the change or deviation in the average price of flour per kilogram with
respect to the base year, and so on, and tr may be the change or deviation in the average
price of milk per liter compared to the base year 2010. The notation tj , j = 1, . . . , r,

is utilized to designate the given values as well as the corresponding random variables.
Since we are taking deviations from the base values, we may assume without any loss of
generality that the expected value of tj is zero, that is, E[tj ] = 0, j = 1, . . . , r . We may
also take the expected value of the error term e to be zero, that is, E[e] = 0. Now, let x1

be the inflation index, x2 be the caloric intake index per person, x3 be the general health
index and so on. In all these cases, the same t1, . . . , tr can act as the independent variables
in a regression set up. Thus, in such a situation, a multivariate linear regression model will
have the following format:

X =

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

μ1

μ2
...

μp

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1r

a21 a22 . . . a2r
...

...
. . .

...

ap1 ap2 . . . apr

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f1

f2
...

fr

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

e1

e2
...

ep

⎤

⎥
⎥
⎥
⎦

, (11.2.1)
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and we may write this model as

X = M + ΛF + ε

where Λ = (λij ) is a p × r , r ≤ p, matrix of full rank r , ε is p × 1 and F is r × 1. In
(11.2.1), λij = aij and fj = tj . Then, E[X] = M + ΛE[F ] + E[ε] = M since we have
assumed that E[F ] = O (a null matrix) and E[ε] = O. When F and ε are uncorrelated,
the covariance matrix associated with X, denoted by Cov(X) = Σ, is the following:

Σ = Cov(X) = E{(X − M)(X − M)′} = E{(ΛF + ε)(ΛF + ε)′}
= Λ Cov(F ) Λ′ + Cov(ε) + O

= ΛΦ Λ′ + Ψ (11.2.2)

where the covariance matrices of F and ε are respectively denoted by Φ > O (positive
definite) and Ψ > O. In the above formulation, F is taken to be a real vector random
variable. In a simple linear model, the covariance matrix of ε, namely Ψ , is usually taken
as σ 2I where σ 2 > 0 is a real scalar quantity and I is the identity matrix. In a more general
setting, Ψ can be taken to be a diagonal matrix whose diagonal elements are positive; in
such a model, the ej ’s are uncorrelated and their variances need not be equal. It will be
assumed that the covariance matrix Ψ in (11.2.2) is a diagonal matrix having positive
diagonal elements.

11.2.2. A design of experiment model

Consider a completely randomized experiment where one set of treatments are under-
taken. In this instance, the experimental plots are assumed to be fully homogeneous with
respect to all the known factors of variation that may affect the response. For example, the
observed value may be the yield of a particular variety of corn grown in an experimental
plot. Let the set of treatments be r different fertilizers F1, . . . , Fr , the effects of these fer-
tilizers being denoted by α1, . . . , αr . If no fertilizer is applied, the yield from a test plot
need not be zero. Let μ1 be a general effect when F1 is applied so that we may regard α1

as a deviation from this effect μ1 due to F1. Let e1 be the sum total of the contributions
coming from all unknown or uncontrolled factors plus the experimental error, if any, when
F1 is applied. Then a simple linear one-way classification model for F1 is

x1 = μ1 + α1 + e1,
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with x1 representing the yield from the test plot where F1 was applied. Then, correspond-
ing to F1, . . . , Fr, r = p we have the following system:

x1 = μ1 + α1 + e1
...

xp = μp + αp + ep

or, in matrix notation,
X = M + ΛF + ε (11.2.3)

where

X =
⎡

⎢
⎣

x1
...

xp

⎤

⎥
⎦ , ε =

⎡

⎢
⎣

e1
...

ep

⎤

⎥
⎦ , F =

⎡

⎢
⎣

α1
...

αp

⎤

⎥
⎦ , and Λ =

⎡

⎢
⎢
⎢
⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤

⎥
⎥
⎥
⎦

.

In this case, the elements of Λ are dictated by the design itself. If the vector F is fixed,
we call the model specified by (11.2.3), the fixed effect model, whereas if F is assumed to
be random, then it is referred to as the random effect model. With a single observation per
cell, as stated in (11.2.3), we will not be able to estimate the parameters or test hypotheses.
Thus, the experiment will have to be replicated. So, let the j -th replicated observation
vector be

Xj =
⎡

⎢
⎣

x1j
...

xpj

⎤

⎥
⎦ , j = 1, . . . , n,

Σ, Φ, and Ψ remaining the same for each replicate within the random effect model.
Similarly, for the regression model given in (11.2.1), the j -th replication or repetition
vector will be X′

j = (x1j , . . . , xpj ) with Σ, Φ and Ψ therein remaining the same for each
sample.

We will consider a general linear model encompassing those specified in (11.2.1) and
(11.2.3) and carry out a complete analysis that will involve verifying the existence and
uniqueness of such a model, estimating its parameters and testing various types of hy-
potheses. The resulting technique is referred to as Factor Analysis.

11.3. A General Linear Model for Factor Analysis

Consider the following general linear model:

X = M + ΛF + ε (11.3.1)
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where

X =
⎡

⎢
⎣

x1
...

xp

⎤

⎥
⎦ , M =

⎡

⎢
⎣

μ1
...

μp

⎤

⎥
⎦ , ε =

⎡

⎢
⎣

e1
...

ep

⎤

⎥
⎦ ,

Λ =

⎡

⎢
⎢
⎢
⎣

λ11 λ12 . . . λ1r

λ21 λ22 . . . λ2r
...

...
. . .

...

λp1 λp2 . . . λpr

⎤

⎥
⎥
⎥
⎦

and F =
⎡

⎢
⎣

f1
...

fr

⎤

⎥
⎦ , r ≤ p,

with the μj ’s, λij ’s, fj ’s being real scalar parameters, the xj ’s, j = 1, . . . , p, being real
scalar quantities, and Λ being of dimension p × r, r ≤ p, and of full rank r . When
considering expected values, variances, covariances, etc., X, F, and ε will be assumed to
be random quantities; however, when dealing with estimates, X will represent a vector of
observations. This convention will be employed throughout this chapter so as to avoid a
multiplicity of symbols for the variables and the corresponding observations.

From a geometrical perspective, the r columns of Λ, which are linarly independent,
span an r-dimensional subspace in the p-dimensional Euclidean space. In this case, the
r × 1 vector F is a point in this r-subspace and this subspace is usually called the factor
space. Then, right-multiplying the p×r matrix Λ by a matrix will correspond to employing
a new set of coordinate axes for the factor space.

Factor Analysis is a subject dealing with the identification or unique determination of
a model of the type specified in (11.3.1), as well as the estimation of its parameters and
the testing of various related hypotheses. The subject matter was originally developed in
connection with intelligence testing. Suppose that a test is administered to an individual
to evaluate his/her mathematical skills, spatial perception, language abilities, etc., and that
the score obtained is recorded. There will be a component in the model representing the
expected score. If the test is administered to 10th graders belonging to a particular school,
the grand average of such test scores among all 10th graders across the nation could be
taken as the expected score. Then, inputs associated to various intellectual faculties or
combinations thereof will come about. All such factors may be contributing towards the
observed test score. If f1, . . . , fr, are the contributions coming from r factors correspond-
ing to specific intellectual abilities, then, when a linear model is assumed, a certain linear
combination of these inputs will constitute the final quantity accounting for the observed
test score. A test score, x1, may then result from a linear model of the following form:

x1 = μ1 + λ11f1 + λ12f2 + · · · + λ1rfr + e1
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with λ11, . . . , λ1r being the coefficients of f1, . . . , fr , where f1, . . . , fr , are contributions
from r factors toward x1; these factors may be called the main intellectual factors in this
case, and the coefficients λ11, . . . , λ1r may be referred to as the factor loadings for these
main factors. In this context, μ1 is the general expected value and e1 is the error com-
ponent or the sum total of contributions originating from all unknown factors plus the
experimental error, if any. Note that the contributions f1, . . . , fr due to the main intel-
lectual factors can vary from individual to individual, and hence it is appropriate to treat
f1, . . . , fr as random variables rather than fixed unknown quantities. These f1, . . . , fr are
not observable as in the case of the design model in (11.2.3), whereas in the regression
type model specified by (11.2.1), they may take on the recorded values of the observable
variables which are called the independent variables. Thus, the model displayed in (11.3.1)
may be analyzed either by treating f1, . . . , fr as fixed quantities or as random variables.
If they are treated as random variables, we can assume that f1, . . . , fr follow some joint
distribution. Usually, joint normality is presupposed for f1, . . . , fr . Since f1, . . . , fr are
deviations from the general effect μ1 due to certain main intellectual faculties under con-
sideration, it may be assumed that the expected value is a null vector, that is, E[F ] = O.
We will denote the covariance matrix associated with F as Φ: Cov(F ) = Φ > O (real
positive definite). Note that the model’s error term ej is always a random variable. Letting
x1, . . . , xp be the test scores on p individuals, we have the error vector ε′ = (e1, . . . , ep).
Without any loss of generality, we may take the expected value of ε as being a null vector,
that is, E[ε] = O. For a very simple situation, we may assume the covariance matrix as-
sociated with ε to be Cov(ε) = σ 2I where σ 2 > 0 is a real positive scalar quantity and I

is the identity matrix. For a somewhat more general situation, we may take Cov(ε) = Ψ

where Ψ is a real positive definite diagonal matrix, or a diagonal matrix with positive di-
agonal elements. In the most general case, we may take Ψ to be a real positive definite
matrix. It will be assumed that Ψ is diagonal with positive diagonal elements in the model
(11.3.1), and that F and ε are uncorrelated. Thus, letting Σ be the covariance matrix of X,
we have

Σ = E[(X − M)(X − M)′] = E[(ΛF + ε)(ΛF + ε)′]
= ΛE(FF ′)Λ′ + E(εε′) + O

= ΛΦΛ′ + Ψ (11.3.2)

where Σ , Φ and Ψ , with Σ = ΛΦΛ′ + Ψ , are all assumed to be real positive definite
matrices.
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11.3.1. The identification problem

Is the model specified by (11.3.1) unique or could it represent different situations? In
other words, does it make sense as a model as stated? Given any r × r nonsingular matrix
A, let AF = F ∗ and ΛA−1 = Λ∗. Then, Λ∗F ∗ = ΛA−1AF = ΛF . In other words,

X = M + ΛF + ε = M + Λ∗F ∗ + ε. (11.3.3)

Consequently, the model in (11.3.1) is not identified, that is, it is not uniquely determined.

The identification problem can also be stated as follows: Does there exist a real positive
definite p × p matrix Σ > O containing p(p + 1)/2 distinct elements, which can be
uniquely represented as ΛΦΛ′ + Ψ where Λ has p r distinct elements, Φ > O has
r(r + 1)/2 distinct elements and Ψ is a diagonal matrix having p distinct elements? There
is clearly no such matrices as can be inferred from (11.3.3). Note that an r × r arbitrary
matrix A represents r2 distinct elements. It can be observed from (11.3.3) that we can
impose r2 conditions on the parameters in Λ, Φ and Ψ . The question could also be posed
as follows: Can the p(p + 1)/2 distinct elements in Σ plus the r2 elements in A (r2

conditions) uniquely determine all the elements of Λ, Ψ and Φ? Let us determine how
many elements there are in total. Λ, Ψ and Φ have a total of pr +p+r(r +1)/2 elements
while A and Σ have a total of r2 + p(p + 1)/2 elements. Hence, the difference, denoted
by δ, is

δ = p(p + 1)

2
+ r2 −

[
pr + r(r + 1)

2
+ p

]
= 1

2
[(p − r)2 − (p + r)]. (11.3.4)

Observe that the right-hand side of (11.3.2) is not a linear function of Λ, Φ and Ψ . Thus, if
δ > 0, we can anticipate that existence and uniqueness will hold although these properties
cannot be guaranteed, whereas if δ < 0, then existence can be expected but uniqueness
may be in question. Given (11.3.2), note that

Σ = Ψ + ΛΦΛ′ ⇒ Σ − Ψ = ΛΦΛ′

where ΛΦΛ′ is positive semi-definite of rank r , since the p × r, r ≤ p, matrix Λ has full
rank r and Φ > O (positive definite). Then, the existence question can also be stated as
follows: Given a p ×p real positive definite matrix Σ > O, can we find a diagonal matrix
Ψ with positive diagonal elements such that Σ − Ψ is a real positive semi-definite matrix
of a specified rank r , which is expressible in the form BB ′ for some p × r matrix B of
rank r where r ≤ p? For the most part, the available results on this question of existence
can be found in Anderson (2003) and Anderson and Rubin (1956). If a set of parameters
exist and if the model is uniquely determined, then we say that the model is identified, or
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alternatively, identifiable. The concept of identification or identifiability within the context
of Factor Analysis has been studied by Ihara and Kano (1995), Wegge (1996), Allman et al.
(2009) and Chen et al. (2020), among others.

Assuming that Φ = I will impose r(r + 1)/2 conditions. However, r2 = r(r+1)
2 +

r(r−1)
2 . Thus, we may impose r(r − 1)/2 additional conditions after requiring that Φ = I .

Observe that when Φ = I , Λ∗ΦΛ′∗ = Λ∗Λ′∗ = ΛA−1A′−1
Λ′, and if this is equal to

ΛΛ′ assuming that Φ = I , this means that (A′A)−1 = I or A′A = I , that is, A is an
orthonormal matrix. Thus, under the condition Φ = I , the arbitrary r × r matrix A be-
comes an orthonormal matrix. In this case, the transformation Y = ΛA is an orthonormal
transformation or a rotation of the coordinate axes. The following r × r symmetric matrix
of r(r + 1)/2 distinct elements

Δ = Λ′Ψ −1Λ (11.3.5)

is needed for solving estimation and hypothesis testing problems; accordingly, we can im-
pose r(r − 1)/2 conditions by requiring Δ to be diagonal with distinct diagonal elements,
that is, Δ = diag(η1, . . . , ηr), ηj > 0, j = 1, . . . , r . This imposes r(r+1)

2 − r = r(r−1)
2

conditions. Thus, for the model to be identifiable or for all the parameters in Λ, Φ, Ψ

to be uniquely determined, we can impose the condition Φ = I and require that
Δ = Λ′Ψ −1Λ be diagonal with positive diagonal elements. These two conditions will
provide r(r+1)

2 + r(r−1)
2 = r2 restrictions on the model which will then be identified.

When Φ = I , the main factors are orthogonal. If Φ is a diagonal matrix (including
the identity matrix), the covariances are zeros and it is an orthogonal situation, in which
case we say that the main factors are orthogonal. If Φ is not diagonal, then we say that the
main factors are oblique.

One can also impose r(r − 1)/2 conditions on the p × r matrix Λ. Consider the first
r × r block, that is, the leading r × r submatrix or the upper r × r block in the p × r

matrix, which we will denote by B. Imposing the condition that this r × r block B is
lower triangular will result in r2 − r(r+1)

2 = r(r−1)
2 conditions. Hence, Φ = I and the

condition that this leading r × r block B is lower triangular will guarantee r2 restrictions,
and the model will then be identified. One can also take a preselected r × r matrix B1 and
then impose the condition that B1B be lower triangular. This will, as well, produce r(r−1)

2
conditions. Thus, Φ = I and B1B being lower triangular will ensure the identification of
the model.

When we impose conditions on Φ and Ψ , the unknown covariance matrices must as-
sume certain formats. Such conditions can be justified. However, could conditions be put
on Λ, the factor loadings? Letting the first r × r block B in the p × r matrix Λ be lower
triangular is tantamount to assuming that λ12 = 0 = λ13 = · · · = λ1r or, equivalently, that
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f2, . . . , fr do not contribute to the model for determining x1 in X′ = (x1, x2, . . . , xp).
Such restrictions are justified if we can design the experiment in such a way that x1 de-
pends on f1 alone and not on f2, . . . , fr . In psychological tests, it is possible to design
tests in such a way that only certain main factors affect the scores. Thus, in such instances,
we are justified to utilize a triangular format such that, in general, there are no contri-
butions from fi+1, . . . , fr, toward xi or, equivalently, the factor loadings λi i+1, . . . , λir

equal zero for i = 1, . . . , r − 1. For example, suppose that the first r tests are designed
in such a way that only f1, . . . , fi and no other factors contribute to xi or, equivalently,
xi = μi + λi1f1 + · · · + λiifi + ei, i = 1, . . . , r . We can also measure the contribution
from fi in λii units or we can take λii = 1. By taking B = Ir, we can impose r2 conditions
without requiring that Φ = I . This means that the first r tests are specifically designed so
that x1 only has a one unit contribution from f1, x2 only has a one unit contribution from
f2, and so on, xr receiving a one unit contribution from fr. When B is taken to be diago-
nal, the factor loadings are λ11, λ22, . . . , λrr , respectively, so that only fi contributes to
xi for i = 1, . . . , r . Accordingly, the following are certain model identification conditions:

(1): Φ = I and Λ′Ψ −1Λ is diagonal with distinct diagonal elements;

(2): Φ = I and the leading r × r submatrix B in the p × r matrix Λ is triangular;

(3): Φ = I and B1B is lower triangular where B1 is a preselected matrix;

(4): The leading r × r submatrix B in the p × r matrix Λ is an identity matrix.

Observe that when r = p, condition (4) corresponds to the design model considered in
(11.2.3).

11.3.2. Scaling or units of measurement

A shortcoming of any analysis being based on a covariance matrix Σ is that the co-
variances depend on the units of measurement of the individual variables. Thus, mod-
ifying the units will affect the covariances. If we let yi and yj be two real scalar ran-
dom variables with variances σii and σjj and associated covariance σij , the effect of
scaling or changes in the measurement units may be eliminated by considering the vari-
ables zi = yi/

√
σii and zj = yj/

√
σjj whose covariance Cov(zi, zj ) ≡ rij is actually

the correlation between yi and yj , which is free of the units of measurement. Letting
Y ′ = (y1, . . . , yp) and D = diag( 1√

σ11
, . . . , 1√

σpp
), consider Z = DY . We note that

Cov(Y ) = Σ ⇒ Cov(Z) = DΣD = R which is the correlation matrix associated
with Y .
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In psychological testing situations or referring to the model (11.3.1), when a test score xj

is multiplied by a scalar quantity cj , then the factor loadings λj1, . . . , λjr , the error term
ej and the general effect μj are all multiplied by cj , that is, cjxj = cjμj +cj (λj1f1+· · ·+
λjrfr) + cj ej . Let Cov(X) = Σ = (σij ), that is, Cov(xi, xj ) = σij , X′ = (x1, . . . , xp)

and D = diag( 1√
σ11

, . . . , 1√
σpp

). Consider the model

DX = DM + DΛF + Dε ⇒ Cov(DX) = DΣD = DΛΦΛ′D + DΨ D. (11.3.6)

If X∗ = DX, M∗ = DM, Λ∗ = DΛ, and ε∗ = Dε, then we obtain the following model
and the resulting covariance matrix:

X∗ = M∗ + Λ∗F + ε∗ ⇒ Σ∗ = Cov(X∗) = Λ∗Cov(F )Λ∗′ + Ψ ∗

⇒ DΣD = DΛΦΛ′D + DΨ D

⇒ R = Λ∗ΦΛ∗′ + Ψ ∗ (11.3.7)

where R = (rij ) is the correlation matrix in X. An interesting point to be noted is that the
identification conditions Φ = I and Λ∗′Ψ ∗−1Λ∗ being diagonal become the following:
Φ = I and Λ∗′Ψ ∗−1Λ∗ = Λ′DD−1Ψ −1D−1DΛ = Λ′Ψ −1Λ which is diagonal, that is,
Λ′Ψ −1Λ is invariant under scaling transformations on the model or under X∗ = DX and
Ψ ∗ = DΨ D.

11.4. Maximum Likelihood Estimators of the Parameters

A simple random sample of size n from the model X = M + ΛF + ε specified in
(11.3.1) is understood to be constituted of independently and identically distributed (iid)
Xj ’s, j = 1, . . . , n, where

Xj = M + ΛF + Ej, j = 1, . . . , n, Xj =

⎡

⎢
⎢
⎢
⎣

x1j

x2j
...

xpj

⎤

⎥
⎥
⎥
⎦

, Ej =

⎡

⎢
⎢
⎢
⎣

e1j

e2j
...

epj

⎤

⎥
⎥
⎥
⎦

, (11.4.1)

and the Xj ’s are iid. Let fj and Ej be independently normally distributed. Let Ej ∼
Np(O, Ψ ) and Xj ∼ Np(μ, Σ), Σ = ΛΦΛ′ + Ψ where Φ = Cov(F ) > O, Ψ =
Cov(ε) > O and Σ > O, Ψ being a diagonal matrix with positive diagonal elements.
Then, the likelihood function is the following:

L =
n∏

j=1

1

(2π)
p
2 |Σ | 1

2

e− 1
2 (Xj−M)′Σ−1(Xj−M)

= 1

(2π)
np
2 |Σ | n

2
e− 1

2

∑n
j=1(Xj−M)′Σ−1(Xj−M)

. (11.4.2)
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The sample matrix will be denoted by a boldface X = (X1, . . . , Xn). Let J be the n × 1
vector of unities, that is, J = (1, 1, . . . , 1)′. Then,

X = (X1, . . . , Xn) =

⎡

⎢
⎢
⎢
⎣

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤

⎥
⎥
⎥
⎦

⇒ 1

n
XJ =

⎡

⎢
⎣

1
n
(
∑n

j=1 x1j )
...

1
n
(
∑n

j=1 xpj )

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

x̄1

x̄2
...

x̄p

⎤

⎥
⎥
⎥
⎦

= X̄

where X̄ is the sample average vector or the sample mean vector. Let the boldface X̄ be
the p × n matrix X̄ = (X̄, X̄, . . . , X̄). Then,

(X − X̄)(X − X̄)′ = S = (sij ), sij =
n∑

k=1

(xik − x̄i)(xjk − x̄j ), (11.4.3)

where S is the sample sum of products matrix or the “corrected” sample sum of squares
and cross products matrix. Note that

X̄ = 1

n
XJ

⇒ X̄ = (X̄, . . . , X̄) = X
(1

n
JJ ′)

⇒ X − X̄ = X
(
I − 1

n
JJ ′).

Thus,

S = X
(
I − 1

n
JJ ′)(I − 1

n
JJ ′)′

X′ = X
(
I − 1

n
JJ ′)X′. (11.4.4)
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Since (Xj − M)′Σ−1(Xj − M) is a real scalar quantity, we have the following:

n∑

j=1

(Xj − M)′Σ−1(Xj − M) =
n∑

j=1

tr(Xj − M)′Σ−1(Xj − M)

=
n∑

j=1

tr[Σ−1(Xj − M)(Xj − M)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄ + X̄ − M)(Xj − X̄ + X̄ − M)′]

= tr[Σ−1
n∑

j=1

(Xj − X̄)(Xj − X̄)′]

+ n tr[Σ−1(X̄ − M)(X̄ − M)′]
= tr(Σ−1S) + n(X̄ − M)′Σ−1(X̄ − M). (11.4.5)

Hence,
L = (2π)−

np
2 |Σ |− n

2 e− 1
2 {tr(Σ−1S)+n(X̄−M)′Σ−1(X̄−M)}. (11.4.6)

Differentiating (11.4.6) with respect to M , equating the result to a null vector and solving,
we obtain an estimator for M , denoted by M̂ , as M̂ = X̄. Then, ln L evaluated at M = X̄

is

ln L = −np

2
ln(2π) − n

2
ln |Σ | − 1

2
tr(Σ−1S)

= −np

2
ln(2π) − n

2
ln |ΛΦΛ′ + Ψ | − 1

2
tr[(ΛΦΛ′ + Ψ )−1S]. (11.4.7)

11.4.1. Maximum likelihood estimators under identification conditions

The derivations in the following sections parallel to those found in Mathai (2021). One
of the conditions for identification of the model is Φ = I and Λ′Ψ −1Λ being a diagonal
matrix with positive diagonal elements. We will examine the maximum likelihood estima-
tors (MLE)/maximum likelihood estimates (MLE) under this identification condition. In
this case, it follows from (11.4.7) that

ln L = −np

2
ln(2π) − n

2
ln |ΛΛ′ + Ψ | − 1

2
tr[(ΛΛ′ + Ψ )−1S]. (11.4.8)
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By expanding the following determinant in two different ways by applying properties of
partitioned determinants that are stated in Sect. 1.3, we have the following identities:

∣
∣
∣
∣
Ψ −Λ

Λ′ Ir

∣
∣
∣
∣ = |Ψ | |I + Λ′Ψ −1Λ| = |Ψ + ΛΛ′|. (11.4.9)

Hence, letting

Δ = Λ′Ψ −1Λ = diag(δ′
1δ1, δ

′
2δ2, . . . , δ

′
rδr),

we have

ln |ΛΛ′ + Ψ | = ln |Ψ | + ln |I + Λ′Ψ −1Λ|

=
p∑

j=1

ln ψjj +
r∑

j=1

ln(1 + δ′
j δj ), (11.4.10)

where δ′
j = Λ′

jΨ
− 1

2 , Λj is the j -th column of Λ and ψjj , j = 1, . . . , p, is the j -
th diagonal element of the diagonal matrix Ψ , the identification condition being that
Φ = I and Λ′Ψ −1Λ = Δ = diag(δ′

1δ1, . . . , δ
′
rδr). Accordingly, if we can write

tr(Σ−1S) = tr[(ΛΛ′ + Ψ )−1S] in terms of ψjj , j = 1, . . . , p, and δ′
j δj , j = 1, . . . , r,

then the likelihood equation can be directly evaluated from (11.4.8) and (11.4.10), and the
estimators can be determined. The following result will be helpful in this connection.

Theorem 11.4.1. Whenever ΛΛ′ + Ψ is nonsingular, which in this case, means real
positive definite, the inverse is given by

(ΛΛ′ + Ψ )−1 = Ψ −1 − Ψ −1Λ(Δ + I )−1Λ′Ψ −1 (11.4.11)

where the Δ is defined in (11.4.10).

It can be readily verified that pre and post multiplications of Ψ −1 − Ψ −1Λ(Δ +
I )−1Λ′Ψ −1 by ΛΛ′ + Ψ yield the identity matrix Ip.

11.4.2. Simplifications of |Σ | and tr(Σ−1S)

In light of (11.4.9) and (11.4.10), we have

|Σ | = |ΛΛ′ + Ψ | = |Ψ | |Λ′Ψ −1Λ + I |

= |Ψ | |I + Δ| =
{ p∏

j=1

ψjj

}{ r∏

j=1

(1 + δ′
j δj )

}
.
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Now, observe the following: In Λ(Δ+I )−1 = Λ diag( 1
1+δ′

1δ1
, . . . , 1

1+δ′
r δr

), the j -th column

of Λ is multiplied by 1
1+δ′

j δj
, j = 1, . . . , r, and

Λ(Δ + I )−1Λ′ =
r∑

j=1

1

1 + δ′
j δj

ΛjΛ
′
j

where Λj is the j -th column of Λ and the δj ’s are specified in (11.4.10). Thus,

ln |Σ | =
p∑

j=1

ln ψjj +
r∑

j=1

ln(1 + δ′
j δj ) (11.4.12)

and, on applying Theorem 11.4.1,

tr(Σ−1S) = tr[(ΛΛ′ + Ψ )−1S] = tr[(Ψ −1S)] − tr[Ψ −1Λ(Δ + I )−1Λ′Ψ −1S]

= tr(Ψ −1S) −
r∑

j=1

1

1 + δ′
j δj

tr(ΛjΛ
′
j (Ψ

−1SΨ −1))

= tr(Ψ −1S) −
r∑

j=1

1

1 + δ′
j δj

tr(Λ′
j (Ψ

−1SΨ −1)Λj )

= tr(Ψ −1S) −
r∑

j=1

1

1 + δ′
j δj

Λ′
j (Ψ

−1SΨ −1)Λj (11.4.13)

where Λj is the j -th column of Λ, which follows by making use of the property tr(AB) =
tr(BA) and observing that Λ′

j (Ψ
−1SΨ −1)Λj is a quadratic form.

11.4.3. Special case Ψ = σ 2Ip

Letting Ψ = σ 2I where σ 2 is a real scalar, Ψ −1 = σ−2Ip = θIp where θ = σ−2, and
the log-likelihood function can be simplified as

ln L = −np

2
ln(2π) + np

2
ln θ − n

2

r∑

j=1

ln(1 + δ′
j δj )

− θ

2
tr(S) + θ2

2

r∑

j=1

1

1 + δ′
j δj

Λ′
jSΛj
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where 1 + δ′
j δj = 1 + θΛ′

jΛj with Λj being the j -th column of Λ. Consider the equation

∂

∂θ
ln L = 0 ⇒
np

θ
− n

r∑

j=1

Λ′
jΛj

1 + θΛ′
jΛj

− tr(S)

+ 2θ

r∑

j=1

Λ′
jSΛj

1 + θΛ′
jΛj

− θ2
r∑

j=1

Λ′
jΛj

(1 + θΛ′
jΛj )2

Λ′
jSΛj = 0. (11.4.14)

For a specific j , we have

∂

∂Λj

ln L = O ⇒

−n

2

2θΛj

1 + θΛ′
jΛj

+ θ2

2

2SΛj

1 + θΛ′
jΛj

− θ2

2

Λ′
jSΛj

[1 + θΛ′
jΛj ]2

(2θ)Λj = O. (11.4.15)

Pre-multiplying (11.4.15) by Λ′
j yields

− nθΛ′
jΛj

1 + θΛ′
jΛj

+ θ2Λ′
jSΛj

1 + θΛ′
jΛj

− θ3(Λ′
jSΛj)(Λ

′
jΛj )

(1 + θΛ′
jΛj )2

= 0. (11.4.16)

Now, on comparing (11.4.16) with (11.4.14) after multiplying (11.4.14) by θ , we have

np − θ tr(S) + θ2
r∑

j=1

Λ′
jSΛj

1 + θΛ′
jΛj

= 0. (11.4.17)

Multiplying the left-hand side of (11.4.15) by [1 + θΛ′
jΛj ]2/θ gives

− n(1 + θΛ′
jΛj )Λj + θ(1 + θΛ′

jΛj )SΛj − θ2(Λ′
jSΛj)Λj = O. (11.4.18)

Then, by pre-multiplying (11.4.18) by Λ′
j , we obtain

−n(1 + θΛ′
jΛj )Λ

′
jΛj + θ[(1 + θΛ′

jΛj )Λ
′
jSΛj − θ2(Λ′

jSΛj)Λ
′
jΛj = 0 ⇒

θ(Λ′
jSΛj) = n(1 + θΛ′

jΛj )(Λ
′
jΛj ), (11.4.19)

which provides the following representation of θ :

θ = nΛ′
jΛj

Λ′
jSΛj − n(Λ′

jΛj )2
for Λ′

jSΛj − n(Λ′
jΛj )

2 > 0 (i)
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since θ must be positive. Further, on substituting θΛ′
jSΛj

(11.4.19)= n(1 +
θΛ′

jΛj )(Λ
′
jΛj ) in (11.4.18), we have

−nΛj + θ[S − n(Λ′
jΛj )I ]Λj = O, (ii)

which, on replacing θ by the right-hand side of (i) yields

−(Λ′
jSΛj)Λj + (Λ′

jΛj )SΛj = O

or, equivalently,

[

S − Λ′
jSΛj

Λ′
jΛj

I

]

Λj = O ⇒ (11.4.20)

[S − λjI ]Λj = O (11.4.21)

where λj = Λ′
j SΛj

Λ′
jΛj

. Observe that Λj in (11.4.20) is an eigenvector of S for j = 1, . . . , p.

Substituting the value of Λ′
jSΛj from (11.4.19) into (11.4.17) gives the following estimate

of θ :
θ̂ = np

tr(S) − n
∑p

j=1 Λ̂′
j Λ̂j

(11.4.22)

whenever the denominator is positive as θ is by definition positive. Now, in light of
(11.4.18) and (11.4.19), we can also obtain the following result for each j :

θ̂ = nΛ̂′
j Λ̂j

Λ̂′
jSΛ̂j − n(Λ̂′

j Λ̂j )2
, j = 1, . . . , p, (11.4.23)

requiring again that the denominator be positive. In this case, Λ̂j is an eigenvector of S for
j = 1, . . . , p. Let us conveniently normalize the Λ̂j ’s so that the denominator in (11.4.22)
and (11.4.23) remain positive.

Thus, Λ̂j is an eigenvector of S with the corresponding eigenvalue λj for each j ,
j = 1, . . . , p. Out of these, the first r of them, corresponding to the r largest eigenvalues,
will also be estimates for the factor loadings Λj, j = 1, . . . , r . Observe that we can
multiply Λ̂j by any constant c1 without affecting equations (11.4.20) or (11.4.21). This
constant c1 may become necessary to keep the denominators in (11.4.22) and (11.4.23)
positive. Hence we have the following result:
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Theorem 11.4.2. The sum of all the eigenvalues of S from Eq. (11.4.20), including the
estimates of the r factor loadings Λ̂1, . . . , Λ̂p, is given by

p∑

j=1

Λ̂′
jSΛ̂j

Λ̂′
j Λ̂j

= tr(S). (11.4.24)

It can be established that the representations of θ̂ given by (11.4.22) and (11.4.23) are
one and the same. The equation giving rise to (11.4.23) is

θ[Λ′
jSΛj − n(Λ′

jΛj )
2] = nΛ′

jΛj for each j. (iii)

Let us divide both sides of (iii) by Λ′
jΛj . Observe that

Λ′
j SΛj

Λ′
jΛj

= λj is an eigenvalue

of S for j = 1, . . . , p, treating Λj as an eigenvector of S. Now, taking the sum over
j = 1, . . . , p, on both sides of (iii) after dividing by Λ′

jΛj , we have

θ
[ p∑

j=1

λj − n

p∑

j=1

(Λ′
jΛj )

]
= np ⇒

θ
[
tr(S) − n

p∑

j=1

Λ′
jΛj

]
= np, (iv)

which is Eq. (11.4.22). This proves the claim.

Hence the procedure is the following: Compute the eigenvalues and the corresponding
eigenvectors of the sample sum of products matrix S. The estimates for the factor loadings,
denoted by Λ̂j , are available from the eigenvectors Λ̂j of S after appropriate normaliza-
tion to make the denominators in (11.4.22) and (1.4.23) positive. Take the first r largest
eigenvalues of S and then compute the corresponding eigenvectors to obtain estimates for
all the factor loadings. This methodology is clearly related to that utilized in Principal
Component Analysis, the estimates of the variances of the principal components being
Λ̂′

jSΛ̂j/Λ̂
′
j Λ̂j for j = 1, . . . , r .

Verification

Does the representation of θ given in (11.4.22) and (11.4.23) satisfy the likelihood
Eq. (11.4.14)? Since θ is estimated through Λj for each j = 1, . . . , p, we may replace θ

in (11.4.14) by θj and insert the summation symbol. Equation (11.4.14) will then be
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n
∑

j

1

θj

− n
∑

j

Λ′
jΛj

1 + θjΛ
′
jΛj

− tr(S)

+ 2
∑

j

θj

Λ′
jSΛj

1 + θjΛ
′
jΛj

−
∑

j

θ2
j

Λ′
jΛj (Λ

′
jSΛj)

(1 + θjΛ
′
jΛj )2

= 0. (11.4.25)

Now, substituting the value of θj specified in (11.4.23) into (11.4.14), the left-hand side of
(11.4.14) reduces to the following:

n
∑

j

[Λ′
jSΛj − n(Λ′

jΛj )
2]

nΛ′
jΛj

− n
∑

j

Λ′
jΛj

Λ′
jSΛj

[Λ′
jSΛj − n(Λ′

jΛj )
2] − tr(S)

+ 2
∑

j

nΛ′
jΛj −

∑

j

Λ′
jΛj

ΛjSΛj

(nΛ′
jΛj )

2

=
∑

j

Λ′
jSΛj

Λ′
jΛj

− tr(S) = 0,

owing to Theorem 11.4.2. Hence, Eq. (11.4.14) holds for the value of θ given in (11.4.23)
and the value of Λj specified in (11.4.20).

Since the basic estimating equation for θ̂ arises from (11.4.23) as

θ[Λ′
jSΛj − n(Λ′

jΛj )
2] = nΛ′

jΛj , (v)

a combined estimate for θ can be secured. On dividing both sides of (v) by Λ′
jΛj and

summing up over j , j = 1, . . . , p, it is seen that the resulting estimate of θ agrees with
that given in (11.4.22).

11.4.4. Maximum value of the exponent

We have the estimate θ̂ of θ provided in (11.4.23) at the estimated value Λ̂j of Λj

for each j , where Λ̂j is an eigenvector of S resulting from (11.4.20). The exponent of
the likelihood function is −1

2 tr(Σ−1S) and, in the current context, Σ = ΛΦΛ′ + Ψ ,
the identification conditions being that Φ = Ip and Λ′Ψ −1Λ be a diagonal matrix with
positive diagonal elements. Under these conditions and for the special case Ψ = σ 2Ip

with σ−2 = θ, we have shown that the exponent in the log-likelihood function reduces to

−1
2θ tr(S) + 1

2θ2∑r
j=1

Λ′
j SΛj

1+θΛ′
jΛj

. Now, consider θ tr(S) −∑r
j=1 θ2 Λ′

j SΛj

1+θΛ′
jΛj

≡ δ. Then,
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δ = θ tr(S) − θ

r∑

j=1

θ
Λ′

jSΛj

1 + θΛ′
jΛj

= θ
[
tr(S) −

p∑

j=1

θ
Λ′

jSΛj

1 + θΛ′
jΛj

]

= θ
[
tr(S) −

p∑

j=1

nΛ′
jΛj

]
from (11.4.19)

= np from (11.4.22).

Hence the result.

Example 11.4.1. Tests are conducted to evaluate x1 : verbal-linguistic skills, x2 : spatial
visualization ability, and x3 : mathematical abilities. Test scores on x1, x2, and x3 are
available. It is known that these abilities are governed by two intellectual faculties that
will be identified as f1 and f2, and that linear functions of f1 and f2 are contributing
to x1, x2, x3. These coefficients in the linear functions, known as factor loadings, are
unknown. Let Λ = (λij ) be the matrix of factor loadings. Then, we have the model

x1 = λ11f1 + λ12f2 + μ1 + e1

x2 = λ21f1 + λ22f2 + μ2 + e2

x3 = λ31f1 + λ32f2 + μ3 + e3.

Let

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , M =
⎡

⎣
μ1

μ2

μ3

⎤

⎦ , ε =
⎡

⎣
e1

e2

e3

⎤

⎦ and F =
[
f1

f2

]

,

where M is some general effect, ε is the error vector or the sum total of the contributions
from unknown factors, F represents the vector of contributing factors and Λ, the levels
of the contributions. Let Cov(X) = Σ, Cov(F ) = Φ and Cov(ε) = Ψ . Under the
assumptions Φ = I , Ψ = σ 2I where σ 2 is a real scalar quantity, and I is the identity
matrix, and Λ′Ψ −1Λ is diagonal, estimate the factor loadings λij ’s and σ 2 in Ψ . A battery
of tests are conducted on a random sample of six individuals and the following are the
data, where our notations are X: the matrix of sample values, X̄: the sample average, X̄:
the matrix of sample averages, and S: the sample sum of products matrix. So, letting

X = [X1, X2, . . . , X6] =
⎡

⎣
4 2 4 2 4 2
4 2 1 2 1 2
2 5 3 3 3 2

⎤

⎦ ,

estimate the factor loadings λij ’s and the variance σ 2.
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Solution 11.4.1. We begin with the computations of the various quantities required to
arrive at a solution. Observe that since the matrix of factor loadings Λ is 3 × 2 and a
random sample of 6 observation vectors is available, n = 6, p = 3 and r = 2 in our
notation.
In this case,

X̄ =
⎡

⎣
3
2
3

⎤

⎦ , X̄ = [X̄, X̄, . . . , X̄],

X − X̄ =
⎡

⎣
1 −1 1 −1 1 −1
2 0 −1 0 −1 0

−1 2 0 0 0 −1

⎤

⎦ ,

[X − X̄][X − X̄]′ = S =
⎡

⎣
6 0 −2
0 6 −2

−2 −2 6

⎤

⎦ .

An estimator/estimate of Σ is Σ̂ = S
n

whereas an unbiased estimator/estimate of Σ is
S

n−1 . An eigenvalue of S
α

is 1
α

times the corresponding eigenvalue of S. Moreover, constant
multiples of eigenvectors are also eigenvectors for a given eigenvalue. Accordingly, we
will work with S instead of Σ̂ or an unbiased estimate of Σ . Since

∣
∣
∣
∣
∣
∣

6 − λ 0 −2
0 6 − λ −2

−2 −2 6 − λ

∣
∣
∣
∣
∣
∣
= 0 ⇒ (6 − λ)(λ2 − 12λ + 28) = 0,

the eigenvalues are λ1 = 6 + √
8, λ2 = 6, λ3 = 6 − √

8, the two largest ones being
λ1 = 6 + √

8 and λ2 = 6. Let us evaluate the eigenvectors U1, U2 and U3 associated
with these three eigenvalues. An eigenvector U1 corresponding to λ1 = 6 + √

8 will be a
solution of the equation

⎡

⎣
−√

8 0 −2
0 −√

8 −2
−2 −2 −√

8

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦⇒ U1 =
⎡

⎢
⎣

− 1√
2

− 1√
2

1

⎤

⎥
⎦ .

For λ2 = 6, the equation to be solved is
⎡

⎣
0 0 −2
0 0 −2

−2 −2 0

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦⇒ U2 =
⎡

⎣
1

−1
0

⎤

⎦ .
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As for the eigenvalue λ3 = 6 − √
8, it is seen from the derivation of U1 that U ′

3 =
[ 1√

2
, 1√

2
, 1]. Let us now examine the denominator of θ̂ in (11.4.22). Observe that U ′

1U1 =
2, U ′

2U2 = 2, U ′
3U3 = 2 and n

∑p

j=1 U ′
jUj = 6(2+2+2) = 36. However, tr(S) = (6+√

8)+(6)+(6−√
8) = 18. So, let us multiply each vector by 1√

3
so that n(

∑p

j=1 U ′
jUj =

6(2
3 + 2

3 + 2
3) = 12 and tr(S) − n

∑p

j=1 U ′
jUj = 18 − 12 > 0. Thus, the estimate of θ is

given by

θ̂ = np

tr(S) − n
∑p

j=1 U ′
jUj

= (6)(3)

18 − 12
= 3 ⇒ σ̂ 2 = 1

3

In light of (11.4.20), the factor loadings are estimated by U1 and U2 scaled by 1√
3
.

Hence, the estimates of the factor loadings, denoted with a hat, are the following:
λ̂11 = ( 1√

3
)(− 1√

2
) = − 1√

6
, λ̂21 = ( 1√

3
)(− 1√

2
) = − 1√

6
, λ̂31 = ( 1√

3
)(1) = 1√

3
, λ̂12 =

( 1√
3
)(1) = 1√

3
, λ̂22 = ( 1√

3
)(−1) = − 1√

3
, λ̂32 = 0.

11.5. General Case

Let

δj =

⎡

⎢
⎢
⎢
⎣

θ1λ1j

θ2λ2j
...

θpλpj

⎤

⎥
⎥
⎥
⎦

, δ′
j δj = Λ′

jΘ
2Λj, Λj =

⎡

⎢
⎢
⎢
⎣

λ1j

λ2j
...

λpj

⎤

⎥
⎥
⎥
⎦

,

Ψ −1 = Θ2 =

⎡

⎢
⎢
⎢
⎣

θ2
1 0 . . . 0
0 θ2

2 . . . 0
...

...
. . .

...

0 0 . . . θ2
p

⎤

⎥
⎥
⎥
⎦

and |I + Λ′Θ2Λ| =
r∏

j=1

(1 + δ′
j δj ).

We will take δj , j = 1, . . . , r, and Θ = diag(θ1, θ2, . . . , θp) as the parameters. Expressed
in terms of the δj ’s and Θ , the log-likelihood function is the following:

ln L = −np

2
ln(2π) + n

p∑

j=1

ln θj − n

2

r∑

j=1

ln(1 + δ′
j δj )

− 1

2
tr(Θ2S) + 1

2

r∑

j=1

1

1 + δ′
j δj

(δ′
jΘSΘ δj ). (11.5.1)
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Let us take δj , j = 1, . . . , r, and Θ as the parameters. Differentiating ln L partially with
respect to the vector δj , for a specific j , and equating the result to a null vector, we have
the following (referring to Chap. 1 for vector/matrix derivatives):

−n

2

2δj

1 + δ′
j δj

− 1

2
(δ′

jΘSΘ δj )
2δj

(1 + δ′
j δj )2

+ 1

2

2 ΘSΘ δj

1 + δ′
j δj

= O, (i)

which multiplied by 1 + δ′
j δj > 0, yields

− nδj − (δ′
jΘSΘδj )

1 + δ′
j δj

δj + (ΘSΘ)δj = O. (11.5.2)

On premultiplying (11.5.2) by δ′
j and then by 1 + δ′

j δj , and simplifying, we then have

−n(1 + δ′
j δj )(δ

′
j δj ) + (δ′

jΘSΘδj ) = O ⇒
δ′
jΘSΘδj

1 + δ′
j δj

= nδ′
j δj . (11.5.3)

Let us differentiate ln L as given in (11.5.1) partially with respect to θj for a specific j

such as j = 1. Then,

n

θj

− 1

2
2θj sjj + 1

2

r∑

j=1

1

1 + δ′
j δj

∂

∂θj

(δ′
jΘSΘδj ),

where

∂

∂θj

(δ′
jΘSΘδj ) = δ′

j

[ ∂

∂θj

Θ
]
SΘδj + δ′

jΘS
[ ∂

∂θj

Θ
]
δj ,

∂

∂θ1
Θ =

⎡

⎢
⎢
⎢
⎣

1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

⇒ θ1
∂

∂θ1
Θ =

⎡

⎢
⎢
⎢
⎣

θ1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0,

⎤

⎥
⎥
⎥
⎦

,

so that [
θ1

∂

∂θ1
+ · · · + θp

∂

∂θp

]
Θ = Θ. (ii)

Hence,
[ p∑

j=1

θj

∂

∂θj

] r∑

j=1

δ′
jΘSΘδj

1 + δ′
j δj

= 2
r∑

j=1

δ′
jΘSΘδj

1 + δ′
j δj

,
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and then,

[ p∑

j=1

θj

∂

∂θj

]
L = 0 ⇒

np −
p∑

j=1

θ2
j sjj +

r∑

j=1

δ′
jΘSΘδj

1 + δ′
j δj

= 0. (11.5.4)

However, given (11.5.3), we have nδ′
j δj = δ′

jΘSΘδj/(1 + δ′
j δj ), j = 1, . . . , r, and

therefore (11.5.4) can be expressed as

np −
p∑

j=1

θ2
j sjj +

r∑

j=1

nδ′
j δj = 0. (iii)

Letting

c = 1

p

r∑

j=1

δ′
j δj , (11.5.5)

equation(iii) can be written as

p∑

j=1

[n(1 + c) − θ2
j sjj ] = 0, c = 0, j = r + 1, . . . , p,

so that a solution for θj is

θ̂2
j = n(1 + c)

sjj
or σ̂ 2

j = sjj

n(1 + c)
, (11.5.6)

with the proviso that c = 0 for θ̂2
j and σ̂ 2

j , j = r + 1, . . . , p. Then, an estimate of ΘSΘ

is given by

Θ̂SΘ̂ = n(1 + c)

⎡

⎢
⎢
⎢
⎢
⎣

1√
s11

0 . . . 0

0 1√
s22

. . . 0
...

...
. . .

...

0 0 . . . 1√
spp

⎤

⎥
⎥
⎥
⎥
⎦

S

⎡

⎢
⎢
⎢
⎢
⎣

1√
s11

0 . . . 0

0 1√
s22

. . . 0
...

...
. . .

...

0 0 . . . 1√
spp

⎤

⎥
⎥
⎥
⎥
⎦

= n(1 + c)R (11.5.7)
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where R is the sample correlation matrix, and on applying the identities (11.5.3) and
(11.5.7), (11.5.2) becomes

−nδj − n(δ′
j δj )δj + (n(1 + c)R)δj = 0 ⇒

[
R − 1 + δ̂′

j δ̂j

1 + c
I
]
δj = O. (11.5.8)

This shows that δj is an eigenvector of R. If νj is an eigenvalue of R, then the largest r

eigenvalues are of the form

νj = 1 + δ̂′
j δ̂j

1 + c
, j = 1, . . . , r, (11.5.9)

and the remaining ones are νr+1, . . . , νp, where c is as specified in (11.5.5). Thus, the pro-
cedure is the following: Compute the eigenvalues νj , j = 1, . . . , p, of R and determine
the corresponding eigenvectors, denoted by δj , j = 1, . . . , p. The first r of them which
correspond to the r largest νj ’s, are δ̂j = Θ̂Λ̂j ⇒ Λ̂j = Θ̂−1δ̂j , j = 1, . . . , r . Let

δ̂j =

⎡

⎢
⎢
⎢
⎣

δ̂1j

δ̂2j
...

δ̂pj

⎤

⎥
⎥
⎥
⎦

, Λ̂j =

⎡

⎢
⎢
⎢
⎣

λ̂1j

λ̂2j
...

λ̂pj

⎤

⎥
⎥
⎥
⎦

and Θ̂2 =

⎡

⎢
⎢
⎢
⎢
⎣

n(1+c)
s11

0 . . . 0

0 n(1+c)
s22

. . . 0
...

...
. . .

...

0 0 . . .
n(1+c)

spp

⎤

⎥
⎥
⎥
⎥
⎦

. (11.5.10)

Then,

λ̂ij =
√

sjj√
n(1 + c)

δ̂ij , i = 1, . . . , p, j = 1, . . . , r, (11.5.11)

and Θ̂ is available from (11.5.10). All the model parameters have now been estimated.

11.5.1. The exponent in the likelihood function

Given the MLE’s of the parameters which are available from (11.5.6), (11.5.8),
(11.5.10) and (11.5.11), what will be the maximum value of the likelihood function? Let
us examine its exponent:

−1

2
tr(Θ̂2S) + n

2

r∑

j=1

δ̂′
j δ̂j = −1

2
n(1 + c)tr(R) + n

2
pc

= −1

2
n(1 + c)p + 1

2
npc = −np

2
,
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that is, the same value of the exponent that is obtained under a general Σ . The estimates
were derived under the assumptions that Σ = Ψ + ΛΛ′, Λ′Ψ −1Λ is diagonal with the
diagonal elements δ′

j δj , j = 1, . . . , r, and Ψ = Θ−2.

Example 11.5.1. Using the data set provided in Example 11.4.1, estimate the factor load-
ings and the diagonal elements of Cov(ε) = Ψ = diag(ψ11, . . . , ψpp). In this example,
p = 3, n = 6, r = 2.

Solution 11.5.1. We will adopt the same notations and make use of some of the com-
putational results already obtained in the previous solution. First, we need to compute the
eigenvalues of the sample correlation matrix R. The sample sum of products matrix S is
given by

S =
⎡

⎣
6 0 −2
0 6 −2

−2 −2 6

⎤

⎦⇒ R =
⎡

⎣
1 0 −2

6
0 1 −2

6−2
6 −2

6 1

⎤

⎦ = 1

6
S.

Hence, the eigenvalues of R are 1
6 times the eigenvalues of S, that is, ν1 = 1

6(6 + √
8) =

1 +
√

2
3 , ν2 = 1

6(6) = 1 and ν3 = 1 −
√

2
3 . Since 1

6 will be canceled when determining the
eigenvectors, the eigenvectors of S will coincide with those of R. They are the following,
denoted again by δj , j = 1, 2, 3:

δ1 =
⎡

⎢
⎣

− 1√
2

− 1√
2

1

⎤

⎥
⎦ , δ2 =

⎡

⎣
1

−1
0

⎤

⎦ , δ3 =
⎡

⎢
⎣

1√
2

1√
2

1

⎤

⎥
⎦ .

Therefore, δ′
1δ1 = 2, δ′

2δ2 = 2, δ′
3δ3 = 2 and c as defined in (11.5.5) is c = 1

3(2 + 2) =
4
3 ⇒ n(1 + c) = 6(1 + 4

3) = 14. Then, in light of (11.5.10), the estimates of ψjj , j =
1, 2, 3, are available as ψ̂jj = θ̂−2

j = sjj
n(1+c)

or ψ̂11 = θ̂−2
1 = 6

14 = 3
7 = ψ̂22 = ψ̂33,

denoting the estimates with a hat. Therefore, the diagonal matrix Ψ̂ = diag(3
7 , 3

7 , 3
7).

Hence, the matrix Θ−1 = Ψ
1
2 is estimated by Θ̂−1 = diag(

√
3√
7
,

√
3√
7
,

√
3√
7
). From (11.5.11),

Λ̂j = Θ̂−1δj = diag(
√

3√
7
,

√
3√
7
,

√
3√
7
) δj , that is, δj is pre-multiplied by

√
3√
7
. Therefore, the

estimates of the factor loadings are: λ̂11 = −(
√

3√
7
)( 1√

2
) = λ̂21 = −λ̂13 = −λ̂23, λ̂31 =

√
3√
7

= λ̂33 = λ̂12 = −λ̂22, and λ̂32 = 0.
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11.6. Tests of Hypotheses

The usual test in connection with the current topic consists of assessing identifiability,
that is, testing the hypothesis H0 that the population covariance matrix Σ > O can be
represented as Σ = ΛΦΛ′ + Ψ when Φ = I , Λ′Ψ −1Λ is a diagonal matrix with positive
diagonal elements, Ψ > O is a diagonal matrix and Λ = (λij ) is a p × r, r ≤ p, matrix
of full rank r , whose elements are the factor loadings. That is,

H0 : Σ = ΛΛ′ + Ψ. (11.6.1)

In this instance, a crucial aspect of the hypothesis Ho consisting of determining whether
“the model fits”, is that the number r be designated since the other quantities n, the sample
size, and p, the order of the observation vector, are preassigned. Thus, the phrase “model
fits” means that for a given r , Σ can be expressed in the form Σ = Ψ + ΛΛ′, in addition
to satisfying the identification conditions. The assumed model has the representation: X =
M + ΛF + ε where X′ = (x1, . . . , xp) stands for the p × 1 vector of observed scores on
p tests or p batteries of tests, M is a p × 1 vector of general effect, F is an r × 1 vector of
unknown factors, Λ = (λij ) is the unknown p × r matrix of factor loadings and ε is the
p × 1 error vector. When ε and F are uncorrelated, the covariance matrix of X is given by

Σ = ΛΦΛ′ + Ψ

where Φ = Cov(F ) > O and Ψ = Cov(ε) > O with Φ being r × r and Ψ being p × p

and diagonal. A simple random sample from X will be taken to mean a sample of inde-
pendently and identically distributed (iid) p × 1 vectors X′

j = (x1j , x2j , . . . , xpj ), j =
1, . . . , n, with n denoting the sample size. The sample sum of products matrix or “cor-
rected” sample sum of squares and cross products matrix is S = (sij ), sij = ∑n

k=1(xik −
x̄i)(xjk − x̄j ), where, for example, the average of the xi’s comprising the i-th row of
X = [X1, . . . , Xn], namely, x̄i , is x̄i = ∑n

k=1 xik/n. If ε and F are independently nor-
mally distributed, then the likelihood ratio criterion or λ-criterion is

λ = maxH0 L

max L
= |Σ̂ | n

2

|Λ̂Λ̂′ + Ψ̂ | n
2

⇒ w = λ
2
n = |Σ̂ |

|Λ̂Λ̂′ + Ψ̂ | (11.6.2)

where Σ̂ = 1
n
S and the covariance matrix Σ = ΛΛ′ + Ψ under H0, with Φ = Cov(F )

assumed to be an identity matrix and the r × r matrix Λ′Ψ −1Λ = diag(δ′
1δ1, . . . , δ

′
rδr)

having positive diagonal elements δ′
j δj , j = 1, . . . , r . Referring to Sect. 11.4.2, we have

|ΛΛ′ + Ψ | = |Ψ | |Λ′Ψ −1Λ + I | (11.6.3)



Factor Analysis 705

and 1 + δ′
j δj = 1 + Λ′

jΨ
−1Λj = 1 + Λ′

jΘ
2Λj where δj = Ψ − 1

2 Λj = ΘΛj and Λj is
the j -th column of Λ for j = 1, . . . , r . It was shown in (11.5.8) that δj is an eigenvector
of the sample correlation matrix R and

r∏

j=1

(1 + δ′
j δj ) = |Λ′Ψ −1Λ + I |.

However, in view of the discussion following (11.5.8), an eigenvalue of R is of the form

νj = 1+δ′
j δj

(1+c)
, j = 1, . . . , r . Let ν1, . . . νp be the eigenvalues of R and let the largest r

of them be ν1, . . . , νr . It also follows from (11.5.8) that Θ̂2 = n(1 + c)diag( 1
s11

, . . . , 1
spp

)

with Θ = Ψ − 1
2 . Thus,

|Σ̂ |
|Ψ̂ | =

∣
∣
∣Θ̂
(S

n

)
Θ̂

∣
∣
∣ = |(1 + c)R| =

{ r∏

j=1

(1 + c)νj

}
(1 + 0)p−rνr+1 · · · νp

=
{ r∏

j=1

(1 + δ̂′
j δ̂j )

}
νr+1 · · · νp

⇒ | 1
n
S|

|Ψ̂ | |Λ̂′Ψ̂ −1Λ̂ + I | = {∏r
j=1(1 + δ̂′

j δ̂j )}νr+1 · · · νp

{∏r
j=1(1 + δ̂′

j δ̂j )}
= νr+1 · · · νp = w = λ

2
n . (11.6.4)

Hence, we reject the null hypothesis for small values of the product νr+1 · · · νp, that is,
the product of the smallest p − r eigenvalues of the sample correlation matrix R. In order
to evaluate critical points, one would require the null distribution of the product of the
eigenvalues, νr+1 · · · νp, which is difficult to determine for a general p. How can rejecting
the null hypothesis that the “model fits” be interpreted? Since, in the whole structure, the
decisive quantity is r , we are actually rejecting the hypothesis that a given r is the number
of main factors contributing to the observations. Hence, we may seek a larger or smaller r ,
keeping the structure unchanged and testing the same hypothesis again until the hypothesis
is not rejected. We may then assume that the r specified at the last stage is the number of
main factors contributing to the observation or we may assert that, with that particular r ,
there is evidence that the model fits.

We will now determine conditions ensuring that the likelihood ratio criterion λ be less
than or equal to one. While, assuming that Λ′Ψ −1Λ is diagonal, the left-hand side of the
deciding equation, Σ = ΛΛ′+Ψ , has p(p+1)/2 parameters, there are p r+p−r(r−1)/2
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conditions on the right-hand side where r(r − 1)/2 arises from the diagonality condition.
The difference is then

p(p + 1)

2
−
[
p r + p − r(r − 1)

2

]
= 1

2
[(p − r)2 − (p + r)] ≡ ρ. (11.6.5)

This ρ depends upon the parameters p and r , whereas λ depends upon p, r and c. Thus, λ

may not be ≤ 1. In order to make λ ≤ 1, we can make c close to 0 by multiplying the δ̂j ’s
by a constant, observing that this is always possible because the δ̂j ’s are the eigenvectors
of R. By selecting a constant m and taking the new δ̂j as 1√

m
δj , c can be made close to

0 and λ will be ≤ 1, so that rejecting the null hypothesis for small values of λ will make
sense. It may so happen that there will not be any parameter left to be restricted by the
hypothesis Ho that “model fits”. The quantity ρ appearing in (11.6.5) could then be ≤ 0,
and in such an instance, the hypothesis would not make sense and could not be tested.

The density of the sample correlation matrix R is provided in Example 1.25 of Mathai
(1997, p. 58). Denoting this density by f (R), it is the following for the population covari-
ance matrix Σ in a parent Np(μ, Σ) population with Σ being a positive definite diagonal
matrix, as was assumed in Sect. 11.6:

f (R) = [Γ (m
2 )]p

Γp(m
2 )

|R|m
2 −p+1

2 , R > O, m = n − 1, n > p, (11.6.6)

and zero elsewhere, where n is the sample size.

11.6.1. Asymptotic distribution of the likelihood ratio statistic

For a large sample size n, −2 ln λ is approximately distributed as a chisquare random
variable having k degrees of freedom where λ is the likelihood ratio criterion and k is the
number of parameters restricted by the hypothesis H0. This approximation holds whenever
the sample size n is large and k ≥ 1. With ρ as defined in (11.6.5), we have

k = ρ = 1

2
[(p − r)2 − (p + r)]. (11.6.7)

However, p−r = 1 and p+r = 5 in the illustrative example, so that k = −2. Accordingly,
even if the sample size n were large, this asymptotic result would not be applicable.

11.6.2. How to decide on the number r of main factors?

The structure of the population covariance matrix Σ under the model Xj = M+ΛF +
Ej, j = 1, . . . , n, is

Σ = ΛΦΛ′ + Ψ ⇒ Σ = ΛΛ′ + Ψ for Φ = I, (11.6.8)
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where it is assumed that Ej and F are uncorrelated, Σ = Cov(Xj ) > O is p × p,
Φ = Cov(F ) = I, the r × r identity matrix, Ψ = Cov(Ej ) is a p × p diagonal matrix
and Λ = (λij ) is a full rank p × r, r ≤ p, matrix whose elements are the factor loadings.
Under the orthogonal factor model, Φ = I . Moreover, to ensure the identification of the
model, we assume that Λ′Ψ −1Λ is a diagonal matrix. Before initiating any data analysis,
we have to assign a value to r on the basis of the data set at hand in order to set up the
model. Thus, the matter of initially setting the number of main factors has to be addressed.
Given

R = ΛΛ′ + Ψ (11.6.9)

where Λ = (λij ) is a p × r matrix and Ψ is a p × p diagonal matrix, does a solution that
is expressible in terms of the elements of R (or those of S if S is used), exist for all λij ’s
and ψjj ’s? In general

R = λ1U1U
′
1 + · · · + λpUpU ′

p (11.6.10)

where the λj ’s are the eigenvalues of R and the Uj ’s are the corresponding normalized
eigenvectors. Observe that UjU

′
j is p × p whereas U ′

jUj = 1, j = 1, . . . , p. If r =
p, then a solution always exists for (11.6.9). When taking Ψ = O, we can always let
R = BB ′ for some p × p matrix B, which can be achieved for example via a triangular
decomposition. Accordingly, the relevant aspects are r < p and the diagonal elements in
Ψ , namely, the ψjj ’s being positive. Can we then solve for all the λij ’s and ψjj ’s involved
in (11.6.9) in terms of the elements in R? The answer is that a solution exists, but only
when certain conditions are satisfied. Our objective is to select a value of r that is as small
as possible and then, to obtain a solution to (11.6.9) in terms of the elements in R.

The analysis is to be carried out by utilizing either the sample sum of products matrix S

or the sample correlation matrix R. The following are some of the guidelines for selecting
r in order to set up the model.

(i): Compute all the eigenvalues of R (or S). Let r be the number of eigenvalues ≥ 1 if
the sample correlation matrix R is used. If S is used, then determine all the eigenvalues,
calculate the average of these eigenvalues, and count the number of eigenvalues that are
greater than or equal to this average. Take that number to be r .

(2): Carry out a Principal Component Analysis on R (or S). If S is used, ensure that
the units of measurements are not creating discrepancies. Compute the variances of these
Principal Components, which are the eigenvalues of R (or S). Let λj , j = 1, . . . , p,

denote these eigenvalues. Compute the ratios

λ1 + · · · + λm

λ1 + · · · + λp

, m = 1, 2, . . . ,
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and stop with that m for which the desired fraction of the total variation in the data is
accounted for. Take that m as r . When implementing the principal component approach,
the factor loadings λij ’s and the ψjj ’s can be estimated as follows: From (11.6.10), write

R = A + B with A =
r∑

j=1

λjUjU
′
j and B =

p∑

j=r+1

λjUjU
′
j ,

where A can be expressed as V V ′ with V = [√λjU1, . . . ,
√

λjUr ]. Then, V is taken as

an approximate estimate of Λ or as Λ̂. Observe that λj > 0, j = 1, . . . , p. The sum over
j of the i-th diagonal elements of λjUjU

′
j , j = r +1, . . . , p, will provide an estimate for

ψii, i = 1, . . . , p. These estimates can also be obtained as follows: Consider the estimate
of σii denoted by σ̂ii which is equal to the sum of all the i-th diagonal elements in A + B;
it will be 1 if R is used and σ̂ii if S is utilized in the analysis; then, ψ̂ii = σ̂ii −∑r

j=1 λ̂ij

and ψ̂ii is now the sum of the i-th diagonal elements in B.

(iii): Consider the individual correlations in the sample correlation matrix R. Identify the
largest ones in absolute value. If the largest ones occur at the (1,3)-th and (2,3)-th positions,
then the factor f3 will be deemed influential. Start with r = 1 (factor f3) and carry out the
analysis. Then, assess the proportion of the total variation accounted for by σ̂33. Should the
proportion not be satisfactory, we may continue with r = 2. If the (2,3)-th position value
is larger in absolute value than the value at the (1,3)-th position, then f2 may be the next
significant factor. Compute σ̂33 + σ̂22 and determine the proportion to the total variation.
If the resulting model is rejected, then take r = 3, and continue in this fashion until an
acceptable proportion of the total variation is accounted for.

(iv): The maximum likelihood method. With this approach, we begin with a preselected r

and test the hypothesis that, when comprising r factors, the model fits. If the hypothesis is
rejected, then we let number of influential factors be r−1 or r+1 and continue the process
of testing and deciding until the hypothesis is not rejected. That final r is to be taken as the
number of main factors contributing towards the observations. The initial value of r may
be determined by employing one of the methods described in (i) or (ii) or (iii).

Exercises

11.1. For the following data, where the 6 columns of the matrix represent the 6 observa-
tion vectors, verify whether r = 2 provides a good fit to the data. The proposed model is
the Factor Analysis model X = M + ΛF + ε, F ′ = (f1, f2), Λ is 3 × 2 and of rank 2,
Cov(ε) = Ψ is diagonal, Cov(F ) = Φ = I, and Cov(X) = Σ > O. The data set is
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⎡

⎣
0 1 −1 0 1 −1
1 1 0 2 2 0

−1 −1 0 −1 −1 −2

⎤

⎦ .

11.2. For the model X = M + ΛF + ε with the conditions as specified in Exercise
11.1, verify whether the model with r = 2 or r = 3 gives a good fit on the basis of the
following data, where the columns in the matrix represent five observation vectors:

⎡

⎢
⎢
⎣

1 0 −1 1 0
−1 1 1 0 −1

1 0 1 2 1
1 1 2 1 0

⎤

⎥
⎥
⎦ .

11.3. Do a Principal Component Analysis in Exercise 11.1 to assess what percentage of
the total variation in the data is accounted for by r = 2.

11.4. Do a Principal Component Analysis in Exercise 11.2 to determine what percentages
of the total variation in the data are accounted for by r = 2 and r = 3.

11.5. Even though the sample sizes are not large, perform tests based on the asymptotic
chisquare to assess whether the two tests there agree with the findings in Exercises 11.1
and 11.2.

11.6. Four model identification conditions are stated at the end of Sect 11.3.1. Develop
λ-criteria under the conditions stated in (i): case (2); (ii): case (3), selecting your own B1;
(iii): case (4).
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Chapter 12
Classification Problems

12.1. Introduction

We will use the same notations as in the previous chapters. Lower-case letters x, y, . . .

will denote real scalar variables, whether mathematical or random. Capital letters X, Y, . . .

will be used to denote real matrix-variate mathematical or random variables, whether
square or rectangular matrices are involved. A tilde will be placed on top of letters such as
x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will for instance
be denoted by A, B, C. A tilde will not be used on constant matrices unless the point is to
be stressed that the matrix is in the complex domain. The determinant of a square matrix A

will be denoted by |A| or det(A) and, in the complex case, the absolute value or modulus of
the determinant of A will be denoted as |det(A)|. When matrices are square, their order will
be taken as p ×p, unless specified otherwise. When A is a full rank matrix in the complex
domain, then AA∗ is Hermitian positive definite where an asterisk designates the complex
conjugate transpose of a matrix. Additionally, dX will indicate the wedge product of all
the distinct differentials of the elements of the matrix X. Thus, letting the p × q matrix
X = (xij ) where the xij ’s are distinct real scalar variables, dX = ∧p

i=1 ∧q

j=1 dxij . For the

complex matrix X̃ = X1 + iX2, i = √
(−1), where X1 and X2 are real, dX̃ = dX1 ∧dX2.

Historically, classification problems arose in anthropological studies. By taking a set of
measurements on skeletal remains, anthropologists wanted to classify them as belonging
to a certain racial group such as being of African or European origin. The measurements
might have been of the following type: x1 = width of the skull, x2 = volume of the skull,
x3 = length of the thigh bone, x4 = width of the pelvis, and so on. Let the measurements
be represented by a p × 1 vector X, with X′ = (x1, . . . , xp) where a prime denotes
the transpose. Nowadays, classification procedures are employed in all types of problems
occurring in various contexts. For example, consider the situation of a battery of tests in
an entrance examination to admit students into a professional program such as medical
sciences, law studies, engineering science or management studies. Based on the p × 1
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vector of test scores, a statistician would like to classify an applicant as to whether or not
he/she belongs to the group of applicants who will successfully complete a given program.
This is a 2-group situation. If a third category is added such as those who are expected to
complete the program with flying colors, this will become a 3-group situation. In general,
one will have a k-group situation when an individual is classified into one of k classes.

Let us begin with the 2-group situation. The problem consists of classifying the p × 1
vector X into one of two, groups, classes or categories. Let the categories be denoted by
population π1 and population π2. This means X will either belong to π1 or to π2, no other
options being considered. The p × 1 vector X may be taken as a point in a p-space Rp

or p-dimensional Euclidean space �p. In a two-group situation when it is decided that the
candidate either belongs to the population π1 or the population π2, two subspaces A1 and
A2 within the p-space Rp are determined: A1 ⊂ Rp and A2 ⊂ Rp, with A1 ∩A2 = O (the
empty set) or a decision rule can be symbolically written as A = (A1, A2). If X falls in
A1, the candidate is classified into π1 and if X falls in A2, then the candidate is classified
into π2. In other words, X ∈ A1 means the individual is classified into population π1 and
X ∈ A2 means that the individual is classified into population π2. The regions A1 and
A2 or the rule A = (A1, A2) are not known beforehand. These are to be determined by
employing certain decision rules. Criteria for determining A1 and A2 will be subsequently
put forward. Let us now consider the consequences. When a decision is made to classify
X as coming from π1, either the decision is correct or the decision is erroneous. If the
population is actually π1 and the decision rule classifies X into π1, then the decision is
correct. If X is classified into π2 when in reality the population is π1, then a mistake has
been committed or a misclassification occurred. Misclassification will involve penalties,
costs or losses. Let such a penalty, cost or loss of classifying an individual into group i

when he/she actually belongs to group j, be denoted by C(i|j). In a 2-group situation,
i and j can only equal 1 or 2. That is, C(1|2) > 0 and C(2|1) > 0 are the costs of
misclassifying, whereas C(1|1) = 0 and C(2|2) = 0 since there is no cost or penalty
associated with correct decisions. The following table summarizes this discussion:

Table 12.1: Cost of misclassification C(i|j)

Statistician’s decision to classify into
π1 π2

Population π1 0 C(2|1)

In reality π2 C(1|2) 0
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12.2. Probabilities of Classification

The vector random variable corresponding to the observation vector X may have its
own probability/density function. The real scalar variables as well as the observations on
them will be denoted by the lower-case letters x1, . . . , xp. When dealing with the proba-
bility/density function of X, X is taken as vector random variable, whereas when looked
upon as a point in the p-space, Rp, X is deemed to be an observation vector. The p × 1
vector X may have a probability/density function P(X). In a 2-group or two classes situa-
tion, P(X) is either P1(X), the population density of π1 or P2(X), the population density
of π2. For convenience, it will be assumed that X of the continuous type, the derivations
in the discrete case being analogous. In the 2-group situation, P(X) can only be P1(X)

or P2(X). What is then the probability of achieving a correct classification under the rule
A = (A1, A2)? If the sample point X falls in A1, we classify the candidate as belonging to
π1, and if the true population is also π1, then a correct decision is made. In that instance,
the corresponding probability is

Pr{1|1, A} =
∫

A1

P1(X)dX (12.2.1)

where dX = dx1 ∧ dx2 ∧ . . .∧ dxp, A = (A1, A2) denoting one decision rule or one given
set of subspaces of the p-space Rp. The probability of misclassification in this case is

Pr{2|1, A} =
∫

A2

P1(X)dX. (12.2.2)

Similarly, the probabilities of correctly selecting and misclassifying P2(X) are respectively
given by

Pr{2|2, A} =
∫

A2

P2(X)dX (12.2.3)

and

Pr{1|2, A} =
∫

A1

P2(X)dX. (12.2.4)

In a Bayesian setting, there is a prior probability q1 of selecting the population π1 and q2 of
selecting the population π2, with q1+q2 = 1. Then, what will be the probability of drawing
an observation from π1 and misclassifying it as belonging to π2? It is q1 × Pr{2|1, A} =
q1
∫
A2

P1(X)dX and, similarly, the probability of drawing an observation from π2 and
misclassifying it as coming from π1 is q2×Pr{1|2, A} = q2

∫
A1

P2(X), with the respective
costs of misclassifications being C(2|1) = C(2|1, A) and C(1|2) = C(1|2, A). What is
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then the expected cost of misclassification? It is the sum of the costs multiplied by the
corresponding probabilities. Thus,

the expected cost = q1 C(2|1)P r{2|1, A} + q2 C(1|2)P r{1|2, A}. (12.2.5)

So, an advantageous criterion to rely on, when setting up A1 and A2 would consist in min-
imizing the expected cost as given in (12.2.5). A rule could be devised for determining A1

and A2 accordingly. In this regard, this actually corresponds to Bayes’ rule. How can one
interpret this expected cost? For example, in the case of admitting students to a particular
program of study based on a vector X of test scores, it is the cost of admitting potentially
incompetent students or students who would not have successfully completed the program
of study and training them, plus the projected cost of losing good students who would have
successfully completed the program of study.

If prior probabilities q1 and q2 are not involved, then the expected cost of misclassify-
ing an observation from π1 as coming from π2 is

C(2|1)P r{2|1, A} ≡ E1(A), (12.2.6)

and the expected cost of misclassifying an observation from π2 as coming from π1 is

C(1|2)P r{1|2, A} ≡ E2(A). (12.2.7)

We would like to have E1(A) and E2(A) as small as possible. In this case, a procedure, rule
or criterion A = (A1, A2) corresponds to determining suitable subspaces A1 and A2 in the
p-space Rp. If there is another procedure A(j) = (A

(j)

1 , A
(j)

2 ) such that E1(A) ≤ E1(A
(j))

and E2(A) ≤ E2(A
(j)), then procedure A is said to be as good as A(j), and if at least one

of the inequalities above is a strict inequality, that is < , then A is preferable to A(j). If
procedure A is preferable to all other available procedures A(j), j = 1, 2, . . ., A is said to
be admissible. We are seeking an admissible class {A} of procedures.

12.3. Two Populations with Known Distributions

Let π1 and π2 be the two populations. Let P1(X) and P2(X) be the known p-variate
probability/density functions associated with π1 and π2, respectively. That is, P1(X) and
P2(X) are two p-variate probability/density functions which are fully known in the sense
that all their parameters are known in addition to their functional forms. Consider the
Bayesian situation where it is assumed that the prior probabilities q1 and q2 of selecting
π1 and π2, respectively, are known. Suppose that a particular p-vector X is at hand. What



Classification Problems 715

is the probability that this given X is an observation from π1? This probability is q1 P1(X)

if X is discrete or q1P1(X)dX if X is continuous. What is the probability that the given
vector X is an observation vector either from π1 or from π2? This probability is q1P1(X)+
q2P2(X) or [q1P1(X)+q2P2(X)]dX. What is then the probability that the vector X at hand
is from P1(X), given that it is an observation vector from π1 or π2? As this is a conditional
statement, it is given by the following in the discrete or continuous case:

q1P1(X)

q1P1(X) + q2P2(X)
or

q1P1(X)dX

[q1P1(X) + q2P2(X)]dX

= q1P1(X)

q1P1(X) + q2P2(X)
(12.3.1)

where dX, which is the wedge product of differentials and positive in this case, cancels
out. If the conditional probability that a given X is an observation from π1 is larger than or
equal to the conditional probability that the given vector X is an observation from π2 and
if we assign X to π1, then the chance of misclassification is reduced. Our main objective
is to minimize the probability of misclassification and then come up with a decision rule.
This statement is equivalent to the following: If

q1P1(X)

q1P1(X) + q1P2(X)
≥ q2P2(X)

q1P1(X) + q2P2(X)
⇒ q1P1(X) ≥ q2P2(X) (12.3.2)

then we assign X to π1, meaning that our subspace A1 is specified by the following rule:

A1 : q1P1(X) ≥ q2P2(X) ⇒ P1(X)

P2(X)
≥ q2

q1

A2 : q1P1(X) < q2P2(X) ⇒ P1(X)

P2(X)
<

q2

q1
. (12.3.3)

Note that if q1P1(X) = q2P2X), then X can be assigned to either π1 or π2; however,
we have assigned it to π1 for convenience. Observe that, it is assumed that q1P1(X) +
q2P2(X) 
= 0, q1 > 0, q2 > 0 and q1 + q2 = 1 in (12.3.2). The conditional statement
made in (12.3.2), which can also be written as

qiPi(X)

q1P1(X) + q2P2(X)
= ηiPi(X)

η1P1(X) + η2P2(X)
, ηi > 0, η1+η2 = η > 0,

ηi

η
= qi, i = 1, 2,

holds for some weight functions ηi, i = 1, 2.
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If the observation is from π1 : P1(X), then the expected cost of misclassification is
q1P1(X)C(2|1) + q2P2(X)C(2|2) = q1P1(X)C(2|1) since C(i|i) = 0, i = 1, 2. Sim-
ilarly, the expected cost of misclassifying of the observation X from π2 : P2(X) is
q2P2(X)C(1|2). If P1(X) is our preferred distribution, then we would like the associated
expected cost of misclassification to be the lesser one, that is,

q1P1(X)C(2|1) < q2P2(X)C(1|2) in A2 ⇒
P1(X)

P2(X)
<

q2C(1|2)

q1C(2|1)
in A2 or

P1(X)

P2(X)
≥ q2C(1|2)

q1C(2|1)
in A1, (12.3.4)

which is the same rule as in (12.3.3) where q1 is replaced by q1C(2|1) and q2, by q2C(1|2).

12.3.1. Best procedure

It can be established that the procedure A = (A1, A2) in (12.3.3) is the best one for
minimizing the probability of misclassification. To this end, consider any other procedure
A(j) = (A

(j)

1 , A
(j)

2 ), j = 1, 2, . . . . The probability of misclassification under the proce-
dure A(j) is the following:

q1

∫

A
(j)
2

P1(X)dX + q2

∫

A
(j)
1

P2(X)dX

=
∫

A
(j)
2

[q1P1(X) − q2P2(X)]dX + q2

∫

A
(j)
1 ∪A

(j)
2

P2(X)dX. (12.3.5)

If A
(j)

1 ∪A
(j)

2 = Rp, then
∫
A

(j)
1 ∪A

(j)
2

P2(X)dX = 1; it is otherwise a given positive constant.

However, q1P1(X)−q2P2(X) can be negative, zero or positive, whereas the left-hand side
of (12.3.5) is a positive probability. Accordingly, the left-hand side is minimum if

q1P1(X) − q2P2(X) < 0 ⇒ P1(X)

P2(X)
<

q2

q1
, (i)

which actually is the rejection region A2 of the procedure A = (A1, A2). Hence, the
procedure A = (A1, A2) minimizes the probabilities of misclassification; in other words,
it is the best procedure. If cost functions are also involved, then (i) becomes the following:

P1(X)

P2(X)
<

C(1|2) q2

C(2|1) q1
. (ii)
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The region where q1P1(X)−q2P2(X) = 0 or q1C(2|1)P1(X)−q2C(1|2)P2(X) = 0 need
not be empty and the probability over this set need not be zero. If

Pr

{
P1(X)

P2(X)
= q2 C(1|2)

q1 C(2|1)

∣
∣
∣πi

}

= 0, i = 1, 2, (12.3.6)

it can also be shown that the above Bayes procedure A = (A1, A2) is unique. This is stated
as a theorem:

Theorem 12.3.1. Let q1 be the prior probability of drawing an observation X from the
population π1 with probability/density function P1(X) and let q2 be the prior probabil-
ity of selecting an observation X from the population π2 with probability/density function
P2(X). Let the cost or loss associated with misclassifying an observation from π1 as com-
ing from π2 be C(2|1) and the cost of misclassifying an observation from π2 as originating
from π1 be C(1|2). Letting

Pr

{
P1(X)

P2(X)
= C(1|2) q2

C(2|1) q1

∣
∣
∣πi

}

= 0, i = 1, 2,

the classification rule given by A = (A1, A2) of (12.3.4) is unique and best in the sense
that it minimizes the probabilities of misclassification.

Example 12.3.1. Let π1 and π2 be two univariate exponential populations whose param-
eters are θ1 and θ2 with θ1 
= θ2. Let the prior probability of drawing an observation from
π1 be q1 = 1

2 and that of selecting an observation from π2 be q2 = 1
2 . Let the costs or loss

associated with misclassifications be C(2|1) = C(1|2). Compute the regions and prob-
abilities of misclassification if (1): a single observation x is drawn; (2): iid observations
x1, . . . , xn are drawn.

Solution 12.3.1.(1). In this case, one observation is drawn and the populations are

Pi(x) = 1

θi

e
− x

θi , x ≥ 0, θi > 0, i = 1, 2.

Consider the following inequality on the support of the density:

P1(x)

P2(x)
≥ C(1|2) q2

C(2|1) q1
= 1,

or equivalently,
θ2

θ1
e
−x( 1

θ1
− 1

θ2
) ≥ 1 ⇒ e

−x( 1
θ1

− 1
θ2

) ≥ θ1

θ2
.
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On taking logarithms, we have

−x
( 1

θ1
− 1

θ2

)
≥ ln

θ1

θ2
⇒ x

( 1

θ2
− 1

θ1

)
≥ ln

θ1

θ2

⇒ x ≥ θ1θ2

θ1 − θ2
ln

θ1

θ2
for θ1 > θ2.

Letting θ1 > θ2, the steps in the case θ1 < θ2 being parallel, we have

x ≥ k, k = θ1θ2

θ1 − θ2
ln

θ1

θ2
.

Accordingly,
A1 : x ≥ k and A2 : x < k.

The probabilities of misclassification are:

P(2|1) =
∫

A2

P1(x)dx =
∫ k

x=0

1

θ1
e
− x

θ1 dx = 1 − e
− k

θ1

P(1|2) =
∫ ∞

x=k

1

θ2
e
− x

θ2 dx = e
− k

θ2 .

Solution 12.3.1.(2). In this case, X′ = (x1, . . . , xn) and

Pi(X) =
n∏

j=1

1

θi

e
− xj

θi = 1

θn
i

e
− u

θi , i = 1, 2,

where u = ∑n
j=1 xj is gamma distributed with the parameters (n, θi), i = 1, 2. The

density of u is then given by

gi(u) = 1

θn
i Γ (n)

un−1e
− u

θi , i = 1, 2.

Proceeding as above, for θ1 > θ2, A1 : u ≥ k1 and A2 : u < k1, k1 = θ1θ2
θ1−θ2

ln[ θ1
θ2

]n = nk

where k is as given in Solution 12.3.1(1). Consequently, the probabilities of misclassifica-
tion are as follows:

P(2|1) =
∫ k1

u=0

un−1

θn
1 Γ (n)

e
− u

θ1 du =
∫ k1

θ1

0

un−1

Γ (n)
e−udu

P (1|2) =
∫ ∞

k1

un−1

θn
2 Γ (n)

e
− u

θ2 du =
∫ ∞

k1
θ2

un−1

Γ (n)
e−udu
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where the integrals can be expressed in terms of incomplete gamma functions or deter-
mined by using integration by parts.

Example 12.3.2. Assume that no prior probabilities or costs are involved. Suppose that
in a certain clinic, the waiting time before a customer is attended to, depends upon the
manager on duty. If manager M1 is on duty, the expected waiting time is 10 minutes, and
if manager M2 is on duty, the expected waiting time is 5 minutes. Assume that the waiting
times are exponentially distributed with expected waiting time equal to θi, i = 1, 2. On
a particular day (1): a customer had to wait 6 minutes before she was attended to, (2):
three customers had to wait 6, 6 and 8 minutes, respectively. Who between M1 and M2

was likely to be on duty on that day?

Solution 12.3.2.(1). In this case, θ1 = 10, θ2 = 5 and the populations are exponential
with parameters θ1 and θ2, respectively. Thus, k = θ1θ2

θ1−θ2
ln θ1

θ2
= (10)(5)

10−5 ln 10
5 = 10 ln 2,

k
θ1

= 10 ln 2
10 = ln 2, k

θ2
= 2 ln 2 = ln 4, e

− k
θ1 = e− ln 2 = 1

2 = 0.5, and e
− k

θ2 = e− ln 4 = 1
4 =

0.25. In (1): the observed value of x = 6 < 10(ln 2) = 10(0.69314718056) ≈ 6.9315.
Accordingly, we classify x to M2, that is, the manager M2 was likely to be on duty. Thus,

P(2|2, A) = The probability of making a correct decision

=
∫

x<k

P2(x)dx =
∫ k

0
P2(x)dx =

∫ k

0

1

5
e− x

5 dx

= 1 − e− ln 4 = 1 − 1

4
= 0.75;

P(2|1, A) = Probability of misclassification or making an incorrect decision

=
∫ k

0
P1(x)dx =

∫ k

0

1

10
e− x

10 dx = 1 − e− k
10 = 1 − e− ln 2 = 1

2
= 0.5.

Solution 12.3.2.(2). Here, u = 6 + 6 + 8 = 20, n = 3 and k1 = θ1θ2
θ1−θ2

n ln θ1
θ2

=
(10)(5)
10−5 3 ln 10

5 = 30 ln 2. Since 30 ln 2 ≈ 20.795 and the observed value of u is 20, u < k1,

and we assign the sample to π2 or to P2(X) or M2, with k1
θ2

= 30 ln 2
5 = 6 ln 2 and k1

θ1
=

30 ln 2
10 = 3 ln 2. Thus,

P(2|2, A) = Probability of making a correct classification decision

= Pr{u < k1|P2(X)} =
∫ k1

0

un−1

θn
2 Γ (n)

e
− u

θ2 du

=
∫ 6 ln 2

0

v2e−v

Γ (3)
dv, with Γ (3) = 2! = 2.
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Integrating by parts, ∫

v2e−vdv = −[v2 + 2v + 2]e−v.

Then,

1

2

∫ 6 ln 2

0
v2e−vdv = −{[2v2/2 + v + 1]e−v}6 ln 2

0 = 1 − 1

64
[(6 ln 2)2/2 + (6 ln 2) + 1]

≈ 1 − 1

64
[13.797] ≈ 0.785, and

P(2|1, A) = Probability of misclassification

=
∫ k1

0
P1(X)dX = 1

2

∫ 3 ln 2

0
v2e−vdv = −[1

2v2 + v + 1]e−v
∣
∣3 ln 2
0

= 1 − 1

23
[(3 ln 2)2/2 + (3 ln 2) + 1] ≈ 0.485.

Example 12.3.3. Let the two populations π1 and π2 be univariate normal with mean
values μ1 and μ2, respectively, and the same variance σ 2, that is, P1(x) : N1(μ1, σ

2)

and P2(x) : N1(μ2, σ
2). Let the prior probabilities of drawing an observation from these

populations be q1 = 1
2 and q2 = 1

2 , respectively, and the costs or loss involved with
misclassification be C(1|2) = C(2|1). Determine the regions of misclassification and the
corresponding probabilities of misclassification if (1): a single observation x is available;
(2): iid observations x1, . . . , xn are available, from π1 or π2.

Solution 12.3.3.(1). If one observation is available,

Pi(x) = 1

σ
√

2π
e− (x−μi )

2

2σ2 , −∞ < x < ∞, −∞ < μi < ∞, σ > 0.

Consider regions

A1 : P1(x)

P2(x)
≥ C(1|2) q2

C(2|1) q1
= 1 ⇒ e− 1

2σ2 [(x−μ1)
2−(x−μ2)

2] ≥ 1

⇒ −
[ 1

2σ 2
[(x − μ1)

2 − (x − μ2)
2
]

≥ 0.

Now, note that

−[(x − μ1)
2 − (x − μ2)

2] = 2x(μ1 − μ2) − (μ2
1 − μ2

2) ≥ 0 ⇒
x ≥ 1

2

(μ2
1 − μ2

2)

(μ1 − μ2)
= 1

2
(μ1 + μ2) for μ1 > μ2 ⇒

A1 : x ≥ 1

2
(μ1 + μ2) and A2 : x <

1

2
(μ1 + μ2).
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The probabilities of misclassification are the following for k = 1
2(μ1 + μ2):

P(2|1) =
∫ k

−∞
1

σ
√

2π
e− (x−μ1)2

2σ2 dx = Φ
(k − μ1

σ

)

P(1|2) =
∫ ∞

k

1

σ
√

2π
e− (x−μ2)2

2σ2 dx = 1 − Φ
(k − μ2

σ

)

where Φ(·) is the distribution function of a univariate standard normal density and k =
1
2(μ1 + μ2).

Solution 12.3.3.(2). In this case, x1, . . . , xn are iid and X′ = (x1, . . . , xn). The multivari-
ate densities are

Pi(X) = 1

σn(
√

2π)n
e− 1

2σ2

∑n
j=1(xj−μi)

2 = e− 1
2σ2 (

∑n
j=1(xj−x̄)2+n(x̄−μi)

2)

σ n(
√

2π)n
, i = 1, 2,

where x̄ = 1
n

∑n
j=1 xj . Hence for μ1 > μ2,

A1 : P1(X)

P2(X)
≥ 1 ⇒ e− n

2σ2 [(x̄−μ1)
2−(x̄−μ2)

2] ≥ 1.

Taking logarithms and simplifying, we have

− n

2σ 2
[(x̄ − μ1)

2 − (x̄ − μ2)
2] ≥ 0 ⇒

x̄ ≥ μ2
1 − μ2

2

2(μ1 − μ2)
= 1

2
(μ1 + μ2) for μ1 > μ2

where

x̄ ∼ N1

(
μi,

σ 2

n

)
, i = 1, 2.

Therefore the probabilities of misclassification are the following:

P(2|1) =
∫ k

−∞

√
n

σ
√

2π
e− n

2σ2 (x̄−μ1)
2

dx̄ = Φ
(√

n(μ2 − μ1)

2σ

)

P(1|2) =
∫ ∞

k

√
n

σ
√

2π
e− n

2σ2 (x̄−μ2)
2

dx̄ = 1 − Φ
(√

n(μ1 − μ2)

2σ

)

where k = 1
2(μ1+μ2) and Φ(·) is the distribution function of a univariate standard normal

random variable.
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Example 12.3.4. Assume that no prior probabilities or costs are involved. A tuber crop
called tapioca is planted by farmers. While farmer F1 applies a standard fertilizer to the
soil to enhance the growth of the tapioca plants, farmer F2 does not apply any fertilizer
and let the plants grow naturally. At harvest time, a tapioca plant is pulled up with all
its tubers attached to the bottom of the stem. The upper part of the stem is cut off and
the lower part with its tubers is put out for sale. Tuber yield per plant, x, is measured
by weighing the lower part of the stem with the tubers attached. It is known from past
experience that x is normally distributed with mean value μ1 = 5 and variance σ 2 = 1
for F1 type farms, that is, x ∼ N1(μ1 = 5, σ 2 = 1)|F1 and that for F2 type farms,
x ∼ N1(μ2 = 3, σ 2 = 1)|F2, the weights being measured in kilograms. A road-side
vendor is selling tapioca and his collection is either from F1 type farms or F2 type farms,
but not both. A customer picked (1): one stem with its tubers attached weighing 4.2 kg (2)
a random sample of four stems respectively weighing 6, 4, 3 and 5 kg. To which type of
farms will you classify the observations in (1) and (2)?

Solution 12.3.4. (1). The decision is based on k = 1
2(μ1 + μ2) = 1

2(5 + 3) = 4. In this
case, the decision rule A = (A1, A2) is such that A1 : x ≥ k and A2 : x < k for μ1 > μ2.
Note that k−μ1

σ
= k − μ1 = 4 − 5 = −1 and k−μ2

σ
= (4 − 3) = 1. As the observed x is

4.2 > 4 = k, we classify x into P1(X) : N1(μ1, 1). Moreover,

P(1|1, A) = Probability of making a correct classification decision

= Pr{x ≥ k|P1(x)} =
∫ ∞

k

e− 1
2 (x−μ1)

2

√
(2π)

dx

=
∫ ∞

−1

e− 1
2 u2

√
(2π)

= 0.5 +
∫ 1

0

e− 1
2 u2

√
(2π)

dx ≈ 0.84,

and

P(1|2, A) = Probability of misclassification

= Pr{x ≥ k|P2(x)} =
∫ ∞

k

e− 1
2 (x−μ2)

2

√
(2π)

dx =
∫ ∞

1

e− 1
2 u2

√
(2π)

dx ≈ 0.16.

Solution 12.3.4. (2). In this case, x̄ = 1
4(6+4+3+5) = 4.5, n = 4, x̄ ∼ N(μi,

1
n
), i =

1, 2, (k−μ1)

σ/
√

n
= 2(4 − 5) = −2 and (k−μ2)

σ/
√

n
= 2(4 − 3) = 2. Since the observed x̄ is

4.5 > 4 = k, we assign the sample to P1(X) : N(μ1, 1), the criterion being A1 : x̄ ≥ k

and A2 : x̄ < k. Additionally,
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P(1|1, A) = Probability of a correct classification

= Pr{x̄ ≥ k|P1(X)} =
∫ ∞

k

e− n
2 (x̄−μ1)

2

√
(2π)

dx̄ =
∫ ∞

−2

e− 1
2 u2

√
(2π)

du

= 0.5 +
∫ 2

0

e− 1
2 u2

√
(2π)

du ≈ 0.98,

and

P(1|2, A) = Probability of misclassification

= Pr{x̄ ≥ k|P2(X)} =
∫ ∞

k

e− n
2 (x̄−μ2)

2

√
(2π)

dx̄ =
∫ ∞

2

e− 1
2 u2

√
(2π)

du ≈ 0.023.

Example 12.3.5. Let π1 and π2 be two p-variate real nonsingular normal popula-
tions sharing the same covariance matrix, π1 : Np(μ(1), Σ), Σ > O, and π2 :
Np(μ(2), Σ), Σ > O, whose mean values are such that μ(1) 
= μ(2). Let the prior
probabilities be q1 = q2 and the cost functions be C(1|2) = C(2|1). Consider a single
p-vector X to be classified into π1 or π2. Determine the regions of misclassification and
the corresponding probabilities.

Solution 12.3.5. The p-variate real normal densities are the following:

Pi(X) = 1

(2π)
p
2 |Σ | 1

2

e− 1
2 (X−μ(i))′Σ−1(X−μ(i)) (i)

for i = 1, 2, Σ > O, μ(1) 
= μ(2). Consider the inequality

P1(X)

P2(X)
≥ C(1|2) q2

C(2|1) q1
= 1 ⇒

e−1
2 [(X−μ(1))′Σ−1(X−μ(1))−(X−μ(2))′Σ−1(X−μ(2))] ≥ 1.

Taking logarithms, we have

−1
2 [(X − μ(1))′Σ−1(X − μ(1)) − (X − μ(2))′Σ−1(X − μ(2))] ≥ 0 ⇒

(μ(1) − μ(2))′Σ−1X − 1
2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2)) ≥ 0.

Let
u = (μ(1) − μ(2))′Σ−1X − 1

2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2)). (12.3.7)
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Then, u has a univariate normal distribution since it is a linear function of the components
of X, which is a p-variate normal. Thus,

Var(u) = Var[(μ(1) − μ(2))′Σ−1X]
= (μ(1) − μ(2))′Σ−1Cov(X)Σ−1(μ(1) − μ(2))

= (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) = Δ2 (12.3.8)

where Δ2 is Mahalanobis’ distance. The mean values of u under π1 and π2 are respectively,

E(u)|π1 = (μ(1) − μ(2))′Σ−1E(X)|π1 − 1
2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2))

= 1
2(μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) = 1

2Δ2, (12.3.9)

E(u)|π2 = (μ(1) − μ(2))′Σ−1μ(2) − 1
2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2))

= 1
2(μ(1) − μ(2))′Σ−1(μ(2) − μ(1)) = −1

2Δ2, (12.3.10)

so that

u ∼ N1(
1
2Δ2, Δ2) under π1,

u ∼ N1(−1
2Δ2, Δ2) under π2. (12.3.11)

Accordingly, the regions of misclassification are

A2 : u < 0|π1 : u ∼ N1(
1
2Δ2, Δ2) and A1 : u ≥ 0|π2 : u ∼ N1(−1

2Δ2, Δ2), (12.3.12)

and the probabilities of misclassification are as follows:

P(2|1) =
∫ 0

−∞
1

Δ
√

2π
e− 1

2Δ2 (u− 1
2 Δ2)2

du

=
∫ 0− 1

2 Δ2

Δ

−∞
1√
2π

e− t2
2 dt = Φ(−1

2Δ) (ii)

P(1|2) =
∫ ∞

0

1

Δ
√

2π
e− 1

2Δ2 (u+ 1
2 Δ2)du

=
∫ ∞

0+ 1
2 Δ2

Δ

1√
2π

e− t2
2 dt = 1 − Φ(1

2Δ) (iii)

where Φ(·) denotes the distribution function of a univariate standard normal variable.



Classification Problems 725

Note 12.3.1. If no conditions are imposed on the prior probabilities, q1 and q2, or on the
costs of misclassification, C(2|1) and C(1|2), then the regions are determined as A1 : u ≥
k, k = ln C(1|2) q2

C(2|1) q1
, and A2 : u < k. In this case, the probabilities of misclassification will

be Φ
(k− 1

2 Δ2

Δ

)
and 1 − Φ

(k+ 1
2 Δ2

Δ

)
, respectively.

Note 12.3.2. If the prior probabilities q1 and q2 are not known, we may assume that the
two populations π1 and π2 are equally likely to be chosen or equivalently that q1 = q2 =
1
2 , in which instance k = ln C(1|2)

C(2|1)
. Then, the correct decisions are to assign the vector

X at hand to π1 in the region A1 and to π2 in the region A2, where A1 : u ≥ k and
A2 : u < k, k = ln q2 C(1|2)

q1 C(2|1)
with q1, q2, C(2|1) and C(1|2) assumed to be known and

u = (μ(1) − μ(2))′Σ−1X − 1
2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2))

whose first term, namely (μ(1)−μ(2))′Σ−1X, is known as the linear discriminant function,
which is utilized to discriminate or to separate two p-variate populations, not necessarily
normally distributed, having mean value vectors μ(1) and μ(2) and sharing the same co-
variance matrix Σ > O.

Example 12.3.6. Assume that no prior probabilities or costs are involved. Applicants
to a certain training program are given tests to evaluate their aptitude for languages and
aptitude for science. Let the test scores be denoted by x1 and x2, respectively. Let X be

the bivariate vector X =
[
x1

x2

]

. After completing the training program, their aptitudes

are tested again. Let X(1)′ = [x(1)
1 , x

(1)
2 ] be the score vector in the group of success-

ful trainees and let X(2)′ = [x(2)
1 , x

(2)
2 ] be the score vector in the group of unsuccessful

trainees. From previous experience of conducting such tests over the years, it is known
that X(1) ∼ N2(μ

(1), Σ), Σ > O, and X(2) ∼ N2(μ
(2), Σ), Σ > O, where

μ(1) =
[

4
1

]

, μ(2) =
[

2
1

]

, Σ =
[

2 1
1 1

]

⇒ Σ−1 =
[

1 −1
−1 2

]

.

Then (1): one applicant taken at random before the training program started obtained the

test scores X0 =
[

4
1

]

; (2): three applicants chosen at random before the training program

started had the following scores:
[

4
2

]

,

[
3
1

]

,

[
5
1

]

.

In (1), classify X0 to π1 or π2 and in (2), classify the entire sample of three vectors into π1

or π2.
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Solution 12.3.6. Let us compute certain quantities which are needed to answer the ques-
tions:

1

2
(μ(1) + μ(2)) = 1

2

([
4
1

]

+
[

2
1

])

= 1

2

[
6
2

]

=
[

3
1

]

;

μ(1) − μ(2) =
[

2
0

]

, (μ(1) − μ(2))′Σ−1X = [2, −2]X = 2x1 − 2x2;

Δ2 = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) = [2, 0]
[

1 −1
−1 2

] [
2
0

]

= 4;

(μ(1) − μ(2))′Σ−1(μ(1) + μ(2)) = [2, 0]
[

1 −1
−1 2

] [
6
2

]

= 8.

Hence,

u = (μ(1) − μ(2))′Σ−1X − 1

2
(μ(1) − μ(2))′Σ−1(μ(1) + μ(2))

= 2x1 − 2x2 − 4;
u|π1 ∼ N1(

1
2Δ2, Δ2), u|π2 ∼ N1(−1

2Δ2, Δ2);
A1 : u ≥ 0, A2 : u < 0.

Since, in (1), the observed X0 =
[

4
1

]

, the observed u is u = 2x1 − 2x2 − 4 = 8 − 2 −
4 = 2 > 0 and we classify the observed X0 into π1 : N1(

1
2Δ2, Δ2), the criterion being

A1 : u ≥ 0 and A2 : u < 0. Thus,

P(1|1, A) = Probability of making a correct classification decision

= Pr{u ≥ 0|π1} =
∫ ∞

0

e− 1
2Δ2 (u− 1

2 Δ2)2

Δ
√

(2π)
du =

∫ ∞

−Δ
2

e− 1
2 v2

√
(2π)

dv

=
∫ ∞

−1

e− 1
2 v2

√
(2π)

dv = 0.5 +
∫ 1

0

e− 1
2 v2

√
(2π)

dv ≈ 0.841;

P(1|2, A) = Probability of misclassification

=
∫ ∞

0

e− 1
2Δ2 (u+ 1

2 Δ2)2

Δ
√

(2π)
du =

∫ ∞

1

e− 1
2 v2

√
(2π)

dv ≈ 0.159.

When solving (2), the entire sample is to be classified. Proceeding as in the derivation of
the criterion u in case (1), it is seen that for the problem at hand, X0 will be replaced by X̄,
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the average of the sample vectors or the sample mean value vector, and then u will become
u1 = 2x̄1 − 2x̄2 − 4 where X̄′ = [x̄1, x̄2]. Thus, we require the sample average:

[
4
2

]

+
[

3
1

]

+
[

5
1

]

=
[

12
4

]

⇒ observed sample mean = 1

3

[
12
4

]

.

This means that x̄1 = 12
3 = 4, x̄2 = 4

3 , and the observed u1 = 2x̄1−2x̄2−4 = 8− 8
3 −4 >

0. Hence, we classify the whole sample to π1 as the criterion is A1 : u1 ≥ 0 and A2 : u1 <

0. Since X̄ is normally distributed with E[X̄] = μ(i) and Cov(X̄) = 1
n
Σ, i = 1, 2, where

n is the sample size, the densities of u1 under π1 and π2 are the following:

u1|π1 ∼ N1(
1
2Δ2, 1

3Δ2), n = 3,

u1|π2 ∼ N1(−1
2Δ2, 1

3Δ2).

Moreover,

P(1|1, A) = Probability of making a correct classification decision

= Pr{u1 ≥ 0|π1} =
∫ ∞

0

√
3

Δ
√

(2π)
e− 3

2Δ2 (u1− 1
2 Δ2)2

du1

=
∫ ∞

−
√

3Δ
2

e− 1
2 v2

√
(2π)

dv =
∫ ∞

−√
3

e− 1
2 v2

√
(2π)

dv = 0.5 +
∫ √

3

0

e− 1
2 v2

√
(2π)

dv ≈ 0.958

and

P(1|2, A) = Probability of misclassification

= Pr{u1 ≥ 0|π2} =
∫ ∞

0

√
3

Δ
√

(2π)
e− 3

2Δ2 (u1+ 1
2 Δ2)2

du1

=
∫ ∞

√
3

e− 1
2 v2

√
(2π)

≈ 0.042.

12.4. Linear Discriminant Function

Let X be a p × 1 vector and B a p × 1 arbitrary constant vector, B ′ = (b1, . . . , bp).
Consider the arbitrary linear function w = B ′X. Then, the mean value and variance of w

are the following: E(w) = B ′E(X) and Var(w) = Var(B ′X) = B ′Cov(X)B = B ′ΣB

where Σ > O is the covariance matrix of X. Suppose that the X could be from a p-variate
real population π1 with mean value vector μ(1) or from the p-variate real population π2

with mean value vector μ(2). Suppose that both the populations π1 and π2 have the same
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covariance matrix Σ > O. Then, a measure of discrimination or separation between π1

and π2 is |B ′μ(1) − B ′μ(2)| as measured in terms of the standard deviation
√

Var(w) for
determining the best choice of B. Taking the squared distance, let

δ = [B ′μ(1) − B ′μ(2)]2

B ′ΣB
= [B ′(μ(1) − μ(2)]2

B ′ΣB
= B ′(μ(1) − μ(2))(μ(1) − μ(2))′B

B ′ΣB
(12.4.1)

since the square of a scalar quantity is the scalar quantity times its transpose, B ′(μ(1) −
μ(2)) being a scalar quantity. Accordingly, we will maximize δ as specified in (12.4.1).
This will be achieved by selecting a particular B in such a way that δ attains a maximum
which corresponds to the maximum distance between π1 and π2. Without any loss of
generality, we may assume that B ′ΣB = 1, so that only the numerator in (12.4.1) need be
maximized, subject to the condition B ′ΣB = 1. Let λ denote a Lagrangian multiplier and

η = B ′(μ(1) − μ(2))(μ(1) − μ(2))′B − λ(B ′ΣB − 1).

Let us take the partial derivative of η with respect to the vector B and equate the result to
a null vector (the reader may refer to Chap. 1 for the derivative of a scalar variable with
respect to a vector variable):

∂η

∂B
= O ⇒ 2(μ(1) − μ(2))(μ(1) − μ(2))′B − 2λΣB = O

⇒ Σ−1(μ(1) − μ(2))(μ(1) − μ(2))′B = λB. (i)

Note that (μ(1) − μ(2))′B ≡ α is a scalar quantity and B is a specific vector coming from
(i) and hence we may write (i) as

B = α

λ
Σ−1(μ(1) − μ(2)) ≡ c Σ−1(μ(1) − μ(2)) (ii)

where c is a real scalar quantity. Observe that δ as given in (12.4.1) will remain the same
if B is multiplied by any scalar quantity. Thus, we may take c = 1 in (ii) without any loss
of generality. The linear discriminant function then becomes

B ′X = (μ(1) − μ(2))′Σ−1X, (12.4.2)

and when B ′X is as given in (12.4.2), δ as defined in (12.4.1), can be expressed as follows:

δ = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2))(μ(1) − μ(2))′Σ−1(μ(1) − μ(2))

(μ(1) − μ(2))′Σ−1(μ(1) − μ(2))

= (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) = Δ2 ≡ Mahalanobis’ distance

= Var(w) = Variance of the discriminant function. (12.4.3)
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This δ is also the generalized squared distance between the vectors μ(1) and μ(2) or the
squared distance between the vectors Σ− 1

2 μ(1) and Σ− 1
2 μ(2) in the mathematical sense

(Euclidean distance). Hence Mahalanobis’ distance between two p-variate populations
with different mean value vectors and the same covariance matrix is a measure of dis-
crimination or separation between the populations, and the linear discriminant function is
given in (12.4.2). Hence for an observed value X, if u = (μ(1) − μ(2))′Σ−1X > 0 when
μ(1), μ(2) and Σ are known, then we choose population π1 with mean value μ(1), and if
u < 0, then we select population π2 with mean value μ(2). When u = 0, both π1 and π2

are equally favored.

Example 12.4.1. In a small township, there is only one grocery store. The town is laid
out on the East and West sides of the sole main road. We will refer to the villagers as East-
enders and West-enders. These townspeople shop only once a week for groceries. The
grocery store owner found that the East-enders and West-enders have somewhat different
buying habits. Consider the following items: x1 = grain items in kilograms, x2 = vegetable
items in kilograms, x3 = dairy products in kilograms, and let [x1, x2, x3] = X′ where X is
the vector of weekly purchases. Then, the expected quantities bought by the East-enders
and West-enders are E(X) = μ(1) and E(X) = μ(2), respectively, with the common
covariance matrix Σ > O. From past history, the grocery store owner determined that

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , μ(1) =
⎡

⎣
2
3
1

⎤

⎦ , μ(2) =
⎡

⎣
1
3
2

⎤

⎦ , Σ =
⎡

⎣
3 0 0
0 2 −1
0 −1 1

⎤

⎦ .

Consider the following situations: (1) A customer walked in and bought x1 = 1 kg of grain
items, x2 = 2 kg of vegetable items, and x3 = 1 kg of dairy products. Is she likely to be
an East-ender or West-ender? (2): Another customer bought the three types of items in
the quantities (10, 1, 1), respectively. Is she more likely to be an East-ender than a West-
ender?

Solution 12.4.1. The inverse of the covariance matrix, μ(1) − μ(2), as well as other
relevant quantities are the following:

Σ−1 =
⎡

⎣

1
3 0 0
0 1 1
0 1 2

⎤

⎦ , μ(1) − μ(2) =
⎡

⎣
2
3
1

⎤

⎦−
⎡

⎣
1
3
2

⎤

⎦ =
⎡

⎣
1
0

−1

⎤

⎦ ,

(μ(1) − μ(2))′Σ−1 = [1, 0, −1]
⎡

⎣

1
3 0 0
0 1 1
0 1 2

⎤

⎦ = [1
3 , −1, −2].
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In (1), X′ = (1, 2, 1) and since

(μ(1) − μ(2))′Σ−1X = [1
3 , −1, −2]

⎡

⎣
1
2
1

⎤

⎦ < 0,

we classify this customer as a West-ender from her buying pattern. In (2),

(μ(1) − μ(2))′Σ−1X = [1
3 , −1, −2]

⎡

⎣
10
1
1

⎤

⎦ > 0,

so that, given her purchases, this customer is classified as an East-ender.

12.5. Classification When the Population Parameters are Unknown

We now consider the classification problem involving two populations π1 and π2 for
which the parameters of the corresponding densities are unknown. Since the structure of
the parameters in these general densities P1(X) and P2(X) is not known, we will present
a specific example: Consider the two p-variate normal populations of Example 12.3.3.
Let π1 : Np(μ(1), Σ) and π2 : Np(μ(2), Σ), which share the same positive definite co-
variance matrix Σ . Suppose that we have a single observation vector X to be classified
into π1 or π2. When the parameters μ(1), μ(2) and Σ are unknown, we will have to es-
timate them from some training samples. But, for a problem such as classifying skeletal
remains, one does not have samples from the respective ancestral groups. Nevertheless,
one can obtain training samples from living racial groups, and so, secure estimates of the
parameters involved. Assume that we have simple random samples of sizes n1 and n2 from
Np(μ(1), Σ) and Np(μ(2), Σ), respectively. Denote the sample values by X

(1)
1 , . . . , X

(1)
n1 ,

and X
(2)
1 , . . . , X

(2)
n2 , and let X̄(1) and X̄(2) be the sample averages. That is,

X
(1)
j =

⎡

⎢
⎣

x
(1)
1j
...

x
(1)
pj

⎤

⎥
⎦ , j = 1, . . . , n1; X

(2)
j =

⎡

⎢
⎣

x
(2)
1j
...

x
(2)
pj

⎤

⎥
⎦ , j = 1, . . . , n2;

X̄(1) =
⎡

⎢
⎣

x̄
(1)
1
...

x̄
(1)
p

⎤

⎥
⎦ , x̄

(1)
k = 1

n1

n1∑

j=1

x
(1)
kj ; X̄(2) =

⎡

⎢
⎣

x̄
(2)
1
...

x̄
(2)
p

⎤

⎥
⎦ , x̄

(2)
k = 1

n2

n2∑

j=1

x
(2)
kj . (12.5.1)

Let the sample matrices be denoted by bold-faced letters where the p×n1 matrix X(1) and
the p × n2 matrix X(2) are the sample matrices and let X̄(1) and X̄(2) be the matrices of
sample means. Thus, we have
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X(1) = [X(1)
1 , . . . , X(1)

n1
] =

⎡

⎢
⎣

x
(1)
11 . . . x

(1)
1n1

...
. . .

...

x
(1)
p1 . . . x

(1)
pn1

⎤

⎥
⎦ ,

X̄(1) = [X̄(1), . . . , X̄(1)] =
⎡

⎢
⎣

x̄
(1)
1 . . . x̄

(1)
1

...
. . .

...

x̄
(1)
p . . . x̄

(1)
p

⎤

⎥
⎦ ,

X(2) = [X(2)
1 , . . . , X(2)

n2
] =

⎡

⎢
⎣

x
(2)
11 . . . x

(2)
1n2

...
. . .

...

x
(2)
p1 . . . x

(2)
pn2

⎤

⎥
⎦ ,

X̄(2) = [X̄(2), . . . , X̄(2)] =
⎡

⎢
⎣

x̄
(2)
1 . . . x̄

(2)
1

...
. . .

...

x̄
(2)
p . . . x̄

(2)
p

⎤

⎥
⎦ . (12.5.2)

Then, the sample sum of products matrices are

Si = (X(i) − X̄(i))(X(i) − X̄(i))′, i = 1, 2;

Sm = (s
(m)
ij ), s

(m)
ij =

nm∑

k=1

(x
(m)
ik − x̄

(m)
i )(x

(m)
jk − x̄

(m)
j ), m = 1, 2, S = S1 + S2. (12.5.3)

The unbiased estimators of μ(1), μ(2) and Σ are respectively X̄(1), X̄(2) and S
n(2)

=
S1+S2
n(2)

, n(2) = n1 + n2 − 2. The criteria for classification, the regions, the statistic, and so
on, are available from Example 12.3.3. That is,

A1 : u ≥ k, A2 : u < k, k = ln
C(1|2)q2

C(2|1)q1
,

where

u = X′Σ−1(μ(1) − μ(2)) − 1

2
(μ(1) − μ(2))′Σ−1(μ(1) + μ(2)).

Note that q1 and q2 are the prior probabilities of selecting the populations π1 and π2 and
C(1|2) and C(2|1) are the costs or loss associated with misclassification. We will assume
that q1, q2, C(1|2) and C(2|1) are all known but the parameters μ(1), μ(2) and Σ are
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estimated by their unbiased estimators. Denoting the estimator of u as v, we obtain the
following criterion, assuming that we have one p-vector X to be classified into π1 or π2:

A1 : v ≥ k, A2 : v < k, k = ln
q2C(1|2)

q1C(2|1)
,

v = n(2)X
′S−1(X̄(1) − X̄(2)) − n(2)

1
2(X̄(1) − X̄(2))′S−1(X̄(1) + X̄(2))

= n(2)[X − 1
2(X̄(1) + X̄(2))]′S−1(X̄(1) − X̄(2)). (12.5.4)

As it turns out, it already proves quite challenging to obtain the exact distribution of v as
given in (12.5.4) where X is a single p-vector either from π1 or from π2.

12.5.1. Some asymptotic results

Before considering asymptotic properties of u and v as defined in Sect. 12.4, let us
recall certain results obtained in earlier chapters. Let the p × 1 vectors Yj , j = 1, . . . , n,

be iid vectors from some population for which E[Yj ] = μ and Cov(Yj ) = Σ > O, j =
1, . . . , n. Let the sample matrix, the matrix of sample means wherein the sample mean
Ȳ = 1

n

∑n
j=1 Yj and the sample sum of products matrix S be the as follows:

Y = [Y1, . . . , Yn], Ȳ = [Ȳ , . . . , Ȳ ], S = (sij ), sij =
n∑

k=1

(yik − ȳi)(yjk − ȳj ),

S = [Y − Ȳ][Y − Ȳ]′ = Y [ In − JJ ′/n ]Y, Y ′
j = [y1j , y2j , . . . , ypj ], (i)

where J is a n × 1 vector of unities. Since a matrix of the form Y − Ȳ is present, we
may let μ = O without any loss of generality in the following computations since Yj −
Ȳ = (Yj − μ) − (Ȳ − μ). Note that B = B ′ = In − 1

n
JJ ′ = B2 and hence, B is

idempotent and of rank n − 1. Since B = B ′, there exists an orthonormal matrix Q such
that Q′BQ = diag(1, . . . , 1, 0) = D, QQ′ = I, Q′Q = I, the diagonal elements being
1’s and 0 since B = B2 and of rank n − 1. Then,

S = YQ diag(1, . . . , 1, 0)Q′ Y′ = YQDD′Q′Y′,
D = diag(1, . . . , 1, 0). (ii)

Consider Σ− 1
2 SΣ− 1

2 . Let Uj = Σ− 1
2 Yj , j = 1, . . . , n, where Yj is the j -th column of Y

and it is assumed that μ = O. Observe that E[Uj ] = O, Cov(Uj ) = Ip, j = 1, . . . , n,

and the Uj ’s are uncorrelated. Letting U = [U1, . . . , Un], (ii) implies that

Σ− 1
2 SΣ− 1

2 = UQDDQ′U′. (iii)
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Denoting by U(j) the j -th row of U, it follows that the elements of U(j) are iid uncorrelated
real scalar variables with mean value zero and variance 1. Consider the transformation
V(j) = U(j)Q; then E[V(j)] = O and Cov[V(j)] = In, j = 1, . . . , p, the V(j)’s being
the uncorrelated. Let V be the p × n matrix whose rows are V(j), j = 1, . . . , p. Let the
columns of V be Vj , j = 1, . . . , n, that is, V = [V1, . . . , Vn]. Then, (iii) implies the
following:

Σ− 1
2 SΣ− 1

2 = VDD′V′ = {[V1, . . . , Vn]D}{[V1, . . . , Vn]D}′
= [V1, . . . , Vn−1, O][V1, . . . , Vn−1, O]′ = V1V

′
1 + · · · + Vn−1V

′
n−1 ⇒

E[Σ− 1
2 SΣ− 1

2 ] = E[V1V
′
1] + · · · + E[Vn−1V

′
n−1] = Ip + · · · + Ip = (n − 1)Ip ⇒

E[S] = (n − 1)Σ or E
[ S

n − 1

]
= Σ. (iv)

Additionally,

Cov(Ȳ ) = 1

n2
Cov[Y1 + · · · + Yn] = 1

n2
[Cov(Y1) + · · · + Cov(Yn)]

= 1

n2
[Σ + · · · + Σ] = n

n2
Σ = Σ

n
→ O as n → ∞, (v)

when Σ is finite with respect to any norm of Σ , namely ‖Σ‖ < ∞. Appealing to the
extended Chebyshev inequality, this shows that the unbiased estimator of μ, namely Ȳ ,
converges to μ in probability, that is,

Pr(Ȳ → μ) → 1 when n → ∞ or lim
n→∞ Pr(Ȳ → μ) = 1. (vi)

An unbiased estimator of Σ is Σ̂ = S
n−1 with E[Σ̂] = Σ . Will Σ̂ also converge to Σ in

probability when n → ∞? In order to establish this, we require the covariance structure
of the elements in S. For arbitrary populations, it is somewhat difficult to verify this result;
however, it is rather straightforward for normal populations. We will examine this aspect
next.

12.5.2. Another method

Let the p × 1 vectors Xj, j = 1, . . . , n, be a simple random sample of size n from
a population having a real Np(μ, Σ), Σ > O, distribution. Letting S denote the sample
sum of products matrix, S will be distributed as a Wishart matrix with m = n − 1 degrees
of freedom and Σ > O as its parameter matrix, whose density is

f (S) = 1

2
mp
2 |Σ |m

2 Γp(m
2 )

|S|m
2 −p+1

2 e− 1
2 tr(Σ−1S), S > O, m ≥ p; (i)
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the reader may also refer to real matrix-variate gamma density discussed in Chap. 5. This is
usually written as S ∼ Wp(m, Σ), Σ > O. Letting S(∗) = Σ− 1

2 SΣ− 1
2 , S(∗) ∼ Wp(m, I).

Consider the transformation S(∗) = T T ′ where T = (tij ) is a lower triangular matrix
whose diagonal elements are positive, that is, tij = 0, i < j, and tjj > 0, j = 1, . . . , p.
It was explained in Chaps. 1 and 3 that the tij ’s are mutually independently distributed with
the tij ’s such that i > j distributed as standard normal variables and t2

jj , as a chisquare
variable having m − (j − 1) degrees of freedom. The j -th diagonal element of T T ′ is of
the form t2

j1 + · · · + t2
jj−1 + t2

jj where t2
jk ∼ χ2

1 , for k = 1, . . . , j − 1, that is, the square

of a real standard normal variable. Thus, the j -th diagonal element is distributed as χ2
1 +

· · · + χ2
1 + χ2

m−(j−1) ∼ χ2
m since all the individual chisquare variables are independently

distributed, in which case the resulting number of degrees of freedom is the sum of the
degrees of freedom of the chisquares. Now, noting that for a χ2

ν ,

E[χ2
ν ] = ν and Var(χ2

ν ) = 2 ν, (ii)

the expected value of each of the diagonal elements in T T ′, which are the diagonal ele-
ments in S(∗), will be m = n − 1. The non-diagonal elements in T T ′ result from a sum of
terms of the form tiktii , k < i, whose expected value is E[tiktii] = E[tik]E[tjj ]; but since
E[tik] = 0, i > k, all the non-diagonal elements will have zero as their expected values.
Accordingly,

E[S(∗)] = diag(m, . . . , m) ⇒ E
[S(∗)

m

]
= I ⇒ E

[ S

m

]
= Σ , m = n − 1, (iii)

and the estimator Σ̂ = S
m

is unbiased for Σ , m being equal to n − 1. Now, let us examine
the covariance structure of S(∗). Let W denote a single vector comprising all the distinct
elements of S(∗) = T T ′ and consider its covariance structure. In this vector of order
p(p+1)

2 ×1, convert all the original tij ’s and tjj ’s in terms of standard normal and chisquare
variables. Let z1, . . . , zp(p−1)

2
be the standard normal variables and y1, . . . , yp denote the

chisquare variables. Then, each element of Cov(W) = [W − E(W)][W − E(W)]′ will be
a sum of terms of the type

[Var(yk)][Var(zj )] = Var(yk) = [twice the number of degrees of freedom of yk], (iv)

which happens to be a linear function of m. Our estimator being Σ̂ = S
m

= Σ
1
2

S(∗)

m
Σ

1
2 ,

the covariance structure of S(∗)

m
which is 1

m2 Cov(W) tends to O when m → ∞, since
each element of Cov(W) is of the form a m + b where a and b are real scalars, so that
a m+b

m2 → 0 as m → ∞, or equivalently, as n → ∞ since m = n − 1. Thus, it follows
from an extended version of Chebyshev’s inequality that
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Pr
( S

m
→ Σ

)
→ 1 as m → ∞ or as n → ∞ since m = n − 1. (v)

These last two results are stated next as a theorem.

Theorem 12.5.1. Let the p × 1 vectors Xj, j = 1, . . . , n, be iid with E[Xj ] = μ and
Cov(Xj ) = Σ, j = 1, . . . , n. Assume that Σ is finite in the sense that ‖Σ‖ < ∞. Then,
letting X̄ = 1

n

∑n
j=1 Xj denote the sample mean,

Pr(X̄ → μ) → 1 as n → ∞. (12.5.5)

Further, letting Xj ∼ Np(μ, Σ), Σ > O,

Pr
(
Σ̂ = S

m
→ Σ

)
→ 1 as m → ∞ or as n → ∞ since m = n − 1. (12.5.6)

Let us now examine the criterion in (12.5.4). In this case, we can obtain an asymptotic
distribution of the criterion v for large n(2) or when n(2) → ∞ in the sense that n1 → ∞
and n2 → ∞. When n(2) → ∞, we have X̄(1) → μ(1), X̄(2) → μ(2) and S

n(2)
→ Σ , so

that the criterion v in (12.5.4) becomes

u = (μ(1) − μ(2))′Σ−1X − 1
2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2))

= [X − 1
2(μ(1) − μ(2))]′Σ−1(μ(1) − μ(2)), (12.5.7)

which is nothing but u as specified in (12.3.7) with the densities N1(
1
2Δ2, Δ2) in π1 and

N1(−1
2Δ2, Δ2) in π2. Hence, the following result:

Theorem 12.5.2. When n1 → ∞ and n2 → ∞, the criterion v provided in (12.5.4)
becomes u as specified in (12.5.7) with the univariate normal densities N1(

1
2Δ2, Δ2) in

π1 and N1(−1
2Δ2, Δ2) in π2, where Δ2 is Mahalanobis’ distance given in (12.3.8). We

classify X, the observation vector at hand, to π1 when X ∈ A1 and, to π2 when X ∈ A2

where A1 : u ≥ k and A2 : u < k with k = ln C(1|2) q2
C(2|1) q1

, q1 and q2 being the prior
probabilities of selecting the populations π1 and π2, respectively, and C(2|1) and C(1|2)

denoting the costs or loss associated with misclassification.

In a practical situation, when n1 and n2 are large, we may replace Δ2 in Theorem 12.5.2
by the corresponding sample value n(2)(X̄

(1) − X̄(2))′S−1(X̄(1) − X̄(2)) where S = S1 +S2

and n(2) = n1 + n2 − 2 and utilize the criterion u as specified in (12.5.7) to classify the
given vector X into π1 and π2. It is assumed that q1, q2, C(2|1) and C(1|2) are available.
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12.5.3. A new sample from π1 or π2

As in Examples 12.3.1 and 12.3.2, suppose that a simple random sample of size n3

is available either from π1 : Np(μ(1), Σ) or from π2 : Np(μ(2), Σ), Σ > O. Letting

the new sample be X
(3)
1 , . . . , X

(3)
n3 , the p × n3 sample matrix, the sample mean X̄(3) =

1
n3

∑n3
j=1 X

(3)
j , the p × n3 matrix of sample means and the sample sum of products matrix

are the following:

X(3) = [X(3)
1 , . . . , X(3)

n3
], X̄(3) = [X̄(3), X̄(3), . . . , X̄(3)],

S3 = [X(3) − X̄(3)][X(3) − X̄(3)]′ = (s
(3)
ij ),

s
(3)
ij =

n3∑

k=1

(x
(3)
ik − x̄

(3)
i )(x

(3)
jk − x̄

(3)
j ). (12.5.8)

An unbiased estimate from this third sample is Σ̂ = S3
n3−1 , as E[Σ̂] = Σ . A pooled

estimate of Σ obtained from the three samples is

S1 + S2 + S3

n1 + n2 + n3 − 3
≡ S

n(3)

, S = S1 + S2 + S3, n(3) = n1 + n2 + n3 − 3. (12.5.9)

Then, the criterion corresponding to (12.3.4) changes to:

A1 : w ≥ k and A2 : w < k, k = ln
C(1|2) q2

C(2|1) q1
, (12.5.10)

where
w = n(3)[X̄(3) − 1

2(X̄(1) + X̄(2))]′S−1(X̄(1) − X̄(2)) (12.5.11)

with S = S1+S2+S3, n(3) = n1+n2+n3−3 and X̄(3) being the sample average from the
third sample, which either comes from π1 : Np(μ(1), Σ) or π2 : Np(μ(2), Σ), Σ > O.
Thus, the classification rule is the following:

A1 : w ≥ k and A2 : w < k, k = ln
C(1|2) q2

C(2|1) q1
, (12.5.12)

w being as defined in (12.5.11). That is, classify the new sample into π1 if w ≥ k and, into
π2 if w < k.

As was explained in Sect. 12.5.2, as nj → ∞, j = 1, 2, X̄(i) → μ(i), i = 1, 2, and
although n3 usually remains finite, as n1 → ∞ and n2 → ∞, we have n(3) → ∞ and
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S
n(3)

→ Σ . Accordingly, the criterion w as given in (12.5.11) converges to w1 for large
values of n1 and n2, where

w1 = [X̄(3) − 1
2(μ(1) + μ(2))]′Σ−1(μ(1) − μ(2)). (12.5.13)

Compared to u as specified in (12.3.7), the only difference is that X associated with u

is replaced by X̄(3) in w1. Hence, the variance in u will be multiplied by 1
n3

, and the
asymptotic distributions will be as follows:

w1|π1 ∼ N1

(1

2
Δ2,

1

n3
Δ2
)

and w1|π2 ∼ N1

(
− 1

2
Δ2,

1

n3
Δ2
)
, (12.5.14)

as n1 → ∞ and n2 → ∞.

Theorem 12.5.3. Consider two populations π1 : Np(μ(1), Σ) and π2 : Np(μ(2), Σ),

Σ > O, and simple random samples of respective sizes n1 and n2 from these two popula-
tions. Suppose that a simple random sample of size n3 is available, either from π1 or π2.
For classifying the third sample into π1 or π2, the criterion to be utilized is w as given in
(12.5.11). Then, the asymptotic distribution of w, when ni → ∞, i = 1, 2, is that of w1

specified in (12.5.13) and the regions of classification are as given in (12.5.12).

In a practical situation, when the sample sizes n1 and n2 are large, one may replace
Δ2 by its sample analogue, and then use (12.5.14) to reach a decision. As it turns out, it
proves quite difficult to derive the exact density of w.

Example 12.5.1. A certain milk collection and distribution center collects and sells the
milk supplied by local farmers to the community, the balance, if any, being dispatched to
a nearby city. In that locality, there are two types of cows. Some farmers only keep Jersey
cows and others, only Holstein cows. Samples of the same quantities of milk are taken
and the following characteristics are evaluated: x1, the fat content, x2, the glucose content,
and x3, the protein content. It is known that X′ = (x1, x2, x3) is normally distributed
as X ∼ N3(μ

(1), Σ), Σ > O, for Jersey cows, and X ∼ N3(μ
(2), Σ), Σ > O, for

Holstein cows, with μ(1) 
= μ(2), the covariance matrices Σ being assumed identical.
These parameters which are not known, are estimated on the basis of 100 milk samples
from Jersey cows and 102 samples from Holstein cows, all the samples being of equal
volume. The following are the summarized data with our standard notations, where S1 and
S2 are the sample sums of products matrices:

X̄(1) =
⎡

⎣
2
1
2

⎤

⎦ , X̄(2) =
⎡

⎣
1
2
2

⎤

⎦ , S1 =
⎡

⎣
50 −50 50

−50 100 0
50 0 150

⎤

⎦ , S2 =
⎡

⎣
150 −150 150

−150 300 0
150 0 450

⎤

⎦ .
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Three farmers just brought in their supply of milk and (1): a sample denoted by X1 is
collected from the first farmer’s supply and evaluated; (2) a sample, X2, is taken from a
second farmer’s supply and evaluated; (3) a set of 5 random samples are collected from a
third farmer’s supply, the sample average being X̄. The data is

X1 =
⎡

⎣
2
1
1

⎤

⎦ , X2 =
⎡

⎣
1
1
2

⎤

⎦ and X̄ =
⎡

⎣
2
2
1

⎤

⎦ , n = 5.

Classify, X1, X2 and the sample of size 5 to either coming from Jersey or Holstein cows.

Solution 12.5.1. The following preliminary calculations are needed:

S

n1 + n2 − 2
= S1 + S2

n1 + n2 − 2
= S1 + S2

200
=
⎡

⎣
1 −1 1

−1 2 0
1 0 3

⎤

⎦ ,

( S

200

)−1 =
⎡

⎣
6 3 −2
3 2 −1

−2 −1 1

⎤

⎦ , X̄(1) − X̄(2) =
⎡

⎣
1

−1
0

⎤

⎦ , X̄(1) + X̄(2) =
⎡

⎣
3
3
4

⎤

⎦ .

Then,

(X̄(1) − X̄(2))′
( S

200

)−1 = [1, −1, 0]
⎡

⎣
6 3 −2
3 2 −1

−2 −1 1

⎤

⎦ = [3, 1, −1],

1

2
(X̄(1) − X̄(2))′

( S

200

)−1
(X̄(1) + X̄(2)) = 1

2
[3, 1, −1]

⎡

⎣
3
3
4

⎤

⎦ = 4,

(X̄(1) − X̄(2))′
( S

200

)−1
X = [3, 1, −1]X = 3x1 + x2 − x3 ⇒ w = 3x1 + x2 − x3 − 4

where the w is given in (12.5.11). For answering (1), we substitute X1 to X in w. That
is, w at X1 is 3(2) + (1) − (1) − 4 = 2 > 0. Hence, we assign X1 to Jersey cows.
For answering (2), we replace X in w by X2, that is, 3(1) + (1) − (2) − 4 = −2 < 0.
Thus, we assign X2 to Holstein cows. For answering (3), we replace X in w by X̄. That
is, 3(2) + (2) − (1) − 4 = 3 > 0. Accordingly, we classify this sample as coming from
Jersey cows.

12.6. Maximum Likelihood Method of Classification

As before, let π1 be the p-variate real normal population Np(μ(1), Σ), Σ > O,

with the simple random sample X
(1)
1 , . . . , X

(1)
n1 of size n1 drawn from that population,
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and π2 : Np(μ(2), Σ), Σ > O, with the simple random sample X
(2)
1 , . . . , X

(2)
n2 of size n2

so distributed. A p-vector X at hand is to be classified into π1 or π2. Let the sample means
and the sample sums of products matrices be X̄(1), X̄(2), S1 and S2. Then, the problem
of classification of X into π1 or π2 can be stated in terms of testing a hypothesis of the
following type: X and X

(1)
1 , . . . , X

(1)
n1 are from Np(μ(1), Σ) and X

(2)
1 , . . . , X

(2)
n2 are from

π2 constitutes the null hypothesis, versus, the alternative X and X
(2)
1 , . . . , X

(2)
n2 are from

Np(μ(2), Σ) and X
(1)
1 , . . . , X

(1)
n1 are from Np(μ(1), Σ). Let the likelihood functions under

the null and alternative hypotheses be denoted as L0 and L1, respectively, where

L0 =
{ n1∏

j=1

e− 1
2 (Xj−μ(1))′Σ−1(Xj−μ(1))

(2π)
p
2 |Σ | 1

2

}e− 1
2 (X−μ(1))′Σ−1(X−μ(1))

(2π)
p
2 |Σ | 1

2

×
{ n2∏

j=1

e− 1
2 (Xj−μ(2))′Σ−1(Xj−μ(2))

(2π)
p
2 |Σ | 1

2

}
,

L0 = e− 1
2 ρ1

(2π)
(n1+n2+1)p

2 |Σ | n1+n2+1
2

, ρ1 = ν + (X − μ(1))′Σ−1(X − μ(1)), (i)

L1 = e− 1
2 ρ2

(2π)
(n1+n2+1)p

2 |Σ | n1+n2+1
2

, ρ2 = ν + (X − μ(2))Σ−1(X − μ(2)), (ii)

where

ν = tr(Σ−1S1) + n1

2
(X̄(1) − μ(1))′Σ−1(X̄(1) − μ(1))

+ tr(Σ−1S2) + n2

2
(X̄(2) − μ(2))′Σ−1(X̄(2) − μ(2)) (iii)

and S1 and S2 are the sample sums of products matrices from the samples X
(1)
1 , . . . , X

(1)
n1

and X
(2)
1 , . . . , X

(2)
n2 , respectively. Referring to Chaps. 1 and 3 for vector/matrix derivatives

and the maximum likelihood estimators (MLE’s) of the parameters of normal populations,
the MLE’s obtained from (i) are the following, denoting the estimators/estimates with a
hat: The MLE’s under L0 are the following:

μ̂(1) = n1X̄
(1) + X

n1 + 1
, μ̂(2) = X̄(2), Σ̂ = S1 + S2 + S

(1)
3

n1 + n2 + 1
≡ Σ̂1,

S
(1)
3 = (X − μ̂(1))(X − μ̂(1))′ =

(
X − n1X̄

(1) + X

n1 + 1

)(
X − n1X̄

(1) + X

n1 + 1

)′

=
( n1

n1 + 1

)2
(X − X̄(1))(X − X̄(1))′, (12.6.1)
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observing that the scalar quantity

(X − μ̂(1))′Σ−1(X − μ̂(1)) = tr(X − μ̂(1))′Σ−1(X − μ̂(1)) = tr(Σ−1S
(1)
3 ).

By substituting the MLE’s in L0, we obtain the maximum of L0:

max L0 = e− (n1+n2+1)p

2

(2π)
(n1+n2+1)p

2 |Σ̂1|
(n1+n2+1)

2

,

Σ̂1 = S1 + S2 + ( n1
n1+1)2(X − X̄(1))(X − X̄(1))′

n1 + n2 + 1
. (12.6.2)

Under L1, the MLE’s are

μ̂(2) = n2X̄
(2) + X

n2 + 1
, μ̂(1) = X̄(1), Σ̂ = S1 + S2 + S

(2)
3

n1 + n2 + 1
≡ Σ̂2,

S
(2)
3 =

( n2

n2 + 1

)2
(X − X̄(2))(X − X̄(2))′. (12.6.3)

Thus,

max L1 = e− (n1+n2+1)p

2

(2π)
(n1+n2+1)p

2 |Σ̂2|
n1+n2+1

2

,

Σ̂2 = 1

n1 + n2 + 1

[
S1 + S2 +

( n2

n2 + 1

)2
(X − X̄(2))(X − X̄(2))′

]
.

Hence,

λ1 = max L0

max L1
=
( |Σ̂2|
|Σ̂1|

) n1+n2+1
2 ⇒ λ

2
n1+n2+1

1 = z1 = |Σ̂2|
|Σ̂1|

, so that

z1 = |S1 + S2 + ( n2
n2+1)2(X − X̄(2))(X − X̄(2))′|

|S1 + S2 + ( n1
n1+1)2(X − X̄(1))(X − X̄(1))′| . (12.6.4)

If z1 ≥ 1, then max L0 ≥ max L1, which means that the likelihood of X coming from π1

is greater than or equal to the likelihood of X originating from π2. Hence, we may classify
X into π1 if z1 ≥ 1 and classify X into π2 if z1 < 1. In other words,

A1 : z1 ≥ 1 and A2 : z1 < 1. (iv)



Classification Problems 741

If we let S = S1 + S2, then z1 ≥ 1 ⇒
|S +

( n2

n2 + 1

)2
(X − X̄(2))(X − X̄(2))′|

≥ |S +
( n1

n1 + 1

)2
(X − X̄(1))(X − X̄(1))′|. (v)

We can re-express this last inequality in a more convenient form. Expanding the following
partitioned determinant in two different ways, we have the following, where S is p × p

and Y is p × 1:
∣
∣
∣
∣

S −Y

Y ′ 1

∣
∣
∣
∣ = |S + YY ′| = |S| |1 + Y ′S−1Y |
= |S|[1 + Y ′S−1Y ], (vi)

observing that 1 + Y ′S−1Y is a scalar quantity. Accordingly, z1 ≥ 1 means that

1 +
( n2

n2 + 1

)2
(X − X̄(2))′S−1(X − X̄(2)) ≥ 1 +

( n1

n1 + 1

)2
(X − X̄(1))′S−1(X − X̄(1)).

That is,

z2 =
( n2

n2 + 1

)2
(X − X̄(2))′S−1(X − X̄(2))

−
( n1

n1 + 1

)2
(X − X̄(1))S−1(X − X̄(1)) ≥ 0 ⇒

z3 =
( n2

n2 + 1

)2
(X − X̄(2))′

( S

n1 + n2 − 2

)−1
(X − X̄(2))

−
( n1

n1 + 1

)2
(X − X̄(1))′

( S

n1 + n2 − 2

)−1
(X − X̄(1)) ≥ 0. (12.6.5)

Hence, the regions of classification are the following:

A1 : z3 ≥ 0 and A2 : z3 < 0. (vii)

Thus, classify X into π1 when z3 ≥ 0 and, X into π2 when z3 < 0. For large n1 and n2,
some interesting results ensue. When n1 → ∞ and n2 → ∞, we have ni

ni+1 → 1, i =
1, 2, X̄(i) → μ(i), i = 1, 2, and S

n1+n2−2 → Σ . Then, z3 converges to z4 where

z4 = 1
2(X − μ(2))′Σ−1(X − μ(2)) − (X − μ(1))′Σ−1(X − μ(1)) ≥ 0 (viii)

⇒ [X − 1
2(μ(1) + μ(2))]′Σ−1(μ(1) − μ(2)) ≥ 0 ⇒ u ≥ 0

where u is the same criterion u as that specified in (12.5.7). Hence, we have the following
result:
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Theorem 12.6.1. Let X
(1)
1 , . . . , X

(1)
n1 be a simple random sample of size n1 from π1 :

Np(μ(1), Σ), Σ > O and X
(2)
1 , . . . , X

(2)
n2 be a simple random sample of size n2 from the

population π2 : Np(μ(2), Σ), Σ > O. Letting X be a vector at hand to be classified into
π1 or π2, when n1 → ∞ and n2 → ∞, the likelihood ratio criterion for classification
is the following: Classify X into π1 if u ≥ 0 and, X into π2 if u < 0 or equivalently,
A1 : u ≥ 0 and A2 : u < 0 where u = [X − 1

2(μ(1) + μ(2))]′Σ−1(μ(1) − μ(2)) whose
density is u ∼ N1(

1
2Δ2, Δ2) when X is assigned to π1 and u ∼ N1(−1

2Δ2, Δ2) when
X is assigned to π2, with Δ2 = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2)) denoting Mahalanobis’
distance.

The likelihood ratio criterion for classification specified in (12.6.5) can also be given
the following interpretation: For large values of n1 and n2, the criterion reduces to
the following: (X − μ(2))′Σ−1(X − μ(2)) − (X − μ(1))′Σ−1(X − μ(1)) ≥ 0 where
(X − μ(2))′Σ−1(X − μ(2)) is the generalized distance between X and μ(2), and (X −
μ(1))′Σ−1(X − μ(1)) is the generalized distance between X and μ(1), which means that
the generalized distance between X and μ(2) is larger than the generalized distance be-
tween X and μ(1) when u > 0. That is, X is closer to μ(1) than μ(2) and accordingly,
we classify X into π1, which is the case u > 0. Similarly, if X is closer to μ(2) when
compared to the distance to μ(1), we assign X to π2, which is the case u < 0. The case
u = 0 is also included in the first inequality, but only for convenience. However, when
Pr{u = 0|πi, i = 1, 2} = 0, replacing u > 0 by u ≥ 0 is fully justified.

Note 12.6.1. The reader may refer to Example 12.3.3 for an illustration of the compu-
tations involved in connection with the probabilities of misclassification. For large values
of n1 and n2, one has the z4 of (viii) as an approximation to the u appearing in the same
equation as well as the u of (12.5.7) or that of Example 12.3.3. In order to apply Theo-
rem 12.6.1, one needs to know the parameters μ(1), μ(2) and Σ . When they are not avail-
able, one may substitute to them the corresponding estimates X̄(1), X̄(2) and Σ̂ = S1+S2

n1+n2−2
when n1 and n2 are large. Then, the approximate probabilities of misclassification can be
determined.

Example 12.6.1. Redo the problem considered in Example 12.5.1 by making use of the
maximum likelihood procedure.

Solution 12.6.1. In order to answer the questions, we need to compute

z4 =
( n2

n2 + 1

)2
(X − X̄(2))′

( S

n1 + n2 − 1

)−1
(X − X̄(2))

−
( n1

n1 + 1

)2
(X − X̄(1))′

( S

n1 + n2 − 2

)2
(X − X̄(1)).
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In this case, n1
n1+1 = 100

101 ≈ 1 and n2
n2+1 = 102

103 ≈ 1 and hence, the criterion z4 is the same
as w of (12.5.4) and the decisions arrived at an Example 12.5.1 will remain unchanged in
this example. Since n1 and n2 are large, we have reasonably accurate approximations of
the parameters as

X̄(1) → μ(1), X̄(2) → μ(2) and
S

n1 + n2 − 2
→ Σ,

so that the probabilities of misclassification can be evaluated by using their estimates. The
approximate distributions are then given by

w|π1 ∼ N1(
1
2Δ̂2, Δ̂2) and w|π2 ∼ N1(−1

2Δ̂2, Δ̂2)

where Δ̂2 = (X̄(1) − X̄(2))′( S
n1+n2−2)−1(X̄(1) − X̄(2)). From the computations done in

Example 12.5.1, we have

(X̄(1) − X̄(2))′ = [1, −1, 0], (X̄(1) − X̄(2))′
( S

n1 + n2 − 2

)−1 = [3, 1, −1],

Δ̂2 = [3, 1, −1]
⎡

⎣
1

−1
0

⎤

⎦ = 2

⇒ w|π1 ∼ N1(1, 2) and w|π2 ∼ N1(−1, 2), approximately.

As well, A1 : w ≥ 0 and A2 : w < 0. For the data pertaining to (1) of Example 12.5.1,
we have w > 0 and X1 is assigned to π1. Observing that w → u of (12.5.7),

P(1|1, A) = Probability of arriving at a correct decision

= Pr{u > 0|π1} =
∫ ∞

0

1√
2
√

(2π)
e− 1

4 (u−1)2
du

=
∫ ∞

0−1√
2

1√
(2π)

e− 1
2 v2

dv ≈ 0.76;

P(1|2, A) = Probability of misclassification

= Pr{u > 0|π2} =
∫ ∞

0

1√
2
√

(2π)
e− 1

4 (u+1)2
du

=
∫ ∞

1√
2

1√
(2π)

e− 1
2 v2

dv ≈ 0.24.

In Example 12.5.1, the observed vector provided for (2) is classified into π2 since w < 0.
Thus, the probability of making the right decision is P(2|2, A) = Pr{u < 0|π2} ≈ 0.76
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and the probability of misclassification is P(2|1, A) = Pr{u < 0|π1} ≈ 0.24. Given the
data related to (3) of Example 12.5.1, the only difference is that the distributions in π1

and π2 will be slightly different, the mean values remaining the same but the variance Δ̂2

being replaced by Δ̂2/n where n = 5. The computations are similar to those provided for
(1), the sample mean being assigned to π1 in this case.

12.7. Classification Involving k Populations

Consider the p-variate populations π1, . . . , πk and let X be a p-vector at hand to be
classified into one of these k populations. Let q1, . . . , qk be the prior probabilities of select-
ing these populations, qj > 0, j = 1, . . . , k, with q1 + · · · + qk = 1. Let the cost of mis-
classification of a p-vector belonging to πi being improperly classified into πj be C(j |i)
for i 
= j so that C(i|i) = 0, i = 1, . . . , k. A decision rule A = (A1, . . . , Ak) determines
subspaces Aj ⊂ Rp, j = 1, . . . , k, with Ai ∩Aj = φ (the empty set) for all i 
= j . Let the
probability/density functions associated with the k populations be Pj(X), j = 1, . . . , k,
respectively. Let P(j |i, A) = Pr{X ∈ Aj |πi : Pi(X), A} = probability of an observation
coming from or belonging to the population πi or originating from the probability/density
function Pi(X), being improperly assigned to πj or misclassified as coming from Pj(X),
and the cost associated with this misclassification be denoted by C(j |i). Under the rule
A = (A1, . . . , Ak), the probabilities of correctly classifying and misclassifying an ob-
served vector are the following, assuming that the Pj(X)′s, j = 1, . . . , k, are densities:

P(i|i, A) =
∫

Ai

Pi(X)dX and P(j |i, A) =
∫

Aj

Pi(X)dX, i, j = 1, . . . , k, (i)

where P(i|i, A) is a probability of achieving a correct classification, that is, of assigning
an observation X to πi when the population is actually πi , and P(j |i, A) is the probability
of an observation X coming from πi being misclassified as originating from πj . Consider
a p-vector X at hand. What is then the probability that this X came from Pi(X), given
that X is an observation vector from one of the populations π1, . . . , πk? This is in fact a
conditional statement involving

qiPi(X)

q1P1(X) + q2P2(X) + · · · + qkPk(X)
.

Suppose that for specific i and j , the conditional probability

qiPi(X)

q1P1(X) + · · · + qkPk(X)
≥ qjPj (X)

q1P1(X) + · · · + qkPk(X)
. (ii)

This is tantamount to presuming that the likeliness of X originating from Pi(X) is greater
than or equal to that of X coming from Pj(X). In this case, we would like to assign X to
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πi rather than πj . If (ii) holds for all j = 1, . . . , k, j 
= i, then we classify X into πi .
Equation (ii) for j = 1, . . . , k, j 
= i, implies that

qiPi(X) ≥ qjPj (X) ⇒ Pi(X)

Pj (X)
≥ qj

qi

, j = 1, . . . , k, j 
= i. (12.7.1)

Accordingly, we adopt (12.7.1) as a decision rule A = (A1, . . . , Ak). This decision rule
corresponds to the following: When X ∈ A1 ⊂ Rp or X falls in A1, then X is clas-
sified into π1, when X ∈ A2, then X is assigned to π2, and so on. What is the ex-
pected cost of an X belonging to πi being misclassified into πj under some decision rule
B = (B1, . . . , Bk), Bj ⊂ Rp, j = 1, . . . , k, Bi ∩Bj = O, i 
= j, for all i and j? This is
qiPi(X)C(j |i) ≡ Ei(B). The expected cost of an X belonging to πj being misclassified
into πi under the same decision rule B is Ej(B) = qjPj (X)C(i|j). If Ei(B) < Ej(B),
then we favor Pi(X) over Pj(X) as it is always desirable to minimize the expected cost in
any procedure or decision. If Ei(B) < Ej(B) for all j = 1, . . . , k, j 
= i, then Pi(X) or
πi is preferred over all other populations to which X could be assigned. Note that

Ei(B) < Ej(B) ⇒ qiPi(X)C(j |i) < qjPj (X)C(i|j) ⇒ Pi(X)

Pj (X)
<

qj C(i|j)

qi C(j |i) , (iii)

for j = 1, . . . , k, j 
= i, so that (iii) is the situation resulting from the following misclas-
sification rule: if

Pi(X)

Pj (X)
≥ qj C(i|j)

qi C(j |i) , j = 1, . . . , k, j 
= i, (12.7.2)

we classify X into πi or equivalently, X ∈ Ai , which is the decision rule A =
(A1, . . . , Ak). Thus, the decision rule B in (iii) is identical to A. Observing that when
C(i|j) = C(j |i), (12.7.2) reduces to (12.7.1); the decision rule A = (A1, . . . , Ak) in
(12.7.1) is seen to yield the maximum probability of assigning an observation X at hand
to πi compared to the probability of assigning X to any other πj , j = 1, . . . , k, j 
= i,

when the costs of misclassification are equal. As well, it follows from (12.7.2) that the
decision rule A = (A1, . . . , Ak) gives the minimum expected cost associated with as-
signing the observation X at hand to πi compared to assigning X to any other population
πj , j = 1, . . . , k , j 
= i.

12.7.1. Classification when the populations are real Gaussian

Let the populations be p-variate real normal, that is, πj ∼ Np(μ(j), Σ), Σ > O, j =
1, . . . , k, with different mean value vectors but the same covariance matrix Σ > O. Let
the density of πj be denoted by Pj(X) � Np(μ(j), Σ), Σ > O. A vector X at hand is to
be assigned to one of the πi’s, i = 1, . . . , k. In Sect. 12.3 or Example 12.3.3, the decision
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rule involves two populations. Letting the two populations be πi : Pi(X) and πj : Pj(X)

for specific i and j , it was determined that the decision rule consists of classifying X into
πi if ln Pi(X)

Pj (X)
≥ ln ρ, ρ = qjC(i|j)

qiC(j |i) , with ρ = 1 so that ln ρ = 0 whenever C(i|j) = C(j |i)
and qi = qj . When ln ρ = 0, we have seen that the decision rule is to classify the p-vector
X into πi or Pi(X) if uij (X) ≥ 0 and to assign X to Pj(X) or πj if uij (X) < 0, where

uij (X) = (μ(i) − μ(j))′Σ−1X − 1
2(μ(i) − μ(j))′Σ−1(μ(i) + μ(j))

= [X − 1
2(μ(i) + μ(j))]′Σ−1(μ(i) − μ(j)). (iv)

Now, on applying the result obtained in (iv) to (12.7.1) and (12.7.2), one arrives at the
following decision rule:

Ai : uij (X) ≥ 0 or Ai : uij (X) ≥ ln k, k = qj C(i|j)

qi C(j |i) , j = 1, . . . , k, j 
= i, (12.7.3)

with ln ρ = 0 occurring when qi = qj and C(i|j) = C(j |i).

Note 12.7.1. What will interchanging i and j in uij (X) entail? Note that, as defined,
uij (X) involves the terms (μ(i) − μ(j)) = −(μ(j) − μ(i)) and (μ(i) + μ(j)), the latter
being unaffected by the interchange of μ(i) and μ(j). Hence, for all i and j ,

uij (X) = −uji(X), i 
= j. (12.7.4)

When the underlying population is X ∼ Np(μ(i), Σ), E[uij (X)|πi] = 1
2Δ2

ij , which im-

plies that E[uji |πi] = −1
2Δ2

ij = −E[uij (X)|πi] where Δ2
ij = (μ(i) − μ(j))′Σ−1(μ(i) −

μ(j)).

Note 12.7.2. For computing the probabilities of correctly classifying and misclassify-
ing an observed vector, certain assumptions regarding the distributions associated with
the populations πj , j = 1, . . . , k, are needed, the normality assumption being the most
convenient one.

Example 12.7.1. A certain milk collection and distribution center collects and sells the
milk supplied by local farmers to the community, the balance, if any, being dispatched to
a nearby city. In that locality, there are three dairy cattle breeds, namely, Jersey, Holstein
and Guernsey, and each farmer only keeps one type of cows. Samples are taken and the
following characteristics are evaluated in grams per liter: x1, the fat content, x2, the glu-
cose content, and x3, the protein content. It has been determined that X′ = (x1, x2, x3)
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is normally distributed as X ∼ N3(μ
(1), Σ) for Jersey cows, X ∼ N3(μ

(2), Σ) for Hol-
stein cows and X ∼ N3(μ

(3), Σ) for Guernsey cows, with a common covariance matrix
Σ > O, where

μ(1) =
⎡

⎣
2
3
1

⎤

⎦ , μ(2) =
⎡

⎣
1
3
2

⎤

⎦ , μ(3) =
⎡

⎣
2
3
3

⎤

⎦ and Σ =
⎡

⎣
3 0 0
0 2 −1
0 −1 1

⎤

⎦ .

(1): A farmer brought in his supply of milk from which one liter was collected. The three
variables were evaluated, the result being X′

0 = (2, 3, 4). (2): Another one liter sample was
taken from a second farmer’s supply and it was determined that the vector of the resulting
measurements was X′

1 = (2, 2, 2). No prior probabilities or costs are involved. Which
breed of dairy cattle is each of these farmers likely to own?

Solution 12.7.1. Our criterion is based on uij (X) where

uij (X) = (μ(i) − μ(j))′Σ−1X − 1

2
(μ(i) − μ(j))′Σ−1(μ(i) + μ(j)).

Let us evaluate the various quantities of interest:

μ(1) − μ(2) =
⎡

⎣
1
0

−1

⎤

⎦ , μ(1) − μ(3) =
⎡

⎣
0
0

−2

⎤

⎦ , μ(2) − μ(3) =
⎡

⎣
−1

0
−1

⎤

⎦ ,

μ(1) + μ(2) =
⎡

⎣
3
6
3

⎤

⎦ , μ(1) + μ(3) =
⎡

⎣
4
6
4

⎤

⎦ , μ(2) + μ(3) =
⎡

⎣
3
6
5

⎤

⎦ ;

Σ−1 =
⎡

⎣

1
3 0 0
0 1 1
0 1 2

⎤

⎦ ;

A1 : {u12(X) ≥ 0, u13(X) ≥ 0}, A2 : {u21(X) ≥ 0, u23(X) ≥ 0},
A3 : {u31(X) ≥ 0, u32(X) ≥ 0};

(μ(1) − μ(2))′Σ−1X = (1, 0, −1)Σ−1X = (1
3 , −1, −2)X = 1

3x1 − x2 − 2x3

(μ(1) − μ(3))′Σ−1X = (0, 0, −2)Σ−1X = (0, −2, −4)X = −2x2 − 4x3

(μ(2) − μ(3))′Σ−1X = (−1, 0, −1)Σ−1X = (−1
3 , −1, −2)X = −1

3x1 − x2 − 2x3;
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1
2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2)) = 1

2 [1
3 , −1, −2]

⎡

⎣
3
6
3

⎤

⎦ = −11

2

1
2(μ(1) − μ(3))′Σ−1(μ(1) + μ(3)) = 1

2 [0, −2, −4]
⎡

⎣
4
6
4

⎤

⎦ = −14

1
2(μ(2) − μ(3))′Σ−1(μ(2) + μ(3)) = 1

2 [−1
3 , −1, −2]

⎡

⎣
3
6
5

⎤

⎦ = −17

2
.

Hence,
u12(X) = 1

3x1 − x2 − 2x3 + 11
2 ; u13(X) = −2x2 − 4x3 + 14;

u21(X) = −1
3x1 + x2 + 2x3 − 11

2 ; u23(X) = −1
3x1 − x2 − 2x3 + 17

2 ;
u31(X) = 2x2 + 4x3 − 14; u32(X) = 1

3x1 + x2 + 2x3 − 17
2 .

In order to answer (1), we substitute X0 to X and first, evaluate u12(X0) and u13(X0) to
determine whether they are ≥ 0. Since u12(X0) = 1

3(2)−(3)−2(4)+ 11
2 < 0, the condition

is violated and hence we need not check for u13(X0) ≥ 0. Thus, X0 is not in A1. Now,
consider u21(X0) = −1

3(2)+3+2(4)− 11
2 > 0 and u23(X0) = −1

3(2)−(3)−2(4)− 17
2 < 0;

again the condition is violated and we deduce that X0 is not in A2. Finally, we verify A3:
u31(X0) = 2(3) + 2(4) − 14 = 0 and u32(X0) = 1

3(2) + (3) + 2(4) − 17
2 > 0. Thus,

X0 ∈ A3, that is, we conclude that the sample milk came from Guernsey cows.

For answering (2), we substitute X1 to X in uij (X). Noting that u12(X1) = 1
3(2) −

(2)−2(2)+ 11
2 > 0 and u13(X1) = −2(2)−4(2)+14 > 0, we can surmise that X1 ∈ A1,

that is, the sample milk came from Jersey cows. Let us verify A2 and A3 to ascertain that
no mistake has been made in the calculations. Since u21(X1) < 0, X1 is not in A2, and
since u31(X0) < 0, X1 is not in A3. This completes the computations.

12.7.2. Some distributional aspects

For computing the probabilities of correctly classifying and misclassifying an observa-
tion, we require the distributions of our criterion uij (X). Let the populations be normally
distributed, that is, πj ∼ Np(μ(j), Σ), Σ > O, with the same covariance matrix Σ for
all k populations, j = 1, . . . , k. Then, the probability of achieving a correct classification
when X is assigned to πi is the following under the decision rule A = (A1, . . . , Ak):

P(i|i, A) =
∫

Ai

Pi(X)dX (12.7.5)
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where dX = dx1 ∧ . . . ∧ dxp and the integral is actually a multiple integral. But Ai is
defined by the inequalities ui1(X) ≥ 0, ui2(X) ≥ 0, . . . , uik(X) ≥ 0, where uii(X) is
excluded. This is the case when no prior probabilities and costs are involved or when the
prior probabilities are equal and the cost functions are identical. Otherwise, the region is
{Ai : uij (X) ≥ ln kij , kij = qjC(i|j)

qiC(j |i) , j = 1, . . . , k, j 
= i}. Integrating (12.7.5) is
challenging as the region is determined by k − 1 inequalities.

When the parameters μ(j), j = 1, . . . , k, and Σ are known, we can evaluate the
joint distributions of uij (X), j = 1, . . . , k, j 
= i, under the normality assumption for
πj , j = 1, . . . , k. Let us examine the distributions of uij (X) for normally distributed
πi : Pi(X), i = 1, . . . , k. In this instance, E[X]|πi = μ(i), and under πi ,

E[uij (X)]|πi = (μ(i) − μ(j))′Σ−1μ(i) − 1
2(μ(i) − μ(j))′Σ−1(μ(i) + μ(j))

= 1
2(μ(i) − μ(j))′Σ−1(μ(i) − μ(j)) = 1

2Δ2
ij ;

Var(uij (X))|πi = Var[(μ(i) − μ(j))′Σ−1X] = Δ2
ij .

Since uij (X) is a linear function of the vector normal variable X, it is normal and the
distribution of uij (X)|πi is

uij (X) ∼ N1(
1
2Δ2

ij , Δ
2
ij ), j = 1, . . . , k, j 
= i. (12.7.6)

This normality holds for each j , j = 1, . . . , k, j 
= i, and for a fixed i. Then, we can
evaluate the joint density of ui1(X), ui2(X), . . . , uik(X), excluding uii(X), and we can
evaluate P(i|i, A) from this joint density. Observe that for j = 1, . . . , k, j 
= i, the
uij (X)’s are linear functions of the same vector normal variable X and hence, they have a
joint normal distribution. In that case, the mean value vector is a (k − 1)-vector, denoted
by μ(ii), whose elements are 1

2Δ2
ij , j = 1, . . . , k, j 
= i, for a fixed i, or equivalently,

μ′
(ii) = [1

2Δ2
i1, . . . ,

1
2Δ2

ik] = E[U ′
ii] with U ′

ii = [ui1(X), . . . , uik(X)],

excluding the elements uii(X) and Δ2
ii = 0. The subscript ii in Uii indicates the re-

gion Ai and the original population Pi(X). The covariance matrix of Uii , denoted by Σii ,
will be a (k − 1) × (k − 1) matrix of the form Σii = [Cov(uir , uit )] = (crt ), crt =
Cov(uir(X), uit (X)). The subscript ii in Σii indicates the region Ai and the original pop-
ulation Pi(X). Observe that for two linear functions t1 = C′X = c1x1 + · · · + cpxp and
t2 = B ′X = b1x1 + · · · + bpxp, having a common covariance matrix Cov(X) = Σ , we
have Var(t1) = C′ΣC, Var(t2) = B ′ΣB and Cov(t1, t2) = C′ΣB = B ′ΣC. Therefore,

crt = (μ(i) − μ(r))′Σ−1(μ(i) − μ(t)), i 
= r, t; Σii = (crt ).
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Let the vector Uii be such that U ′
ii = (ui1(X), . . . , uik(X)), excluding uii(X). Thus, for a

specific i,

Uii ∼ Nk−1(μ(ii), Σii), Σii > O,

and its density function, denoted by gii(Uii), is

gii(Uii) = 1

(2π)
k−1

2 |Σii |
1
2

e− 1
2 (Uii−μ(ii))

′Σ−1
ii (Uii−μ(ii)).

Then,

P(i|i, A) =
∫

uij (X)≥0, j=1,...,k, j 
=i

gii(Uii)dUii

=
∫ ∞

ui1(X)=0
· · ·
∫ ∞

uik(X)=0
gii(Uii)dui1(X) ∧ ... ∧ duik(X), (12.7.7)

the differential duii being absent from dUii , which is also the case for uii(X) ≥ 0 in the
integral. If prior probabilities and cost functions are involved, then replace uij (X) ≥ 0 in

the integral (12.7.7) by uij (X) ≥ ln kij , kij = qjC(i|j)

qiC(j |i) . Thus, the problem reduces to de-
termining the joint density gii(Uii) and then evaluating the multiple integrals appearing in
(12.7.7). In order to compute the probability specified in (12.7.7), we standardize the nor-

mal density by letting Vii = Σ
− 1

2
ii Uii where Vii ∼ Nk−1(O, I), and with the help of this

standard normal, we may compute this probability through Vii . Note that (12.7.7) holds
for each i, i = 1, . . . , k, and thus, the probabilities of achieving a correct classification,
P(i|i, A) for i = 1, . . . , k, are available from (12.7.7).

For computing probabilities of misclassification of the type P(i|j, A), we can proceed
as follows: In this context, the basic population is πj : Pj(X) ∼ Np(−1

2Δ2
ij , Δ

2
ij ), the

region of integration being Ai : {ui1(X) ≥ 0, . . . , uik(X) ≥ 0}, excluding the element
uii(X) ≥ 0. Consider the vector Uij corresponding to the vector Uii . In Uij , i stands for
the region Ai and j , for the original population Pj(X). The elements of Uij are the same
as those of Uii , that is, U ′

ij = (ui1(X), . . . , uik(X)), excluding uii(X). We then proceed as
before and compute the covariance matrix Σij of Uij in the original population Pj(X). The
variances of uim(X), m = 1, . . . , k, m 
= i, will remain the same but the covariances will
be different since they depend on the mean values. Thus, Uij ∼ Nk−1(μ(ij), Σij ), and on
standardizing, one has Vij ∼ Nk−1(O, I), so that the required probability P(i|j, A) can
be computed from the elements of Vij . Note that when the prior probabilities and costs are
equal,
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P(i|j, A) =
∫

ui1(X)≥0,...,uik(X)≥0
gij (Uij ) dui1(X) ∧ . . . ∧ duik(X)

=
∫ ∞

ui1(X)=0
· · ·
∫ ∞

uik(X)=0
gij (Uij ) dUij , (12.7.8)

excluding uii(X) in the integral as well as the differential duii(X). Thus, dUij = dui1(X)∧
. . . ∧ duik(X), excluding duii(X).

Example 12.7.2. Given the data provided in Example 12.7.1, what is the probability of
correctly assigning X to π1? That is, compute the probability P(1|1, A).

Solution 12.7.2. Observe that the joint density of u12(X) and u13(X) is that of a bivariate
normal distribution since u12(X) and u13(X) are linear functions of the same vector X

where X has a multivariate normal distribution. In order to compute the joint bivariate
normal density, we need E[u1j (X)], Var(u1j (X)), j = 2, 3 and Cov(u12(X), u13(X)).
The following quantities are evaluated from the data given in Example 12.7.1:

Var(u12(X)) = Var[(μ(1) − μ(2))′Σ−1X − 1
2(μ(1) − μ(2))′Σ−1(μ(1) + μ(2))]

= Var[(μ(1) − μ(2))′Σ−1X] = (μ(1) − μ(2))′Σ−1(μ(1) − μ(2))

= [1
3 , −1, −2]

⎡

⎣
1
0

−1

⎤

⎦ = 7

3
⇒ E[u12(X)] = 7

6
;

Var(u13(X)) = (μ(1) − μ(3))′Σ−1(μ(1) − μ(3))

= [0, −2, −4]
⎡

⎣
0
0

−2

⎤

⎦ = 8 ⇒ E[u13(X)] = 4;

Cov(u12(X), u13(X)) = (μ(1) − μ(2))′Σ−1(μ(1) − μ(3)) = [1
3 , −1, −2]

⎡

⎣
0
0

−2

⎤

⎦ = 4.

Hence, the covariance matrix of U11 =
[
u12(X)

u13(X)

]

, denoted by Σ11, is the following:

Σ11 =
[

7
3 4
4 8

]

⇒ |Σ11| = 8

3

Σ−1
11 = 3

8

[
8 −4

−4 7
3

]

= 1

8

[
24 −12

−12 7

]

,
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where

1

8

[
24 −12

−12 7

]

= 1

8

[
2
√

6 0
−√

6 1

] [
2
√

6 −√
6

0 1

]

= B ′B with

B = 1√
8

[
2
√

6 −√
6

0 1

]

⇒ |B| = |B ′| = |Σ11|− 1
2 = 2

√
6

8
.

The bivariate normal density of U11 is the following:

U11 =
[
u12(X)

u13(X)

]

∼ N2(μ(1), Σ11), μ(1) =
[

7/6
4

]

, (12.7.9)

with Σ11 and Σ−1
11 = B ′B as previously specified. Letting Y = B(U11 − E[U11]), Y ∼

N2(O, I). Note that

Y =
[
y1

y2

]

, U11 − E[U11] =
[
u12(X) − E[u12(X)]
u13(X) − E[u13(X)]

]

=
[
u12(X) − 7/6
u13(X) − 4

]

,

y1 = 2
√

6√
8

(u12(X) − 7/6) −
√

6√
8
(u13(X) − 4),

y2 =
√

6√
8
(u13(X) − 4).

Then,

B−1 =
√

8

2
√

6

[
1

√
6

0 2
√

6

]

=
[

1√
3

√
2

0 2
√

2

]

,

and we have
[
u12(X) − 7/6
u13(X) − 4

]

=
[

1√
3

√
2

0 2
√

2

][
y1

y2

]

,

which yields u12(X) = 7
6 + 1√

3
y1 + √

2 y2 and u13(X) = 4 + 2
√

2 y2. The intersection
of the two lines corresponding to u12(X) = 0 and u13(X) = 0 is the point (y1, y2) =
(
√

3(5
6), −√

2). Thus, u12(X) ≥ 0 and u13(X) ≥ 0 give y2 ≥ − 4
2
√

2
= −√

2 and 7
6 +

1√
3
y1 + √

2 y2 ≥ 0. We can express the resulting probability as ρ1 − ρ2 where

ρ1 =
∫ ∞

y2=−√
2

∫ ∞

y1=−∞
1

2π
e− 1

2 (y2
1+y2

2 )dy1 ∧ dy2 = 1 − Φ(−√
2), (12.7.10)
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which is explicitly available, where Φ(·) denotes the distribution function of a standard
normal variable, and

ρ2 =
∫ √

3(
5
6 )

y1=−∞

∫ 1√
2
(

7
6+ 1√

3
y1)

y2=−√
2

1
2π

e−1
2 (y2

1+y2
2 )dy1 ∧ dy2

=
∫ √

3(
5
6 )

y1=−∞
1√
(2π)

e−1
2y2

1 [Φ(− 1√
2
(7

6 + 1√
3
y1)) − Φ(−√

2)]dy1

=
∫ √

3(
5
6 )

y1=−∞
1√
(2π)

e−1
2y2

1 Φ(− 1√
2
(7

6 + 1√
3
y1))dy1 − Φ(

√
3(5

6))Φ(−√
2). (12.7.11)

Therefore, the required probability is

ρ1 − ρ2 = 1 − Φ(−√
2) + Φ(−√

2)Φ(
√

3(5
6))

−
∫ √

3(
5
6 )

y1=−∞
1√
(2π)

e−1
2y2

1 Φ(− 1√
2
(7

6 + 1√
3
y1)) dy1. (12.7.12)

Note that all quantities, except the integral, are explicitly available from standard normal
tables. The integral part can be read from a bivariate normal table. If a bivariate normal ta-
ble is used, then one can approximate the required probability from (12.7.9). Alternatively,
once evaluated numerically, the integral is found to be equal to 0.2182 which subtracted
from 0.9941, yields a probability of 0.7759 for P(1|1, A).

12.7.3. Classification when the population parameters are unknown

When training samples are available from the populations πi, i = 1, . . . , k, we can
estimate the parameters and proceed with the classification. Let X

(i)
j , j = 1, . . . , ni, be a

simple random sample of size ni from the i-th population πi . Then, the sample average
is X̄(i) = 1

ni

∑ni

j=1 X
(i)
j , and with our usual notations, the sample matrix, the matrix of

sample means and sample sum of products matrix are the following:

X(i) = [X(i)
1 , . . . , X(i)

ni
], X̄(i) = [X̄(i), . . . , X̄(i)],

Si = [X(i) − X̄(i)][X(i) − X̄(i)]′, i = 1, . . . , k,

where

X(i) =
⎡

⎢
⎣

x
(i)
11 . . . x

(i)
1ni

...
. . .

...

x
(i)
p1 . . . x

(i)
pni

⎤

⎥
⎦ , Si = (s

(i)
rt ), s

(i)
rt =

ni∑

m=1

(x(i)
rm − x̄(i)

r )(x
(i)
tm − x̄

(i)
t ), i = 1, . . . , k.
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Note that X(i) and X̄(i) are p×ni matrices and X
(i)
j is a p×1 vector for each j = 1, . . . , ni ,

and i = 1, . . . , k. Let the population mean value vectors and the common covari-
ance matrix be μ(1), . . . , μ(k), and Σ > O, respectively. Then, the unbiased estima-
tors for these parameters are the following, identifying the estimators/estimates by a hat:
μ̂

(i)
j = X̄(i), i = 1, . . . , k, and Σ̂ = S

n1+···+nk−k
, S = S1 + · · · + Sk. On replacing the

population parameters by their unbiased estimators, the classification criteria uij (X), j =
1, . . . , k, j 
= i, become the following: Classify an observation vector X into πi if
ûij (X) ≥ ln kij , kij = qjC(i|j)

qiC(j |i) , j = 1, . . . , k, j 
= i, or ûij ≥ 0, j = 1, . . . , k, j 
= i, if
q1 = · · · = qk, and the C(i|j)’s are equal j = 1, . . . , k, j 
= i, where

ûij (X) = (X̄(i) − X̄(j))′Σ̂−1X − 1
2(X̄(i) − X̄(j))′Σ̂−1(X̄(i) + X̄(j)) (12.7.13)

for j = 1, . . . , k, j 
= i. Unfortunately, the exact distribution of ûij (X) is difficult to
obtain even when the populations πi’s have p-variate normal distributions. However, when
nj → ∞, X̄(j) → μ(j), j = 1, . . . , k, and when nj → ∞, j = 1, . . . , k, Σ̂ → Σ .
Then, asymptotically, that is, when nj → ∞, j = 1, . . . , k, ûij (X) → uij (X), so
that the theory discussed in the previous sections is applicable. As well, the classification
probabilities can then be evaluated as illustrated in Example 12.7.2.

12.8. The Maximum Likelihood Method when the Population Covariances Are
Equal

Consider k real normal populations πi : Pi(X) � Np(μ(i), Σ), Σ > O, i =
1, . . . , k, having the same covariance matrix but different mean value vectors μ(i), i =
1, . . . , k. A p-vector X at hand is to be classified into one of these populations πj , j =
1, . . . , k. Consider a simple random sample X

(i)
1 , X

(i)
2 , . . . , X

(i)
ni

of sizes ni from πi for
i = 1, . . . , k. Employing our usual notations, the sample means, sample matrices, matri-
ces of sample means and the sample sum of products matrices are as follows:

X̄(i) = 1

ni

ni∑

j=1

X
(i)
j , X(i) = [X(i)

1 , . . . , X(i)
ni

] =
⎡

⎢
⎣

x
(i)
11 . . . x

(i)
1ni

...
. . .

...

x
(i)
p1 . . . x

(i)
pni

⎤

⎥
⎦ ,

X̄(i) = [X̄(i), . . . , X̄(i)], S(i) = [X(i) − X̄(i)][X(i) − X̄(i)]′,

S(i) = (s
(i)
rt ), s

(i)
rt =

ni∑

m=1

(x(i)
rm − x̄(i)

r )(x
(i)
tm − x̄

(i)
t ), S = S(1) + S(2) + · · · + S(k).

(12.8.1)



Classification Problems 755

Then, the unbiased estimators of the population parameters, denoted with a hat, are

μ̂(i) = X̄(i), i = 1, . . . , k, and Σ̂ = S

n1 + n2 + · · · + nk − k
. (12.8.2)

The null hypothesis can be taken as X
(i)
1 , . . . , X

(i)
ni

and X originating from πi and

X
(j)

1 , . . . , X
(j)
nj

coming from πj , j = 1, . . . , k, j 
= i, the alternative hypothesis be-

ing: X and X
(j)

1 , . . . , X
(j)
nj

coming from πj for j = 1, . . . , k, j 
= i, and X
(i)
1 , . . . , X

(i)
ni

originating from πi . On proceeding as in Sect. 12.6, when the prior probabilities are equal
and the cost functions are identical, the criterion for classification of the observed vector
X to πi for a specific i is

Ai :
( nj

nj + 1

)2
(X − X̄(j))′

( S

n(k)

)−1
(X − X̄(j))

−
( ni

ni + 1

)2
(X − X̄(i))′

( S

n(k)

)−1
(X − X̄(i)) ≥ 0 (12.8.3)

for j = 1, . . . , k, j 
= i, where the decision rule is A = (A1, . . . , Ak), S = S(1)+· · ·+S(k)

and n(k) = n1 + n2 + · · · + nk − k. Note that (12.8.3) holds for each i, i = 1, . . . , k, and
hence, A1, . . . , Ak are available from (12.8.3). Thus, the vector X at hand is classified into
Ai , that is, assigned to the population πi, if the inequalities in (12.8.3) are satisfied. This
statement holds for each i, i = 1, . . . , k. The exact distribution of the criterion in (12.8.3)
is difficult to establish but the probabilities of classification can be computed from the
asymptotic theory discussed in Sect. 12.7 by observing the following:

When ni → ∞, X̄(i) → μ(i), i = 1, . . . , k, and when n1 → ∞, . . . , nk →
∞, Σ̂ → Σ . Thus, asymptotically, when ni → ∞, i = 1, . . . , k, the criterion specified
in (12.8.3) reduces to the criterion (12.7.3) of Sect. 12.7. Accordingly, when ni → ∞ or
for very large ni’s, i = 1, . . . , k, one may utilize (12.7.3) for computing the probabilities
of classification, which was illustrated in Examples 12.7.1 and 12.7.2.

12.9. Maximum Likelihood Method and Unequal Covariance Matrices

The likelihood procedure can also provide a classification rule when the normal pop-
ulation covariance matrices are different. For example, let π1 : P1(X) � Np(μ(1), Σ1),
Σ1 > O, and π2 : P2(X) � Np(μ(2), Σ2), Σ2 > O, where μ(1) 
= μ(2) and Σ1 
= Σ2.

Let a simple random sample X
(1)
1 , . . . , X

(1)
n1 of size n1 from π1 and a simple random sample

X
(2)
1 , . . . , X

(2)
n2 of size n2 from π2 be available. Let X̄(1) and X̄(2) be the sample averages

and S1 and S2 be the sample sum of products matrices, respectively. In classification prob-
lems, there is an additional vector X which comes from π1 under the null hypothesis and



756 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

from π2 under the alternative. Then, the maximum likelihood estimators, denoted by a hat,
will be the following:

μ̂(1) = X̄(1), μ̂(2) = X̄(2), Σ̂1 = S1

n1
and Σ̂2 = S2

n2
, (i)

respectively, when no additional vector is involved. However, these estimators will change
in the presence of the additional vector X, where X is the vector at hand to be assigned
to π1 or π2. When X originates from π1 or π2, μ(1) and μ(2) are respectively estimated as
follows:

μ̂(1)∗ = n1X̄1 + X

n1 + 1
and μ̂(2)∗ = n2X̄2 + X

n2 + 1
, (ii)

and when X comes from π1 or π2, Σ1 and Σ2 are estimated by

Σ̂1∗ = S1 + S
(1)
3

n1 + 1
and Σ̂2∗ = S2 + S

(2)
3

n2 + 1
(iii)

where

S
(1)
3 = (X − μ̂(1)∗ )(X − μ̂(1)∗ )′ =

( n1

n1 + 1

)2
(X − X̄1)(X − X̄1)

′

S
(2)
3 = (X − μ̂(2)∗ )(X − μ̂(2)∗ )′ =

( n2

n2 + 1

)2
(X − X̄2)(X − X̄2)

′, (iv)

referring to the derivations provided in Sect. 12.6 when discussing maximum likelihood
procedures. Thus, the null hypothesis can be X and X

(1)
1 , . . . , X

(1)
n1 are from π1 and

X
(2)
1 , . . . , X

(2)
n2 are from π2, versus the alternative: X and X

(2)
1 , . . . , X

(2)
n2 being from π2

and X
(1)
1 , . . . , X

(1)
n1 , from π1. Let L0 and L1 denote the likelihood functions under the null

and alternative hypotheses, respectively. Observe that under the null hypothesis, Σ1 is es-
timated by Σ̂1∗ of (iii) and Σ2 is estimated by Σ̂ of (i), respectively, so that the likelihood
ratio criterion λ is given by

λ = max L0

max L1
= |Σ̂2∗|

n2+1
2 |Σ̂1|

n1
2

|Σ̂1∗|
n1+1

2 |Σ̂2|
n2
2

. (12.9.1)

The determinants in (12.9.1) can be represented as follows, referring to the simplifications
discussed in Sect. 12.6:

λ = (n1 + 1)
p(n1+1)

2

(n2 + 1)
p(n2+1)

2

|S2|
n2+1

2

|S1|
n1+1

2

[1 + ( n2
n2+1)2(X − X̄2)

′S−1
2 (X − X̄2)]

n2+1
2 |Σ̂1|

n1
2

[1 + ( n1
n1+1)2(X − X̄1)′S−1

1 (X − X̄1)]
n1+1

2 |Σ̂2|
n2
2

. (12.9.2)
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The classification rule then consists of assigning the observed vector X to π1 if λ ≥ 1 and,
to π2 if λ < 1. We could have expressed the criterion in terms of λ1 = λ

2
n if n1 = n2 = n,

which would have simplified the expressions appearing in (12.9.2).
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Chapter 13

Multivariate Analysis of Variation

13.1. Introduction

We will employ the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital letters
X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of letters
such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will for
instance be denoted by A, B, C. A tilde will not be used on constant matrices unless the
point is to be stressed that the matrix is in the complex domain. The determinant of a
square matrix A will be denoted by |A| or det(A) and, in the complex case, the absolute
value or modulus of the determinant of A will be denoted as |det(A)|. When matrices
are square, their order will be taken as p × p, unless specified otherwise. When A is a
full rank matrix in the complex domain, then AA∗ is Hermitian positive definite where
an asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix X.
Thus, letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.
In this chapter, we only consider analysis of variance (ANOVA) and multivariate anal-

ysis of variance (MANOVA) problems involving real populations. Even though all the
steps involved in the following discussion focusing on the real variable case can readily be
extended to the complex domain, it does not appear that a parallel development of anal-
ysis of variance methodologies in the complex domain has yet been considered. In order
to elucidate the various steps in the procedures, we will first review the univariate case.
For a detailed exposition of the analysis of variance technique in the scalar variable case,
the reader may refer Mathai and Haubold (2017). We will consider the cases of one-way
classification or completely randomized design as well as two-way classification with-

© The Author(s) 2022, corrected publication 2022
A. M. Mathai et al., Multivariate Statistical Analysis in the Real and Complex Domains,
https://doi.org/10.1007/978-3-030-95864-0 13

759

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95864-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-95864-0_13


760 Arak M. Mathai, Serge B. Provost, Hans J. Haubold

out and with interaction or randomized block design. With this groundwork in place, the
derivations of the results in the multivariate setting ought to prove easier to follow.

In the early nineteenth century, Gauss and Laplace utilized methodologies that may be
regarded as forerunners to ANOVA in their analyses of astronomical data. However, this
technique came to full fruition in Ronald Fisher’s classic book titled “Statistical Meth-
ods for Research Workers”, which was initially published in 1925. The principle behind
ANOVA consists of partitioning the total variation present in the data into variations at-
tributable to different sources. It is actually the total variation that is split rather than the
total variance, the latter being a fraction of the former. Accordingly, the procedure could be
more appropriately referred to as “analysis of variation”. As has already been mentioned,
we will initially consider the one-way classification model, which will then be extended to
the multivariate situation.

Let us first focus on an experimental design called a completely randomized experi-
ment. In this setting, the subject matter was originally developed for agricultural experi-
ments, which influenced its terminology. For example, the basic experimental unit is re-
ferred to as a “plot”, which is a piece of land in an agricultural context. When an experi-
ment is performed on human beings, a plot translates into an individual. If the experiment
is carried out on some machinery, then a machine corresponds to a plot. In a completely
randomized experiment, a set of n1 + n2 + · · · + nk plots, which are homogeneous with
respect to all factors of variation, are selected. Then, k treatments are applied at random to
these plots, the first treatment to n1 plots, the second treatment to n2 plots, up to the k-th
treatment being applied to nk plots. For instance, if the effects of k different fertilizers on
the yield of a certain crop are to be studied, then the treatments consist of these k fertilizers,
the first treatment meaning one of the fertilizers, the second treatment, another one and so
on, with the k-th treatment corresponding to the last fertilizer. If the experiment involves
studying the yield of corn among k different varieties of corn, then a treatment coincides
with a particular variety. If an experiment consists of comparing k teaching methods, then
a treatment refers to a method of teaching and a plot corresponds to a student. When an
experiment compares the effect of k different medications in curing a certain ailment, then
a treatment is a medication, and so on. If the treatments are denoted by t1, . . . , tk, then
treatment tj is applied at random to nj homogeneous plots or nj homogeneous plots are
selected at random and treatment tj is applied to them, for j = 1, . . . , k. Random assign-
ment is done to avoid possible biases or the influence of confounding factors, if any. Then,
observations measuring the effect of these treatments on the experimental units are made.
For example, in the case of various methods of teaching, the observation xij could be the
final grade obtained by the j -th student who was subjected to the i-th teaching method. In
the case of comparing k different varieties of corn, the observation xij could consist of the
yield of corn observed at harvest time in the j -th plot which received the i-th variety of
corn. Thus, in this instance, i stands for the treatment number and j represents the serial
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number of the plot receiving the i-th treatment, xij being the final observation. Then, the
corresponding linear additive fixed effect model is the following:

xij = μ + αi + eij , j = 1, . . . , ni, i = 1, . . . , k, (13.1.1)

where μ is a general effect, αi is the deviation from the general effect due to treatment ti
and eij is the random component, which includes the sum total contributions originating
from unknown or uncontrolled factors. When the experiment is designed, the plots are
selected so that they be homogeneous with respect to all possible factors of variation.
The general effect μ can be interpreted as the grand average or the expected value of
xij when αi is not present or treatment ti is not applied or has no effect. The simplest
assumption that we will make is that E[eij ] = 0 for all i and j and Var(eij ) = σ 2 >

0 for all i and j and for some positive quantity σ 2, where E[ · ] denotes the expected
value of [ · ]. It is further assumed that μ, α1, . . . , αk are all unknown constants. When
α1, . . . , αk are assumed to be random variables, model (13.1.1) is referred to as a“random
effect model”. In the following discussion, we will solely consider fixed effect models. The
first step consists of estimating the unknown quantities from the data. Since no distribution
is assumed on the eij ’s, and thereby on the xij ’s, we will employ the method of least
squares for estimating the parameters. In that case, one has to minimize the error sum of
squares which is ∑

ij

e2
ij =

∑

ij

[xij − μ − αi]2.

Applying calculus principles, we equate the partial derivatives of
∑

ij e2
ij with respect to μ

to zero and then, equate the partial derivatives of
∑

ij e2
ij with respect to α1, . . . , αk to zero

and solve these equations. A convenient notation in this area is to represent a summation
by a dot. As an example, if the subscript j is summed up, it is replaced by a dot, so that∑

j xij ≡ xi. ; similarly,
∑

ij xij ≡ x.. . Thus,

∂

∂μ

[∑

ij

e2
ij

]
= 0 ⇒ −2

∑

ij

[xij − μ − αi] = 0 ⇒
∑

i

(∑

j

[xij − μ − αi]
)

= 0

that is,
∑

i

[xi. − niμ − niαi] = 0 ⇒ x.. − n. μ −
k∑

i=1

niαi = 0,

and since we have taken αi as a deviation from the general effect due to treatment ti, we
can let

∑
i niαi = 0 without any loss of generality. Then, x../n. is an estimate of μ, and

denoting estimates/estimators by a hat, we write μ̂ = x../n.. Now, note that for example
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α1 appears in the terms (x11 −μ−α1)
2 +· · ·+ (x1n1 −μ−α1)

2 =∑j (x1j −μ−α1)
2 but

does not appear in the other terms in the error sum of squares. Accordingly, for a specific
i,

∂

∂αi

[∑

ij

e2
ij

]
= 0 ⇒

∑

j

[xij − μ − αi] = 0 ⇒ xi. − niμ̂ − niα̂i = 0,

that is, α̂i = xi.

ni
− μ̂ . Thus,

μ̂ = 1

n.

x.. and α̂i = 1

ni

xi. − μ̂ . (13.1.2)

The least squares minimum is obtained by substituting the least squares estimates of μ and
αi, i = 1, . . . , k, in the error sum of squares. Denoting the least squares minimum by s2,

s2 =
∑

ij

(xij − μ̂ − α̂i)
2 =

∑

ij

[
xij − x..

n.

−
(xi.

ni

− x..

n.

)]2

=
∑

ij

[
xij − xi.

ni

]2 =
∑

ij

[
xij − x..

n.

]2 −
∑

ij

[xi.

ni

− x..

n.

]2
. (13.1.3)

When the square is expanded, the middle term will become −2
∑

ij (
xi.

ni
− x..

n.
)2, thus yield-

ing the expression given in (13.1.3). As well, we have the following identity:

∑

ij

(xi.

ni

− x..

n.

)2 =
k∑

i=1

ni

(xi.

ni

− x..

n.

)2 =
∑

i

x2
i.

ni

− x2
..

n.

.

Now, let us consider the hypothesis Ho : α1 = α2 = · · · = αk, which is equivalent to
the hypothesis α1 = α2 = · · · = αk = 0 since, by assumption,

∑
i niαi = 0. Proceeding

as before, the least squares minimum, under the null hypothesis Ho, denoted by s2
0 , is the

following:

s2
0 =

∑

ij

(
xij − x..

n.

)2

and hence the sum of squares due to the hypothesis or due to the presence of the αj ’s, is
given by s2

0 − s2 =∑ij (
xi.

ni
− x..

n.
)2. Thus, the total variation is partitioned as follows:

s2
0 = [s2

0 − s2] + [s2]
∑

ij

(
xij − x..

n.

)2 =
[∑

i

ni

(xi.

ni

− x..

n.

)2]+
[∑

ij

(
xij − xi.

ni

)2]
, that is,

Total variation (s2
0)=variation due to the αj ’s (s2

0 − s2)+the residual variation (s2),
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which is the analysis of variation principle. If eij
iid∼ N1(0, σ 2) for all i and j where

σ 2 > 0 is a constant, it follows from the chisquaredness and independence of quadratic

forms, as discussed in Chaps. 2 and 3, that
s2

0
σ 2 ∼ χ2

n.−1, a real chisquare variable having

n. − 1 degrees of freedom,
[s2

0−s2]
σ 2 ∼ χ2

k−1 under the hypothesis Ho and s2

σ 2 ∼ χ2
n.−k,

where the sum of squares due to the αj ’s, namely s2
0 − s2, and the residual sum of squares,

namely s2, are independently distributed under the hypothesis. Usually, these findings
are put into a tabular form known as the analysis of variation table or ANOVA table. The
usual format is as follows:

ANOVA Table for the One-Way Classification

Variation due to df SS MS
(1) (2) (3) (3)/(2)

treatments k − 1
∑

i ni(
xi.

ni
− x..

n.
)2 (s2

0 − s2)/(k − 1)

residuals n. − k
∑

ij (xij − xi.

ni
)2 s2/(n. − k)

total n. − 1
∑

ij (xij − x..

n.
)2

where df denotes the number of degrees of freedom, SS means sum of squares and MS

stands for mean squares or the average of the squares. There is usually a last column which
contains the F-ratio, that is, the ratio of the treatments MS to the residuals MS, and enables
one to determine whether to reject the null hypothesis, in which case the test statistic is
said to be “significant”, or not to reject the null hypothesis, when the test statistic is “not
significant”. Further details on the real scalar variable case are available from Mathai and
Haubold (2017).

In light of this brief review of the scalar variable case of one-way classification data
or univariate data secured from a completely randomized design, the concepts will now be
extended to the multivariate setting.

13.2. Multivariate Case of One-Way Classification Data Analysis

Extension of the results to the multivariate case is parallel to the scalar variable case.
Consider a model of the type

Xij = M + Ai + Eij , j = 1, . . . , ni, i = 1, . . . , k, (13.2.1)

with Xij , M, Ai and Eij all being p × 1 real vectors where Xij denotes the j -th observa-
tion vector in the i-th group or the observed vectors obtained from the ni plots receiving
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the i-th vector of treatments, M is a general effect vector, Ai is a vector of deviations from
M due to the i-th treatment vector so that

∑
i niAi = O since we are taking deviations

from the general effect M , and Eij is a vector of random components assumed to be nor-

mally distributed as follows: Eij
iid∼ Np(O, Σ), Σ > O, for all i and j where Σ is a

positive definite covariance matrix, that is,

Cov(Eij ) = E[(Eij − O)(Eij − O)′] = E[EijE
′
ij ] = Σ > O for all i and j,

where E[ · ] denotes the expected value operator. This normality assumption will be needed
for testing hypotheses and developing certain distributional aspects. However, the multi-
variate analysis of variation can be set up without having to resort to any distributional
assumption. In the real scalar variable case, we minimized the sum of the squares of the
errors since the variations only involved single scalar variables. In the vector case, if we
take the sum of squares of the elements in Eij , that is, E′

ijEij and its sum over all i and j ,
then we are only considering the variations in the individual elements of Eij ’s; however,
in the vector case, there is joint variation among the elements of the vector and that is also
to be taken into account. Hence, we should be considering all squared terms and cross
product terms or the whole matrix of squared and cross product terms. This is given by
EijE

′
ij and so, we should consider this matrix and carry out some type of minimization.

Consider ∑

ij

EijE
′
ij =

∑

ij

[Xij − M − Ai][Xij − M − Ai]′. (13.2.2)

For obtaining estimates of M and Ai, i = 1, . . . , k, we will minimize the trace of∑
ij EijE

′
ij as a criterion. There are terms of the type [Xij − M − Ai]′[Xij − M − Ai] in

this trace. Thus,

∂

∂M

[
tr
(∑

ij

EijE
′
ij

)]
=
∑

ij

∂

∂M
[Xij − M − Ai]′[Xij − M − Ai] = O

⇒
∑

ij

Xij − n.M −
∑

i

niAi = O ⇒ M̂ = 1

n.

X.. ,

noting that we assumed that
∑

i niAi = O. Now, on differentiating the trace of EijE
′
ij

with respect to Ai for a specific i, we have

∂

∂Ai

tr
[∑

ij

EijE
′
ij

]
= ∂

∂Ai

∑

ij

[Xij − M − Ai]′[Xij − M − Ai] = O

⇒
∑

j

[Xij − M − Ai] = O ⇒ Âi = 1

ni

Xi. − M̂ = 1

ni

Xi. − 1

n.

X.. .
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Observe that there is only one critical vector for M̂ and for Âi, i = 1, . . . , k. Accordingly,
the critical point will either correspond to a minimum or a maximum of the trace. But
for arbitrary M and Ai , the maximum occurs at plus infinity and hence, the critical point
(M̂, Âi, i = 1, . . . , k) corresponds to a minimum. Once evaluated at these estimates, the
sum of squares and cross products matrix, denoted by S, is the following:

S =
∑

ij

[Xij − M̂ − Âi][Xij − M̂ − Âi]′ =
∑

ij

[
Xij − 1

ni

Xi.

][
Xij − 1

ni

Xi.

]′

=
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′ −
∑

i

ni

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′

(13.2.3)

Note that as in the scalar case, the middle terms and the last term will combine into the
second term above. Now, let us impose the hypothesis Ho : A1 = A2 = · · · = Ak =
O. Note that equality of the Aj ’s will automatically imply that each one is null because
the weighted sum is null as per our initial assumption in the model (13.2.1). Under this
hypothesis, the model will be Xij = M + Eij , and then proceeding as in the univariate
case, we end up with the following sum of squares and cross products matrix, denoted by
S0:

S0 =
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′
, (13.2.4)

so that the sum of squares and cross products matrix due to the Ai’s is the difference

S0 − S =
∑

ij

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′
. (13.2.5)

Thus, the following partitioning of the total variation in the multivariate data:

S0 = [S0 − S] + S

Total variation = [Variation due to the Ai’s] + [Residual variation]
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′ =
∑

ij

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′

+
∑

ij

[
Xij − 1

ni

Xi.

][
Xij − 1

ni

Xi.

]′
.

Under the normality assumption for the random component Eij
iid∼ Np(O, Σ), Σ >

O, we have the following properties, which follow from results derived in Chap. 5, the
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notation Wp(ν, Σ) standing for a Wishart distribution having ν degrees of freedom and
parameter matrix Σ :

Total variation = S0 =
∑

ij

[
Xij − 1

n.

X..

][
Xij − 1

n.

X..

]′
,

S0 ∼ Wp(n. − 1, Σ);
Variation due to the Ai’s = S0 − S =

∑

ij

[ 1

ni

Xi. − 1

n.

X..

][ 1

ni

Xi. − 1

n.

X..

]′
,

S0 − S ∼ Wp(k − 1, Σ) under the hypothesis A1 = A2 = · · · = Ak = O;
Residual variation = S =

∑

ij

[
Xij − 1

ni

Xi.

][
Xij − 1

ni

Xi.

]′
,

S ∼ Wp(n. − k, Σ).

We can summarize these findings in a tabular form known as the multivariate analysis of
variation table or MANOVA table, where df means degrees of freedom in the correspond-
ing Wishart distribution, and SSP represents the sum of squares and cross products matrix.

Multivariate Analysis of Variation (MANOVA) Table

Variation due to df SSP

treatments k − 1
∑

ij [ 1
ni

Xi. − 1
n.

X..][ 1
ni

Xi. − 1
n.

X..]′
residuals n. − k

∑
ij [Xij − 1

ni
Xi.][Xij − 1

ni
Xi.]′

total n. − 1
∑

ij [Xij − 1
n.

X..][Xij − 1
n.

X..]′

13.2.1. Some properties

The sample values from the i-th sample or the i-th group or the plots receiving the i-th
treatment are Xi1, Xi2, . . . , Xini

. In this case, the average is
∑ni

j=1
Xij

ni
= Xi.

ni
and the i-th

sample sum of squares and products matrix is

Si =
ni∑

j=1

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′
.

As well, it follows from Chap. 5 that Si ∼ Wp(ni − 1, Σ) when Eij
iid∼ Np(O, Σ), Σ >

O. Then, the residual sum of squares and products matrix can be written as follows, de-
noting it by the matrix V :
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V =
∑

ij

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′ =
k∑

i=1

[ ni∑

j=1

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′]

=
k∑

i=1

Si = S1 + S2 + · · · + Sk (13.2.6)

where Si ∼ Wp(ni − 1, Σ), i = 1, . . . , k, and the Si’s are independently distributed
since the sample values from the k groups are independently distributed among themselves
(within the group) and between groups. Hence, S ∼ Wp(ν, Σ), ν = (n1 −1)+ (n2 −1)+
· · · + (nk − 1) = n. − k. Note that X̄i = Xi.

ni
has Cov(X̄i) = 1

ni
Σ , so that

√
ni(X̄i − X̄)

are iid Np(O, Σ) where X̄ = X../n. . Then, the sum of squares and products matrix due
to the treatments or due to the Ai’s is the following, denoting it by U :

U =
k∑

i=1

ni

[Xi.

ni

− X..

n.

][Xi.

ni

− X..

n.

]′ ∼ Wp(k − 1, Σ) (13.2.7)

under the null hypothesis; when the hypothesis is violated, it is a noncentral Wishart dis-
tribution. Further, the sum of squares and products matrix due to the treatments and the
residual sum of squares and products matrix are independently distributed. Thus, by com-
paring U and V , we should be able to reach a decision regarding the hypothesis. One
procedure that is followed is to take the determinants of U and V and compare them.
This does not have much of a basis and determinants should not be called “generalized
variance” as previously explained since the basic condition of a norm is violated by the
determinant. The basis for comparing determinants will become clear from the point of
view of testing hypotheses by applying the likelihood ratio criterion, which is discussed
next.

13.3. The Likelihood Ratio Criterion

Let Eij
iid∼ Np(O, Σ), Σ > O, and suppose that we have simple random samples

of sizes n1, . . . , nk from the k groups relating to the k treatments. Then, the likelihood
function, denoted by L, is the following:

L =
∏

ij

e− 1
2 (Xij−M−Ai)

′Σ−1(Xij−M−Ai)

(2π)
p
2 |Σ | 1

2

= e− 1
2

∑
ij (Xij−M−Ai)

′Σ−1(Xij−M−Ai)

(2π)
pn.

2 |Σ | n.
2

. (13.3.1)
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The maximum likelihood estimators/estimates (MLE’s) of M is M̂ = X..

n.
= X̄ and that

of Ai is Âi = Xi.

ni
− M̂ . With a view to obtaining the MLE of Σ , we first note that the

exponent is a real scalar quantity which is thus equal to its trace, so that we can express
the exponent as follows, after substituting the MLE’s of M and Ai :

−1

2

∑

ij

[Xij − M̂ − Âi]′Σ−1[Xij − M̂ − Âi]

= −1

2

∑

ij

tr
([

Xij − Xi.

ni

]′
Σ−1

[
Xij − Xi.

ni

])

= −1

2

∑

ij

tr
(
Σ−1

[
Xij − Xi.

ni

][
Xij − Xi.

ni

]′)
.

Now, following through the estimation procedure of the MLE included in Chap. 3, we
obtain the MLE of Σ as

Σ̂ = 1

n.

∑

ij

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′
. (13.3.2)

After substituting M̂, Âi and Σ̂ , the exponent in the likelihood ratio criterion λ becomes
−1

2n. tr(Ip) = −1
2n.p. Hence, the maximum value of the likelihood function L under the

general model becomes

max L = e− 1
2 (n.p)n

n.p
2

.

(2π)
n.p

2 |∑ij (Xij − Xi.

ni
)(Xij − Xi.

ni
)′| . (13.3.3)

Under the hypothesis Ho : A1 = A2 = · · · = Ap = O, the model is Xij = M + Eij and
the MLE of M under Ho is still 1

n.
X.. and Σ̂ under Ho is 1

n.

∑
ij (Xij − 1

n.
X..)(Xij − 1

n.
X..)

′,
so that max L under Ho, denoted by max Lo, is

max Lo = e− 1
2 n.pn

n.p
2

.

(2π)
n.p

2 |∑ij (Xij − 1
n.

X..)(Xij − 1
n.

X..)′| n.
2
. (13.3.4)

Therefore, the λ-criterion is the following:

λ = max Lo

max L
= |∑ij (Xij − Xi.

ni
)(Xij − Xi.

ni
)′| n.

2

|∑ij (Xij − X..

n.
)(Xij − X..

n.
)′| n.

2

= |V | n.
2

|U + V | n.
2

(13.3.5)
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where

U =
∑

ij

(Xi.

ni

− X..

n.

)(Xi.

ni

− X..

n.

)′
, V =

∑

ij

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′

and U ∼ Wp(k − 1, Σ) under Ho is the sum of squares and cross products matrix due
to the Ai’s and V ∼ Wp(n. − k, Σ) is the residual sum of squares and cross prod-
ucts matrix. It has already been shown that U and V are independently distributed. Then
W1 = (U +V )− 1

2 V (U +V )− 1
2 , with the determinant |V |

|U+V | , is a real matrix-variate type-1

beta with parameters (n.−k
2 , k−1

2 ), as defined in Chap. 5, and W2 = V − 1
2 UV − 1

2 is a real
matrix-variate type-2 beta with the parameters (k−1

2 , n.−k
2 ). Moreover, Y1 = I − W1 =

(U + V )− 1
2 U(U + V )− 1

2 with |U |
|U+V | is a real matrix-variate type-1 beta random vari-

ables with parameters (k−1
2 , n.−k

2 ). Given the properties of independent real matrix-variate
gamma random variables, we have seen in Chap. 5 that W1 and Y2 = U + V are indepen-
dently distributed. Similarly, Y1 = I − W1 and Y2 are independently distributed. Further,
W−1

2 = V
1
2 U−1V

1
2 is a real matrix-variate type-2 beta random variable with the parame-

ters (n.−k
2 , k−1

2 ). Observe that

|W1| = |V |
|U + V | = 1

|V − 1
2 UV − 1

2 + I |
= 1

|W2 + I | , W1 = (I + W2)
−1.

A one-to-one function of λ is

w = λ
2
n. = |V |

|U + V | = |W1|. (13.3.6)

13.3.1. Arbitrary moments of the likelihood ratio criterion

For an arbitrary h, the h-th moment of w as well as that of λ can be obtained from
the normalizing constant of a real matrix-variate type-1 beta density with the parameters
(n.−k

2 , k−1
2 ). That is,

E[wh] = Γp(n.−k
2 + h)

Γp(n.−k
2 )

Γp(n.−1
2 )

Γp(n.−1
2 + h)

, (n. − k) + (k − 1) = n. − 1,

=
⎧
⎨

⎩

p∏

j=1

Γ (n.−1
2 − j−1

2 )

Γ (n.−k
2 − j−1

2 )

⎫
⎬

⎭

⎧
⎨

⎩

p∏

j=1

Γ (n.−k
2 − j−1

2 + h)

Γ (n.−1
2 − j−1

2 + h)

⎫
⎬

⎭
. (13.3.7)
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As E[λh] = E[wn.
2 ]h = E[w(n.

2 )h], the h-th moment of λ is obtained by replacing h by
(n.

2 )h in (13.3.7). That is,

E[λh] = Cp,k

⎧
⎨

⎩

p∏

j=1

Γ (n.−k
2 − j−1

2 + (n.

2 )h)

Γ (n.−1
2 − j−1

2 + (n.

2 )h)

⎫
⎬

⎭
(13.3.8)

where

Cp.k =
⎧
⎨

⎩

p∏

j=1

Γ (n.−1
2 − j−1

2 )

Γ (n.−k
2 − j−1

2 )

⎫
⎬

⎭
.

13.3.2. Structural representation of the likelihood ratio criterion

It can readily be seen from (13.3.7) that the h-th moment of w is of the form of the h-th
moment of a product of independently distributed real scalar type-1 beta random variables.
That is,

E[wh] = E[w1w2 · · · wp]h, w = w1w2 · · · wp, (13.3.9)

where w1, . . . , wp are independently distributed and wj is a real scalar type-1 beta random
variable with the parameters (n.−k

2 − j−1
2 , k−1

2 ), j = 1, . . . , p, for n. − k > p − 1 and
n. > k + p − 1. Hence the exact density of w is available by constructing the density
of a product of independently distributed real scalar type-1 beta random variables. For
special values of p and k, one can obtain the exact densities in the forms of elementary
functions. However, for the general case, the exact density corresponding to E[wh] as
specified in (13.3.7) can be expressed in terms of a G-function and, in the case of E[λh]
as given in (13.3.8), the exact density can be represented in terms of an H-function. These
representations are as follows, denoting the densities of w and λ as fw(w) and fλ(λ),
respectively:

fw(w) = Cp,k Gp,0
p,p

[

w

∣
∣
∣

n.−1
2 − j−1

2 −1, j=1,...,p

n.−k
2 − j−1

2 −1, j=1,...,p

]

, 0 < w ≤ 1, (13.3.10)

fλ(λ) = Cp,k Hp,0
p,p

[

λ

∣
∣
∣
( n.−1

2 − j−1
2 − n.

2 , n.
2 ), j=1,...,p

( n.−k
2 − j−1

2 − n.
2 , n.

2 ), j=1,...,p

]

, 0 < λ ≤ 1, (13.3.11)

for n. > p + k − 1, p ≥ 1 and fw(w) = 0, fλ(λ) = 0, elsewhere. The evaluation of
G and H-functions can be carried out with the help of symbolic computing packages such
as Mathematica and MAPLE. Theoretical considerations, applications and several special
cases of the G and H-functions are, for instance, available from Mathai (1993) and Mathai,
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Saxena and Haubold (2010). The special cases listed therein can also be utilized to work
out the densities for particular cases of (13.3.10) and (13.3.11). Explicit structures of the
densities for certain special cases are listed in the next section.

13.3.3. Some special cases

Several particular cases can be worked out by examining the moment expressions

in (13.3.7) and (13.3.8). The h-th moment of the w = λ
2
n. , where λ is the likelihood

ratio criterion, is available from (13.3.7) as

E[wh] = Cp,k

Γ (n.−k
2 + h)Γ (n.−k

2 − 1
2 + h) · · · Γ (n.−k

2 − p−1
2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h) · · · Γ (n.−1

2 − p−1
2 + h)

. (i)

Case (1): p = 1

In this case, from (i),

E[wh] = C1,k

Γ (n.−k
2 + h)

Γ (n.−1
2 + h)

,

which is the h-th moment of a real scalar type-1 beta random variable with the parameters
(n.−k

2 , k−1
2 ) and, in this case, w is simply a real scalar type-1 beta random variable with

the parameters (n.−k
2 , k−1

2 ). We reject the null hypothesis Ho : A1 = A2 = · · · = Ak = O

for small values of the λ-criterion and, accordingly, we reject Ho for small values of w

or the hypothesis is rejected when the observed value of w ≤ wα where wα is such that∫ wα

0 fw(w)dw = α for the preassigned size α of the critical region, fw(w) denoting the
density of w for p = 1, n. > k.

Case (2): p = 2

From (i), we have

E[wh] = C2,k

Γ (n.−k
2 + h)Γ (n.−k

2 − 1
2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h)

and therefore

E[w 1
2 ]h = C2,k

Γ (n.−k
2 + h

2 )Γ (n.−k
2 − 1

2 + h
2 )

Γ (n.−1
2 + h

2 )Γ (n.−1
2 − 1

2 + h
2 )

. (ii)

The gamma functions in (ii) can be combined by making use of a duplication formula for
gamma functions, namely,

Γ (z)Γ (z + 1/2) = π
1
2 21−2zΓ (2z). (13.3.12)
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Take z = n.−k
2 − 1

2 + h
2 and z = n.−1

2 − 1
2 + h

2 in the part containing h and in the constant
part wherein h = 0, and then apply formula (13.3.12) to obtain

E[w 1
2 ]h = Γ (n. − 2)

Γ (n. − k − 1)

Γ (n. − k − 1 + h)

Γ (n. − 2 + h)
,

which is, for an arbitrary h, the h-th moment of a real scalar type-1 beta random variable
with parameters (n. − k − 1, k − 1) for n. − k − 1 > 0, k > 1. Thus, y = w

1
2 is a real

scalar type-1 beta random variable with the parameters (n. − k − 1, k − 1). We would then
reject Ho for small values of w, that is, for small values of y or when the observed value
of y ≤ yα with yα such that

∫ yα

0 fy(y)dy = α for a preassigned probability of type-I error
which is the error of rejecting Ho when Ho is true, where fy(y) is the density of y for
p = 2 whenever n. > k + 1.

Case (3): k = 2, p ≥ 1, n. > p + 1

In this case, the h-th moment of w as specified in (13.3.7) is the following:

E[wh] = Cp,2
Γ (n.−2

2 + h)Γ (n.−2
2 − 1

2 + h) · · · Γ (n.−2
2 − p−1

2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h) · · · Γ (n.−1

2 − p−1
2 + h)

= Cp,2
Γ (n.−1

2 − p
2 + h)

Γ (n.−1
2 + h)

since the numerator gamma functions, except the last one, cancel with the denominator
gamma functions except the first one. This expression happens to be the h-th moment of
a real scalar type-1 beta random variable with the parameters (

n.−1−p
2 ,

p
2 ) and hence, for

k = 2, n. −1−p > 0 and p ≥ 1, w is a real scalar type-1 beta random variable. Then, we
reject the null hypothesis Ho for small values of w or when the observed value of w ≤ wα,

with wα such that
∫ wα

0 fw(w)dw = α for a preassigned significance level α, fw(w) being
the density of w for this case. We will use the same notation fw(w) for the density of w in
all the special cases.

Case (4): k = 3, p ≥ 1

Proceeding as in Case (3), we see that all the gammas in the h-th moment of w cancel
out except the last two in the numerator and the first two in the denominator. Thus,

E[wh] = Cp,3
Γ (n.−3

2 + 1
2 − p−1

2 + h)Γ (n.−3
2 − p−1

2 )

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h)

= Cp,3
Γ (n.−1

2 − p
2 + h)Γ (n.−1

2 − p
2 − 1

2 + h)

Γ (n.−1
2 + h)Γ (n.−1

2 − 1
2 + h)

.
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After combining the gammas in y = w
1
2 with the help of the duplication formula (13.3.12),

we have the following:

E[yh] = Γ (n. − 2)

Γ (n. − 2 − p)

Γ (n. − p − 2 + h)

Γ (n. − 2 + h)
.

Therefore, y = w
1
2 is a real scalar type-1 random variable with the parameters (n. − p −

2, p). We reject the null hypothesis for small values of y or when the observed value of
y ≤ yα, with yα such that

∫ yα

0 fy(y)dy = α for a preassigned significance level α. We
will use the same notation fy(y) for the density of y in all special cases.

We can also obtain some special cases for t1 = 1−w
w

and t2 = 1−y
y

, with y = √
w.

With this transformation, t1 and t2 will be available in terms of type-2 beta variables in
the real scalar case, which conveniently enables us to relate this distribution to real scalar
F random variables so that an F table can be used for testing the null hypothesis and
reaching a decision. We have noted that

w = |V |
|U + V | = |(U + V )−

1
2 V (U + V )−

1
2 | = |W1|

= 1

|V − 1
2 UV − 1

2 + I |
= 1

|W2 + I |
where W1 is a real matrix-variate type-1 beta random variable with the parameters
(n.−k

2 , k−1
2 ) and W2 is a real matrix-variate type-2 beta random variable with the parame-

ters (k−1
2 , n.−k

2 ). Then, when p = 1, W1 and W2 are real scalar variables, denoted by w1

and w2, respectively. Then for p = 1, we have one gamma ratio with h in the general h-th
moment (13.3.7) and then,

t1 = 1 − w

w
= 1

w
− 1 = (w2 + 1) − 1 = w2

where w2 is a real scalar type-2 beta random variable with the parameters (
p−1

2 , n.−k
2 ).

As well, in general, for a real matrix-variate type-2 beta matrix W2 with the parameters
(ν1

2 , ν2
2 ), we have ν2

ν1
W2 = Fν1,ν2 where Fν1,ν2 is a real matrix-variate F matrix random

variable with degrees of freedom ν1 and ν2. When p = 1 or in the real scalar case ν2
ν1

w2 =
Fν1,ν2 where, in this case, F is a real scalar F random variable with ν1 and ν2 degrees of
freedom. We have used F for the scalar and matrix-variate case in order to avoid too many
symbols. For p = 2, we combine the gamma functions in the numerator and denominator
by applying the duplication formula for gamma functions (13.3.12); then, for t2 = 1−y

y
the

situation turns out to be the same as in the case of t1, the only difference being that in the
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real scalar type-2 beta w2, the parameters are (k − 1, n. − k − 1). Note that the original
k−1

2 has become k − 1 and the original n.−k
2 has become n. − k − 1. Thus, we can state the

following two special cases.

Case (5): p = 1, t1 = 1−w
w

As was explained, t1 is a real type-2 beta random variable with the parameters
(k−1

2 , n.−k
2 ), so that

n. − k

k − 1
t1 � Fk−1,n.−k,

which is a real scalar F random variable with k − 1 and n. − k degrees of freedom.
Accordingly, we reject Ho for small values of w and y, which corresponds to large values
of F . Thus, we reject the null hypothesis Ho whenever the observed value of Fk−1,n.−k ≥
Fk−1,n.−k,α where Fk−1,n.−k,α is the upper 100 α% percentage point of the F distribution
or
∫∞
a

g(F )dF = α where a = Fk−1,n.−k,α and g(F ) is the density of F in this case.

Case (6): p = 2, t2 = 1−y
y

, y = √
w

As previously explained, t2 is a real scalar type-2 beta random variable with the pa-
rameters (k − 1, n. − k − 1) or

n. − k − 1

k − 1
t2 � F2(k−1),2(n.−k−1),

which is a real scalar F random variable having 2(k − 1) and 2(n. − k − 1) degrees of
freedom. We reject the null hypothesis for large values of t2 or when the observed value of
[n.−k−1

k−1 ]t2 ≥ b with b such that
∫∞
b

g(F )dF = α, g(F ) denoting in this case the density
of a real scalar random variable F with degrees of freedoms 2(k − 1) and 2(n. − k − 1),
and b = F2(k−1),2(n.−k−1),α.

Case (7): k = 2, p ≥ 1, t1 = 1−w
w

For the case k = 2, we have already seen that the gamma functions with h in their
arguments cancel out, leaving only one gamma in the numerator and one gamma in the
denominator, so that w is distributed as a real scalar type-1 beta random variable with the
parameters (

n.−1−p
2 ,

p
2 ). Thus, t1 = 1−w

w
is a real scalar type-2 beta with the parameters

(
p
2 ,

n.−p−1
2 ), and

[n. − 1 − p

p

]
t1 � Fp,n.−1−p,

which is a real scalar F random variable having p and n. − 1 − p degrees of freedom.
We reject Ho for large values of t1 or when the observed value of [n.−1−p

p
]t1 ≥ b where b
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is such that
∫∞
b

g(F )dF = α with g(F ) being the density of an F random variable with
degrees of freedoms p and n. − 1 − p in this special case.

Case (8): k = 3, p ≥ 1, t2 = 1−y
y

, y = √
w

On combining Cases (4) and (6), it is seen that t2 is a real scalar type-2 beta random
variable with the parameters (p, n. − p − 1), so that

n. − 1 − p

p
t2 � F2p,2(n.−p−1),

which is a real scalar F random variable with the degrees of freedoms (2p, 2(n. −p−1)).
Thus, we reject the hypothesis for large values of this F random variable. For a test at
significance level α or with α as the size of its critical region, the hypothesis Ho : A1 =
A2 = · · · = Ak = O is rejected when the observed value of this F ≥ F2p,2(n.−1−p),α

where F2p,2(n.−1−p),α is the upper 100 α% percentage point of the F distribution.

Example 13.3.1. In a dieting experiment, three different diets D1, D2 and D3 are tried
for a period of one month. The variables monitored are weight in kilograms (kg), waist
circumference in centimeters (cm) and right mid-thigh circumference in centimeters. The
measurements are x1 = final weight minus initial weight, x2 = final waist circumference
minus initial waist reading and x3 = final minus initial thigh circumference. Diet D1 is
administered to a group of 5 randomly selected individuals (n1 = 5), D2, to 4 randomly
selected persons (n2 = 4), and 6 randomly selected individuals (n3 = 6) are subjected
to D3. Since three variables are monitored, p = 3. As well, there are three treatments or
three diets, so that k = 3. In our notation,

X =
⎡

⎣
x1

x2

x3

⎤

⎦ , Xij =
⎡

⎣
x1ij

x2ij

x3ij

⎤

⎦ , X1j =
⎡

⎣
x11j

x21j

x31j

⎤

⎦ , X2j =
⎡

⎣
x12j

x22j

x32j

⎤

⎦ , X3j =
⎡

⎣
x13j

x23j

x33j

⎤

⎦ ,

where i corresponds to the diet number and j stands for the sample serial number. For
example, the observation vector on individual #3 within the group subjected to diet D2 is
denoted by X23. The following are the data on x1, x2, x3:

Diet D1 : X1j , j = 1, 2, 3, 4, 5 :

X11 =
⎡

⎣
2
3
1

⎤

⎦ , X12 =
⎡

⎣
4

−2
−1

⎤

⎦ , X13 =
⎡

⎣
−1
−2

1

⎤

⎦ , X14 =
⎡

⎣
−1

1
−1

⎤

⎦ , X15 =
⎡

⎣
1
0
0

⎤

⎦ .
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Diet D2 : X2j , j = 1, 2, 3, 4 :

X21 =
⎡

⎣
1
2
2

⎤

⎦ , X22 =
⎡

⎣
3

−1
−2

⎤

⎦ , X23 =
⎡

⎣
−1

2
1

⎤

⎦ , X24 =
⎡

⎣
1
1

−1

⎤

⎦ .

Diet D3 : X3j , j = 1, 2, 3, 4, 5, 6 :

X31 =
⎡

⎣
2
2

−1

⎤

⎦ , X32 =
⎡

⎣
1
3
1

⎤

⎦ , X33 =
⎡

⎣
−1

2
2

⎤

⎦ ,

X34 =
⎡

⎣
2
4
2

⎤

⎦ , X35 =
⎡

⎣
2
0
0

⎤

⎦ , X36 =
⎡

⎣
0
1
2

⎤

⎦ .

(1): Perform an ANOVA test on the first component consisting of weight measurements;
(2): Carry out a MANOVA test on the first two components, weight and waist measure-
ments; (3): Do a MANOVA test on all the three variables, weight, waist and thigh mea-
surements.

Solution 13.3.1. We first compute the vectors X1., X̄1, X2., X̄2, X3., X̄3, X.. and X̄:

X1. =
⎡

⎣
5
0
0

⎤

⎦ , X̄1 = X1.

n1
= 1

5

⎡

⎣
5
0
0

⎤

⎦ =
⎡

⎣
1
0
0

⎤

⎦ , X2. =
⎡

⎣
4
4
0

⎤

⎦ , X̄2 = X2.

n2
= 1

4

⎡

⎣
4
4
0

⎤

⎦ =
⎡

⎣
1
1
0

⎤

⎦ ,

X3. =
⎡

⎣
6
12
6

⎤

⎦ , X̄3 = X3.

6
=
⎡

⎣
1
2
1

⎤

⎦ , X.. =
⎡

⎣
15
16
6

⎤

⎦ , X̄ = X..

n.

= 1

15

⎡

⎣
15
16
6

⎤

⎦ =
⎡

⎣
1

16/15
6/15

⎤

⎦ .

Problem (1): ANOVA on the first component x1. The first components of the observa-
tions are x1ij . The first components under diet D1 are

[x111, x112, x113, x114, x115] = [2, 4, −1, −1, 1] with x11. = 5;
the first components of observations under diet D2 are

[x121, x122, x123, x124] = [1, 3, −1, 1] with x12. = 4;
and the first components under diet D3 are

[x131, x132, x133, x134, x135, x136] = [2, 1, −1, 2, 2, 0] with x13. = 6.
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Hence, the total on the first component x1.. = 15, and x̄1 = x1..

n.
= 15

15 = 1. The first
component model is the following:

x1ij = μ + αi + e1ij , j = 1, . . . , ni, i = 1, . . . , k.

Note again that estimators and estimates will be denoted by a hat. As previously men-
tioned, the same symbols will be used for the variables and the observations on those
variables in order to avoid using too many symbols; however, the notations will be clear
from the context. If the discussion pertains to distributions, then variables are involved,
and if we are referring to numbers, then we are dealing with observations.

The least squares estimates are μ̂ = x1..

n.
= 1, α̂1 = x11.

5 = 5
5 = 1, α̂2 = x12.

4 = 4
4 = 1,

α̂3 = x13.

6 = 6
6 = 1. The first component hypothesis is α1 = α2 = α3 = 0. The total sum

of squares is

∑

ij

(x1ij − x̄1)
2 =

∑

ij

x2
1ij − x2

1..

n.

= (2 − 1)2 + (4 − 1)2 + (−1 − 1)2 + (−1 − 1)2 + (1 − 1)2

+ (1 − 1)2 + (3 − 1)2 + (−1 − 1)2 + (1 − 1)2

+ (2 − 1)2 + (1 − 1)2 + (−1 − 1)2 + (2 − 1)2 + (2 − 1)2 + (0 − 1)2

= 34.

The sum of squares due to the αi’s is available from

∑

i

ni

(x1i.

ni

− x1..

n.

)2 =
∑

i

x2
1i.

ni

− x2
1..

n.

= 5
( 5

5
− 15

15

)2 + 4
( 4

4
− 15

15

)2 + 6
( 6

6
− 15

15

)2 = 0.

Hence the following table:

ANOVA Table

Variation due to df SS MS F-ratio
diets 2 0 0 0
residuals 12 34
total 14 34

Since the sum of squares due to the αi’s is null, the hypothesis is not rejected at any level.
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Problem (2): MANOVA on the first two components. We are still using the notation
Xij for the two and three-component cases since our general notation does not depend
on the number of components in the vector concerned; as well, we can make use of the
computations pertaining to the first component in Problem (1). The relevant quantities
computed from the data on the first two components are the following:

Diet D1:

[
2 4 −1 −1 1
3 −2 −2 1 0

]

, X1. =
[
x11.

x21.

]

=
[

5
0

]

, X̄1 = 1

5

[
5
0

]

=
[

1
0

]

;

Diet D2:

[
1 3 −1 1
2 −1 2 1

]

, X2. =
[
x12.

x22.

]

=
[

4
4

]

, X̄2 = 1

4

[
4
4

]

=
[

1
1

]

;

Diet D3:

[
2 1 −1 2 2 0
2 3 2 4 0 1

]

, X3. =
[

6
12

]

, X̄3 =
[

1
2

]

.

In this case, the grand total, denoted by X.., and the grand average, denoted by X̄, are the
following:

X.. =
[

15
16

]

, X̄ = 1

15

[
15
16

]

=
[

1
16/15

]

.

Note that the total sum of squares and cross products matrix can be written as follows:

∑

ij

(Xij − X̄)(Xij − X̄)′ =
5∑

j=1

(X1j − X̄)(X1j − X̄)′ +
4∑

j=1

(X2j − X̄)(X2j − X̄)′

+
6∑

j=1

(X3j − X̄)(X3j − X̄)′.

Then,
5∑

j=1

(X1j − X̄)(X1j − X̄)′ =
[

1 29/15
29/15 292/152

]

+
[

9 −138/15
−138/15 462/152

]

+
[

4 92/15
92/15 462/152

]

+
[

4 2/15
2/15 1/152

]

+
[

0 0
0 162/152

]

=
[

18 −1
−1 5330/152

]

;

4∑

j=1

(X2j − X̄)(X2j − X̄)′ =
[

0 0
0 142/152

]

+
[

4 −62/15
−62/15 312/152

]

+
[

4 −28/15
−28/15 142/152

]

+
[

0 0
0 1/152

]

=
[

8 −6
−6 1354/152

]

;
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6∑

j=1

(X3j − X̄)(X3j − X̄)′ =
[

1 14/15
14/15 142/152

]

+
[

0 0
0 292/152

]

+
[

4 −28/15
−28/15 142/152

]

+
[

1 44/15
44/15 442/152

]

+
[

1 −16/15
−16/15 162/152

]

+
[

1 1/15
1/15 1/152

]

=
[

8 1
1 3426/152

]

;

∑

ij

(Xij − X̄)(Xij − X̄)′ =
[

18 −1
−1 5330/152

]

+
[

8 −6
−6 1354/152

]

+
[

8 1
1 3426/152

]

=
[

34 −6
−6 674/15

]

and

∣
∣
∣
∣

34 −6
−6 674/15

∣
∣
∣
∣ = 1491.73.

Now, consider the residual sum of squares and cross products matrix:

∑

ij

(Xij − Xi.

ni
)(Xij − Xi.

ni
)′ =

5∑

j=1

(X1j − X1.

n1
)(X1j − X1.

n1
)′

+
4∑

j=1

(X2j − X2.

n2
)(X2j − X2.

n2
)′ +

6∑

j=1

(X3j − X3.

n3
)(X3j − X3.

n3
)′.

That is,

5∑

j=1

(X1j − X1.

n1
)(X1j − X1.

n1
)′ =

[
1 3
3 9

]

+
[

9 −6
−6 4

]

+
[

4 4
4 4

]

+
[

4 −2
−2 1

]

+
[

0 0
0 0

]

=
[

18 −1
−1 18

]

;

4∑

j=1

(X2j − X2.

n2
)(X2j − X2.

n2
)′ =

[
0 0
0 1

]

+
[

4 −4
−4 4

]

+
[

4 −2
−2 1

]

+
[

0 0
0 0

]

=
[

8 −6
−6 6

]

;
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6∑

j=1

(X3j − X3.

n3
)(X3j − X3.

n3
)′ =

[
1 0
0 0

]

+
[

0 0
0 1

]

+
[

4 0
0 0

]

+
[

1 2
2 4

]

+
[

1 −2
−2 4

]

+
[

1 1
1 1

]

=
[

8 1
1 10

]

.

Hence,

∑

ij

(Xij − Xi.

ni
)(Xij − Xi.

ni
)′ =

[
18 −1
−1 18

]

+
[

8 −6
−6 6

]

+
[

8 1
1 10

]

=
[

34 −6
−6 34

]

and

∣
∣
∣
∣
34 −6
−6 34

∣
∣
∣
∣ = 1120.

Therefore, the observed w is given by

w = 1120

1491.73
= 0.7508,

√
w = 0.8665.

This is the case p = 2, k = 3, that is, our special Case (8). Then, the observed value of

t2 = 1−√
w√

w
= 0.1335

0.8665
= 0.1540,

and
n. − 1 − p

p
t2 = 15 − 1 − 2

2
(0.1540) = 0.9244.

Our F-statistic is F2p,2(n.−p−1) = F4,24. Let us test the hypothesis A1 = A2 = A3 = O

at the 5% significance level or α = 0.05. Since the observed value 0.9244 < 5.77 =
F4,24,0.05 which is available from F-tables, we do not reject the hypothesis.

Verification of the calculations

Denoting the total sum of squares and cross products matrix by St , the residual sum of
squares and cross products matrix by Sr and the sum of squares and cross products matrix
due to the hypothesis or due to the effects Ai’s by Sh, we should have St = Sr + Sh where

St =
[

34 −6
−6 674/15

]

and Sr =
[

34 −6
−6 34

]
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as previously determined. Let us compute

Sh =
k∑

i=1

ni

(Xi.

ni

− X..

n.

)(Xi.

ni

− X..

n.

)′
.

For the first two components, we already have the following:

X1.

n1
− X..

n.

=
[

1
0

]

−
[

1
16/15

]

=
[

0
−16/15

]

, n1 = 5

X2.

n2
− X..

n.

=
[

1
1

]

−
[

1
16/15

]

=
[

0
−1/15

]

, n2 = 4

X3.

n3
− X..

n.

=
[

1
2

]

−
[

1
16/15

]

=
[

0
14/15

]

, n3 = 6.

Hence,

Sh = 5

[
0 0
0 162/152

]

+ 4

[
0 0
0 1/152

]

+ 6

[
0 0
0 142/152

]

=
[

0 0
0 2460/152

]

=
[

0 0
0 164/15

]

.

As 34 + 164
15 = 674

15 , St = Sr + Sh, that is,

[
34 −6
−6 674/15

]

=
[

34 −6
−6 34

]

+
[

0 0
0 164/15

]

.

Thus, the result is verified.

Problem (3): Data on all the three variables. In this case, we have p = 3, k = 3. We
will first use X1., X̄1, X2., X̄2, X3., X̄3, X.. and X̄ which have already been evaluated, to
compute the residual sum of squares and cross product matrix. Since all the matrices are
symmetric, for convenience, we will only display the diagonal elements and those above
the diagonal. As in the case of two components, we compute the following, making use of
the calculations already done for the 2-component case (the notations remaining the same
since our general notation does not involve p):
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5∑

j=1

(X1j − X1.

n1
)(X1j − X1.

n1
)′ =

⎡

⎣
1 3 1

9 3
1

⎤

⎦+
⎡

⎣
9 −6 −3

4 2
1

⎤

⎦+
⎡

⎣
4 4 −2

4 −2
1

⎤

⎦

+
⎡

⎣
4 −2 2

1 −1
1

⎤

⎦+
⎡

⎣
0 0 0

0 0
0

⎤

⎦ =
⎡

⎣
18 −1 −2

18 2
4

⎤

⎦ ;

4∑

j=1

(X2j − X2.

n2
)(X2j − X2.

n2
)′ =

⎡

⎣
0 0 0

1 2
4

⎤

⎦+
⎡

⎣
4 −4 −4

4 4
4

⎤

⎦+
⎡

⎣
4 −2 −2

1 1
1

⎤

⎦

+
⎡

⎣
0 0 0

0 0
1

⎤

⎦ =
⎡

⎣
8 −6 −6

6 7
10

⎤

⎦ ;

6∑

j=1

(X3j − X3.

n3
)(X3j − X3.

n3
)′ =

⎡

⎣
1 0 2

0 0
4

⎤

⎦+
⎡

⎣
0 0 0

1 0
0

⎤

⎦+
⎡

⎣
4 0 −2

0 0
1

⎤

⎦

+
⎡

⎣
1 2 1

4 2
1

⎤

⎦+
⎡

⎣
1 −2 −1

4 2
1

⎤

⎦+
⎡

⎣
1 1 −1

1 −1
1

⎤

⎦

=
⎡

⎣
8 1 −5

10 3
8

⎤

⎦ .

Then,

∑

ij

(Xij − Xi.

ni
)(Xij − Xi.

ni
)′ =

⎡

⎣
18 −1 −2

18 2
4

⎤

⎦+
⎡

⎣
8 −6 −6

6 7
10

⎤

⎦+
⎡

⎣
8 1 −5

10 3
8

⎤

⎦

=
⎡

⎣
34 −6 −13

34 12
22

⎤

⎦

whose determinant is equal to

= 34

∣
∣
∣
∣
34 12
12 22

∣
∣
∣
∣+ 6

∣
∣
∣
∣
−6 12
−13 22

∣
∣
∣
∣− 13

∣
∣
∣
∣
−6 34
−13 12

∣
∣
∣
∣

= 15870.
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The total sum of squares and cross products matrix is the following:

∑

ij

(Xij − X̄)(Xij − X̄)′ =
5∑

j=1

(X1j − X̄)(X1j − X̄)′ +
4∑

j=1

(X2j − X̄)(X2j − X̄)′

+
6∑

j=1

(X3j − X̄)(X3j − X̄)′,

with

5∑

j=1

(X1j − X̄)(X1j − X̄)′ =
⎡

⎣
1 29/15 9/15

292/152 (29 × 9)/152

92/152

⎤

⎦

+
⎡

⎣
9 −(3 × 46)/15 −(3 × 21)/15

462/152 (46 × 21)/152

212/152

⎤

⎦+
⎡

⎣
4 92/15 −18/15

462/152 −(46 × 9)/152

92/152

⎤

⎦

+
⎡

⎣
4 2/15 42/15

1/152 21/152

212/152

⎤

⎦+
⎡

⎣
0 0 0

162/152 96/152

36/152

⎤

⎦

=
⎡

⎣
18 −1 −2

5330/152 930/152

1080/152

⎤

⎦ ,

4∑

j=1

(X2j − X̄)(X2j − X̄)′ =
⎡

⎣
0 0 0

142/152 (14 × 24)/152

242/152

⎤

⎦

+
⎡

⎣
4 −62/15 −72/15

312/152 (31 × 36)/152

362/152

⎤

⎦+
⎡

⎣
4 −28/15 −18/15

142/152 (14 × 9)/152

92/152

⎤

⎦

+
⎡

⎣
0 0 0

1/152 21/152

212/152

⎤

⎦ =
⎡

⎣
8 −6 −6

1354/152 1599/152

2394/152

⎤

⎦ ,
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6∑

j=1

(X3j − X̄)(X3j − X̄)′ =
⎡

⎣
1 14/15 −21/15

142/152 −(14 × 21)/152

211/152

⎤

⎦

+
⎡

⎣
0 0 0

292/152 (29 × 9)/152

92/152

⎤

⎦+
⎡

⎣
4 −28/15 −48/15

142/152 (14 × 24)/152

242/152

⎤

⎦

+
⎡

⎣
1 44/15 24/15

442/152 (44 × 24)/152

242/152

⎤

⎦+
⎡

⎣
1 −16/15 −6/15

162/152 96/152

62/152

⎤

⎦

+
⎡

⎣
1 1/15 −24/15

1/152 −24/152

242/152

⎤

⎦ =
⎡

⎣
8 1 −5

3426/152 1431/152

2286/152

⎤

⎦ .

Hence the total sum of squares and cross products matrix is

∑

ij

(Xij − X̄)(Xij − X̄)′ =
⎡

⎣
18 −1 −2

5330/152 930/152

1080/152

⎤

⎦+
⎡

⎣
8 −6 −6

1354/152 1599/152

2394/152

⎤

⎦

+
⎡

⎣
8 1 −5

3426/152 1431/152

2286/152

⎤

⎦ =
⎡

⎣
34 −6 −13
−6 674/15 264/15
−13 264/15 384/15

⎤

⎦

and its determinant = 34

∣
∣
∣
∣
674/15 264/15
264/15 384/15

∣
∣
∣
∣+ 6

∣
∣
∣
∣
−6 264/15
−13 384/15

∣
∣
∣
∣

− 13

∣
∣
∣
∣
−6 674/15
−13 264/15

∣
∣
∣
∣ = 342126/15.

Then, the observed value of

w = 15870 × 15

342126
= 0.6958,

√
w = 0.8341.

Since p = 3 and k = 3, an exact distribution is available from our special Case (8) for

t2 = 1−√
w√

w
and an observed value of t2 = 0.1989. Then,

n. − 1 − p

p
t2 = 15 − 1 − 3

3
t2 = 11

3
t2 ∼ F2p,2(n.−1−p) = F6,22.
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The critical value obtained from an F-table at the 5% significance level is F6,22,.05 ≈ 3.85.
Since the observed value of F6,22 is 11

3 (0.1989) = 0.7293 < 3.85, the hypothesis A1 =
A2 = A3 = O is not rejected. It can also be verified that St = Sr + Sh.

13.3.4. Asymptotic distribution of the λ-criterion

We can obtain an asymptotic real chisquare distribution for n. → ∞. To this end,
consider the general h-th moments of λ or E[λh] from (13.3.8), that is,

E[λh] = Cp,k

p∏

j=1

[
Γ
(n. − k

2
− j − 1

2
+ n.

2
h
)/

Γ
(n. − 1

2
− j − 1

2
+ n.

2
h
)]

= Cp,k

p∏

j=1

[
Γ
(n.

2
(1 + h) − j − 1

2
− k

2

)
/Γ
(n.

2
(1 + h) − j − 1

2
− 1

2

)]
.

Let us expand all the gamma functions in E[λh] by using the first term in the asymptotic
expansion of a gamma function or by making use of Stirling’s approximation formula,
namely,

Γ (z + δ) ≈ √(2π)zz+δ− 1
2 e−z (13.3.13)

for |z| → ∞ when δ is a bounded quantity. Taking n.

2 → ∞ in the constant part and
n.

2 (1 + h) → ∞ in the part containing h, we have

Γ
(n.

2
(1 + h) − j − 1

2
− k

2

)/
Γ
(n.

2
(1 + h) − j − 1

2
− 1

2
)

≈ {√(2π)[n.

2 (1 + h)] n.
2 (1+h)− j−1

2 − k
2 − 1

2 e− n.
2 (1+h)

/√
(2π)[n.

2 (1 + h)]n.

2 (1+h)− j−1
2 − 1

2 − 1
2 e

n.
2 (1+h)

}

= (n.

2 )−( k−1
2 )(1 + h)−( k−1

2 ).

The factor (n.

2 )−( k−1
2 ) is canceled from the expression coming from the constant part. Then,

taking the product over j = 1, . . . , p, we have

λh → (1 + h)−p(k−1)/2 or λ−2h → (1 − 2h)−p(k−1)/2 for 1 − 2h > 0,

which is the moment generating function (mgf) of a real scalar chisquare with p(k − 1)

degrees of freedom. Hence, we have the following result:
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Theorem 13.3.1. Letting λ be the likelihood ratio criterion for testing the hypothesis
Ho : A1 = A2 = · · · = Ak = O, the asymptotic distribution of −2 ln λ is a real chisquare
random variable having p(k − 1) degrees of freedom as n. → ∞, that is,

− 2 ln λ → χ2
p(k−1) as n. → ∞. (13.3.14)

Observe that we only require the sum of the sample sizes n1 + · · · + nk = n. to go
to infinity, and not that the individual nj ’s be large. This chisquare approximation can
be utilized for testing the hypothesis for large values of n., and we then reject Ho for
small values of λ, which means for large values of −2 ln λ or large values of χ2

p(k−1), that

is, when the observed −2 ln λ ≥ χ2
p(k−1),α where χ2

p(k−1),α denotes the upper 100 α%
percentage point of the chisquare distribution.

13.3.5. MANOVA and testing the equality of population mean values

In a one-way classification model, we have the following for the p-variate case:

Xij = M + Ai + Eij or Xij = Mi + Eij , with Mi = M + Ai, (13.3.15)

for j = 1, . . . , ni, i = 1, . . . , k. When the error vector is assumed to have a null expected
value, that is, E[Eij ] = O, for all i and j , we have E[Xij ] = Mi for all i and j . Thus, this
assumption, in conjunction with the hypothesis A1 = A2 = · · · = Ak = O, implies that
M1 = M2 = · · · = Mk, that is, the hypothesis of equality of the population mean value
vectors or the test is equivalent to testing the equality of population mean value vectors
in k independent populations with common covariance matrix Σ > O. We have already
tackled this problem in Chap. 6 under both assumptions that Σ is known and unknown,
when the populations are Gaussian, that is, Xij ∼ Np(Mi, Σ), Σ > O. Thus, the hypoth-
esis made in a one-way classification MANOVA setting and the hypothesis of testing the
equality of mean value vectors in MANOVA are one and the same. In the scalar case too,
the ANOVA in a one-way classification data coincides with testing the equality of popu-
lation mean values in k independent univariate populations. In the ANOVA case, we are
comparing the sum of squares attributable to the hypothesis to the residual sum of squares.
If the hypothesis really holds true, then the sum of squares due to the hypothesis or to the
αj ’s (deviations from the general effect due to the j -th treatment) must be zero and hence
for large values of the sum of squares due to the presence of the αj ’s, as compared to the
residual sum of squares, we reject the hypothesis. In MANOVA, we are comparing two
sums of squares and cross product matrices, namely,

U =
∑

ij

[Xi.

ni

− X..

n.

][Xi.

ni

− X..

n.

]′
and V =

∑

ij

[
Xij − Xi.

ni

][
Xij − Xi.

ni

]′
.
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We have the following distributional properties:

T1 = (U + V )
−1

2 U(U + V )
−1

2 ∼ real matrix-variate type-1 beta with parameters

(k−1
2 , n.−k

2 );
T2 = (U + V )

−1
2 V (U + V )

−1
2 ∼ real matrix-variate type-1 beta with parameters

(n.−k
2 , k−1

2 );
T3 = V

−1
2 UV

−1
2 ∼ real matrix-variate type-2 beta with parameters (k−1

2 , n.−k
2 );

T4 = U− 1
2 V U− 1

2 ∼ real matrix-variate type-2 beta with parameters (n.−k
2 , k−1

2 ).

(13.3.16)

The likelihood ratio criterion is

λ = |V |
|U + V | = |T2| = 1

|T3 + I | = 1
∏p

j=1(1 + ηj )
(13.3.17)

where the ηj ’s are the eigenvalues of T3. We reject Ho for small values of λ which means
for large values of

∏p

j=1[1 + ηj ]. The basic objective in MANOVA consists of comparing
U and V , the matrices due to the presence of treatment effects and due to the residuals,
respectively. We can carry out this comparison by using the type-1 beta matrices T1 and
T2 or the type-2 beta matrices T3 and T4 or by making use of the eigenvalues of these
matrices. In the type-1 beta case, the eigenvalues will be between 0 and 1, whereas in
the type-2 beta case, the eigenvalues will be real positive or simply positive. We may
also note that the eigenvalues of T1 and its nonsymmetric forms U(U + V )−1 or (U +
V )−1U are identical. Similarly, the eigenvalues of the symmetric form T2 and V (U +V )−1

or (U + V )−1V are one and the same. As well, the eigenvalues of the symmetric form
T3 and the nonsymmetric forms UV −1 or V −1U are the same. Again, the eigenvalues
of the symmetric form T4 and its nonsymmetric forms U−1V or V U−1 are the same.
Several researchers have constructed tests based on the matrices T1, T2, T3, T4 or their
nonsymmetric forms or their eigenvalues. Some of the well-known test statistics are the
following:

Lawley-Hotelling trace = tr(T3)

Roy’s largest root = the largest eigenvalue of T2

Pillai’s trace = tr(T1)

Wilks’ lambda = |T2| = the likelihood ratio statistic.
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For example, when the hypothesis is true, we expect the eigenvalues of T3 to be small and
hence we may reject the hypothesis when its smallest eigenvalue is large or the trace of
T3 is large. If we are using T4, then when the hypothesis is true, we expect T4 to be large
in the sense that the eigenvalues will be large, and therefore we may reject the hypothesis
for small values of its largest eigenvalue or its trace. If we are utilizing T1, we are actually
comparing the contribution attributable to the treatments to the total variation. We expect
this to be small under the hypothesis and hence, we may reject the hypothesis for large
values of its smallest eigenvalue or its trace. If we are using T2, we are comparing the
residual part to the total variation. If the hypothesis is true, then we can expect a substantial
contribution from the residual part so that we may reject the hypothesis for small values
of the largest eigenvalue or the trace in this case. These are the main ideas in connection
with constructing statistics for testing the hypothesis on the basis of the eigenvalues of the
matrices T1, T2, T3 and T4.

13.3.6. When Ho is rejected

When Ho : A1 = · · · = Ak = O is rejected, it is plausible that some of the differences
may be non-null, that is, Ai−Aj 
= O for some i and j , i 
= j . We may then test individual
hypotheses of the type Ho1 : Ai = Aj for i 
= j . There are k(k − 1)/2 such differences.
This type of test is equivalent to testing the equality of the mean value vectors in two
independent p-variate Gaussian populations with the same covariance matrix Σ > O.
This has already been discussed in Chap. 6 for the cases Σ known and Σ unknown. In this
instance, we can use the special Case (7) where for k = 2, and the statistic t1 is real scalar
type-2 beta distributed with the parameters (

p
2 ,

n.−1−p
2 ), so that

n. − 1 − p

p
t1 ∼ Fp,n.−1−p (13.3.18)

where n. = ni + nj for some specific i and j . We can make use of (13.3.18) for testing
individual hypotheses. By utilizing Special Case (8) for k = 3, we can also test a hypoth-
esis of the type Ai = Aj = Am for different i, j, m. Instead of comparing the results of
all the k(k − 1)/2 individual hypotheses, we may examine the estimates of Ai , namely,
Âi = Xi.

ni
− X..

n.
, i = 1, . . . , k. Consider the norms ‖Xi.

ni
− Xj.

nj
‖, i 
= j (the Euclidean

norm may be taken for convenience). Start with the individual test corresponding to the
maximum value of these norms. If this test is not rejected, it is likely that tests on all
other differences will not be rejected either. If it is rejected, we then take the next largest
difference and continue testing.
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Note 13.3.1. Usually, before initiating a MANOVA, the assumption that the covariance
matrices associated with the k populations or treatments are equal is tested. It may happen
that the error variable E1j , j = 1, . . . , n1, may have the common covariance matrix Σ1,
E2j , j = 1, . . . , n2, may have the common covariance matrix Σ2, and so on, where not
all the Σj ’s equal. In this instance, we may first test the hypothesis Ho : Σ1 = Σ2 =
· · · = Σk. This test is already described in Chap. 6. If this hypothesis is not rejected,
we may carry out the MANOVA analysis of the data. If this hypothesis is rejected, then
some of the Σj ’s may not be equal. In this case, we test individual hypotheses of the type
Σi = Σj for some specific i and j , i 
= j . Include all treatments for which the individual
hypotheses are not rejected by the tests and exclude the data on the treatments whose Σj ’s
may be different, but distinct from those already selected. Continue with the MANOVA
analysis of the data on the treatments which are retained, that is, those for which the Σj ’s
are equal in the sense that the corresponding tests of equality of covariance matrices did
not reject the hypotheses.

Example 13.3.2. For the sake of illustration, test the hypothesis Ho : A1 = A2 with the
data provided in Example 13.3.1.

Solution 13.3.2. We can utilize some of the computations done in the solution to Exam-
ple 13.3.1. Here, n1 = 5, n2 = 4 and n. = n1 + n2 = 9. We disregard the third sample.
The residual sum of squares and cross products matrix in the present case is available from
the Solution 13.3.1 by omitting the matrix corresponding to the third sample. Then,

2∑

i=1

ni∑

j=1

(
Xij − Xi.

ni

)(
Xij − Xi.

ni

)′ =
⎡

⎣
18 −1 −2

18 2
4

⎤

⎦+
⎡

⎣
8 −6 −6

6 7
10

⎤

⎦

=
⎡

⎣
26 −7 −8
−7 24 9
−8 9 14

⎤

⎦

whose determinant is

26

∣
∣
∣
∣
24 9
9 14

∣
∣
∣
∣+ 7

∣
∣
∣
∣
−7 9
−8 14

∣
∣
∣
∣− 8

∣
∣
∣
∣
−7 24
−8 9

∣
∣
∣
∣ = 5416.
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Let us compute
∑2

i=1
∑ni

j=1(Xij − X..

n.
)(Xij − X..

n.
)′:

5∑

j=1

(
X1j − X..

n.

)(
X1j − X..

n.

)′ =
⎡

⎣
1 23/9 5/9

232/92 115/92

52/92

⎤

⎦+
⎡

⎣
9 −66/9 −39/9

222/92 286/92

132/92

⎤

⎦

+
⎡

⎣
4 22/9 −10/9

222/92 −110/92

52/92

⎤

⎦+
⎡

⎣
4 −10/9 26/9

52/92 −65/92

132/92

⎤

⎦

+
⎡

⎣
0 0 0

42/92 16/92

42/92

⎤

⎦ =
⎡

⎣
18 −31/9 −18/9

1538/92 242/92

404/92

⎤

⎦ ;

4∑

j=1

(
X2j − X..

n.

)(
X2j − X..

n.

)′ =
⎡

⎣
0 0 0

142/92 142/92

142/92

⎤

⎦+
⎡

⎣
4 −26/9 −44/9

132/92 (13 × 22)/92

222/92

⎤

⎦

+
⎡

⎣
4 −28/9 −10/9

142/92 70/92

52/92

⎤

⎦+
⎡

⎣
0 0 0

52/92 −65/92

132/92

⎤

⎦

=
⎡

⎣
8 −6 −6

586/92 487/92

874/92

⎤

⎦ .

Hence the sum

2∑

i=1

ni∑

j=1

(
Xij − X..

n.

)(
Xij − X..

n.

)′ =
⎡

⎣
18 −31/9 −18/9

1538/92 242/92

404/92

⎤

⎦+
⎡

⎣
8 −6 −6

586/92 487/92

874/92

⎤

⎦

=
⎡

⎣
26 −85/9 −8

−85/9 236/9 9
−8 9 142/9

⎤

⎦ = U + V

whose determinant is

26

∣
∣
∣
∣
236/9 9

9 142/9

∣
∣
∣
∣+

85

9

∣
∣
∣
∣
−85/9 9

−8 142/9

∣
∣
∣
∣− 8

∣
∣
∣
∣
−85/9 236/9

−8 9

∣
∣
∣
∣ = 8380.0549.
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So, the observed values are as follows:

w = |V |
|U + V | = 5416

8380.055
= 0.6463

t1 = 1 − w

w
= 0.3537

0.6463
= 0.5413

n. − 1 − p

p
t1 = 5

3
t1 = 5

3
(0.5413) = 0.9022,

and Fp,n.−1−p = F3,5. Let us test the hypothesis at the 5% significance level. The criti-
cal value obtained from F-tables is F3,5,0.05 = 9.01. But since the observed value of F is
0.9022 < 9.01, the hypothesis is not rejected. We expected this result because the hypoth-
esis A1 = A2 = A3 was not rejected. This example was mainly presented to illustrate the
steps.

13.4. MANOVA for Two-Way Classification Data

As was done previously for the one-way classification, we will revisit the real scalar
variable case first. Thus, we consider the case of two sets of treatments, instead of the sin-
gle set analyzed in Sect. 13.3. In an agricultural experiment, suppose that we are consider-
ing r fertilizers as the first set of treatments, say F1, . . . , Fr, along with a set of s different
varieties of corn, V1, . . . , Vs, as the second set of treatments. A randomized block experi-
ment belongs to this category. In this case, r blocks of land, which are homogeneous with
respect to all factors that may affect the yield of corn, such as precipitation, fertility of
the soil, exposure to sunlight, drainage, and so on, are selected. Fertilizers F1, . . . , Fr are
applied to these r blocks at random, the first block receiving any one of F1, . . . , Fr, and
so on. Each block is divided into s equivalent plots, all the plots being of the same size,
shape, and so on. Then, the s varieties of corn are applied to each block at random, with
one variety to each plot. Such an experiment is called a randomized block experiment.
This experiment is then replicated t times. This replication is done so that possible inter-
action between fertilizers and varieties of corn could be tested. If the randomized block
experiment is carried out only once, no interaction can be tested from such data because
each plot will have only one observation. Interaction between the i-th fertilizer and j -th
variety is a joint effect for the (Fi, Vj ) combination, that is, the effect of Fi on the yield
varies with the variety of corn. For instance, an interaction will be present if the effect of
F1 is different when combined with V1 or V2. In other words, there are individual effects
and joint effects, a joint effect being referred to as an interaction between the two sets of
treatments. As an example, consider one set of treatments consisting of r different meth-
ods of teaching and a second set of treatments that could be s levels of previous exposure
of the students to the subject matter.
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13.4.1. The model in a two-way classification

The additive, fixed effect, two-way classification or two-way layout model with inter-
action is the following:

xijk = μ + αi + βj + γij + eijk, i = 1, . . . , r, j = 1, . . . , s, k = 1, . . . , t, (13.4.1)

where μ is a general effect, αi is the deviation from the general effect due to the i-th treat-
ment of the first set, βj is the deviation from the general effect due to the j -th treatment
of the second set, and γij is the effect due to interaction term or the joint effect of first and
second sets of treatments. In a randomized block experiment, the treatments belonging to
the first set are called “blocks” or “rows” and the treatments belonging to the second set are
called “treatments” or “columns”; thus, the two sets correspond to rows, say R1, . . . , Rr,

and columns, say C1, . . . , Cs . Then, γij is the deviation from the general effect due to the
combination (Ri, Cj ). The random component eijk is the sum total contributions coming
from all unknown factors and xijk is the observation resulting from the effect of the com-
bination of treatments (Ri, Cj ) at the k-th replication or k-th identical repetition of the
experiment. In an agricultural setting, the observation may be the yield of corn whereas,
in a teaching experiment, the observation may be the grade obtained by the “(i, j, k)”-th
student. In a fixed effect model, all parameters μ, α1, . . . , αr, β1, . . . , βs are assumed to
be unknown constants. In a random effect model α1, . . . , αr or β1, . . . , βs or both sets are
assumed to be random variables. We assume that E[eijk] = 0 and Var(eijk) = σ 2 > 0
for all i, j, k, where E(·) denotes the expected value of (·). In the present discussion, we
will only consider the fixed effect model. Under this model, the data are called two-way
classification data or two-way layout data because they can be classified according to the
two sets of treatments, “rows” and “columns”. Since we are not making any assumption
about the distribution of eijk, and thereby that of xijk, we will apply the method of least
squares to estimate the parameters.

13.4.2. Estimation of parameters in a two-way classification

The error sum of squares is

e2
ijk =

∑

ijk

(xijk − μ − αi − βj − γij )
2.

Our first objective consists of isolating the sum of squares due to interaction and test the
hypothesis of no interaction, that is, Ho : γij = 0 for all i, j and k. If γij 
= 0, part of the
effect of the i-th row Ri is mixed up with the interaction and similarly, part of the effect
of the j -th column, Cj , is intermingled with γij , so that no hypothesis can be tested on
the αi’s and βj ’s unless γij is zero or negligibly small or the hypothesis γij = 0 is not
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rejected. As well, on noting that in [μ + αi + βj + γij ], the subscripts either appear none
at a time, one at a time and both at a time, we may write μ + αi + βj + γij = mij . Thus,

∑

ijk

e2
ijk =

∑

ijk

(xijk − mij )
2 ⇒ ∂

∂mij

[e2
ijk] = 0

⇒
∑

k

(xijk − mij ) = 0 ⇒ xij. − t m̂ij = 0 or m̂ij = xij.

t
.

We employ the standard notation in this area, namely that a summation over a subscript is
denoted by a dot. Then, the least squares minimum under the general model or the residual
sum of squares, denoted by s2, is given by

s2 =
∑

ijk

(
xijk − xij.

t

)2
. (13.4.2)

Now, consider the hypothesis Ho : γij = 0 for all i and j . Under this Ho, the model
becomes

xijk = μ + αi + βj + eijk or
∑

ijk

e2
ijk =

∑

ijk

(xijk − μ − αi − βj )
2.

We differentiate this partially with respect to μ and αi for a specific i, and to βj for a
specific j , and then equate the results to zero and solve to obtain estimates for μ, αi and
βj . Since we have taken αi, βj and γij as deviations from the general effect μ, we may let
α. = α1 + · · · + αr = 0, β. = β1 + · · · + βs = 0 and γi. = 0, for each i and γ.j = 0 for
each j , without any loss of generality. Then,

∂

∂μ
[e2

ijk] = 0 ⇒
(∑

ijk

xijk

)
− rstμ − stα. − rtβ. = 0 ⇒ μ̂ = x...

rst

∂

∂αi

[e2
ijk] = 0 ⇒

∑

jk

[xijk − μ − αi − βj ] = 0

⇒ xi.. − stμ − stαi − tβ. = 0 ⇒ α̂i = xi..

st
− μ̂

∂

∂βj

[e2
ijk] = 0 ⇒

∑

ik

[xijk − μ − αi − βj ] = 0

⇒ x.j. − rtμ − tα. − rtβj = 0 ⇒ β̂j = x.j.

rt
− μ̂ .
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Hence, the least squares minimum under the hypothesis Ho, denoted by s2
0 , is

s2
0 =

∑

ijk

[(
xijk − x...

rst

)
−
(xi..

st
− x...

rst

)
−
(x.j.

rt
− x...

rst

)]2

=
∑

ijk

(
xijk − x...

rst

)2 − st
∑

i

(xi..

st
− x...

rst

)2 − rt
∑

j

(x.j.

rt
− x...

rst

)2
,

the simplifications resulting from properties of summations with respect to subscripts.
Thus, the sum of squares due to the hypothesis Ho : γij = 0 for all i and j or the interaction
sum of squares, denoted by s2

γ is the following:

s2
γ = s2

0 − s2 =
∑

ijk

(
xijk − x...

rst

)2 − st
∑

i

(xi..

st
− x...

rst

)2

− rt
∑

j

(x.j.

rt
− x...

rst

)2 −
∑

ijk

(
xijk − xij.

t

)2
,

and since
∑

ijk

(
xijk − xij.

t

)2 =
∑

ijk

(
xijk − x...

rst

)2 − t
∑

ij

(xij.

t
− x...

rst

)2
,

the sum of squares due to the hypothesis or attributable to the γij ’s, that is, due to interac-
tion is

s2
γ = t

∑

ij

(xij.

t
− x...

rst

)2 − st
∑

i

(xi..

st
− x...

rst

)2 − rt
∑

j

(x.j.

rt
− x...

rst

)2
. (13.4.3)

If the hypothesis γij = 0 is not rejected, the effects of the γij ’s are deemed insignificant
and then, setting the hypothesis γij = 0, αi = 0, i = 1, . . . , r , we obtain the sum of
squares due to the αi’s or sum of squares due to the rows denoted as s2

r , is

s2
r =

∑

ijk

(xi..

st
− x...

rst

)2 = st

r∑

i=1

(xi..

st
− x...

rst

)2
. (13.4.4)

Similarly, the sum of squares attributable to the βj ’s or due to the columns, denoted as s2
c ,

is

s2
c = rt

s∑

j=1

(x.j.

rt
− x...

rst

)2
. (13.4.5)
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Observe that the sum of squares due to rows plus the sum of squares due to columns,
once added to the interaction sum of squares, is the subtotal sum of squares, denoted by
s2
rc = t

∑
ij

(xij.

t
− x...

rst

)2
or this subtotal sum of squares is partitioned into the sum of

squares due to the rows, due to the columns and due to interaction. This is equivalent
to an ANOVA on the subtotals

∑
k xijk or an ANOVA on a two-way classification with

a single observation per cell. As has been pointed out, in that case, we cannot test for
interaction, and moreover, this subtotal sum of squares plus the residual sum of squares is
the grand total sum of squares. If we assume a normal distribution for the error terms, that

is, eijk
iid∼ N1(0, σ 2), σ 2 > 0, for all i, j, k, then under the hypothesis Ho : γij = 0, it can

be shown that

s2
γ

σ 2
∼ χ2

ν , ν = (rs − 1) − (r − 1) − (s − 1) = (r − 1)(s − 1), (13.4.6)

and the residual variation s2 has the following distribution whether Ho holds or not:

s2

σ 2
∼ χ2

ν1
, ν1 = rst − 1 − (rs − 1) = rs(t − 1), (13.4.7)

where s2
γ and s2 are independently distributed. Then, under the hypothesis γij = 0 for all

i and j or when this hypothesis is not rejected, it can be established that

s2
r

σ 2
∼ χ2

r−1,
s2
c

σ 2
∼ χ2

s−1 (13.4.8)

and s2
r and s2 as well as s2

c and s2 are independently distributed whenever Ho : γij = 0 is
not rejected. Hence, under the hypothesis,

s2
γ /(r − 1)(s − 1)

s2/(rs(t − 1))
∼ Fν, ν1, ν = (r − 1)(s − 1), ν1 = rs(t − 1). (13.4.9)

The total sum of squares is
∑

ijk

(
xijk − x...

rst

)2
. Thus, the first decomposition and the first

part of ANOVA in this two-way classification scheme is the following:

Total variation = Variation due to the subtotals + Residual variation,

the second stage being

Variation due to the subtotals = Variation due to the rows

+ Variation due to the columns + Variation due to interaction,

and the resulting ANOVA table is the following:
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ANOVA Table for the Two-Way Classification

df SS MS

Variation due to (1) (2) (3)=(2)/(1)

rows r − 1 s2
r = st

∑r
i=1(

xi..

st
− x...

rst
)2 s2

r /(r − 1) = D1

columns s − 1 s2
c = rt

∑s
j=1(

x.j.

rt
− x...

rst
)2 s2

c /(s − 1) = D2

interaction (r − 1)(s − 1) s2
γ s2

γ /(r − 1)(s − 1) = D3

subtotal rs − 1 t
∑

ij (
xij.

t
− x...

rst
)2

residuals rs(t − 1) s2 s2/[rs(t − 1)] = D

total rst − 1
∑

ijk(xijk − x...

rst
)2

where df designates the number of degrees of freedom, SS means sum of squares,
MS stands for mean squares, the expressions for the residual sum of squares is given
in (13.4.2), that for the interaction in (13.4.3), that for the rows in (13.4.4) and that for
columns in (13.4.5), respectively. Note that we test the hypothesis on the αi’s and βj ’s or
row effects and column effects, only if the hypothesis γij = 0 is not rejected; otherwise
there is no point in testing hypotheses on the αi’s and βj ’s because they are confounded
with the γij ’s.

13.5. Multivariate Extension of the Two-Way Layout

Instead of a single real scalar variable being studied, we consider a p × 1 vector of
real scalar variables. The multivariate two-way classification, the fixed effect model is the
following:

Xijk = M + Ai + Bj + Γij + Eijk, (13.5.1)

for i = 1, . . . , r, j = 1, . . . , s , k = 1, . . . , t, where M, Ai, Bj , Γij and Eijk are all p × 1
vectors. In this case, M is a general effect, Ai is the deviation from the general effect due
to the i-th row, Bj is the deviation from the general effect due to the j -th column, Γij is
the deviation from the general effect due to interaction between the rows and the columns
and Eijk is the vector of the random or error component. For convenience, the two sets
of treatments are referred to as rows and columns, the first set as rows and the second, as
columns. In a two-way layout, two sets of treatments are tested. As in the scalar case of
Sect. 13.4, we can assume, without any loss of generality, that

∑
i Ai = A1 + · · · + Ar =

A. = O, B. = O,
∑r

i=1 Γij = Γ.j = O and
∑s

j=1 Γij = Γi. = O. At this juncture, the
procedures are parallel to those developed in Sect. 13.4 for the real scalar variable case.
Instead of sums of squares, we now have sums of squares and cross products matrices. As
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before, we may write Mij = M +Ai +Bj +Γij . Then, the trace of the sum of squares and
cross products error matrix EijkE

′
ijk is minimized. Using the vector derivative operator,

we have

∂

∂Mij

tr
[∑

ijk

EijkE
′
ijk

]
= O ⇒

∑

k

(Xijk − Mij ) = O

⇒ M̂ij = 1

t
Xij. ,

so that the residual sum of squares and cross products matrix, denoted by Sres , is

Sres =
∑

ijk

(
Xijk − Xij.

t

)(
Xijk − Xij.

t

)′
. (13.5.2)

All other derivations are analogous to those provided in the real scalar case. The sum of
squares and cross products matrix due to interaction, denoted by Sint is the following:

Sint = t
∑

ij

(Xij.

t
− X...

rst

)(Xij.

t
− X...

rst

)′

− st
∑

i

(Xi..

st
− X...

rst

)(Xi..

st
− X...

rst

)′

− rt
∑

j

(X.j.

rt
− X...

rst

)(X.j.

rt
− X...

rst

)′
. (13.5.3)

The sum of squares and cross products matrices due to the rows and columns are
respectively given by

Srow = st

r∑

i=1

(Xi..

st
− X...

rst

)(Xi..

st
− X...

rst

)′
, (13.5.4)

Scol = rt

s∑

j=1

(X.j.

rt
− X...

rst

)(X.j.

rt
− X...

rst

)′
. (13.5.5)

The sum of squares and cross products matrix for the subtotal is denoted by Ssub = Srow +
Scol + Sint . The total sum of squares and cross products matrix, denoted by Stot , is the
following:

Stot =
∑

ijk

(
Xijk − X...

rst

)(
Xijk − X...

rst

)′
. (13.5.6)
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We may now construct the MANOVA table. The following abbreviations are used: df
stands for degrees of freedom of the corresponding Wishart matrix, SSP means the sum
of squares and cross products matrix, MS stands for mean squares and is equal to SSP/df,
and Srow, Scol , Sres and Stot are respectively specified in (13.5.4), (13.5.5), (13.5.2)
and (13.5.6).

MANOVA Table for a Two-Way Layout

df SSP MS

Variation due to (1) (2) (3)=(2)/(1)
rows r − 1 Srow Srow/(r − 1)

columns s − 1 Scol Scol/(s − 1)

interaction (r − 1)(s − 1) Sint Sint/[(r − 1)(s − 1)]
subtotal rs − 1 Ssub

residuals rs(t − 1) Sres Sres/[rs(t − 1)]
total rst − 1 Stot

13.5.1. Likelihood ratio test for multivariate two-way layout

Under the assumption that the error or random components Eijk
iid∼ Np(O, Σ), Σ >

O for all i, j and k, the exponential part of the multivariate normal density excluding −1
2

is obtained as follows:

E′
ijkEijk = (Xijk − M − Ai − Bj − Γij )

′Σ−1(Xijk − M − Ai − Bj − Γij )

= tr[Σ−1(Xijk − M − Ai − Bj − Γij )(Xijk − M − Ai − Bj − Γij )
′] ⇒

∑

ijk

E′
ijkEijk = tr

{
Σ−1

[∑

ijk

(Xijk − M − Ai − Bj − Γij )(Xijk − M − Ai − Bj − Γij )
′]}.

Thus, the joint density of all the Xijk’s, denoted by L, is

L = 1

(2π)
prst

2 |Σ | rst
2

× e− 1
2 tr[Σ−1∑

ijk(Xijk−M−Ai−Bj−Γij )(Xijk−M−Ai−Bj−Γij )
′]
.

The maximum likelihood estimates of M, Ai, Bj and Γij are the same as the least squares
estimates and hence, the maximum likelihood estimator (MLE) of Σ is the least squares
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minimum which is the residual sum of squares and cross products matrix S or Sres (in the
present notation), where

Sres =
∑

ijk

(Xijk − M̂ − Âi − B̂j − Γ̂ij )(Xijk − M̂ − Âi − B̂j − Γ̂ij )
′

=
∑

ijk

(
Xijk − Xij.

t

)(
Xijk − Xij.

t

)′
. (13.5.7)

This is the sample sum of squares and the cross products matrix under the general model
and its determinant raised to the power of rst

2 is the quantity appearing in the numerator
of the likelihood ratio criterion λ. Consider the hypothesis Ho : Γij = O for all i and j .
Then, under this hypothesis, the estimator of Σ is S0, where

S0 =
∑

ijk

[(
Xijk − X...

rst

)
−
(Xi..

st
− X...

rst

)
−
(X.j.

rt
− X...

rst

)]

×
[(

Xijk − X...

rst

)
−
(Xi..

st
− X...

rst

)
−
(X.j.

rt
− X...

rst

)]′

and |S0| rst
2 is the quantity appearing in the denominator of λ. However, S0 − Sres = Sint

is the sum of squares and cross products matrix due to the interaction terms Γij ’s or to the
hypothesis, so that S0 = Sres + Sint . Therefore, λ is given by

λ = |Sres | rst
2

|Sres + Sint | rst
2

(13.5.8)

Letting w = λ
2

rst ,

w = |Sres |
|Sres + Sint | . (13.5.9)

It follows from results derived in Chap. 5 that Sres ∼ Wp(rs(t − 1), Σ), Sint ∼ Wp((r −
1)(s − 1), Σ) under the hypothesis and Sres and Sint are independently distributed and
hence, under Ho,

W = (Sres + Sint )
− 1

2 Sres(Sres + Sint )
− 1

2 ∼ real p-variate type-1 beta random variable

with the parameters (
rs(t−1)

2 ,
(r−1)(s−1)

2 ). As well,

W1 = S
− 1

2
res Sint S

− 1
2

res ∼ real p-variate type-2 beta random variable
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with the parameters (
(r−1)(s−1)

2 ,
rs(t−1)

2 ). Under Ho, the h-th arbitrary moments of w and
λ, which are readily obtained from those of a real matrix-variate type-1 beta variable, are

E[w]h =
{ p∏

j=1

Γ (ν1 + ν2 − j−1
2 )

Γ (ν1 − j−1
2 )

}{ p∏

j=1

Γ (ν1 + h − j−1
2 )

Γ (ν1 + ν2 + h − j−1
2 )

}
(13.5.10)

E[λ]h =
{ p∏

j=1

Γ (ν1 + ν2 − j−1
2 )

Γ (ν1 − j−1
2 )

}{ p∏

j=1

Γ (ν1 + rst
2 h − j−1

2 )

Γ (ν1 + ν2 + rst
2 h − j−1

2 )

}
(13.5.11)

where ν1 = rs(t−1)
2 and ν2 = (r−1)(s−1)

2 . Note that we reject the null hypothesis Ho : Γij =
O, i = 1, . . . , r, j = 1, . . . , s, for small values of w and λ. As explained in Sect. 13.3,
the exact general density of w in (13.5.10) can be expressed in terms of a G-function and
the exact general density of λ in (13.5.11) can be written in terms of a H-function. For the
theory and applications of the G-function and the H-function, the reader may respectively
refer to Mathai (1993) and Mathai et al. (2010).

13.5.2. Asymptotic distribution of λ in the MANOVA two-way layout

Consider the arbitrary h-th moment specified in (13.5.11). On expanding all the gamma
functions for large values of rst in the constant part and for large values of rst (1 + h) in
the functional part by applying Stirling’s formula or using the first term in the asymp-
totic expansion of a gamma function referring to (13.3.13), it can be verified that the h-th
moment of λ behaves asymptotically as follows:

λh → (1 + h)−
p(r−1)(s−1)

2 ⇒ −2 ln λ → χ2
p(r−1)(s−1) as rst → ∞. (13.5.12)

Thus, for large values of rst , one can utilize this real scalar chisquare approximation for
testing the hypothesis Ho : Γij = O for all i and j . We can work out a large number of
exact distributions of w of (13.5.10) for special values of r, s, t, p. Observe that

E[wh] = C

p∏

j=1

Γ (
rs(t−1)

2 − j−1
2 + h)

Γ (
rs(t−1)

2 + (r−1)(s−1)
2 − j−1

2 + h)
(13.5.13)

where C is the normalizing constant such that when h = 0, E[wh] = 1. Thus, when
(r − 1)(s − 1) is a positive integer or when r or s is odd, the gamma functions cancel
out, leaving a number of factors in the denominator which can be written as a sum by
applying the partial fractions technique. For small values of p, the exact density will then
be expressible as a sum involving only a few terms. For larger values of p, there will be
repeated factors in the denominator, which complicates matters.
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13.5.3. Exact densities of w in some special cases

We will consider several special cases of the h-th moment of w as given in (13.5.13).

Case (1): p = 1. In this case, h-th moment becomes

E[wh] = C1
Γ (

rs(t−1)
2 + h)

Γ (
rs(t−1)

2 + (r−1)(s−1)
2 + h)

where C1 is the associated normalizing constant. This is the h-th moment of a real scalar
type-1 beta random variable with the parameters (

rs(t−1)
2 ,

(r−1)(s−1)
2 ). Hence y = 1−w

w
is a

real scalar type-2 beta with parameters (
(r−1)(s−1)

2 ,
rs(t−1)

2 ), and

rs(t − 1)

(r − 1)(s − 1)
y ∼ F(r−1)(s−1),rs(t−1).

Accordingly, the test can be carried out by using this F -statistic. One would reject
the null hypothesis Ho : Γij = O if the observed F ≥ F(r−1)(s−1),rs(t−1),α where
F(r−1)(s−1),rs(t−1),α is the upper 100 α% percentile of this F -density. For example, for
r = 2, s = 3, t = 3 and α = 0.05, we have F2,12,0.05 = 19.4 from F-tables so that Ho

would be rejected if the observed value of F2,12 ≥ 19.4 at the specified significance level.

Case (2): p = 2. In this case, we have a ratio of two gamma functions differing by 1
2 .

Combining the gamma functions in the numerator and in the denominator by using the
duplication formula and proceeding as in Sect. 13.3 for the one-way layout, the statistic

t1 = 1−√
w√

w
, and we have

rs(t − 1)

(r − 1)(s − 1)
t1 ∼ F2(r−1)(s−1),2(rs(t−1)−1),

so that the decision can be made as in Case (1).

Case (3): (r − 1)(s − 1) = 1 ⇒ r = 2, s = 2. In this case, all the gamma functions
in (13.3.13) cancel out except the last one in the numerator and the first one in the de-
nominator. This gamma ratio is that of a real scalar type-1 beta random variable with the
parameters (

rs(t−1)+1−p
2 ,

p
2 ), and hence y = 1−w

w
is a real scalar type-2 beta so that

rs(t − 1) + 1 − p

p
y ∼ Fp,rs(t−1)+1−p,

and decision can be made by making use of this F distribution as in Case (1).
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Case(4): (r − 1)(s − 1) = 2. In this case,

E[wh] = C1

p∏

j=1

1
rs(t−1)

2 − j−1
2 + h

with the corresponding normalizing constant C1. This product of p factors can be ex-
pressed as a sum by using partial fractions. That is,

E[wh] = C1

p−1∑

j=0

bj

a + h − j
2

(i)

where

bj = lim
a+h→ j

2

[(a + h)(a + h − 1
2) · · · (a + h − j−1

2 )(a + h − j+1
2 ) · · · (a + h − p−1

2 )],

(ii)

a = rs(t − 1)

2
.

Thus, the density of w, denoted by fw(w), which is available from (i) and (ii), is the
following:

fw(w) = C1

p−1∑

j=0

bjw
a− j

2 −1, 0 ≤ w ≤ 1,

and zero elsewhere. Some additional special cases could be worked out but the expres-
sions would become complicated. For large values of rst , one can apply the asymptotic
chisquare result given in (13.5.12) for testing the hypothesis Ho : Γij = O.

Example 13.5.1. An experiment is conducted among heart patients to stabilize their sys-
tolic pressure, diastolic pressure and heart rate or pulse around the standard numbers which
are 120, 80 and 60, respectively. A random sample of 24 patients who may be considered
homogeneous with respect to all factors of variation, such as age, weight group, race, gen-
der, dietary habits, and so on, are selected. These 24 individuals are randomly divided into
two groups of equal size. One group of 12 subjects are given the medication combination
Med-1 and the other 12 are administered the medication combination Med-2. Then, the
Med-1 group is randomly divided into three subgroups of 4 subjects. These subgroups are
assigned exercise routines Ex-1, Ex-2, Ex-3. Similarly, the Med-2 group is also divided at
random into 3 subgroups of 4 individuals who are respectively subjected to exercise rou-
tines Ex-1, Ex-2, Ex-3. After one week, the following observations are made x1 = current
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reading on systolic pressure minus 120, x2 = current reading on diastolic pressure minus
80, x3 = current reading on heart rate minus 60. The structure of the two-way data layout
is as follows:

Ex-1 Ex-2 Ex-3
Med-1 four 3 × 1 vectors four 3 × 1 vectors four 3 × 1 vectors
Med-2 four 3 × 1 vectors four 3 × 1 vectors four 3 × 1 vectors

Let Xijk be the k-th vector in the i-the row (i-th medication) and j -th column (j -th exercise
routine). For convenience, the data are presented in matrix form:

A11 = [X111, X112, X113, X114], A12 = [X121, X122, X123, X124],
A13 = [X131, X132, X133, X134], A21 = [A211, A212, A213, A214],
A22 = [A221, A222, A223, A224], A23 = [X231, X232, X233, X234];

A11 =
−2 3 2 5

1 −1 1 −1
2 −1 −1 0

, A12 =
1 4 −1 4

−2 −2 −3 3
3 −2 −1 0

, A13 =
4 −3 3 4
2 −3 2 3
1 −1 1 −1

,

A21 =
2 0 −2 0
1 4 1 2
2 1 −1 −2

, A22 =
3 −1 −1 3
4 4 0 0
0 1 −1 4

, A23 =
−2 −1 0 −1

1 4 0 3
−2 0 −2 0

.

(1) Perform a two-way ANOVA on the first component, namely, x1, the current reading
minus 120; (2) Carry out a MANOVA on the full data.

Solution 13.5.1. We need the following quantities:

X11. =
⎡

⎣
8
0
0

⎤

⎦ , X12. =
⎡

⎣
8

−4
0

⎤

⎦ , X13. =
⎡

⎣
8
4
0

⎤

⎦ ⇒ X1.. =
⎡

⎣
24
0
0

⎤

⎦

X21. =
⎡

⎣
0
8
0

⎤

⎦ , X22. =
⎡

⎣
4
8
4

⎤

⎦ , X23. =
⎡

⎣
−4

8
−4

⎤

⎦ ⇒ X2.. =
⎡

⎣
0
24
0

⎤

⎦

X.1. =
⎡

⎣
8
8
0

⎤

⎦ , X.2. =
⎡

⎣
12
4
4

⎤

⎦ , X.3. =
⎡

⎣
4
12

−4

⎤

⎦⇒ X... =
⎡

⎣
24
24
0

⎤

⎦

X̄ = X...

rst
= 1

24

⎡

⎣
24
24
0

⎤

⎦ =
⎡

⎣
1
1
0

⎤

⎦ , r = 2, s = 3, t = 4.
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By using the first elements in all these vectors, we will carry out a two-way ANOVA and
answer the first question. Since these are all observations on real scalar variables, we will
utilize lower-case letters to indicate scalar quantities. Thus, we have the following values:

s2
tot =

∑

ij

(xijk − x̄)2 = (−2 − 1)2 + (3 − 1)2 + · · · + (−1 − 1)2 = 136,

s2
row = 12

2∑

i=1

(xi..

12
− 1
)2 = 12[(2 − 1)2 + (0 − 1)2] = 24,

s2
col = 8

3∑

j=1

(x.j.

8
− 1
)2 = 8

[
(1 − 1)2 +

(3

2
− 1
)2 +

(1

2
− 1
)2] = 4,

s2
int = 4

∑

ij

(xij.

4
− xi..

12
− x.j.

8
+ 1
)2

= 4
[(8

4
− 24

12
− 8

8
+ 1
)2 + · · · +

(
− 4

4
− 0 − 4

8
+ 1
)2] = 4,

s2
sub = 4

∑

ij

(xij.

4
− x...

24

)2 = 4
[(8

4
− 1
)2 + · · · +

(
− 4

4
− 1
)]

= 32,

s2
res =

∑

ijk

(
xijk − xij.

4

)2 = (−2 − 2)2 + · · · + (−1 + 1)2 = 104,

s2
tot =

∑

ijk

(
xijk − x...

24

)2 = (−2 − 1)2 + (3 − 1)2 + · · · + (−1 − 1)2 = 136.

All quantities have been calculated separately in order to verify the computations. We
could have obtained the interaction sum of squares from the subtotal sum of squares minus
the sum of squares due to rows and columns. Similarly, we could have obtained the residual
sum of squares from the total sum of squares minus the subtotal sum of squares. We will
set up the ANOVA table, where, as usual, df stands for degrees of freedom, SS means
sum of squares and MS denotes mean squares:
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ANOVA Table for a Two-Way Layout with Interaction

df. SS MS

Variation due to (1) (2) (3)=(2)/(1) F-ratio
rows 1 24 24 24/5.78

columns 2 4 2 2/5.78

interaction 2 4 2 2/5.78
subtotal 5 32
residuals 18 104 5.78
total 23 136

For testing the hypothesis of no interaction, the F -value at the 5% significance level
is F2,18,0.05 ≈ 19. The observed value of this F2,18 being 2

5.78 ≈ 0.35 < 19, the
hypothesis of no interaction is not rejected. Thus, we can test for the significance of
the row and column effects. Consider the hypothesis α1 = α2 = 0. Then under this
hypothesis and no interaction hypothesis, the F -ratio for the row sum of squares is
24/5.78 ≈ 4.15 < 240 = F1,18,0.05, the tabulated value of F1,18 at α = 0.05. There-
fore, this hypothesis is not rejected. Now, consider the hypothesis β1 = β2 = β3 = 0.
Since under this hypothesis and the hypothesis of no interaction, the F -ratio for the col-
umn sum of squares is 2

5.78 = 0.35 < 19 = F2,18,0.05, it is not rejected either. Thus, the
data show no significant interaction between exercise routine and medication, and no sig-
nificant effect of the exercise routines or the two combinations of medications in bringing
the systolic pressures closer to the standard value of 120.

We now carry out the computations needed to perform a MANOVA on the full data.
We employ our standard notation by denoting vectors and matrices by capital letters. The
sum of squares and cross products matrices for the rows and columns are the following,
respectively denoted by Srow and Scol :

Srow = st

2∑

i=1

(Xi..

st
− X...

rst

)(Xi..

st
− X...

rst

)′

= 12
{
⎡

⎣
1

−1
0

⎤

⎦ [1, −1, 0] +
⎡

⎣
−1

1
0

⎤

⎦ [−1, 1, 0]
}

= 12

⎡

⎣
24 −24 0

−24 24 0
0 0 0

⎤

⎦ ,
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Scol = rt

3∑

j=1

(X.j.

rt
− X...

rst

)(X,j.

rt
− X...

rst

)′

= 8
{
O + 1

4

⎡

⎣
1 −1 1

−1 1 −1
1 −1 1

⎤

⎦+ 1

4

⎡

⎣
1 −1 1

−1 1 −1
1 −1 1

⎤

⎦
}

=
⎡

⎣
4 −4 4

−4 4 −4
4 −4 4

⎤

⎦ ,

Sint = t
∑

ij

(Xij.

t
− Xi..

st
− X.j.

rt
+ X...

rst

)(Xij.

t
− Xi..

st
− X.j.

rt
+ X...

rst

)′

= 4
{
O + 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦+ 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦+ O

+ 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦+ 1

4

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦
}

=
⎡

⎣
4 4 4
4 4 4
4 4 4

⎤

⎦ ,

Ssub = t
∑

ij

(Xij.

t
− X̄

)(Xij.

t
− X̄

)′

=
⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦+ · · · +
⎡

⎣
4 −2 2

−2 1 −1
2 −1 1

⎤

⎦ =
⎡

⎣
32 −24 8

−24 32 0
8 0 8

⎤

⎦ .

We can verify the computations done so far as follows. The sum of squares and cross
product matrices ought to be such that Srow + Scol + Sint = Ssub. These are

Srow + Scol + Sint =
⎡

⎣
24 −24 0

−24 24 0
0 0 0

⎤

⎦+
⎡

⎣
4 −4 4

−4 4 −4
4 −4 4

⎤

⎦+
⎡

⎣
4 4 4
4 4 4
4 4 4

⎤

⎦

=
⎡

⎣
32 −24 8

−24 32 0
8 0 8

⎤

⎦ = Ssub.

Hence the result is verified. Now, the total and residual sums of squares and cross product
matrices are
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Stot =
∑

ijk

(Xijk − X̄)(Xijk − X̄)′

=
⎡

⎣
9 0 −6
0 0 0

−6 0 4

⎤

⎦+ · · · +
⎡

⎣
4 −4 0

−4 4 0
0 0 0

⎤

⎦ =
⎡

⎣
136 11 16
11 112 6
16 6 60

⎤

⎦

and

Sres =
∑

ijk

(
Xijk − Xij.

t

)(
Xijk − Xij.

t

)′

=
⎡

⎣
16 −14 −8

−4 1 2
−8 2 4

⎤

⎦+ · · · +
⎡

⎣
2 3 0
3 10 2
0 2 4

⎤

⎦ =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦ .

Then,

Sres + Sint =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦+
⎡

⎣
4 4 4
4 4 4
4 4 4

⎤

⎦ =
⎡

⎣
108 39 12
39 84 10
12 10 56

⎤

⎦ .

The above results are included in the following MANOVA table where df means degrees
of freedom, SSP denotes a sum of squares and cross products matrix and MS is equal to
SSP divided by the corresponding degrees of freedom:

MANOVA Table for a Two-Way Layout with Interaction

df. SSP MS

Variation due to (1) (2) (3)=(2)/(1)
rows 1 Srow Srow

columns 2 Scol
1
2Scol

interaction 2 Sint
1
2Sint

subtotal 5 Ssub

residuals 18 Sres
1
18Sres

total 23 Stot
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Then, the λ-criterion is

λ = |Sres | rst
2

|Sres + Sint | rst
2

⇒ w = |Sres |
|Sres + Sint | .

The determinants are as follows:

|Sres | = 104

∣
∣
∣
∣
80 6
6 52

∣
∣
∣
∣− 35

∣
∣
∣
∣
35 6
8 52

∣
∣
∣
∣+ 8

∣
∣
∣
∣
35 80
8 6

∣
∣
∣
∣ = 363436

|Sres + Sint | = 108

∣
∣
∣
∣
84 10
10 56

∣
∣
∣
∣− 39

∣
∣
∣
∣
39 10
12 56

∣
∣
∣
∣+ 12

∣
∣
∣
∣
39 84
12 10

∣
∣
∣
∣ = 409320.

Therefore,

w = 363436

409320
= 0.888 ⇒ ln w = −0.118783 ⇒ −2 ln λ = 24(0.118783) = 2.8508.

We have explicit simple representations of the exact densities for the special cases p =
1, p = 2, t = 2, t = 3. However, our situation being p = 3, t = 4, they do not apply. A
chisquare approximation is available for large values of rst , but our rst is only equal to 24.
In this instance, −2 ln λ → χ2

p(r−1)(s−1) � χ2
6 as rst → ∞. However, since the observed

value of −2 ln λ = 2.8508 happens to be much smaller than the critical value resulting
from the asymptotic distribution, which is χ2

6,0.05 = 12.59 in this case, we can still safely
decide not to reject the hypothesis Ho : Γij = O for all i and j , and go ahead and test for
the main row and column effects, that is, the main effects of medical combinations Med-
1 and Med-2 and the main effects of exercise routines Ex-1, Ex-2 and Ex-3. For testing
the row effect, our hypothesis is A1 = A2 = O and for testing the column effect, it is
B1 = B2 = B3 = O, given that Γij = O for all i and j . The corresponding likelihood
ratio criteria are respectively,

λ1 =
( |Sres |
|Sres + Srow|

) rst
2

and λ2 =
( |Sres |
|Sres + Scol|

) rst
2
,

and we may utilize wj = λ
2

rst

j , j = 1, 2. From previous calculations, we have

Sres + Srow =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦+
⎡

⎣
24 −24 0

−24 24 0
0 0 0

⎤

⎦ =
⎡

⎣
128 11 8
11 104 6
8 6 52

⎤

⎦ ,

Sres + Scol =
⎡

⎣
104 35 8
35 80 6
8 6 52

⎤

⎦+
⎡

⎣
4 −4 4

−4 4 −4
4 −4 4

⎤

⎦ =
⎡

⎣
108 31 12
31 84 2
12 2 56

⎤

⎦ .
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The required determinants are as follows:

|Sres | = 363436, |Sres + Srow| = 675724, |Sres + Scol| = 443176 ⇒
w1 = 363436

675724
= 0.5378468 and w2 = 363436

443176
= 0.8200714,

−2 ln λ1 = −24 ln 0.5378468 = 24(0.62018) = 14.88,

χ2
p(r−1),α = χ2

3,0.05 = 7.81 < 14.88; (i)

−2 ln λ2 = −24 ln 0.8200714 = 24(0.19836) = 4.76,

χ2
p(s−1),α = χ2

6,0.05 = 12.59 > 4.76. (ii)

When rst → ∞, −2 ln λ1 → χ2
p(r−1) and −2 ln λ2 → χ2

p(s−1), referring to Exer-
cises 13.5.9 and 13.5.10, respectively. These results follow from the asymptotic expan-
sion provided in Sect. 12.5.2. Even though rst = 24 is not that large, we may use these
chisquare approximations for making decisions as the exact densities of w1 and w2 do not
fall into the special cases previously discussed. When making use of the likelihood ratio
criterion, we reject the hypotheses A1 = A2 = O and B1 = B2 = B3 = O for small
values of λ1 and λ2, respectively, which translates into large values of the approximate
chisquare values. It is seen from (i) that the observed value −2 ln λ1 is larger than the tab-
ulated critical value and hence we reject the hypothesis A1 = A2 = O at the 5% level.
However, the hypothesis B1 = B2 = B3 = O is not rejected since the observed value is
less than the critical value. We may conclude that the present data does not show any evi-
dence of interaction between the exercise routines and medication combinations, that the
exercise routine does not contribute significantly to bringing the subjects’ initial readings
closer to the standard values (120, 80, 60), whereas there is a possibility that the medical
combinations Med-1 and Med-2 are effective in significantly causing the subjects’ initial
readings to approach standard values.

Note 13.5.1. It may be noticed from the MANOVA table that the second stage anal-
ysis will involve one observation per cell in a two-way layout, that is, the (i, j)-th
cell will contain only one observation vector Xij. for the second stage analysis. Thus,
Ssub = Sint +Srow +Scol (the corresponding sum of squares in the real scalar case), and in
this analysis with a single observation per cell, Sint acts as the residual sum of squares and
cross products matrix (the residual sum of squares in the real scalar case). Accordingly,
“interaction” cannot be tested when there is only a single observation per cell.
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Exercises

13.1. In the ANOVA table obtained in Example 13.5.1, prove that (1) the sum of squares
due to interaction and the residual sum of squares, (2) the sum of squares due to rows and
residual sum of squares, (3) the sum of squares due to columns and residual sum of squares,
are independently distributed under the normality assumption for the error variables, that

is, eijk
iid∼ N1(0, σ 2), σ 2 > 0.

13.2. In the MANOVA table obtained in Example 13.5.1, prove that (1) Sint and Sres ,
(2) Srow and Sres , (3) Scol and Sres , are independently distributed Wishart matrices when

Eijk
iid∼ Np(O, Σ), Σ > O.

13.3. In a one-way layout, the following are the data on four treatments. (1) Carry out
a complete ANOVA on the first component (including individual comparisons if the hy-
pothesis of no interaction is not rejected). (2) Perform a full MANOVA on the full data.

Treatment-1

[
1
2

]

,

[−1
1

]

,

[
2
3

]

,

[
2
2

]

, Treatment-2

[
2
3

]

,

[
2
4

]

,

[
1
2

]

,

[−1
−1

]

,

[
1
3

]

,

Treatment-3

[
2

−1

]

,

[
3
2

]

,

[
1
4

]

,

[
2
1

]

, Treatment-4

[
3
3

]

,

[
2
4

]

,

[−3
−1

]

,

[−2
1

]

,

[−3
3

]

.

13.4. Carry out a full one-way MANOVA on the following data:

Treatment-1

⎡

⎣
1
0

−1

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
2
1

−1

⎤

⎦ ,

⎡

⎣
1
2
1

⎤

⎦ ,

⎡

⎣
0
2
1

⎤

⎦ , Treatment-2

⎡

⎣
3
2
3

⎤

⎦ ,

⎡

⎣
4
2
5

⎤

⎦ ,

⎡

⎣
6
5
4

⎤

⎦ ,

⎡

⎣
5
6
5

⎤

⎦ ,

Treatment-3

⎡

⎣
0
1

−1

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
−1

1
0

⎤

⎦ ,

⎡

⎣
1
1
2

⎤

⎦ ,

⎡

⎣
−2

1
2

⎤

⎦ .

13.5. The following are the data on a two-way layout where Aij denotes the data on the
i-th row and j -th column cell. (1) Perform a complete ANOVA on the first component. (2)
Carry out a full MANOVA on the full data. (3) Verify that Srow + Scol + Sint = Ssub and
Ssub + Sres = Stot , (4) Evaluate the exact density of w.

A11 =
2 1 2 −1
1 2 1 0

−1 3 1 4
, A12 =

1 3 1 1
4 4 1 1
6 3 −1 0

, A13 =
1 −1 1 −1

−2 1 2 1
1 −2 1 −2

,

A21 =
3 4 2 3
2 −1 2 3
3 5 2 2

, A22 =
1 −1 1 −1
0 1 −1 1
1 1 1 1

, A23 =
2 3 3 0
3 2 −1 2
3 −3 2 4

.
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13.6. Carry out a complete MANOVA on the following data where Aij indicates the data
in the i-th row and j -th column cell.

A11 = 1 −1 1 1 1
3 2 1 4 2

, A12 = 4 3 4 2 2
5 6 7 2 1

, A13 = 5 3 5 4 5
5 4 2 4 5

,

A21 = 0 1 1 0 −2
2 2 0 −1 −1

, A22 = 6 7 6 4 5
4 5 2 3 4

, A23 = 1 0 1 −1 −1
1 −1 2 1 2

.

13.7. Under the hypothesis A1 = · · · = Ar = O, prove that U1 = (Sres + Srow)− 1
2 Sres

(Sres + Srow)− 1
2 , is a real matrix-variate type-1 beta with the parameters (

rs(t−1)
2 , r−1

2 ) for
r ≥ p, rs(t − 1) ≥ p, when the hypothesis Γij = O for all i and j is not rejected or
assuming that Γij = O. The determinant of U1 appears in the likelihood ratio criterion in
this case.

13.8. Under the hypothesis B1 = · · · = Bs = O when the hypothesis Γij = O is not

rejected, or assuming that Γij = O, prove that U2 = (Sres + Scol)
− 1

2 Sres(Sres + Scol)
− 1

2

is a real matrix-variate type-1 beta random variable with the parameters (
rs(t−1)

2 , s−1
2 ) for

s ≥ p, rs(t − 1) ≥ p. The determinant of U2 appears in the likelihood ratio criterion for
testing the main effect Bj = O, j = 1, . . . , s.

13.9. Show that when rst → ∞, −2 ln λ1 → χ2
p(r−1), that is, −2 ln λ1 asymptotically

tends to a real scalar chisquare having p(r − 1) degrees of freedom, where λ1 = |U1| and
U1 is as defined in Exercise 13.7. [Hint: Look into the general h-th moment of λ1 in this
case, which can be evaluated by using the density of U1]. Hence for large values of rst ,
one can use this approximate chisquare distribution for testing the hypothesis A1 = · · · =
Ar = O.

13.10. Show that when rst → ∞, −2 ln λ2 → χ2
p(s−1), that is, −2 ln λ2 asymptotically

converges to a real scalar chisquare having p(s − 1) degrees of freedom, where λ2 = |U2|
with U2 as defined in Exercise 13.8. [Hint: Look at the h-th moment of λ2]. For large values
of rst , one can utilize this approximate chisquare distribution for testing the hypothesis
B1 = · · · = Bs = O.
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Chapter 14
Profile Analysis and Growth Curves

14.1. Introduction

We will utilize the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital let-
ters X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of let-
ters such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will
for instance be denoted by A, B, C. A tilde will not be used on constant matrices unless
the point is to be stressed that the matrix is in the complex domain. The determinant of
a square matrix A will be denoted by |A| or det(A) and, in the complex case, the abso-
lute value or modulus of the determinant of A will be denoted as |det(A)|. When matrices
are square, their order will be taken as p × p, unless specified otherwise. When A is a
full rank matrix in the complex domain, then AA∗ is Hermitian positive definite where
an asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix X.
Thus, letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.

14.1.1. Profiles

The two topics that are treated in this chapter are profile analysis and growth curves.
We first consider profile analysis. Only three types of profiles will be considered. As an
example, take the amount of money spent at a specific grocery store by six families residing
in a given neighborhood. Suppose that they all do their grocery shopping once a week
every Saturday. Let us consider the sum spent on the average in the long run on four types
of items: item (1): vegetables; item (2): baked goods; item (3): meat products; item (4):
cleaning supplies. Let μij denote the expected amount or the average amount spent in
the long run by the j -th family on the i-th item, j = 1, 2, 3, 4, 5, 6, and i = 1, 2, 3, 4.
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The monetary values of these purchases are plotted as points in Fig. 14.1.1. In order to
see the pattern, these points are joined by straight lines, which are not actually part of the
graph. From the pattern or profile, we may note that families F1, F2, F3, F4 have parallel
profiles, that the profiles of F1 and F4 coincide, and that F5 has a constant profile or is
horizontal with respect to the base line profile. The profile of F6 does not fall into any
category relative to the other profiles.

F1 & F4
F2
F3
F5
F6

1 2 3 4
Item

10

20

30

40

$

Figure 14.1.1 Profile plot for 6 families: amounts spent weekly on 4 items

In this instance, we refer to the the profiles of F1, F2, F3, F4 as “parallel profiles” where
the profiles of F1 and F4 are “coincident profiles”. F5 is said to have a constant profile or
“level profile”. We now study these patterns in more details starting with parallel profiles.

14.2. Parallel Profiles

Let μij be the expected dollar amount of the purchase of the j -th family on the i-th
item. In general, if the items are denoted by the real scalar variables x1j , . . . , xpj , then
μij = E[xij ], i = 1, . . . , p and j = 1, . . . , k. Thus, we have k, p-variate populations.
The items or variables may be quantitative or qualitative. The p items may be p different
stimulants and the response may be the expected enhancement in the performance of a
sportsman; the p items could also be p different animal feeds and the response could then
be the expected weight increase, and so on. The μij ’s, that is, the expected responses,
may be quantitative, or qualitative but convertible to quantitative readings. If the items are
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various color combinations in a lady’s dress, the response of the first observer F1 with
respect to a certain color combination may be “very pleasing”, the response of the second
observer F2 may be “indifferent”, etc. These assessments of color combinations can, for
example, be quantified as readings on a 0 to 10 scale.

Let us start with k = 2, that is, two p-variate populations, and let the responses be

M1 =

⎡

⎢
⎢
⎢
⎣

μ11

μ21
...

μp1

⎤

⎥
⎥
⎥
⎦

and M2 =

⎡

⎢
⎢
⎢
⎣

μ12

μ22
...

μp2

⎤

⎥
⎥
⎥
⎦

.

Then, what is the meaning of parallel profiles? We can impose the conditions μ12 −μ11 =
μ22 − μ21, μ22 − μ21 = μ32 − μ31, etc., which is tantamount to saying that

μj−1 2 − μj−1 1 = μj2 − μj1 ⇒ μj1 − μj−1 1 = μj2 − μj−1 2, for j = 2, . . . , p.

(14.2.1)
The conditions specified in (14.2.1) can be expressed in matrix notation. Letting C be the
following (p − 1) × p matrix:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

. . .
. . .

. . .
...

...

0 . . . 0 −1 1 0
0 0 . . . 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⇒CM1 =

⎡

⎢
⎢
⎢
⎣

−μ11 + μ21
−μ21 + μ31

...

−μp−1 1 + μp1

⎤

⎥
⎥
⎥
⎦

, CM2 =

⎡

⎢
⎢
⎢
⎣

−μ12 + μ22
−μ22 + μ32

...

−μp−1 2 + μp2

⎤

⎥
⎥
⎥
⎦

(14.2.2)
Then, CM1 = CM2. Therefore, “parallel profiles” means CM1 = CM2, and we can test

the hypothesis CM1 = CM2 against CM1 
= CM2 for determining whether the profiles
are parallel or not. In order to avoid any possible confusion, let us denote the two vectors
as X and Y , and let M1 = E[X] and M2 = E[Y ], that is,

X =

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xp

⎤

⎥
⎥
⎥
⎦

, Y =

⎡

⎢
⎢
⎢
⎣

y1

y2
...

yp

⎤

⎥
⎥
⎥
⎦

, E[X] = M1 =

⎡

⎢
⎢
⎢
⎣

μ11

μ21
...

μp1

⎤

⎥
⎥
⎥
⎦

, E[Y ] = M2 =

⎡

⎢
⎢
⎢
⎣

μ12

μ22
...

μp2

⎤

⎥
⎥
⎥
⎦

. (14.2.3)

For testing hypotheses, we need to assume some distributions for X and Y . Let X and Y be
independently distributed real Gaussian p-variate variables where X ∼ Np(M1, Σ) and
Y ∼ Np(M2, Σ), Σ > O. Observe that the (p − 1) × p matrix C is of full rank p − 1.
Then, on applying a result previously obtained in Chap. 3,

CX ∼ Np−1(CM1, CΣC′) and CY ∼ Np−1(CM2, CΣC′). (14.2.4)
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Assume that we have a simple random sample of size n1 from X and a simple random
sample of size n2 from Y . Let X1, . . . , Xn1 be the sample values from X and let Y1, . . . , Yn2

be the sample values from Y . Let the sample averages be X̄ and Ȳ , the sample matrices be
the boldfaced X and Y, the matrices of sample means be X̄ and Ȳ, the deviation matrices
be Xd and Yd and the sample sum of products matrices be S1 = XdX′

d and S2 = YdY′
d .

Then, these are the following:

X = [X1, . . . , Xn1] =

⎡

⎢
⎢
⎢
⎣

x11 x12 . . . x1n1

x21 x22 . . . x2n1
...

...
. . .

...

xp1 xp2 . . . xpn1

⎤

⎥
⎥
⎥
⎦

,

X̄ =

⎡

⎢
⎢
⎢
⎣

∑n1
j=1 x1j /n1∑n1
j=1 x2j /n1

...∑n1
j=1 xpj/n1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

x̄1

x̄2
...

x̄p

⎤

⎥
⎥
⎥
⎦

,

X̄ = [X̄, X̄, . . . , X̄], Xd = X − X̄, S1 = XdX′
d,

with similar expressions in the case of Y for which the sum of squares and cross products
matrix is denoted as S2 = YdY′

d . Note that X̄ ∼ Np(M1,
1
n1

Σ), Σ > O ⇒ CX̄ ∼
Np−1(CM1,

1
n1

CΣC′). As well, CȲ ∼ Np−1(CM2,
1
n2

CΣC′). The sum of squares and
cross product matrices of CX and CY are CS1C

′ and CS2C
′, respectively. Since X and Y

are independently distributed, we have

X̄ − Ȳ ∼ Np(M1 − M2, (
1
n1

+ 1
n2

)Σ) ⇒
CX̄ − CȲ ∼ Np−1(C(M1 − M2), (

1
n1

+ 1
n2

) CΣC′). (14.2.5)

An unbiased estimator for Σ is Σ̂ = 1
n1+n2−2(S1 + S2) and then, Hotelling’s T 2 statistic

is
T 2 = ( 1

n1
+ 1

n2
)−1(X̄ − Ȳ )′C′[(CΣ̂C′)−1]C(X̄ − Ȳ ). (14.2.6)

The usual test is based on Hotelling’s T 2 statistic. However, referring to Sects. 6.3.1
and 6.3.3, we are making use of a statistic based on a real type-2 beta random vari-
able. Thus, for n1 + n2 − p = (n1 + n2 − 2) + 1 − (p − 1), and under the hypothesis
Ho1 : CM1 = CM2,

w = [n1+n2−p
p−1 ]( 1

n1
+ 1

n2
)−1(X̄ − Ȳ )′C′(C(S1 + S2)C

′)−1C(X̄ − Ȳ ) ∼ Fp−1,n1+n2−p.

(14.2.7)
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Accordingly, for testing the hypothesis Ho1 : CM1 = CM2 versus CM1 
= CM2, we reject
Ho1 if the observed value of w of (14.2.7) is greater than or equal to Fp−1,n1+n2−p, α, the
upper 100 α% percentage point from an Fp−1,n1+n2−p distribution.

Example 14.2.1. The following are independent observed samples of sizes n1 = 4 and
n2 = 5 from trivariate Gaussian populations sharing the same covariance matrix Σ > O.
Test the hypothesis Ho : CM1 = CM2 at the 5% significance level:

Observed sample-1: X1 =
⎡

⎣
1
0

−1

⎤

⎦ , X2 =
⎡

⎣
1
1
1

⎤

⎦ , X3 =
⎡

⎣
1

−1
2

⎤

⎦ , X4 =
⎡

⎣
1
0
2

⎤

⎦ ;

Observed sample-2: Y1 =
⎡

⎣
0

−1
−1

⎤

⎦ , Y2 =
⎡

⎣
1
1
2

⎤

⎦ , Y3 =
⎡

⎣
−1

2
1

⎤

⎦ , Y4 =
⎡

⎣
1
2

−2

⎤

⎦ , Y5 =
⎡

⎣
−1

1
0

⎤

⎦ .

Solution 14.2.1. Let us first evaluate the 2×3 matric C as well as X̄, Ȳ , X, X̄, Ȳ, Xd,

Yd, S1 and S2:

C =
[−1 1 0

0 −1 1

]

, X̄ = 1

4

4∑

j=1

Xj =
⎡

⎣
1
0
1

⎤

⎦ ,

Ȳ = 1

5

5∑

j=1

Yj =
⎡

⎣
0
1
0

⎤

⎦ , X =
⎡

⎣
1 1 1 1
0 1 −1 0

−1 1 2 2

⎤

⎦ , X̄ =
⎡

⎣
1 1 1 1
0 0 0 0
1 1 1 1

⎤

⎦ ,

Xd = X − X̄ =
⎡

⎣
0 0 0 0
0 1 −1 0

−2 0 1 1

⎤

⎦ , S1 = XdX′
d =

⎡

⎣
0 0 0
0 2 −1
0 −1 6

⎤

⎦ ;

Y =
⎡

⎣
0 1 −1 1 −1

−1 1 2 2 1
−1 2 1 −2 0

⎤

⎦ , Yd =
⎡

⎣
0 1 −1 1 −1

−2 0 1 1 0
−1 2 1 −2 0

⎤

⎦ ,

S2 = YdY′
d =

⎡

⎣
4 0 −1
0 6 1

−1 1 10

⎤

⎦ , S1 + S2 =
⎡

⎣
4 0 −1
0 8 0

−1 0 16

⎤

⎦ , C(S1 + S2)C
′ =
[

12 −7
−7 24

]

,
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[C(S1 + S2)C
′]−1 = 1

239

[
24 7
7 12

]

, C ′[C(S1 + S2)C
′]−1C = 1

239

⎡

⎣
24 −17 −7

−17 22 −5
−7 −5 12

⎤

⎦ ,

X̄ − Ȳ =
⎡

⎣
1

−1
1

⎤

⎦ ,
( 1

n1
+ 1

n2

)−1 = 20

9
.

Therefore,

w = (n1 + n2 − p)

p − 1

( 1

n1
+ 1

n2

)−1
(X̄ − Ȳ )′C′[C(S1 + S2)C

′]−1C(X̄ − Ȳ )

= 6

2

( 20

(9)(239)

)
[1, −1, 1]

⎡

⎣
24 −17 −7

−17 22 −5
−7 −5 12

⎤

⎦

⎡

⎣
1

−1
1

⎤

⎦

= 3
( 20

(9)(239)

)
88 = 2.45.

From the tabulated values for α = 0.05,

Fp−1,n1+n2−p, α = F2,6,0.05 = 5.14 > 2.45.

Hence, the hypothesis Ho1 : CM1 = CM2 is not rejected at the 5% significance level.

14.3. Coincident Profiles

With the notations employed in Sect. 14.2, two profiles are coincident if μi1 =
μi2, i = 1, . . . , p, which amounts to assuming Ho2 : M1 = M2. If the p × 1 real
vectors X and Y are X ∼ Np(M1, Σ) and Y ∼ Np(M2, Σ), Σ > O, and the populations
are independently distributed, this is the test for equality of mean value vectors in two
independent Gaussian populations with common unknown covariance matrix, which was
discussed in Chap. 6 where a Hotelling’s T 2 is usually utilized for testing this hypothesis.
We will use a statistic based on a real scalar type-2 beta variable, which has already been
considered in Sects. 6.3.1 and 6.3.3. Given samples of sizes n1 and n2 from these normal
populations, and letting X̄ and Ȳ be the sample means and S1 and S2 be the sample sum
of squares and cross products matrices, the test statistic under the hypothesis Ho2, denoted
by w1, is the following:

w1 =
[n1 + n2 − 1 − p

p

]( 1

n1
+ 1

n2

)−1
(X̄ − Ȳ )′(S1 + S2)

−1(X̄ − Ȳ ) ∼ Fp,n1+n2−1−p.

(14.3.1)
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Thus, we reject the hypothesis of equality of population mean values or the hypothe-
sis Ho2 : M1 = M2, whenever the observed value of w1 is greater than or equal to
Fp, n1+n2−1−p, α, the upper 100 α% percentage point of an F -distribution having p and
n1 + n2 − 1 − p degrees of freedom.

Example 14.3.1. With the data provided in Example 14.2.1 and under the same assump-
tions, test the hypothesis that the two profiles are coincident, that is, test Ho2 : M1 = M2 .

Solution 14.3.1. From Solution 14.2.1, we have: n1 = 4, n2 = 5,

X̄ =
⎡

⎣
1
0
1

⎤

⎦ , Ȳ =
⎡

⎣
0
1
0

⎤

⎦ , S1 =
⎡

⎣
0 0 0
0 2 −1
0 −1 6

⎤

⎦ , S2 =
⎡

⎣
4 0 −1
0 6 1

−1 1 10

⎤

⎦ ,

so that

S1+S2 =
⎡

⎣
4 0 −1
0 8 0

−1 0 16

⎤

⎦ , (S1+S2)
−1 = 1

504

⎡

⎣
128 0 8
0 63 0
8 0 32

⎤

⎦ , p = 3, n1+n2−1−p = 5.

Then, an observed value of the test statistic, again denoted by w1, is the following:

w1 = (n1 + n2 − 1 − p)

p

( 1

n1
+ 1

n2

)−1
(X̄ − Ȳ )′(S1 + S2)

−1(X̄ − Ȳ )

=
(5

3

)(20

9

) 1

504
[1, −1, 1]

⎡

⎣
128 0 8
0 63 0
8 0 32

⎤

⎦

⎡

⎣
1

−1
1

⎤

⎦

=
(5

3

)(20

9

)(239

504

)
= 23900

13608
= 1.76.

The tabulated value of Fp,n1+n2−1−p, α = F3,5,0.05 being 5.41 > 1.76, the hypothesis
M1 = M2 against the natural alternative M1 
= M2 is not rejected at the 5% level of
significance.

14.3.1. Conditional hypothesis for coincident profiles

If we already know that the two profiles are parallel, then the second profile is either
above the first one or below the first one, and these two profiles are equal only if the sum of
the elements in M1 is equal to the sum of the elements in M2. There should be caution in
making use of this argument. We must know that the two profiles are assuredly parallel. If
the hypothesis that two profiles are parallel is not rejected, this does not necessarily imply
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that the two profiles are parallel. It only entails that the departure from parallelism is not
significant. Accordingly, a test for coincidence that is based on the sum of the elements
is not justifiable, and the test being herein discussed is not a test for coincidence but only
a test of the hypothesis that the sum of the elements in M1 is equal to the sum of the
elements in M2. Observe that this equality can hold whether the profiles are coincident
or not. The sum of the elements in M1 is given by J ′M1 and the sum of the elements in
M2 is given by J ′M2 where J ′ = (1, 1, . . . , 1). Under independence and normality with
X ∼ Np(M1, Σ) and Y ∼ Np(M2, Σ), Σ > O, we have J ′X̄ ∼ N1(J

′M1,
1
n1

J ′ΣJ)

and J ′Ȳ ∼ N1(J
′M2,

1
n2

J ′ΣJ), and hence,

t2 = (n1 + n2 − 2)
( n1n2

n1 + n2

)
[J ′(X̄ − Ȳ ) − J ′(M1 − M2)]

× [J ′(S1 + S2)J ]−1[J ′(X̄ − Ȳ ) − J ′(M1 − M2)] (14.3.2)

where, under the hypothesis Ho3 : J ′M1 − J ′M2 = 0, t is a Student-t having n1 + n2 − 2
degrees of freedom and t2 ∼ F1,n1+n2−2. Thus, we may utilize a Student-t statistic with
n1 +n2 −2 degrees of freedom or an F -statistic with 1 and n1 +n2 −2 degrees of freedom
in order to reach a decision with respect to the hypothesis of the equality of the sum of the
elements in M1 and M2.

Example 14.3.2. With the data provided in Example 14.2.1, test the hypothesis J ′M1 =
J ′M2 or the equality of the sum of elements in M1 and M2.

Solution 14.3.2. In this case, n1 + n2 − 2 = 7, n1n2
n1+n2

= 9
20 ,

J ′(X̄ − Ȳ ) = [1, 1, 1]
⎡

⎣
1

−1
1

⎤

⎦ = 1, J ′(S1 + S2)J = [1, 1, 1]
⎡

⎣
4 0 −1
0 8 0

−1 0 16

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦ = 26.

Hence, the observed value of t2 in (14.3.2) is

t2 = 7
( 9

20

)( 1

26

)
= 0.121 while F1,7,0.05 = 5.596.61 > 0.121.

Thus, the hypothesis of equality of the sum of the elements in M1 and M2 is not rejected
at the 5% significance level.

14.4. Level Profiles

A level profile occurs when the plot is horizontal with respect to the base line or when
all the elements in M1 are equal. Thus, this hypothesis involves only one population. If
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there are two populations, we can consider the hypothesis of the mean value vectors M1

and M2 being equal or testing whether the sum of the elements in each of M1 and M2

are equal. When the null hypothesis is not rejected, the sum in M1 may be different from
the sum in M2. However, if we assume the profiles to be coincident, these two sums will
be equal. We may then create a conditional hypothesis to the effect that the profiles in
the two populations are level, given that the profiles are coincident. This is how one can
connect the two populations and test whether the profiles are level. Let the p × 1 vector
Xj ∼ Np(M, Σ), Σ > O, and let X1, . . . , Xn be iid as Xj . In this instance, we have one
real p-variate Gaussian population and a simple random sample of size n with E[Xj ] = M

and Cov(Xj ) = Σ, j = 1, . . . , n. Let

M =

⎡

⎢
⎢
⎢
⎣

μ1

μ2
...

μp

⎤

⎥
⎥
⎥
⎦

, Xj =

⎡

⎢
⎢
⎢
⎣

x1j

x2j
...

xpj

⎤

⎥
⎥
⎥
⎦

, X̄ =

⎡

⎢
⎢
⎢
⎣

x̄1

x̄2
...

x̄p

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

∑n
j=1 x1j /n

∑n
j=1 x2j /n

...∑n
j=1 xpj/n

⎤

⎥
⎥
⎥
⎦

.

The hypothesis of “level profile” means Ho3 : μ1 = μ2 = · · · = μp = μ for some μ. The
common value μ is estimated by μ̂ = 1

np

∑p

i=1

∑n
j=1 xij , which is the maximum likeli-

hood estimator/estimate. Then, under the hypothesis, M̂ is such that M̂ ′ = [μ̂, μ̂, . . . , μ̂].
Testing such a hypothesis has already been considered in Chap. 6, the test being based on
the statistic

u = n(X̄ − M̂)′S−1(X̄ − M̂) ∼ type-2 beta (14.4.1)

with the parameters (
p−1

2 ,
n−p+1

2 ), under the hypothesis Ho3, referring more specifically
to the derivations related to Eq. (6.3.14). Thus under Ho3,

(n − p + 1)

p − 1
u ∼ Fp−1,n−p+1 (14.4.2)

where Fp−1,n−p+1 is a real scalar F -random variable with p − 1 and n − p + 1 de-
grees of freedoms. We reject Ho3 if the observed value of the Fp−1,n−p+1 as specified
in (14.4.2) is greater than or equal to Fp−1,n−p+1,α, the upper 100 α% percentage point of
an Fp−1,n−p+1 distribution. This test has already been illustrated in Chap. 6.

14.4.1. Level profile, two independent Gaussian populations

We can make use of (14.4.1) and test for level profile in each of the two populations
separately. Let the populations and simple random samples from these populations be as
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follows: Xj
iid∼ Np(M1, Σ), Σ > O, j = 1, . . . , n1, and Yj

iid∼ Np(M2, Σ), Σ >

O, j = 1, . . . , n2, where Σ is identical for both of these independent Gaussian popula-
tions, and let

E[Xj ] = M1 =

⎡

⎢
⎢
⎢
⎣

μ11

μ21
...

μp1

⎤

⎥
⎥
⎥
⎦

, j = 1, . . . , n1; E[Yj ] = M2 =

⎡

⎢
⎢
⎢
⎣

μ12

μ22
...

μp2

⎤

⎥
⎥
⎥
⎦

, j = 1, . . . , n2.

When population X has a level profile, μ11 = μ21 = · · · = μp1 = μ(1) and when
population Y has a level profile, μ12 = μ22 = · · · = μp2 = μ(2), μ(1) need not be equal to
μ(2). However, if we assume that the two populations have coincident profiles, then μ(1) =
μ(2). In this instance, the two populations are identical, so that we can pool the samples
X1, . . . , Xn1 and Y1, . . . , Yn2 and regard the combined sample as a simple random sample
of size n1 + n2 from the population Np(M, Σ), Σ > O. Thus, we can apply (14.4.1)
and (14.4.2) with n is replaced by n1 + n2, in order to reach a decision. Instead of letting
μ(1) = μ(2) = μ for some μ and computing the estimate for μ or μ̂ from the combined
sample and utilizing M̂, M̂ ′ = [μ̂, . . . , μ̂] in (14.4.1), we can make use of the matrix C as
defined in Sect. 14.2 and consider the transformed vector CZj, Zj ∼ Np(M, Σ), Σ >

O, j = 1, . . . , n1 + n2, and use CZ̄, Z̄ = 1
n1+n2

[X1 + · · · + Xn1 + Y1 + · · · + Yn2]
in (14.4.1). One advantage in utilizing the matrix C is that CM̂ = O, and from (13.4.1),
this M̂ will vanish, that is, X̄ − M̂ in (14.4.1) will become CZ̄. Then, the test statistic
under the hypothesis Ho3 : C′M = O, again denoted by u, becomes the following:

u = (n1 + n2)(CZ̄ − O)′(CSzC
′)−1(CZ̄ − O)

= (n1 + n2)Z̄
′C′[(CSzC

′)−1]CZ̄ ∼ type-2 beta (14.4.3)

with the parameters (
p−1

2 ,
n1+n2−p+1

2 ), under the hypothesis Ho3, where Sz is the sample
sum of squares and cross products matrix from the combined sample. Then under Ho3,

(n1 + n2 − p + 1)

p − 1
u ∼ Fp−1,n1+n2−p+1. (14.4.4)

We reject the hypothesis that the profiles in the two populations are level, given that the
two populations have coincident profiles, if the observed value of the F distributed statistic
given in (14.4.4) is greater than or equal to Fp−1,n1+n2−p+1,α, the upper 100 α% percent-
age point of a real scalar Fp−1,n1+n2−p+1 distribution.

Example 14.4.1. With the data provided in Example 14.2.1, test the hypothesis of level
profile, given that the two populations have coincident profiles.
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Solution 14.4.1. In this case, we pool the observed samples: n1 + n2 = 4 + 5 = 9,

4∑

j=1

Xj +
5∑

j=1

Yj =
⎡

⎣
4
5
4

⎤

⎦⇒ Z̄ = 1

9

⎡

⎣
4
5
4

⎤

⎦ .

Denoting the pooled sample by a boldfaced Z, the matrix of pooled sample means by Z̄,
the deviation matrix by Zd = Z−Z̄ and the sample sum of products matrix by Sz = ZdZ′

d ,
we have

Z =
⎡

⎣
1 1 1 1 0 1 −1 1 −1
0 1 −1 0 −1 1 2 2 1

−1 1 2 2 −1 2 1 −2 0

⎤

⎦ ,

Zd = 1

9

⎡

⎣
5 5 5 5 −4 5 −13 5 −13

−5 4 −14 −5 −14 4 13 13 4
−13 5 14 14 −13 14 5 −22 −4

⎤

⎦ ,

ZdZ′
d = 1

92

⎡

⎣
504 −180 99

−180 828 −180
99 −180 1476

⎤

⎦ = Sz, C =
[ −1 1 0

0 −1 1

]

,

CSzC
′ = 1

92

[
1692 −1287

−1287 2664

]

= 1

9

[
188 −143

−143 296

]

,

(CSzC
′)−1 = 9

35199

[
296 143
143 188

]

, C′(CSzC
′)−1C = 9

35199

⎡

⎣
296 −153 −143

−153 198 −45
−143 −45 188

⎤

⎦ ,

u = n1 + n2 − p + 1

p − 1
(n1 + n2) Z̄′C′(CSzC

′)−1CZ̄,

=
(7

2

)
9
( 9

35199

)( 1

92

)
[4, 5, 4]

⎡

⎣
296 −153 −143

−153 198 −45
−143 −45 188

⎤

⎦

⎡

⎣
4
5
4

⎤

⎦ = 0.0197.

Since, under the null hypothesis Ho3, Fp−1,n1+n2−p+1 = F2,7 and from the tabulated val-
ues for α = 0.05, we have F2,7,0.05 = 4.74 which is larger than 0.0197, the hypothesis Ho3

of level profile in both the populations, given that the population profiles are coincident, is
not rejected at 5% level of significance.
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14.5. Generalizations to k Populations

Let the p × 1 real vectors X1, . . . , Xk be independently distributed where Xj ∼
Np(Mj, Σ), Σ > O, j = 1, . . . , k, Σ being the same for all the populations. Consider
the (p − 1) × p array C, as previously defined in Sect. 14.2, whose rank is p − 1. Letting

Zj = CXj, j = 1, . . . , k, Zj
iid∼ Np−1(CMj, CΣC′), (CΣC) > O, j = 1, . . . , k.

Then, testing for “parallel profiles” in these k populations is equivalent to testing the hy-
pothesis

Ho1 : CM1 = CM2 = · · · = CMk. (14.5.1)

Testing for “coincident profiles” in all the k populations is tantamount to testing the hy-
pothesis

Ho2 : M1 = M2 = · · · = Mk. (14.5.2)

Testing for “level profiles”, given that the profiles are coincident, in all these k populations,
is the same as testing the hypothesis

Ho3 : CM1 = CM2 = · · · = CMk = O. (14.5.3)

Note that Ho1, Ho2, Ho3 are all tests involving equality of mean value vectors in multivari-
ate populations where, in Ho1 and Ho3,, we have (p − 1)-variate Gaussian populations
and, in Ho2, we have a p-variate Gaussian population. In all these cases, the population
covariance matrices are identical but unknown. Such tests were considered in Chap. 6 and
hence, further discussion is omitted. In all these tests, one point has to be kept in mind.
The units of measurements must be the same in all the populations, otherwise there is no
point in comparing mean value vectors. If qualitative variables are involved, they should
be converted to quantitative variables using the same scale, such as changing all of them
to points on a [0, 10] scale.

14.6. Growth Curves or Repeated Measures Designs

For instance, suppose that the growth (measured in terms of height) of a plant seedling
(for instance, a variety of corn) is monitored. Let the height be 10 cm at the onset of the
observation period, that is, at time t = 0, and the measurements be taken weekly. After
one week (t = 1), suppose that the height is 12 cm. Then 10 = a0, and, for a linear
function, 12 = a0 + a1t = a0 + a1 at t = 1, so that a0 = 10 and a1 = 2. We now
have the points (0, 10), (1, 12). Consider a straight line passing through these points. If
the third, fourth, etc. measurements taken at t = 2, t = 3, etc. weeks, fall more or less on
this line, then we can say that the expected growth is linear and we can consider a model
of the type E[x] = a0 + a1t to represent the expected growth of this plant, where E[·]
represents the expected value. If the third, fourth, etc. points are increasing away from the
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straight line and the behavior is of a parabolic type then, we can put forward the model
E[x] = a0 + a1t + a2t

2. If the behavior appears to be of a polynomial type, then we may
posit the model E[x] = a0 + a1t + · · · + am−1t

m−1. However, we need not monitor the
growth at one time unit intervals. We may monitor it at convenient time units t1, t2, . . . . A
polynomial type model leads to the following equations:

E[x1] = a0 + a1t1 + a2t
2
1 + · · · + am−1t

m−1
1

E[x2] = a0 + a1t2 + a2t
2
2 + · · · + am−1t

m−1
2

...

E[xp] = a0 + a1tp + a2t
2
p + · · · + am−1t

m−1
p

where E[x1], . . . , E[xp] are expected observations at times t1, t2, . . . , tp, and a0 is the
value of the expected observation at tj = 0, j = 1, . . . , p. Thus, in matrix notation, we
have a p-vector for the observations. Letting X′

1 = [x1, x2, . . . , xp],

E[X1] = E

⎡

⎢
⎢
⎢
⎣

x1

x2
...

xp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 t1 t2
1 . . . tm−1

1
1 t2 t2

2 . . . tm−1
2

...
...

...
. . .

...

1 tp t2
p . . . tm−1

p

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a0

a1
...

am−1

⎤

⎥
⎥
⎥
⎦

≡ T A1 , (14.6.1)

where X1 is p×1, T is p×m and the parameter vector A1 is m×1. In this instance, we have
taken observations on the same real scalar variable x at p different occasions t1, . . . , tp. In
this sense, it is a “repeated measures design” situation. We have monitored x over time in
order to characterize the growth of this variable and, in this sense, it is a “growth curve”
situation. This x may be the weight of a person under a certain weight reduction diet. The
successive readings are then expected to decrease, so that it is a negative growth as well as
a repeated measures design model. When x represents the spread area of a certain fungus,
which is monitored over time, we have a growth curve model that depends upon the nature
of spread. If x is the temperature reading of a feverish person under a certain medication,
being recorded over time, we have a growth curve model with an expected negative growth.
We can think of a myriad of such situations falling under repeated measures design or
growth curve model.
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14.6.1. Growth curve model

The model specified in (14.6.1) can be expressed as follows:

E[X1] = T A1, A1 =
⎡

⎢
⎣

a10
...

a1m−1

⎤

⎥
⎦ , T =

⎡

⎢
⎢
⎢
⎣

1 t1 t2
1 . . . tm−1

1
1 t2 t2

2 . . . tm−1
2

...
...

...
. . .

...

1 tp t2
p . . . tm−1

p

⎤

⎥
⎥
⎥
⎦

, (14.6.2)

where we have a p-vector X1 with expected value T A1, T being p × m and A1, m × 1.
If we are taking a simple random sample of size n1 from this p-vector , we may denote
the sample values as X11, X12, . . . , X1n1 and we may say that we have a simple random
sample of size n1 from that p-variate population or from n1 members belonging to a group
whose underlying distribution is that of X1, and we may write the model as

E[X1j ] = T A1, j = 1, . . . , n1. (14.6.3)

With reference to the weight measurements of a person subjected to a certain diet, if the
diet is administered to a group of n1 individuals who are comparable in every respect such
as initial weight, age, physical condition, and so on, then the measurements on these n1

individuals are the observations X11, . . . , X1n1 . Letting the same diet be administered to
another group of n2 persons whose characteristics are similar within the group but may be
different from those of the first group, their measurements will be denoted by X2j , j =
1, . . . , n2. Consider r such groups. If these groups are men belonging to a certain age
bracket and women of the same age category, r = 2. If there are 7 groups of women of
different age categories and 5 groups of men belonging to certain age brackets in the study,
r will be equal to 12, and so on. Thus, there can be variations between groups but each
group ought to be homogeneous. If there are r such groups and a simple random sample
of size ni is available from group i, i = 1, . . . , r, we have the model

E[Xij ] = T Ai, j = 1, . . . , ni, i = 1, . . . , r. (14.6.4)

We may then compare this situation with a one-way classification MANOVA (or ANOVA
when a single dependent variable is being monitored) situation involving r groups with
the i-th group being of size is ni, so that n = n1 + n2 + · · · + nr = n. as per our notation
with respect to the one-way layout. There is one set of treatments and we wish to assess
the expected effects in these r groups. For the analysis of the data being so modeled, we do
not explicitly require a subscript to represent the order p of the observation vectors (in this
case, p corresponds to the number of occasions the measurements are made) and hence,
our notation (14.6.4) does not involve a subscript representing the order of the vector Xij .
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The model (14.6.4) can be generalized in various ways. As a second set of treatments,
we may consider s different diets being administered to r distinct groups of n individuals
each. “Diet” may exhibit another polynomial growth of the type b0 + b1t + · · · + bm1t

m1 ,
where m1 need not be equal to m−1. Then, within the framework of experimental designs,
we have a multivariate two-way layout with an equal number of observations per cell. In
this manner, we can obtain multivariate generalizations of all standard designs where the
effects are polynomial growth models, possibly of different degrees, with p, however,
remaining unchanged, p being the number of occasions the measurements are made. We
can also consider another type of generalization. In the example involving different types
of diets, these various types may be the same diet but in different strictness levels. In
this instance, the different diets are correlated among themselves. In a two-way layout,
there is no correlation within one set of treatments; interaction may be present between
the two sets of treatments. When different doses of the same diet is the second set of
treatments, correlation is obviously present within this second set of treatments. This leads
to multivariate factorial designs with growth curve model for the treatment effects. In all
of the above considerations, we were only observing one item, namely weight. In another
type of generalization, instead of one item, several items are measured at the same time,
that is, there may be several dependent (response) variables instead of one. In this case,
if y1, . . . , yk are the items measured on the same p occasions, then each yj may have its
own distribution with covariance matrix Σj, j = 1, . . . , k. Not only that, there may also
be joint dispersions, in which case, there will be covariance matrices Σij for all i, j =
1, . . . , k. Thus, several types of generalizations are possible for the basic model specified
in (14.6.4).

In order to analyze the data with the model (14.6.4), the following assumptions are
required:

(1) The n. = n vectors Xij ’s are mutually independently distributed for all i and j with
common covariance matrix Σ > O.

(2) E[Xij ] = T Ai, j = 1, . . . , ni, for each i, i = 1, . . . , r .

(3) Xij ∼ Np(T Ai, Σ), Σ > O, j = 1, . . . , ni, for each i, i = 1, . . . , r .

The normality assumption is convenient for obtaining maximum likelihood estimates
(MLE) and for testing hypotheses on the parameters Ai, i = 1, . . . , r . Observe that the
matrix T is known.
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14.6.2. Maximum likelihood estimation

Under the normality assumption for the Xij ’s, their joint density, denoted by L, is

L = 1

(2π)
np
2 |Σ | n

2
e− 1

2

∑
i,j (Xij−T Ai)

′Σ−1(Xij−T Ai). (14.6.5)

Note that
∑

i,j

(Xij − T Ai)
′Σ−1(Xij − T Ai) =

∑

i,j

tr[Σ−1(Xij − T Ai)(Xij − T Ai)
′.

Let Mi = T Ai . Then, differentiating ln L with respect to Mi and equating the result to a
null vector yields the following (for vector/matrix derivatives, refer to Chap. 1):

∂

∂Mi

∑

i,j

(Xij − Mi)
′Σ−1(Xij − Mi) = O ⇒

−2
∑

j

[Σ−1(Xij − Mi)] = O ⇒
∑

j

(Xij − Mi) = O ⇒ Mi = 1

n.

∑

j

Xij = X̄i. (14.6.6)

Thus, the MLE of Mi is M̂i = X̄i . At Mi = M̂i ,

ln L = −n.p

2
ln(2π) − n.

2
ln |Σ | − 1

2

∑

i,j

tr[Σ−1(Xij − X̄i)(Xij − X̄i)
′]

= −n.p

2
ln(2π) − n.

2
ln |Σ | − 1

2
tr[Σ−1(S1 + · · · + Sr)]

where Si is the i-th group sample sum of products matrix or sum of squares and cross
products matrix for i = 1, . . . , r , see also Eq. (13.2.6). Letting S = S1 + · · · + Sr and
proceeding as in Chap. 3 by differentiating ln L with respect to Σ−1, equating the result to
a null matrix and simplifying, we obtain the MLE of Σ as

Σ̂ = 1

n.

S = 1

n.

(S1 + · · · + Sr). (14.6.7)

An unbiased estimator of Σ is 1
n.−r

(S1 + · · · + Sr) = 1
n.−r

S. For evaluating the MLE of

the parameter vector Ai , we can proceed as follows: After substituting 1
n.

S to Σ in ln L,
consider the following for a specific i:
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∂

∂Ai

ln L = ∂

∂Ai

∑

i,j

(Xij − T Ai)
′( S

n.

)−1
(Xij − T Ai) = O ⇒

T ′( S

n.

)−1∑

j

(Xij − T Ai) = O ⇒

T ′S−1Xi. − T ′S−1T niAi = O ⇒
Âi = (T ′S−1T )−1T ′S−1X̄i, i = 1, . . . , r. (14.6.8)

Note that this equation holds if S−1 is replaced by Σ−1 or Γ −1 for some real posi-
tive definite matrix Γ . Thus, the maximum of the likelihood function under the general
model (14.6.4) is the following:

max L = e− n.p
2

(2π)
n.p

2 | 1
n.

∑
i,j (Xij − X̄i)(Xij − X̄i)′| n.

2
. (14.6.9)

As well, observe that the matrix in the determinant of (14.6.9) is

1

n.

r∑

i=1

[ ni∑

j=1

(Xij − X̄i)(Xij − X̄i)
′] = 1

n.

× (the residual matrix in MANOVA)

in a one-way layout, referring to Sect. 13.2. As well, this quantity is Wishart distributed
with n. − r degrees of freedom and parameter matrix Σ , that is,

∑

i,j

(Xij − X̄i)(Xij − X̄i)
′ ∼ Wp(n. − r, Σ), Σ > O. (14.6.10)

Now, consider the MLE of Ai :

Âi = (T ′S−1T )−1T ′S−1X̄i = C1X̄i, C1 = (T ′S−1T )−1T ′S−1. (14.6.11)

Observe that n. cancels out in Âi . In a normal population, the sample mean and the
sample sum of products matrix are independently distributed. Hence, X̄i and Si are in-
dependently distributed, and thereby X̄i and S are independently distributed. Moreover,
E[Xij ] = E[X̄i] = T Ai for each i, and we have

E[Âi] = E{(T ′S−1T )−1T ′S−1}E[X̄i] = E[(T ′S−1T )−1T ′S−1T Ai] = Ai.

Thus, Âi is an unbiased estimator for Ai . So far, we have not made any specification on the
number m or the structure of T . We can incorporate the structure of T and the specification
on the degree of the polynomial in T through a hypothesis. Let
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Ho : T = To =

⎡

⎢
⎢
⎢
⎣

1 t1 t2
1 . . . tm−1

1
1 t2 t2

2 . . . tm−1
2

...
...

...
. . .

...

1 tp t2
p . . . tm−1

p

⎤

⎥
⎥
⎥
⎦

(14.6.12)

for a specified m, that is, Ho posits that it is a polynomial T Ai of degree m − 1 for each
i and this model fits. In this instance, the condition imposed through Ho is that the degree
of the polynomial is a specified number m − 1 because p is known as the order of the
population vector. Then, the factors e− n.p

2 and (2π)
n.p

2 cancel out in the likelihood ratio
criterion λ, leaving

λ = maxHo
L

max L
= |∑i,j (Xij − X̄i)(Xij − X̄i)

′| n.
2

|∑i,j (Xij − ToÂi)(Xij − ToÂi)′| n.
2
. (14.6.13)

Note that
∑

i,j (Xij − ToÂi) =∑i,j [(Xij − X̄i) + (X̄i − ToÂi)], so that

∑

i,j

(Xij − ToÂi)(Xij − ToÂi)
′ =
∑

i,j

(Xij − X̄i)(Xij − X̄i)
′

+
∑

i,j

(X̄i − ToÂi)(X̄i − ToÂi)
′.

Since λ|Ho is a ratio of determinants, the parameter matrix Σ can be eliminated, and we
can assume that the normal population has the identity matrix I as its covariance matrix.
As well, [Xij − X̄i] = [(Xij − T Ai) − (X̄i − T Ai)] and [X̄i − ToÂi] = [(X̄i − ToAi) −
(ToÂi − ToAi)]. We have already established that Âi is an unbiased estimator for Ai .
Hence, without any loss of generality, we can assume the population to be Np(O, I) under
Ho, and we can consider

X̄i − To(T
′
oS

−1To)
−1T ′

oS
−1X̄i ≡ (I − B)X̄i

X̄i ∼ Np(O, 1
ni

I ) ⇒ √
niX̄i ∼ Np(O, I)

where B = To(T
′
oS

−1To)
−1T ′

oS
−1. Now, since

B2 = [To(T
′
oS

−1To)
−1T ′

oS
−1][To(T

′
oS

−1To)
−1T ′

oS
−1] = To(T

′
oS

−1To)
−1T ′

oS
−1 = B,

B is idempotent of rank m where m is equal to the rank of To. For convenience, let
p1 = p − m and p2 = m, so that p1 + p2 = p. Observe that Xij − X̄i and X̄i are
independently distributed, and that X̄i = 1

ni
J J ′Xij and Xij − X̄i = [I − 1

ni
J J ′]Xij
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where J ′ = [1, 1, . . . , 1] or J is an ni × 1 vector of unities. Now, observing that
[I − 1

ni
J J ′][ 1

ni
J J ′] = O and that, under normality,

√
niX̄i ∼ Np(O, I), it follows that

U1 = ∑
i,j (Xij − X̄i)(Xij − X̄i)

′ and U2 = [(I − B)X̄i][(I − B)X̄i]′ are independently

distributed since U1 and X̄i are independently distributed. Accordingly,

w = λ
2
n. = |U1|

|U1 + U2| . (14.6.14)

Since I − B is idempotent and of rank p − m = p1, we can perform an orthonormal

transformation on
√

niX̄i and, equivalently, write U2 as U2 →
[
Z O

O O

]

in distribution

where Z = [Z1, . . . , Zr ][Z1, . . . , Zr ]′, Zj
iid∼ Np1(O, Ip1). Then, Z ∼ Wp1(r, Ip1) for

r ≥ p1. Moreover, we can reduce the p × p matrix U1 to a p1 × p1 submatrix in the
determinant. Let us consider the following partition of U1 where U11 is p1 × p1 and U22

is p2 × p2, p1 + p2 = p:

U1 =
[
U11 U12

U21 U22

]

, |U1| = |U22| |U11 − U12U
−1
22 U21|,

which follows from results included in Chap. 1 on the determinants of partitioned matrices.
Then, w of (14.6.14) is such that

w = |U11 − U12U
−1
22 U21|

|(Z + U11) − U12U
−1
22 U21|

.

Now, for fixed U22, make the transformation V12 = U12U
− 1

2
22 ⇒ dV12 = |U22|−

p1
2 dU12,

referring to Chap. 1. Let us take p1 ≥ p2; if not, simply interchange p1 and p2 in the
following procedure. Then, make the transformation

S = V12V
′
12 ⇒ dV12 = π

p1p2
2

Γp2(
p1
2 )

|S|p1
2 −p2+1

2 dS,

the Jacobian being given in Sect. 4.3. Observe that U1 has a Wishart density with n − r

degrees of freedom and parameter matrix Ip where n = n. = n1 + · · · + nr . Letting the
density of U1 be denoted by f (U1), we have
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f (U1) = c|U1| n−r
2 −p+1

2 e− 1
2 tr(U1)

= c|U22|ρ |U11 − U12U
−1
22 U21|ρe− 1

2 [tr(U11)+tr(U22)], ρ = n−r
2 − p+1

2 ,

= c|U22|ρ+p1
2 |U11 − V12V

′
12|ρe− 1

2 [tr(U11)+tr(U22)]

= c
π

p1p2
2

Γp2(
p1
2 )

|S|p1
2 −p2+1

2 |U22|ρ+p1
2 |U11 − S|ρe− 1

2 [tr(U11)+tr(U22)]

= c
π

p1p2
2

Γp2(
p1
2 )

|S|p1
2 −p2+1

2

× |U22|ρ+p1
2 |V22|ρe− 1

2 [tr(S)+tr(V22)+tr(U22)], V22 = U11 − S = U11 − U12U
−1
22 U21,

where c is the normalizing constant. Now, on integrating out U22 and S, we obtain the
marginal density of V22, denoted by f1(V22), as

f1(V22) = c2|V22| n−r
2 −p2

2 −p1+1
2 e− 1

2 tr(V22) (14.6.15)

where c2 is the normalizing constant. This shows that V22 ∼ Wp1(n − r − p2, Ip1) for
n. − r − p2 ≥ p1 and that V22 and Z are independently distributed. Then,

w = |V22|
|V22 + Z|

where V22 and Z are p1 ×p1 real matrices that are independently Wishart distributed with
common parameter matrix Ip1 and degrees of freedoms n. − r − p2 and r, respectively.

Then, w = |W | where W = (V22 + Z)− 1
2 V22(V22 + Z)− 1

2 is p1 × p1 real matrix-variate
type-1 beta distributed with the parameters (

(n.−r−p2)
2 , r

2). Therefore, for an arbitrary h,
the h-th moment of the determinant of W is the following:

E[wh] = E[|W |h] = c3
Γp1(

n.−r−p2
2 + h)

Γp1(
n.−r−p2

2 + r
2 + h)

(14.6.16)

where c3 is the normalizing constant such that when h = 0, E[wh] = 1. Since the likeli-
hood ratio criterion is λ = w

n.
2 ,

E[λh] = c3
Γp1(

n.−r−p2
2 + n.h

2 )

Γp1(
n.−r−p2

2 + r
2 + n.h

2 )
. (14.6.17)

As illustrated in earlier chapters, see for example Sect. 13.3, we can express the exact
density of w in (14.6.16) as a G-function and the exact density of λ in (14.6.17) as an
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H-function. Letting the densities of w and λ be denoted by f2(w) and f3(λ), respectively,
we have

f2(w) = c3 Gp1,0
p1,p1

[

w

∣
∣
∣

n.−p2
2 − j−1

2 , j=1,...,p1

n.−r−p2
2 − j−1

2 , j=1,...,p1

]

(14.6.18)

f3(λ) = c3 Hp1,0
p1,p1

[

λ

∣
∣
∣
(
n.−p2−j+1

2 , n.
2 ), j=1,...,p1

(
n.−r−p2−j+1

2 , n.
2 ), j=1,...,p1

]

(14.6.19)

for 0 < w < 1 and 0 < λ < 1, and zero elsewhere, where the G and H-functions
were defined earlier, for example in Chap. 13. For theoretical results on the G- and H-
functions as well as applications, the reader is, for instance, referred to Mathai (1993)
and Mathai, Saxena and Haubold (2010), respectively. We can express the exact density
functions f2(w) and f3(λ) in terms of elementary functions for special values of p, m and
n. For moderate values of n, p and m, numerical evaluations can be obtained by making
use of the G- and H-functions programs in Mathematica and MAPLE. For large values of
n, asymptotic results may be invoked.

Note 14.6.1. The test statistic w can also be expressed as

w = 1
∣
∣I + V

− 1
2

22 ZV
− 1

2
22

∣
∣

= 1

|I + W2| , W2 = V
− 1

2
22 ZV

− 1
2

22 ,

where W2 is a real matrix-variate type-2 beta random variable with the parameters
(
n.−r−p2

2 , r
2). As well, V22 ∼ Wp1(n. − r − p2, Ip1), Z ∼ Wp1(r, Ip1), and V22 and Z

are independently distributed. While Roy’s largest root test is based on the largest eigen-
value of W2, Hotelling’s trace test relies on the trace of W2.

14.6.3. Some special cases

In certain particular cases, one can obtain exact densities in terms of elementary func-
tions. Two such cases will now be considered.

Case (1) p2 = m = p − 1 ⇒ p1 = p − m = 1, n. − r − p2 = n. − r − p + 1. Since
p1 = 1, there will be only one gamma ratio containing h, and

E[wh] = c3
Γ (

n.−r−p+1
2 + h)

Γ (
n.−p+1

2 + h)
, �(h) > −n. − p − r + 1

2
, (i)

where c3 is the normalizing constant such that the right-hand side is 1 when h = 0. Observe
that (i) is the h-th moment of a real scalar type-1 beta random variable and hence, w ∼
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real scalar type-1 beta (
n.−r−p+1

2 , r
2). Accordingly, y1 = 1−w

w
is a real scalar type-2 beta

random variable with the parameters ( r
2 ,

n.−r−p+1
2 ), so that

t1 = n. − r − p + 1

r
y1 ∼ Fr,n.−r−p+1 , n. − r − p + 1 ≥ 1.

Thus, for large values of this F statistic, we reject the null hypothesis that the growth curve
has the structure of To of degree m − 1 as specified in (14.6.12) and that the growth curve
model fits. Equivalently, we reject Ho when the observed value of t1 is greater than or
equal to Fr,n.−r−p+1,α, such that Pr{Fr,n.−r−p+1 ≥ Fr,n.−r−p+1, α} = α for a preselected
α.

Case (2) p2 = m = p − 2 ⇒ p1 = 2, which indicates that the h-th moment will contain
two gamma ratios involving h. More specifically,

E[wh] = c3
Γ (

n.−r−p+2
2 + h)Γ (

n.−r−p+2
2 − 1

2 + h)

Γ (
n.−p+2

2 + h)Γ (
n.−p+2

2 − 1
2 + h)

, �(h) >
n. − p + 2

2
. (ii)

Since the arguments of the gamma functions in (ii) differ by 1
2 , we can combine them by

applying the duplication formula for gamma functions, namely

Γ (z)Γ (z + 1
2) = π

1
2 21−2zΓ (2z). (iii)

Consider E[√w]h so that h becomes h
2 . Now, by taking z = n.−r−p+2

2 − 1
2 + h

2 in the
gamma functions containing h and h = 0 in the constant part, we have

E[√w]h = c31
Γ (n. − r − p + 1 + h)

Γ (n. − p + 1 + h)

where c31 is the corresponding normalizing constant. Thus,
√

w ∼ real scalar type-1 beta
with the parameters (n. − r − p + 1, r) for n. + 1 > r + p, and

y2 = 1 − √
w√

w
∼ type-2 beta (r, n.−r−p+1), t2 = n. − r − p + 1

r
y2 ∼ F2r,2(n.−r−p+1).

(iv)
Accordingly, we reject Ho for large values of the F statistic given in (iv) or equivalently,
for an observed value of t2 that is greater than or equal to F2r,2(n.−r−p+1),α, such that
Pr{F2r,2(n.−r−p+1) ≥ F2r,2(n.−r−p+1), α} = α for a given significance level α.
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14.6.4. Asymptotic distribution of the likelihood ratio criterion λ

Given the gamma structure appearing in (14.6.17), we can expand the gamma functions
for n.

2 (1 + h) → ∞ in the part containing h and n.

2 → ∞ in the constant part wherein
h = 0, by using the first term in the asymptotic expansion of the gamma function or
Stirling’s formula, namely

Γ (z + δ) ≈ √(2π)zz+δ− 1
2 e−z (14.6.20)

for |z| → ∞, when δ is a bounded quantity. Then, on expanding each gamma function
in (14.6.17) by making use of (14.6.20), we have

E[λh] → (1 + h)−
1
2 r(p1) ⇒ E[e(−2 ln λ)h] → (1 − 2h)−

1
2 rp1 for 1 − 2h > 0,

which shows that whenever n = n. = n1 + · · · + nr → ∞,

λ → χ2
rp1

(14.6.21)

where the χ2 is a real scalar chisquare random variable having rp1 = r(p −m) degrees of
freedom. Hence, for large values of n = n1+· · ·+nr , we reject the null hypothesis Ho that
the model specified by T0 fits, whenever the observed λ ≥ χ2

r(p−m),α, with Pr{χ2
r(p−m) ≥

χ2
r(p−m), α} = α for a preselected α.

Example 14.6.1. A certain exercise regimen is prescribed to a random sample of 5 men
and 6 women to stabilize their weights to within normal limits. Except for being of dif-
ferent gender, these men and women form homogeneous groups with respect to all factors
that may influence weight, such as age and health conditions. The measurements are initial
weight minus weight on the reading date. The weights are recorded every 5th day and a
10-day period is taken as one time unit, the observations being made for 20 days or 2 time
units. Test the fit of (1) a linear model, (2) a second degree growth curve to the following
data, the columns of the matrix A being the readings on men, denoted by Xij , and the
columns of the matrix B, the readings on women, denoted by Yij :

A =

⎡

⎢
⎢
⎣

1 0 0 −1 0
0 1 −1 0 0

−1 0 1 −1 1
1 2 0 1 1

⎤

⎥
⎥
⎦ ≡ X, B =

⎡

⎢
⎢
⎣

−1 1 0 −1 1 0
1 1 1 0 1 2
0 −1 −1 1 1 0

−1 −1 1 0 0 1

⎤

⎥
⎥
⎦ ≡ Y.
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Solution 14.6.1. Let the sample average vectors be denoted by X̄ for men and Ȳ for
women, the deviation matrices be denoted as Xd and Yd and the sample sum of products
matrices, by S1 and S2 respectively. Then, these items are as follows:

X̄ =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , Xd =

⎡

⎢
⎢
⎣

1 0 0 −1 0
0 1 −1 0 0

−1 0 1 −1 1
0 1 −1 0 0

⎤

⎥
⎥
⎦ , S1 = XdX′

d =

⎡

⎢
⎢
⎣

2 0 0 0
0 2 −1 2
0 −1 4 −1
0 2 −1 2

⎤

⎥
⎥
⎦ ,

Ȳ =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦ , Yd =

⎡

⎢
⎢
⎣

−1 1 0 −1 1 0
0 0 0 −1 0 1
0 −1 −1 1 1 0

−1 −1 1 0 0 1

⎤

⎥
⎥
⎦ , S2 =YdY′

d =

⎡

⎢
⎢
⎣

4 1 −1 0
1 2 −1 1

−1 −1 4 0
0 1 0 4

⎤

⎥
⎥
⎦ .

Let S = S1 + S2. Consider the determinant S and its inverse S−1obtained from the matrix
of cofactors as that matrix divided by the determinant since it is a symmetric matrix. Thus,

S = S1 + S2 =

⎡

⎢
⎢
⎣

6 1 −1 0
1 4 −2 3

−1 −2 8 −1
0 3 −1 6

⎤

⎥
⎥
⎦ , |S| = 580,

Cof(S) =

⎡

⎢
⎢
⎣

104 −38 6 20
−38 276 48 −130

6 48 84 −10
20 −130 −10 160

⎤

⎥
⎥
⎦ , S−1 = 1

580

⎡

⎢
⎢
⎣

104 −38 6 20
−38 276 48 −130

6 48 84 −10
20 −130 −10 160

⎤

⎥
⎥
⎦ .

Take the growth matrices for the linear growth and quadratic growth as T1 and T2, where

T1 =

⎡

⎢
⎢
⎣

1 1/2
1 1
1 3/2
1 2

⎤

⎥
⎥
⎦ and T2 =

⎡

⎢
⎢
⎣

1 1/2 1/4
1 1 1
1 3/2 9/4
1 2 4

⎤

⎥
⎥
⎦ .
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Now, let us compute the various quantities that are required to answer the questions:

T ′
1S

−1 = 1

580

[
92 156 128 40
63 69 157 185

]

,

T ′
1S

−1X̄ = 1

580

[
40

185

]

, T ′
1S

−1Ȳ = 1

580

[
156
69

]

,

T ′
1S

−1T1 = 1

580

[
416 474
474 706

]

, (T ′
1S

−1T1)
−1 = 580

69020

[
706 −474

−474 416

]

,

T1(T
′

1S
−1T1)

−1T ′
1S

−1 = 1

69020

⎡

⎢
⎢
⎣

26390 54810 18270 −30450
17690 32190 20590 −1450
8990 9570 22910 27550
290 −13050 25230 56550

⎤

⎥
⎥
⎦ .

We may now evaluate the estimates of the parameter vectors A1 and A2, denoted by a hat:

Â1 = (T ′
1S

−1T1)
−1T ′

1S
−1X̄ = 1

69020

[ −59450
58000

]

=
[ −0.861345

0.840336

]

=
[

â01

â11

]

,

Â2 = (T ′
1S

−1T1)
−1T ′

1S
−1Ȳ = 1

69020

[
77430

−45240

]

=
[

1.12185
−0.655462

]

=
[

â02

â12

]

.

If the hypothesis of linear growth was not rejected, then the models for men and women,
respectively denoted by fx(t) and fy(t) would be the following:

Men: fx(t) = −0.861345 + 0.840336 t Women: fy(t) = 1.12185 − 0.655462 t.

As well,

T1Â1 = T1(T
′

1S
−1T1)

−1T ′
1S

−1X̄ = 1

69020

⎡

⎢
⎢
⎣

−30450
−1450
27550
56550

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−0.441176
−0.0210084

0.39916
0.819328

⎤

⎥
⎥
⎦ ,

T1Â2 = T1(T
′

1S
−1T1)

−1T ′
1S

−1Ȳ = 1

69020

⎡

⎢
⎢
⎣

54810
32190
9570

−13050

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0.794118
0.466387
0.138655

−0.189076

⎤

⎥
⎥
⎦ .

Let us now compute the sum of products matrix under the linear growth model. The matrix
X − T1Â1 is such that the vector T1Â1 is subtracted from each column of the observation
matrix X. Letting
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G1G
′
1 =

n1∑

j=1

(X1j − T1Â1)(X1j − T1Â1)
′ with

G1 = X − T1Â1 =

⎡

⎢
⎢
⎣

1.44118 0.441176 0.441176 −0.558824 0.441176
0.0210084 1.02101 −0.978992 0.0210084 0.0210084
−1.39916 −0.39916 0.60084 −1.39916 0.60084
0.180672 1.18067 −0.819328 0.180672 0.180672

⎤

⎥
⎥
⎦ ,

G1G
′
1 =

⎡

⎢
⎢
⎣

2.97318 0.0463421 −0.880499 0.398542
0.0463421 2.00221 −1.04193 2.01898
−0.880499 −1.04193 4.79664 −1.36059

0.398542 2.01898 −1.36059 2.16321

⎤

⎥
⎥
⎦ .

We now evaluate the same matrices for the second sample, denoting the deviation matrix
by G2 and the sum of products matrix by G2G

′
2, where G2 is obtained by subtracting T Â2

from each column of the observation matrix Y:

G2 = Y − T1Â2

=

⎡

⎢
⎢
⎣

−1.79412 0.205882 −0.794118 −1.79412 0.205882 −0.794118
0.533613 0.533613 0.533613 −0.466387 0.533613 1.53361

−0.138655 −1.13866 −1.13866 0.861345 0.861345 −0.138655
−0.810924 −0.810924 1.18908 0.189076 0.189076 1.18908

⎤

⎥
⎥
⎦ ,

G2G
′
2 =

⎡

⎢
⎢
⎣

7.78374 −1.54251 −0.339348 −0.90089
−1.54251 3.70846 −1.44393 1.60536

−0.339348 −1.44393 4.11535 −0.157298
−0.90089 1.60536 −0.157298 4.2145

⎤

⎥
⎥
⎦ .

Thus,

G1G
′
1 + G2G

′
2 =

⎡

⎢
⎢
⎣

10.7569 −1.49617 −1.21985 −0.502348
−1.49617 5.71067 −2.48586 3.62434
−1.21985 −2.48586 8.91199 −1.51788

−0.502348 3.62434 −1.51788 6.37771

⎤

⎥
⎥
⎦ and

|G1G
′
1 + G2G

′
2| = 1798.49,

so that

w = |S1 + S2|
|G1G

′
1 + G2G

′
2|

= 580

1798.49
= 0.322493.
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In this case, n. − r = 11 − 2 = 9, m = 2, p = 4, p − m = p1 = 2 and p2 = 2. This
situation is our special Case (2). Then,

y2 = 1 − √
w√

w
= 1 − 0.5679

0.5679
= 0.7609,

t2 = (n. − r − p + 1)

r
y2 = 6

2
y2 = 3y2 = 2.2826,

which is the observed value of an F2r,2(n.−r−p+1) = F4,12 random variable under the null
hypothesis. From an F-table, at the 5% level, F4,12,0.05 = 3.26 > 2.2826. In the case of
the F-test, we reject the hypothesis for large observed values of the statistic. Accordingly,
we do not reject Ho that m = 2 or that the growth model is linear. Naturally, the null
hypothesis would not be rejected either at a lower level of significance.

We now tackle the second part of the problem wherein m = 3 and m − 1 = 2, that
is, the growth model is assumed to be a polynomial of degree 2 under the null hypothesis.
Again, we take the time intervals to be t1 = 1

2 , t2 = 1, t3 = 3
2 and t4 = 2, so that

T2 =

⎡

⎢
⎢
⎣

1 t1 t2
1

1 t2 t2
2

1 t3 t2
3

1 t4 t2
4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 1/2 1/4
1 1 1
1 3/2 9/4
1 2 4

⎤

⎥
⎥
⎦ .

We can make use of some of the computations from the first part of the problem, that is,
the calculations related to T1. Thus, we have

T ′
2S

−1 = 1

580

⎡

⎣
92 156 128 40
63 69 157 185

81.5 −145.5 198.5 492.5

⎤

⎦

T ′
2S

−1T2 = 1

580

⎡

⎣
416 474 627
474 706 1178
627 1178 2291.5

⎤

⎦ , |580 × T ′
2S

−1T2| = 3532200
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Cof(T ′
2S

−1T2) =
⎡

⎣
230115 −347565 115710

−347565 560135 −192850
115710 −192850 69020

⎤

⎦

(T ′
2S

−1T2)
−1 = 580

3532200

⎡

⎣
230115 −347565 115710

−347565 560135 −192850
115710 −192850 69020

⎤

⎦

T ′
2S

−1X̄ = 1

580

⎡

⎣
40

185
492.5

⎤

⎦ , T ′
2S

−1Ȳ = 1

580

⎡

⎣
156

69
−145.5

⎤

⎦ ,

and

Â1 = (T ′
2S

−1T2)
−1T ′

2S
−1X̄

= 1

3532200

⎡

⎣
1892250

−5256250
2943500

⎤

⎦ =
⎡

⎣
0.535714
−1.4881
0.833333

⎤

⎦ =
⎡

⎣
â01

â11

â21

⎤

⎦ ,

Â2 = (T ′
2S

−1T2)
−1T ′

2S
−1Ȳ

= 1

3532200

⎡

⎣
−4919850
12488850
−5298300

⎤

⎦ =
⎡

⎣
−1.39286

3.53571
−1.5

⎤

⎦ =
⎡

⎣
â02

â12

â22

⎤

⎦ .

If the hypothesis of a second degree growth model was not rejected, the model for men,
denoted by fx(t), and that for women, denoted by fy(t), would be the following:

Men: fx(t) = 0.535714 − 1.4881 t + 0.83333 t2,

Women: fy(t) = −1.39286 + 3.53571 t − 1.5 t2.

Employing notations paralleling those utilized in the first part, we have

T2Â1 = T2(T
′

2S
−1T2)

−1T ′
2S

−1X̄ = 1

3532200

⎡

⎢
⎢
⎣

0
−420500

630750
3153750

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
−0.119048

0.178571
0.892857

⎤

⎥
⎥
⎦ ,

T2Â2 = T2(T
′

2S
−1T2)

−1T ′
2S

−1Ȳ ] = 1

3532200

⎡

⎢
⎢
⎣

0
2270700
1892250

−1135350

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0.642857
0.535714

−0.321429

⎤

⎥
⎥
⎦ ,
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as well as the following sample deviation matrices and sample sum of products matrices:

G1 = Y − T2Â1

=

⎡

⎢
⎢
⎣

−1 1 0 −1 1 0
1.11905 1.11905 1.11905 0.119048 1.11905 2.11905

−0.178571 −1.17857 −1.17857 0.821429 0.821429 −0.178571
−1.89286 −1.89286 0.107143 −0.892857 −0.892857 0.107143

⎤

⎥
⎥
⎦ ,

G1G
′
1 =

⎡

⎢
⎢
⎣

4. 1. −1. 0.

1. 9.51361 −2.19898 −4.9949
−1. −2.19898 4.19133 0.95663

0. −4.9949 0.95663 8.78316

⎤

⎥
⎥
⎦ ;

G2 = Y − T2Â2

=

⎡

⎢
⎢
⎣

−1 1 0 −1 1 0
0.357143 0.357143 0.357143 −0.642857 0.357143 1.35714

−0.535714 −1.53571 −1.53571 0.464286 0.464286 −0.535714
−0.678571 −0.678571 1.32143 0.321429 0.321429 1.32143

⎤

⎥
⎥
⎦ ,

G2G
′
2 =

⎡

⎢
⎢
⎣

4. 1. −1. 0.

1. 2.76531 −2.14796 1.68878
−1. −2.14796 5.72194 −1.03316

0. 1.68878 −1.03316 4.6199

⎤

⎥
⎥
⎦ ;

G1G
′
1 + G2G

′
2 =

⎡

⎢
⎢
⎣

8. 2. −2. 0.

2. 12.2789 −4.34694 −3.30612
−2. −4.34694 9.91326 −0.0765339

0. −3.30612 −0.0765339 13.4031

⎤

⎥
⎥
⎦ and

|G1G
′
1 + G2G

′
2| = 9462.7797.

Thus, for this part, the statistic w obtained from the λ-criterion, is the following:

w = |S1 + S2|
|G1G

′
1 + G2G

′
2|

= 580

9462.7797
= 0.0612928.

In this case, m = 3, p = 4, r = 2, p1 = 1, p2 = 3 and n. − r − p + 1 =
11 − 2 − 4 + 1 = 6,

y1 = 1 − w

w
= 15.3151, t1 = n. − r − p + 1

r
y1 = 6

2
(15.3151) = 45.945,

and F2,6,0.01 = 10.92.
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When implementing F-tests, we reject the null hypothesis for large observed value of the
statistic. Since 45.945 > F2,6,0.01, the hypothesis that a second degree polynomial fits is
rejected at the 1% significance level and, of course, at any higher level. Let us consider
the asymptotic results. Since n. = 11 is not large, the results ought to be interpreted with
some caution. In the case of the linear model (m = 2), rp1 = 2(2) = 4 and the tabu-
lated critical values are χ2

4,0.05 = 9.49 and χ2
4,0.01 = 13.26. With this chisquare test, we

reject Ho for large observed value of the statistic. In the linear case, w = 0.3225 so that
−2 ln λ = −2(n./2) ln w = −11 ln w = −11[−1.1317] = 12.45. Hence, according to the
approximate asymptotic chisquare test, the hypothesis of a linear fit should be rejected at
the 5% significance level but not at the 1% significance level. In the second degree polyno-
mial growth curve case, p1 = 1 so that rp1 = 2, and the tabulated values are χ2

2,0.05 = 5.99
and χ2

2,0.01 = 9.49. Since −2 ln λ = −11 ln w = −11 ln 0.0613 = −11[−2.79] = 30.71,
according to the approximate asymptotic chisquare test, the hypothesis of a second degree
polynomial fit ought to be rejected at both the 5 and 1% levels, which corroborates the
conclusion obtained with the F test. In sum, there is some evidence of a linear fit but no
indication whatsoever of a quadratic fit.

14.6.5. A general structure

Potthoff and Roy (1964) considered a general format whereby several hypotheses can
be tested at the same time by making use of the structure. When applied to the model
specified in (14.6.4), the Potthoff-Roy procedure yields the following format:

E[X11, X12, . . . , X1n1] = [T A1, T A1, . . . , T A1] = T (A1, . . . , A1) = T A1J
′
1

(14.6.22)
where J1 is a n1 × 1 vector of unities. The left and right-hand sides of this equation are
p×n1 matrices where T is p×m and the m×1 vector A1 is repeated n1 times. The sample
matrix of all r groups of n1 + · · · + nr = n. = n individuals, denoted by a boldfaced X, is
the following:

E[X] = [T A1J
′
1, . . . , T ArJ

′
r ] = T [AJ ′

1, . . . , ArJ
′
r ] = T AJ(r), A = [A1, . . . , Ar ]

(14.6.23)
where J(r) is an m×(n1+· · ·+nr) = m×n matrix whose first n1 columns all have unities in
the first row (or J ′

1) and zeros as the other elements or in the first n1×n1 diagonal block, the
first row elements are all unities, in the next n2 × n2 diagonal block, the first row elements
are all unities and the rest, all zeros, and so on, up to the last nr×nr diagonal block wherein
the first row are all unities and the remaining elements are zeros, all non-diagonal blocks
being null matrices. We can also pre-multiply X by a q ×p constant matrix Q such that Q

is of full rank q ≤ p. Then QXij ∼ Nq(QT Ai, QΣQ′), j = 1, . . . , ni, i = 1, . . . , r . In



Profile Analysis and Growth Curves 843

this instance, we are making repeated measurements at q points t1, . . . , tq , instead of the
p points previously considered, and the model is the following:

E[QX] = QT AJ(r). (14.6.24)

This model enables one to test all types of hypotheses of the form

CAV = O (14.6.25)

where C and V are given matrices, C is s×m, A is the m×r matrix of parameters and V is
r × t for some r and t . For example, let C = Im, V be an r × (r −1) matrix where the first
r − 1 columns form an identity matrix and the last column is (−1, −1, . . . , −1)′. Then,
A1 − Ar = O, A2 − Ar = O, . . . , Ar−1 − Ar = O, or equivalently, A1 = · · · = Ar .
For testing the equality of the models T A1 = T A2 = · · · = T Ar , one need not apply the
above procedure. One can directly employ the multivariate one-way layout analysis with
r − 1 degrees freedom associated with the sum of squares and cross products matrix due
to the general nature of the model.

Exercises 14

14.1. The following are observed random samples of sizes n1 = 4 and n2 = 5 from
two independent real Gaussian populations, N3(M1, Σ) and N3(M2, Σ) sharing the same
covariance matrix Σ > O and having the mean value vectors M1 and M2, respectively.
Test the hypothesis at the 5% significance level that the mean values M1 and M2 have (1):
parallel profiles; (2): coincident profiles:

Sample 1:

⎡

⎣
1 2 4 1

−1 1 2 2
1 3 1 3

⎤

⎦ , Sample 2:

⎡

⎣
2 −1 1 −2 0
1 1 4 1 3
4 2 3 0 1

⎤

⎦ .

14.2. The following are observed samples of sizes 5 and 6 from two independent real
Gaussian populations with the same covariance matrix. The columns of the matrices rep-
resent the observations. Test the hypothesis at the 5% level of significance that the expected
values or population mean value vectors have (1): parallel profiles; (2): coincident profiles:

Sample 1:

⎡

⎢
⎢
⎣

1 −1 2 3 0
1 2 1 1 4

−1 3 −1 −3 0
1 1 2 −1 2

⎤

⎥
⎥
⎦ , Sample 2:

⎡

⎢
⎢
⎣

2 1 3 −1 1 0
1 0 5 2 2 2

−1 1 2 −2 4 −4
1 4 5 3 −1 0

⎤

⎥
⎥
⎦ .

14.3. In Exercise 14.1, determine whether the profile is level (1): in the first population;
(2): in the second population; (3): in both the populations.
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14.4. Repeat Exercise 14.3 with the sample of observations provided in Exercise 14.2.

14.5. Two breeds of 12 cows having identical characteristics are given a particular type
of feed and their weights are monitored for four weeks. The observations are the weight
readings on the date minus the initial weight. The weight readings are made at the end of
every week for four successive weeks. The columns in A represent successive observations
on 5 cows of breed-1 and the columns of B, successive observations on 7 cows of breed-2.
Test the hypothesis at the 5% significance level that the breed effect is a polynomial growth
curve of (1): degree 1, (2): degree 2 for each breed:

A =

⎡

⎢
⎢
⎣

0 1 0 1 3
1 2 1 2 4
2 4 2 3 4
2 6 2 4 6

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

1 0 1 1 0 3 0
2 1 1 3 2 3 2
3 1 2 5 2 4 4
4 2 2 7 3 6 4

⎤

⎥
⎥
⎦ .
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Chapter 15
Cluster Analysis and Correspondence Analysis

15.1. Introduction

We will employ the same notations as in the previous chapters. Lower-case letters
x, y, . . . will denote real scalar variables, whether mathematical or random. Capital letters
X, Y, . . . will be used to denote real matrix-variate mathematical or random variables,
whether square or rectangular matrices are involved. A tilde will be placed on top of letters
such as x̃, ỹ, X̃, Ỹ to denote variables in the complex domain. Constant matrices will for
instance be denoted by A, B, C. A tilde will not be used on constant matrices unless the
point is to be stressed that the matrix is in the complex domain. The determinant of a
square matrix A will be denoted by |A| or det(A) and, in the complex case, the absolute
value or modulus of the determinant of A will be denoted as |det(A)|. When matrices
are square, their order will be taken as p × p, unless specified otherwise. When A is a
full rank matrix in the complex domain, then AA∗ is Hermitian positive definite where
an asterisk designates the complex conjugate transpose of a matrix. Additionally, dX will
indicate the wedge product of all the distinct differentials of the elements of the matrix X.
Thus, letting the p × q matrix X = (xij ) where the xij ’s are distinct real scalar variables,
dX = ∧p

i=1 ∧q

j=1 dxij . For the complex matrix X̃ = X1 + iX2, i = √
(−1), where X1

and X2 are real, dX̃ = dX1 ∧ dX2.

15.1.1. Clusters

A cluster means a group or a cloud of items close together with reference to one or
more characteristics. For instance, in a countryside, there are villages which are clusters of
houses. In a city, there are clusters of high-rise buildings or clusters of apartment blocks. If
we have 2-dimensional data points marked on a sheet of paper, then there may be several
places where the points are grouped together in large crowds, at other places the points
may be bunched together in smaller clumps and somewhere else, there may be singleton
points. In a classification problem, we have a number of preassigned populations and we
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want to assign a point at hand to one of those populations. This cannot be achieved in the
context of cluster analysis as we do not know beforehand how many clusters there are in
the data at hand or which data point belongs to which cluster. Cluster analysis is akin to
pattern recognition whereas classification is a sort of taxonomy. Suppose that a new plant
is to be classified as belonging to one of the known species of plants; if it does not fall into
any of the known species, then we have a member from a new species. In cluster analysis,
we are, in a manner of speaking, going to create various ‘species’. To start with, we have
only a cloud of items and we do not know how many categories or clusters there exist.

Cluster analysis techniques are widely utilized in many fields such as psychiatry, so-
ciology, anthropology, archeology, medicine, criminology, engineering and geology, to
mention only a few areas. If real scalar variables are to be classified as belonging to a
certain category, one way of achieving this is to ascertain their joint dispersion or joint
variation as measured in terms of scale-free covariance or correlation. Those variables that
are similarly correlated may be grouped together.

We will consider the problem of cluster analysis involving n points X1, . . . , Xn where
each Xj is a real p-dimensional vector, that is, we have a p × n data matrix

X = [X1, X2, . . . , Xn] =

⎡

⎢
⎢
⎢
⎣

x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xp1 xp2 . . . xpn

⎤

⎥
⎥
⎥
⎦

. (15.1.1)

15.1.2. Distance measures

Two real p-vectors are close together if the “distance” between them is small. Many
types of distance measures can be defined. Let Xr and Xs be two real p-vectors. These are
the r-th and s-th members or columns in the data matrix (15.1.1). Then, the following are
some distance measures:

dm(Xr, Xs) =
[ p∑

i=1

|xir − xis |m
] 1

m ;

for m = 2, we have the Euclidean distance d2(Xr, Xs) = [∑p

i= |xir −xis |2] 1
2 , or, denoting

d2
2 as d2, we have

d2(Xr, Xs) =
p∑

i=1

(xir − xis)
2, (15.1.2)
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where the absolute value sign can be replaced by parentheses since we are dealing
with real elements. We will utilize this convenient quantity d2 for comparing observa-
tion vectors. There may be joint variation or covariances among the coordinates in each
of the vectors, in which case, Cov(Xr) = Σ > O. If all the Xj ’s, j = 1, . . . , n,

have the same covariance matrix, then Cov(Xj ) = Σ, j = 1, . . . , n, and a statisti-
cian might wish to consider the generalized distance between Xr and Xs , or its square,
d2

(g)(Xr, Xs) = (Xr − Xs)
′ Σ−1(Xr − Xs), the subscript g designating the generalized

distance. Since Σ is unknown, we may wish to estimate it. However, if there are clusters,
it may not be appropriate to make use of the entire data set of all n points, since the joint
variation or the covariance within each cluster is likely to be different. And as we do not
know beforehand whether clusters are present, securing a proper estimate of Σ turns out
to prove problematic. As a result, this problem is usually circumvented by resorting to the
ordinary Euclidean distance instead of the generalized distance.

Let us examine the effect of scaling a vector. If the unit of measurement in one vector is
changed, what will be the effect on the squared distance? Consider the following vectors:

X1 =
⎡

⎣
−1

0
−2

⎤

⎦ and X2 =
⎡

⎣
−3

2
4

⎤

⎦⇒ d2(X1, X2) = (X1 − X2)
′(X1 − X2)

= [(−1) − (−3)]2 + [(0) − (2)]2 + [(−2) − (4)]2 = 44.

The squared distances between the vectors when (1) X1 is multiplied by 2; (2) X2 is
multiplied by 2; (3) X1 and X2 are each multiplied by 2, are

d2(2X1, X2) = (−2 + 3)2 + (0 − 2)2 + (−4 − 4)2 = 69

d2(X1, 2X2) = (−1 + 6)2 + (0 − 4)2 + (−2 − 8)2 = 141

d2(2X1, 2X2) = 4[(X1 − X2)
′(X1 − X2)] = 4 × 44 = 176.

Note that they are fully distorted as 69 
= 4(44) and 141 
= 4(44). Thus, the scaling of
individual vectors can fully alter the nature of the clusters when there are clusters in the
original data. As well, members of the original clusters need not be members of the same
clusters in the scaled data and the number of clusters may also change. Accordingly, it is
indeed inadvisable to make use of the generalized distance. Nor is re-scaling the individual
vectors a good idea if we are seeking clusters. Accordingly, the recommended procedure
consists of utilizing the original data without modifying them. It may also happen that the
components in each p-vector are recorded in different units of measurement. Then, how
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to eliminate the location and scale effect on the components in each vector? This can be
achieved by standardizing them individually, that is, by subtracting the average value of
the components from the components of each vector and dividing the result by the sample
standard deviation. Let us see what happens in the case of our numerical example. Letting
x̄1 and x̄2 be the averages of the components in X1 and X2, and s2

1 and s2
2 be the associated

sums of products, we have

x̄1 = 1

3
[(−1) + (0) + (−2)] = −1, x̄2 = 1

3
[(−3) + (2) + (4)] = 1,

s2
1 =

p∑

i=1

(xi1 − x̄1)
2 = [(−1) − (−1)]2 + [(0) − (−1)]2 + [(−2) − (−1)]2 = 2,

s2
2 =

p∑

i=1

(xi2 − x̄2)
2 = 26.

Thus, the standardized vectors X1 and X2, denoted by Y1 and Y2, are the following:

Y1 =
√

3√
2

⎡

⎣
−1 − (−1)

0 − (−1)

−2 − (−1)

⎤

⎦ =
√

3√
2

⎡

⎣
0
1

−1

⎤

⎦ and Y2 =
√

3√
26

⎡

⎣
−4

1
3

⎤

⎦ ,

and d2(Y1, Y2) = (Y1−Y2)
′(Y1−Y2) = 7.6641. However, Y1 and Y2 are very distorted and

the distance between X1 and X2 is also modified. Hence, such procedures will change the
clustering aspect as well, with new clusters possibly differing from the original clusters.

Let us consider the matrix of squared distances, denoted by D:

D =

⎡

⎢
⎢
⎢
⎣

0 d2
12 . . . d2

1n

d2
21 0 . . . d2

2n
...

...
. . .

...

d2
n1 d2

n2 . . . d2
nn

⎤

⎥
⎥
⎥
⎦

= D′. (15.1.3)

For example, letting

X1 =
⎡

⎣
1
0

−1

⎤

⎦ , X2 =
⎡

⎣
2
1
3

⎤

⎦ , X3 =
⎡

⎣
0
1
2

⎤

⎦ and X4 =
⎡

⎣
3
1
2

⎤

⎦ ,
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we have d2
12 = (1 − 2)2 + (0 − 1)2 + (−1 − 3)2 = 18, d2

13 = 11, d2
14 = 14, d2

23 =
5, d2

24 = 2, d2
34 = 9, so that

D =

⎡

⎢
⎢
⎣

0 18 11 14
18 0 5 2
11 5 0 9
14 2 9 0

⎤

⎥
⎥
⎦ .

The question of interest is the following: Given a set of n vectors of order p, how can one
determine the number of clusters and then, classify them into these clusters?

15.2. Different Methods of Clustering

The main methods are hierarchical in nature, the other ones being non-hierarchical.
We will begin with non-hierarchical techniques. In this category, the most popular one
involves optimization or partitioning.

15.2.1. Optimization or partitioning

With this approach, we have to come up with two numbers: k, a probable number of
clusters, and r , the maximum separation between the members of each prospective cluster.
Based on the distances or on the dissimilarity matrix, D, one should be able to determine
the likely number of clusters, that is, k. Then, one has to find a set of k vectors among the
n given vectors, which will be taken as seed members or starting members within the k

potential clusters. Several methods have been proposed for determining this k, including
the following:

1. Examine the closeness of the original vectors as indicated by the dissimilarity matrix
D and, to start with, decide on an initial numbers for k and the likely distance between
members within a cluster denoted by r .

2. Examine the original data points or original p-vectors and, based on the comparative
magnitudes of the components of the observed p-vectors, ascertain whether there is any
grouping possible and predict a value for each of k and r .

3. Evaluate the sample sum of products matrix S from the original data matrix. Compute
the two main principal components associated with this S. Substitute Xj , the j -th obser-
vation vector, in the two principal components. This provides a pair of numbers or one
point in a two-dimensional space. Compute n such points for j = 1, . . . , n. Plot these
points. From the graph, assess the clustering pattern, the number k of possible clusters,
estimates for r , the maximum distance between two members within a cluster as well as
the minimum distance between the clusters.
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4. Choose any number k, select k vectors at random from the set of n vectors; then,
preselect a number r and use it as a measure of maximum separation between vectors.

5. Take any number k and select as seed vectors the first k vectors whose separation is at
least two units among the set of n vectors.

6. Look at the farthest points. Select k of them that are separated by at least r units for
preselected values of k and r .

If the dissimilarity matrix D is utilized, then the separation number r must be measured
in d2

ij units, whereas r should be in dij units if the actual distances dij are used. After the
seed vectors are selected, the remaining n − k points are to be associated to these seed
points to form clusters. Assign the vectors closest to each of the seed vectors and form the
initial k clusters of two or more vectors. For example, if there are three closest members
at equal distance to a seed vector then, that cluster comprises 4 members, including the
seed vector. Then, compute the centroids of all initial clusters. The centroid of a cluster is
the simple average of the vectors included in that cluster. Thus, the centroid is a p-vector.
Then, measure the distances of all the points belonging to the same cluster from each
centroid, and incorporate all points within the distance of r from a centroid to that cluster.
This process will create the second stage of k clusters. Now, evaluate the centroid of each
of these k clusters. Again, repeat the process of computing the distances of all points from
each centroid. If a member in a cluster is found to be closer to the centroid of another
cluster than to its own cluster’s centroid, then redirect that vector to the cluster to which
it belongs. Rearrange all vectors in such a manner, assigning each one to a cluster whose
centroid is the closest. Note that the number k can increase or decrease in the course of
this process. Continue the procedure until no more improvement is possible. At this stage,
that final k is the number of clusters in the data and the final members in each cluster are
set. This procedure is also called k-means approach.

This k-means approach has a serious shortcoming: if one starts with a different set of
seed vectors, then it is possible to end up with a different set of final clusters. On the other
hand, this method has the appreciable advantage that it allows a member provisionally
assigned to a cluster to be moved to another cluster where it really belongs, that is, it
allows the transfer of points. The following example should clarify the procedure.

Example 15.2.1. Ten volunteers are given an exercise routine in an experiment that mon-
itors systolic pressure, diastolic pressure and heart beat. These are measured after adher-
ing to the exercise routine for four weeks. The data entries are systolic pressure minus



Cluster Analysis and Correspondence Analysis 851

120 (SP), diastolic pressure minus 80 (DP) and heart beat minus 60 (HB), where 120, 80
and 60 are taken as the standard readings of systolic pressure, diastolic pressure and heart
beat, respectively. Carry out a cluster analysis of the data. The data matrix is the following
where (1), . . . , (10) represent the data vectors A1, . . . , A10 for the 10 volunteers, the first
row represents SP, the second row, DP, and the third, HB:

↓→ (1) (2) (3) (4) (5)

SP : 0 1 1 2 3
DP : 1 0 −1 3 2
HB : −1 −1 −1 −2 5

(6) (7) (8) (9) (10)

4 6 8 5 10
3 8 10 6 8
2 7 8 9 4

Solution 15.2.1. Let us compute the dissimilarity matrix D:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

↓→ (1) (2) (3) (4) (5) (6) (7) (8)

(1) 0 2 5 9 46 29 149 226
(2) 2 0 1 11 44 27 153 230
(3) 5 1 0 18 49 34 170 251
(4) 9 11 18 0 51 20 122 185
(5) 46 44 49 51 0 11 49 98
(6) 29 27 34 20 11 0 54 101
(7) 149 153 170 122 49 54 0 9
(8) 226 230 251 185 98 101 9 0
(9) 150 152 165 139 36 59 9 26
(10) 174 170 187 125 86 65 25 24

(9) (10)

150 174
152 170
165 187
139 125
36 86
59 65
9 25

26 24
0 54

54 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The data matrix suggests the possibility of three clusters. Accordingly, we may begin with
the vectors A2, A5 and A8 as seed vectors and take the separation width as r = 15 units.
From D, we find d2

23 = 1, the smallest number, and hence A2 and A3 form the cluster:
{A2, A3}. Note that d2

56 = 11, so that A6 and A5 form the cluster: {A5, A6}. Since d2
87 = 9,

A7 and A8 form a cluster: {A7, A8}. Now, consider the centroids. Letting C11, C21 and
C31 denote the centroids, C11 = 1

2(A2 + A3), C21 = 1
2(A5 + A6) and C31 = 1

2(A7 + A8),
that is,

C11 =
⎡

⎣
1

−1/2
−1

⎤

⎦ , C21 =
⎡

⎣
7/2
5/2
7/2

⎤

⎦ and C31 =
⎡

⎣
7
9

15/2

⎤

⎦ .
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Let us calculate the distances of A1, . . . , A10 from C11, C21, C31:

d2(C11, A1) = 13

4
, d2(C11, A2) = 1

4
, d2(C11, A3) = 1

4
, d2(C11, A4) = 57

4
,

d2(C11, A5) = 185

2
, d2(C11, A6) = 121

4
, d2(C11, A7) = 645

4
, d2(C11, A8) = 961

4
,

d2(C11, A9) = 633

4
, d2(C11, A10) = 713

4
, d2(C21, A1) = 139

4
, d2(C21, A2) = 131

4
,

d2(C21, A3) = 155

4
, d2(C21, A4) = 131

4
, d2(C21, A5) = 11

4
, d2(C21, A6) = 11

4
,

d2(C21, A7) = 195

4
, d2(C21, A8) = 387

4
, d2(C21, A9) = 179

4
, d2(C21, A10) = 291

4
,

d2(C31, A1) = 741

4
, d2(C31, A2) = 757

4
, d2(C31, A3) = 833

4
, d2(C31, A4) = 605

4
,

d2(C31, A5) = 285

4
, d2(C31, A6) = 301

4
, d2(C31, A7) = 9

4
, d2(C31, A8) = 9

4
,

d2(C31, A9) = 61

4
, d2(C31, A10) = 89

4
.

We include all the points located within 15 units of distance to the nearest cluster. Then, the
second set of clusters are the following: Cluster 1: {A1, A2, A3, A4}, cluster 2: {A5, A6},
cluster 3: {A7, A8}. Note that A9 is quite close to Cluster 3. We may either include it in
Cluster 3 or treat it as a singleton. Since the next stage calculations do not change the
composition of the clusters, we may take the final clusters as {A1, A2, A3, A4}, {A5, A6},
{A7, A8, A9} and {A10} where Cluster 4 consists of a single element. This completes the
computations.

Let us examine the principal components of the sample sum of products matrix and
plot the points to see whether any cluster can be detected. The sample matrix denoted by
X and the sample average, denoted by X̄, are the following:

X =
⎡

⎣
0 1 1 2 3
1 0 −1 3 2

−1 −1 −1 −2 5

4 6 8 5 10
3 8 10 6 8
2 7 8 9 4

⎤

⎦ , X̄ =
⎡

⎣
4
4
3

⎤

⎦ .

Let the matrix of sample averages be X̄ = [X̄, X̄, . . . , X̄] and the deviation matrix be
Xd = X − X̄. Then,

Xd =
⎡

⎣
−4 −3 −3 −2 −1 0 2 4 1 6
−3 −4 −5 −1 −2 −1 4 6 2 4
−4 −4 −4 −5 2 −1 4 5 6 1

⎤

⎦ ,
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and the sample sum of products matrix is S = XdX′
d , that is,

S =
⎡

⎣
96 101 88
101 128 112
88 112 156

⎤

⎦ .

The eigenvalues of S are λ1 = 330.440, λ2 = 40.522 and λ3 = 9.039. An eigenvec-
tor corresponding to λ1 = 330.440 and an eigenvector corresponding to λ2 = 40.522,
respectively denoted by U1 and U2 are the following:

U1 =
⎡

⎣
0.782
0.943
1.000

⎤

⎦ and U2 =
⎡

⎣
−0.676
−0.500
−1.000

⎤

⎦ .

Then the first two principal components are U ′
1Y and U ′

2Y with Y ′ = [y1, y2, y3]. We
substitute our sample points A1, . . . , A10 to obtain 10 pairs of numbers. For example,

U ′
1A1 = [0.782, 0.943, 1]

⎡

⎣
0
1

−1

⎤

⎦ = −0.057, U ′
2A1 = [−0.676, −0.5, 1]

⎡

⎣
0
1

−1

⎤

⎦ = −1.5

and hence the first pair of numbers or the first point is P1 : (−0.057, −1.500).
Similar calculations yield the remaining 9 points as: P2 : (−0.218, −1.676), P3 :
(−1.161, −1.176), P4 : (2.393, −4.852), P5 : (9.232, 1.972), P6 : (7.957, −2.204), P7 :
(19.236, −1.056), P8 : (23.686, −2.408), P9 : (18.568, 2.620), P10 : (19.364, −6.760).
It is seen that these points which are plotted in Fig. 15.2.2 form the same clusters as
the original points shown in Fig. 15.2.1, that is, Cluster 1: {A1, A2, A3, A4}; Cluster 2:
{A5, A6}; Cluster 3: {A7, A8, A9}; Cluster 4: {A10}.

Other non-hierarchical methods are currently in use. We will mention these procedures
later, after discussing the main hierarchical technique known as single linkage or nearest
neighbor method.

15.3. Hierarchical Methods of Clustering

Hierarchical procedures are of two categories. In one of them, we begin with all the n

data points as n different clusters of one element each. Then, by applying certain rules, we
start combining these single-member clusters into larger clusters, the process being halted
when a desired number of clusters are obtained. If the process is continued, we ultimately
end up with a single cluster containing all of the n points. In the second category, we
initially consider one cluster that comprises the n elements. We then start splitting this
cluster into two clusters by making use of some criteria. Next, one or both of these sub-
clusters are divided again by applying the same criteria. If the process is continued, we
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Figure 15.2.1 The original 10 data points

Figure 15.2.2 Second versus first principal component evaluated at the Ai’s

finally end up with n clusters of one element each. The process is halted when a desired
number of clusters are obtained. In all these procedures, one cannot objectively determine
when to stop the process or how many distinct clusters are present. We have to specify
some stopping rules as a means of selecting a suitable number of clusters.

15.3.1. Single linkage or nearest neighbor method

In this single linkage procedure, we begin by assuming that there are n clusters con-
sisting of one item each. We then combine these clusters by applying a minimum distance
rule. At the initial stage, we have only one element in each ‘cluster’, but at the following
steps, each cluster will potentially contain several items and hence, the rule is stated for
general clusters. Consider two clusters A and B whose elements are denoted by Xj and
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Yj , that is, Xj ∈ A and Yj ∈ B, the Xj ’s and Yj ’s being p-vectors belonging to the data
set at hand. In the minimum distance rule, we define the distance between two clusters,
denoted by d(A, B), as follows:

d(A, B) = min{d(Xi, Yj ), for all Xi ∈ A, Yj ∈ B}. (15.3.1)

This distance is measured in the units of the definition of the distance being utilized. We
will illustrate the single linkage hierarchical procedure by making use of the data set pro-
vided in Example 15.2.1 and its associated dissimilarity matrix D. We will utilize the dis-
similarity matrix D to represent various “distances”. Since the matrix D will be repeatedly
referred to at every stage, it is duplicated next for ready reference:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

↓→ (1) (2) (3) (4) (5) (6) (7) (8)

(1) 0 2 5 9 46 29 149 226
(2) 2 0 1 11 44 27 153 230
(3) 5 1 0 18 49 34 170 251
(4) 9 11 18 0 51 20 122 185
(5) 46 44 49 51 0 11 49 98
(6) 29 27 34 20 11 0 54 101
(7) 149 153 170 122 49 54 0 9
(8) 226 230 251 185 98 101 9 0
(9) 150 152 165 139 36 59 9 26
(10) 174 170 187 125 86 65 25 24

(9) (10)

150 174
152 170
165 187
139 125
36 86
59 65
9 25

26 24
0 54

54 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To start with, we have 10 clusters {Aj }, j = 1, . . . , 10. At the initial stage, each cluster has
one element. Then d(A, B) as defined in (15.3.1) is the smallest distance (dissimilarity)
appearing in D, that is, 1 which occurs between the elements corresponding to A2 and
A3. These two clusters of one vector each are combined and replaced by B1 by taking
the smaller entries in each column of the combined representation of the dissimilarity
measures corresponding A2 and A3. For illustration, we now list the dissimilarity measures
corresponding to the original A2 and A3 and the new B1 as rows:

A2 : (2) [0 1] (11) (44) (27) (153) (230) (152) (170)

A3 : 5 [1 0] 18 49 34 170 251 165 187
B1 : 2 [0] 11 44 27 153 230 152 170

The rows representing A2 and A3 are combined and replaced by B1 as shown above. The
second and third columns in D are combined into one column, namely, the B1 column.
The elements in B1 are the smaller elements in each column of A2 and A3. The bracketed
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elements in A2 and A3, namely [0, 1] and [1, 0], are combined into one element [0] in
B1, the updated dissimilarity matrix having one fewer row and one fewer column. These
are the intersections of the two rows and columns. Other smaller elements in the two
original columns, which make up B1, are displayed in parentheses. This process will be
repeated at each stage. At the first stage of the procedure, we end up with 9 clusters:
C1 = {A2, A3}, {Aj }, j = 1, 4, . . . , 10, the resulting configuration of the dissimilarity
matrix, denoted by D1, being

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

↓→ A1 B1 A4 A5 A6 A7 A8 A9 A10

A1 0 2 9 46 29 149 226 150 174
B1 2 0 11 44 27 153 230 152 170
A4 9 11 0 51 20 122 185 139 125
A5 46 44 51 0 11 49 98 36 86
A6 29 27 20 11 0 54 101 59 65
A7 149 153 122 49 54 0 9 9 25
A8 226 230 185 98 101 9 0 26 24
A9 150 152 139 36 59 9 26 0 54
A10 174 170 125 86 65 25 24 54 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now, the next smallest dissimilarity is 2 which occurs at (A1, B1). Thus, the rows
(columns) corresponding to A1 and B1 are combined into one row (column) B2. The
original rows corresponding to A1 and B1 and the new row corresponding to B2 are the
following:

A1 : [0 2] (9) 46 29 (149) (226) (150) 174
B1 : [2 0] 11 (44) (27) 153 230 152 (170)

B2 : [0] 9 44 27 149 226 150 170 .

The new configuration, denoted by D2, is the following:

D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

↓→ B2 A4 A5 A6 A7 A8 A9 A10

B2 0 9 44 27 149 226 150 170
A4 9 0 51 20 122 185 139 125
A5 44 51 0 11 49 98 36 86
A6 27 20 11 0 54 101 59 65
A7 149 122 49 54 0 9 9 25
A8 226 185 98 101 9 0 26 24
A9 150 139 36 59 9 26 0 54
A10 170 125 86 65 25 24 54 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the resulting clusters being C2 = {A1, A2, A3}, {Aj }, j = 4, . . . , 10. The next smallest
dissimilarity is 9, which occurs at (B2, A4). Hence these are combined, that is, the first
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two columns (rows) are merged as explained. The combined row, denoted by B3, is the
following, its transpose becoming the first column:

B3 = [0, 44, 20, 122, 185, 139, 125],
and the new configuration is the following:

D3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

↓→ B3 A5 A6 A7 A8 A9 A10

B3 0 44 20 122 185 139 125
A5 44 0 11 49 98 36 86
A6 20 11 0 54 101 59 65
A7 122 49 54 0 9 9 25
A8 185 98 101 9 0 26 24
A9 139 36 59 9 26 0 54
A10 125 86 65 25 24 54 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

At this stage, the clusters are C2 = {A1, A2, A3, A4}, {Aj }, j = 5, . . . , 10. The next
smallest number is 9, which is occurring at (A7, A8), (A7, A9). Accordingly, we combine
A7, A8 and A9, and the resulting configuration is the following where the resultant of the
replacement rows (columns) is denoted by B4:

D4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

↓→ B3 A5 A6 B4 A10

B3 0 44 20 122 125
A5 44 0 11 36 86
A6 20 11 0 54 65
B4 122 36 54 0 24
A10 125 86 65 24 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the clusters being C2 = {A1, A2, A3, A4}, C3 = {A7, A8, A9}, {Ai}, i = 5, 6, 10. The
next smallest dissimilarity measure is 11 at (A5, A6). Combining these, the replacement
row is B5 = [20, 0, 36, 65], and the new configuration, denoted by D5 is as follows:

D5 =

⎡

⎢
⎢
⎢
⎢
⎣

↓→ B3 B5 B4 A10

B3 0 20 122 125
B5 20 0 36 65
B4 122 36 0 24
A10 125 65 24 0

⎤

⎥
⎥
⎥
⎥
⎦

,

the resulting clusters being C2 = {A1, A2, A3, A4}, C3 = {A7, A8, A9}, C4 = {A5, A6},
C5 = {A10}.
We may stop at this stage since the clusters obtained from the other methods coincide with
C2, C3, C4, C5. At the following step of the procedure, C4 would combine with C3, with
the next final stage resulting in a single cluster that would encompass all 10 points.
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15.3.2. Average linking as a modified distance measure

An alternative distance measure involving all the items in pairs of clusters is considered
in this subsection. As one proceeds from any stage to the next one in a hierarchical proce-
dure, a decision is based on the next smallest distance between two clusters. At the initial
stage, this does not pose any problem since the dissimilarity matrix D is available and each
cluster contains only a single element. However, further on in the process, as there are sev-
eral elements in the clusters, a more suitable definition of “distance” is required in order to
proceed to the next stage. Several types of methods have been proposed in the literature.
One such procedure is the average linkage method under which the distance between two
clusters A and B, denoted again by d(A, B), is defined as follows:

d(A, B) = 1

n1n2

n2∑

j=1

n1∑

i=1

d(Xi, Yj ) for all Xi ∈ A, Yj ∈ B (15.3.2)

where the Xi’s and Yj ’s are all p-vectors from the given set of data points. In this case, the
rule being applied is that two clusters having the smallest distance, as measured in terms
of (15.3.2), are combined before initiating the next stage.

15.3.3. The centroid method

In a hierarchical single linkage procedure, another way of determining the distance
between two clusters before proceeding to the next stage is referred to as the centroid
method under which the Euclidean distance between the centroids of clusters A and B is
defined as follows:

d(A, B) = d(X̄, Ȳ ) with X̄ = 1

n1

n1∑

j=1

Xj and Ȳ = 1

n2

n2∑

j=1

Yj , (15.3.3)

where X̄ is the centroid of the cluster A and Ȳ is the centroid of the cluster B, Xi ∈
A, i = 1, . . . , n1, Yj ∈ B, j = 1, . . . , n2. In this case, the process involves combining
two clusters with the smallest d(A, B) as specified in (15.3.3) into a single cluster. After
combining them, or equivalently, after taking the union of A and B, the centroid of the
combined cluster, denoted by Z̄, is

Z̄ = n1X̄ + n2Ȳ

n1 + n2
= 1

n1 + n2

n1+n2∑

j=1

Zj, Zj ∈ A ∪ B,

where the Zj ’s are the original vectors that were included in A or B.
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15.3.4. The median method

A main shortcoming of the centroid method of joining two clusters is that if n1 is
very large compared to n2, then Z̄ is likely to be closer of X̄, and vice versa. In order to
avoid this type of imbalance, a method based on the median is suggested, under which the
median of the combined clusters A and B is defined as

MedianA∪B = 1

2
(X̄ + Ȳ ) with Xi ∈ A and Yj ∈ B, (15.3.4)

for all i, j and r . In this process, the clusters A and B for which MedianA∪B is the smallest
are combined to form the next cluster whose elements are the Zr ’s, Zr ∈ A ∪ B.

15.3.5. The residual sum of products method

From the one-way MANOVA layout, a residual or within group (within cluster) sum
of products for clusters A, B and A∪B, denoted by RA, RB and RA∪B , are the following:

RA =
n1∑

i=1

(Xi − X̄)′(Xi − X̄), RB =
n2∑

j=1

(Yj − Ȳ )′(Yj − Ȳ )

RA∪B =
n1+n2∑

r=1

(Zr − Z̄)′(Zr − Z̄), Zj ∈ A ∪ B, Z̄ = n1X̄ + n2Ȳ

n1 + n2
.

Once those sums of squares have been evaluated, we compute the quantity

TA∪B = RA∪B − (RA + RB), (15.3.5)

which can be interpreted as the increase in residual sum of products due to the process of
merging the clusters A and B. Then, the procedure consists of combining those clusters A

and B for which TA∪B as defined in (15.3.5) is the minimum. This method is also called
Ward’s method.

There exist other methods for combining clusters such as the flexible beta method, and
several comparative studies point out the merits and drawbacks of the various methods.

In the hierarchical procedures considered in Sect. 15.3, we begin with the n data points
as n distinct clusters of one element each. Then, by applying certain “minimum distance”
methods, “distance” being defined in different ways, we combined the clusters one by one.
We may also consider a hierarchical procedure wherein the n data points are treated as one
cluster of n elements. At this stage, by making use of some rules, we break up this cluster
into two clusters. Then, one of these or both are split again as two clusters by applying
the same rule. We continue the process and stop it when it is determined that there is a
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sufficient number of clusters. If the process is not halted at a certain stage, we will end
up with a single cluster containing all of the n elements or points. We will not elaborate
further on such procedures.

15.3.6. Other criteria for partitioning or optimization

In Sect. 15.2, we considered a non-hierarchical procedure known as the k-means
method, which is the most popular in this area. After discussing this, we described the most
widely utilized non-hierarchical procedure in Sect. 15.3. We will now examine other non-
hierarchical procedures in common use. Some of these are connected with the MANOVA
or multivariate analysis of variation of a one-way classification. In a multivariate one-way
layout, let Xij be the j -th vector in the i-th group or i-th cluster, all vectors being p-
vectors or p × 1 real vectors. Let there be k groups (k clusters) of sizes n1, . . . , nk with
n1 + n2 + · · · + nk = n. = n, that is, the cluster sizes are n1, . . . , nk, respectively. Let
the residual sum of products or sum of squares and cross products matrix be denoted by
U , which is p × p. This matrix U is also called within group or within cluster variation
matrix. Let the between groups or between clusters variation matrix be V . In this setup, U

and V are the following:

U =
k∑

i=1

ni∑

j=1

(Xij − X̄i)(Xij − X̄i)
′, X̄i = 1

ni

ni∑

j=1

Xij , (15.3.6)

V =
∑

i j

(X̄i − X̄)(X̄i − X̄)′ =
k∑

i=1

ni(X̄i − X̄)(X̄i − X̄)′, X̄ = 1

n.

∑

i j

Xij . (15.3.7)

Then, under the hypothesis that the group effects or cluster effects are the same, and under
the normality assumption on the Xij ’s, U and V are independently distributed Wishart
matrices with n. − k and k − 1 degrees of freedom, respectively, where Σ > O is the
parameter matrix in the Wishart densities as well as the common covariance matrix of
the Xij ’s, referring to Chap. 5. Thus, W1 = (U + V )− 1

2 U(U + V )− 1
2 is a real matrix-

variate type-1 beta random variable with the parameters (n.−k
2 , k−1

2 ), W2 = U− 1
2 V U− 1

2

is a real matrix-variate type-2 beta random variable with the parameters (k−1
2 , n.−k

2 ) and
W3 = U + V follows a real Wishart distribution having n. − 1 degrees of freedom and
parameter matrix Σ > O, again referring Chap. 5. Observe that both U and V are real
positive definite matrices, so that all of their eigenvalues are positive. The likelihood ratio
criterion λ for testing the hypothesis that the group effects are the same is the following:
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λ
2
n. = |U |

|U + V | = |W1| = 1

|I + U− 1
2 V U− 1

2 |
= 1

|I + W2| . (15.3.8)

We are aiming to have the within cluster variation small and the between cluster variation
large, which means, in some sense, that U will be small and V will be large, in which case
λ as given in (15.3.8) will be small. This also means that the trace of U must be small and
trace of W2 must be large. Accordingly, a few criteria for merging clusters are based on
tr(U), |U | and tr(W2). The following are some commonly utilized criteria for combining
clusters:

(1) Minimizing tr(U);

(2) Minimizing |U |;
(3) Maximizing tr(W2).

These criteria are applied as follows: One of the n observation vectors is moved to a
selected cluster if tr(U) is a minimum (|U | is a minimum and tr(W2) is a maximum for the
other criteria). Then, tr(U) is evaluated after moving the observation vectors one by one
to the selected cluster and, each time, tr(U) is noted; the vector for which tr(U) attains
a minimum value belongs to the selected cluster, that is, it is combined with the selected
cluster. Observe that

tr(U) = tr
(∑

i j

(Xij − X̄i)(Xij − X̄i)
′)

= tr
( n1∑

j=1

(X1j − X̄1)(X1j − X̄1)
′)+ · · · + tr

( nk∑

j=1

(Xkj − X̄k)(Xkj − X̄k)
′)

=
n1∑

j=1

(X1j − X̄1)
′(X1j − X̄1) + · · · +

nk∑

j=1

(Xkj − X̄k)
′(Xkj − X̄k), (15.3.9)

owing to the property that, for two matrices P and Q, tr(PQ) = tr(QP ) as long as
PQ and QP are defined. As well, observe that since (Xij − X̄i)

′(Xij − X̄i) is a scalar
quantity for every i and j , it is equal to its trace. How does this criterion work in practice?
Consider moving a member from the s-th cluster to the selected cluster, namely, the r-th
cluster. The original centroids are X̄r and X̄s , and when one element is added to the r-
th cluster from the s-th cluster, both centroids will respectively change to, say, X̄r+1 and
X̄s−1. Compute the updated sums of squares in the new r-th and s-th clusters. Then, add
up all the sums of squares in all the clusters and obtain a new tr(U). Carry out this process
for every member in every other cluster and compute tr(U) each time. Take the smallest
value of tr(U) thus calculated, including the original value of tr(U), before considering
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transferring any point. That vector for which tr(U) is minimum really belongs to the r-th
cluster and so, is included in it. Repeat the process until no more improvement can be
made, at which point no more transfer of points is necessary.

Simplification of the computations of tr(U)

As will be explained, computing tr(U) can be simplified. Consider the new sum
of squares in the r-th cluster. Let the new and old sums of squares be denoted by
(New)r , (New)s, and (Old)r , (Old)s , respectively. Let the vector transferred from the s-th
cluster to the r-th cluster be denoted by Y . Then,

(New)r =
r∑

j=1

(Xrj − X̄r+1)
′(Xrj − X̄r+1) + (Y − X̄r+1)

′(Y − X̄r+1)

=
r∑

j=1

(Xrj − X̄r + (X̄r − X̄r+1))
′(Xrj − X̄r + (X̄r − X̄r+1))

+ (Y − X̄r+1)
′(Y − X̄r+1)

=
r∑

j=1

(Xrj − X̄r)
′(Xrj − X̄r) + r(X̄r − X̄r+1)

′(X̄r − X̄r+1)

+ (Y − X̄r+1)
′(Y − X̄r+1)

= (Old)r + r(X̄r − X̄r+1)
′(X̄r − X̄r+1) + (Y − X̄r+1)

′(Y − X̄r+1).

The difference between the new sum of squares and the old one is

δ1 = r(X̄r − X̄r+1)
′(X̄r − X̄r+1) + (Y − X̄r+1)

′(Y − X̄r+1).

Noting that

X̄r − X̄r+1 = X̄r − rX̄r + Y

r + 1
= 1

r + 1
[X̄r − Y ] and Y − X̄r+1 = r

r + 1
[Y − X̄r ],

δ1 simplifies to

δ1 = r

r + 1
(Y − X̄r)

′(Y − X̄r).
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A similar procedure can be used for the s-th cluster. In that case, the new sum of
squares can be written as

(New)s =
s−1∑

j=1

(Xsj − X̄s−1)
′(Xsj − X̄s−1)

=
s∑

j=1

(Xij − X̄s−1)
′(Xsj − X̄s−1) − (Y − X̄s−1)

′(Y − X̄s−1).

Then, proceeding as in the case of the r-th cluster and denoting the difference between the
new and the old sums of squares as δ2, we have

δ2 = − s

s − 1
(Y − X̄s)

′(Y − X̄s), s > 1,

so that the sum of the differences between the new and old sums of squares, denoted by δ,
is the following:

δ = δ1 + δ2 = r

r + 1
(Y − X̄r)

′(Y − X̄r) − s

s − 1
(Y − X̄s)

′(Y − X̄s) (15.3.10)

for s > 1, where X̄r and X̄s are the original centroids of the r-th and s-th clusters, respec-
tively. As such, computing δ is very simple. Evaluate the quantity specified in (15.3.10)
for all the points outside the r-th cluster and look for the minimum of δ, including the
original value of δ = 0. If the minimum occurs at a point Y1 outside of the r-th cluster,
then transfer that point to the r-th cluster. Continue the process for every vector in the s-th
cluster and then, for r = 1, . . . , k, assuming there are k clusters, until δ = 0. In the end,
all the clusters are stabilized, and k may take on another value.

Among the three statistics tr(U), |U | and tr(W2), tr(U) is the easiest to compute, as
was just explained. However, if we consider a non-singular transformation, other than an
orthonormal transformation, then |U | and tr(W2) are invariant, but tr(U) is not.

We have discussed one hierarchical methodology of single linkage nearest neighbor
method and one non-hierarchical procedure consisting of the k-means method. These seem
to be the most widely utilized. We also mentioned other hierarchical and non-hierarchical
methods without going into the details. All these procedures are not well-defined mathe-
matical procedures. None of the procedures can uniquely determine the clusters if there are
some clusters in the multivariate data at hand, and none of the methods can uniquely de-
termine the number of clusters. The advantages and shortcomings of the various methods
will not be discussed so as not to confound the reader.
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Exercises 15

15.1. For the p × 1 vectors X1, . . . , Xn, let the dissimilarity measures be (1) d
(1)
ij =

∑n
k=1 |xik − xjk|, (2) d

(2)
ij = ∑n

k=1(xik − xjk)
2, X′

i = [x1i , x2i , . . . , xpi]. Compute the

matrices (1) (d
(1)
ij ); (2) (d

(2)
ij ), for the following vectors:

X1 =
⎡

⎣
1

−1
2

⎤

⎦ , X2 =
⎡

⎣
−1

1
2

⎤

⎦ , X3 =
⎡

⎣
1
2

−1

⎤

⎦ , X4 =
⎡

⎣
2
1

−1

⎤

⎦ .

15.2. Nine test runs T − 1, . . . , T − 9 are done to test the breaking strengths of three
alloys. The following data are the deviations from the respective expected strengths:

↓→ T − 1 T − 2 T − 3 T − 4 T − 5 T − 6 T − 7 T − 8 T − 9
Alloy-1 0 −1 1 2 −1 2 5 4 5
Alloy-2 1 1 1 1 3 4 7 −4 8
Alloy-3 −1 0 1 2 2 3 8 4 −7

Carry out a cluster analysis by applying the following methods: (1) The single linkage
or nearest neighbor method; (2) The average linkage method; (3) The centroid method;
(4) The residual sum of products method.

15.3. Using the data provided in Exercise 15.2, carry out a cluster analysis by utilizing the
following methods: (1) Partitioning or optimization; (2) Minimization of tr(U); (3) Mini-
mization of |U |; (4) Maximization of tr(W2) where U and W are given in Sect. 15.3.6.

15.4. Compare the results from the different methods in (1) Exercise 15.2; (2) Exer-
cise 15.3, and make your observations.

15.5. Compare the results from the different methods in Exercises 15.2 and 15.3, and
comment on the similarities and differences.

15.4. Correspondence Analysis

If the data at hand are classified according to two attributes, these characteristics may
be of the same type, that is, both quantitative or both qualitative, or of different types, and
whatever the types may be, we may construct a two-way contingency table. In a contin-
gency table, the entries in the cells are frequencies or the number of times various com-
binations of the attributes appear. Correspondence Analysis is a process of identifying,
quantifying, separating and plotting associations among the characteristics and relation-
ships among the various levels. In a two-way contingency table, we identify, separate and
plot associations between the two characteristics and attempt to identify relationships be-
tween row and column labels.
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15.4.1. Two-way contingency table

Consider the following example. A random sample of 100 persons from a certain town-
ship are classified according to their educational level and their liberal disposition. In the
frequency Table 15.4.1, the Aj ’s represent their dispositions and the Bj ’s, their educational
levels, with A1 ≡ tolerant, A2 ≡ indifferent, A3 ≡ intolerant, B1 ≡ primary school ed-
ucation level, B2 ≡ high school education level, B3 ≡ bachelor’s degree education level,
B4 ≡ master’s and higher degree education level.

Table 15.4.1: A two-way contingency table

↓ → B1 B2 B3 B4 Total
A1 6 14 16 4 40
A2 17 5 8 10 40
A3 7 6 6 1 20
Total 30 25 30 15 100

There are 6 persons having a tolerant disposition and primary school level of education.
There is one person with an intolerant disposition and a master’s degree or a higher level
of education, and so on. The marginal sums are also provided in the table. For example, the
total number of persons having a primary school level of education is 30, the total number
of persons having an intolerant disposition is 20, and so on. The corresponding relative
frequencies (a given frequency divided by 100, the total frequency) are as follows (Table
15.4.2):

Table 15.4.2: Relative frequencies fij in the two-way contingency table

↓ → B1 B2 B3 B4 Total
A1 0.06(f11) 0.14(f12) 0.16(f13) 0.04(f14) 0.40(f1.)

A2 0.17(f21) 0.05(f22) 0.08(f23) 0.10(f24) 0.40(f2.)

A3 0.07(f31) 0.06(f32) 0.06(f33) 0.01(f34) 0.20(f3.)

Total 0.30(f.1) 0.25(f.2) 0.30(f.3) 0.15(f.4) 1.00(f..)

The relative frequencies are denoted in parentheses by fij where the summation with
respect to a subscript is designated by a dot, that is, fi. = ∑

j fij , f.j = ∑
i fij and

f.. = ∑
i

∑
j fij . Note that f.. = 1. In a general notation, a two-way contingency table

and the corresponding relative frequencies are displayed as follows (Table 15.4.3):
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Table 15.4.3: A two-way contingency table and a table of relative frequencies

↓ → B1 B2 · · · Bs Total
A1 n11 n12 · · · n1s n1.

A2 n21 n22 · · · n2s n2.
...

...
...

. . .
...

...

Ar nr1 nr2 · · · nrs nr.

Total n.1 n.2 · · · n.s n.. = n

,

↓ → B1 B2 · · · Bs Total
A1 f11 f12 · · · f1s f1.

A2 f21 f22 · · · f2s f2.
...

...
...

. . .
...

...

Ar fr1 fr2 · · · frs fr.

Total f.1 f.2 · · · f.s f.. = 1

Letting the true probability of the occurrence of an observation in the (i, j)-th cell be
pij , the following is the table of true probabilities:

Table 15.4.4: True probabilities pij in a two-way contingency table

↓ → B1 B2 · · · Bs Total
A1 p11 p12 · · · p1s p1.

A2 p21 p22 · · · p2s p2.
...

...
...

. . .
...

...

Ar pr1 pr2 · · · prs pr.

Total p.1 p.2 · · · p.s p.. = 1

These are multinomial probabilities and, in this case, the nij ’s become multinomial
variables. An estimate of pij , denoted by p̂ij , is p̂ij = fij , the corresponding relative
frequency. The marginal sums in Table 15.4.4 can be interpreted as follows: p1. = the
probability of finding an item in the first row or the probability of an event will have the
attribute A1; p.j = the probability that an event will have the characteristic Bj , and so on.
Thus,

p̂ij = fij = nij

n
, p̂i. = ni.

n
, p̂.j = n.j

n
, i = 1, . . . , r, j = 1, . . . , s.

If Ai and Bj are respectively interpreted as the event that an observation will belong to
the i-th row or the event of the occurrence of the characteristic Ai , and the event that an
observation will belong to the j -th column or the event of the occurrence of the attribute
Bj , and if we let pi. = P(Ai) and p.j = P(Bj ), then pij = P(Ai ∩ Bj), where P(Ai)

is the probability of the event Ai , P(Bj ) is the probability of the event Bj , and (Ai ∩
Bj) is the intersection or joint occurrence of the events Ai and Bj . If Ai and Bj are
independent events, P(Ai ∩ Bj) = P(Ai)P (Bj ) or pij = pi.p.j , the product of the
marginal probabilities or the marginal totals in the table of probabilities. That is,
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P(Ai ∩ Bj) = P(Ai)P (Bj ) ⇒ pij = pi.p.j , p̂ij =
(ni.

n

)(n.j

n

)
= ni.n.j

n2
(15.4.1)

for all i and j . In a multinomial distribution, the expected frequency in the (i, j)-th cell
is npij where n is the total frequency. Then, the expected frequency, denoted by E[·], the
maximum likelihood estimate (MLE) of the expected frequency, denoted by Ê[·], and the
MLE of the expected frequency under the hypothesis Ho of independence of events Ai and
Bj , are the following:

E[nij ] = npij , Ê[nij ] = np̂ij = n
(nij

n

)
, np̂ij |Ho = np̂i,p̂.j = n

(ni.

n

)(n.j

n

)
= ni.n.j

n
.

(15.4.2)
Now, referring to our numerical example and the first row of Table 15.4.1, the estimated
expected frequencies, under Ho are: E[n11|Ho] = n1.n.1

n
= 40×30

100 = 12, E[n12|Ho] =
n1.n.2

n
= 40×25

100 = 10, E[n13|Ho] = 40×30
100 = 12, E[n14|Ho] = 40×15

100 = 6. All the
estimated expected frequencies are shown in parentheses next to the observed frequencies
in Table 15.4.5:

Table 15.4.5: A two-way contingency table

↓ → B1 B2 B3 B4 Total
A1 6(12) 14(10) 16(12) 4(6) 40(40)

A2 17(12) 5(10) 8(12) 10(6) 40(40)

A3 7(6) 6(5) 6(6) 1(3) 20(20)

Total 30(30) 25(25) 30(30) 15(15) 100(100)

15.4.2. Some general computations

Let Jr and Js be respectively r × 1 and s × 1 vectors of unities and P be the true
probability matrix, that is,

Jr =

⎡

⎢
⎢
⎢
⎣

1
1
...

1

⎤

⎥
⎥
⎥
⎦

, Js =

⎡

⎢
⎢
⎢
⎣

1
1
...

1

⎤

⎥
⎥
⎥
⎦

, P =

⎡

⎢
⎢
⎢
⎣

p11 p12 · · · p1s

p21 p22 · · · p2s
...

...
. . .

...

pr1 pr2 · · · prs

⎤

⎥
⎥
⎥
⎦

. (15.4.3)

Letting the marginal totals be denoted by R and C ′, we have

R = PJs =

⎡

⎢
⎢
⎢
⎣

p1.

p2.
...

pr.

⎤

⎥
⎥
⎥
⎦

,
J ′

rP = [p.1, p.2, . . . , p.s] = C′
J ′

rR = 1 = C′Js .
(15.4.4)
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Referring to the initial numerical example, we have the following:

R̂ =

⎡

⎢
⎢
⎢
⎣

p̂1.

p̂2.
...

p̂r.

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

n1./n

n2./n
...

nr./n

⎤

⎥
⎥
⎥
⎦

=
⎡

⎣
40/100
40/100
20/100

⎤

⎦ =
⎡

⎣
0.4
0.4
0.2

⎤

⎦

Ĉ′ = [p̂.1, p̂.2, . . . , p̂.s] =
[n.1

n
, . . . ,

n.s

n

]

= [ 30
100 , 25

100 , 30
100 , 15

100 ] = [0.30, 0.25, 0.30, 0.15].

Writing the bordered matrix P as

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p11 p12 · · · p1s p1.

p21 p22 · · · p2s p2.
...

...
. . .

...
...

pr1 pr2 · · · prs pr.

p.1 p.2 · · · p.s 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=
[
P R

C′ 1

]

, (15.4.5)

in the numerical example, these quantities are

[
P̂ R̂

Ĉ′ 1

]

=

⎡

⎢
⎢
⎣

0.06 0.14 0.16 0.04 0.40
0.17 0.05 0.08 0.10 0.40
0.07 0.06 0.06 0.01 0.20
0.30 0.25 0.30 0.15 1.00

⎤

⎥
⎥
⎦ .

Let Dr and Dc be the following diagonal matrices corresponding respectively to the row
and column marginal probabilities:

Dr =

⎡

⎢
⎢
⎢
⎣

p1. 0 · · · 0
0 p2. · · · 0
...

...
. . .

...

0 0 · · · pr.

⎤

⎥
⎥
⎥
⎦

, Dc =

⎡

⎢
⎢
⎢
⎣

p.1 0 · · · 0
0 p.2 · · · 0
...

...
. . .

...

0 0 · · · p.s

⎤

⎥
⎥
⎥
⎦

or

Dr = diag(p1., p2., . . . , pr.), Dc = diag(p.1, p.2, . . . , p.s). (15.4.6)

In the numerical example, these quantities are

D̂r = diag(0.4, 0.4, 0.2) and D̂c = diag(0.30, 0.25, 0.30, 0.15).
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Now, consider D−1
r P and PD−1

c :

D−1
r P =

⎡

⎢
⎢
⎢
⎣

p11
p1.

p12
p1.

· · · p1s

p1.
p21
p2.

p22
p2.

· · · p2s

p2.
...

...
. . .

...
pr1
pr.

pr2
pr.

· · · prs

pr.

⎤

⎥
⎥
⎥
⎦

≡

⎡

⎢
⎢
⎢
⎣

R′
1

R′
2
...

R′
r

⎤

⎥
⎥
⎥
⎦

, Rj =

⎡

⎢
⎢
⎢
⎢
⎣

pj1
pj.
pj2
pj.

...
pjs

Pj.

⎤

⎥
⎥
⎥
⎥
⎦

, (15.4.7)

PD−1
c =

⎡

⎢
⎢
⎢
⎣

p11
p.1

p12
p.2

· · · p1s

p.s
p21
p.1

p22
p.2

· · · p2s

p.s
...

...
. . .

...
pr1
p.1

pr2
p.2

· · · prs

p.s

⎤

⎥
⎥
⎥
⎦

≡ [C1, . . . , Cs], Cj =

⎡

⎢
⎢
⎢
⎢
⎣

p1j

p.j
p2j

p.j

...
prj

p.j

⎤

⎥
⎥
⎥
⎥
⎦

. (15.4.8)

Referring to the numerical example, we have

D̂−1
r P̂ =

⎡

⎢
⎢
⎢
⎣

n11/n1. n12/n1. · · · n1s/n1.

n21/n2. n22/n2. · · · n2s/n2.
...

...
. . .

...

nr1/nr. nr2/nr. · · · nrs/nr.

⎤

⎥
⎥
⎥
⎦

=
⎡

⎣
6/40 14/40 16/40 4/40

17/40 5/40 8/40 10/40
7/20 6/20 6/20 1/20

⎤

⎦

D̂−1
r P̂ Js =

⎡

⎣
1
1
1

⎤

⎦

P̂ D̂−1
c =

⎡

⎢
⎢
⎢
⎣

n11/n.1 n12/n.2 · · · n1s/n.s

n21/n.1 n22/n.2 · · · n2s/n.s
...

...
. . .

...

nr1/n.1 nr2/n.2 · · · nrs/n.s

⎤

⎥
⎥
⎥
⎦

=
⎡

⎣
6/30 14/25 16/30 4/15

17/30 5/25 8/30 10/15
7/30 6/25 6/30 1/15

⎤

⎦

J ′
r P̂ D̂−1

c = [1, 1, 1, 1].

For computing the test statistics in vector/matrix notation, we need (15.4.7) and (15.4.8).

15.5. Various Representations of Pearson’s χ2 Statistic

Now, let us consider Pearson’s χ2 statistic for testing the hypothesis that there is no
association between the two characteristics of classification or the hypothesis Ho : pij =
pi.p.j . The χ2 statistic is the following:
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χ2 =
∑

ij

(observed frequency − expected frequency)2

(expected frequency)
=
∑

ij

(nij − ni.n.j

n
)2

ni.n.j

n

(15.5.1)

=
∑

ij

n
(
nij

n
− ni.

n

n.j

n
)2

ni.

n

n.j

n

= n
∑

ij

(p̂ij − p̂i.p̂.j )
2

p̂i.p̂.j

(15.5.2)

=
r∑

i=1

np̂i.

s∑

j=1

[( p̂ij

p̂i.

− p̂.j

)2
/p̂.j

]

(15.5.3)

=
s∑

j=1

np̂.j

r∑

i=1

[( p̂ij

p̂.j

− p̂i.

)2
/p̂i.

]

. (15.5.4)

In order to simplify the notation, we shall omit placing a hat on top of the estimates of
Ri, Cj , R, C, Dc and Dr . We may then express the χ2 statistic as the following quadratic
forms:

χ2 =
r∑

i=1

npi.(Ri − C)′D−1
c (Ri − C) (15.5.5)

=
s∑

j=1

np.j (Cj − R)′D−1
r (Cj − R). (15.5.6)

The forms given in (15.5.5) and (15.5.6) are very convenient for extending the theory to
multi-way classifications.

It is well known that, under Ho, Pearson’s χ2 statistic is asymptotically distributed as a
chisquare random variable having (r − 1)(s − 1) degrees of freedom as n → ∞. One can
also express (15.4.8) as a generalized distance between the observed frequencies and the
expected frequencies, which is a quadratic form involving the inverse of the true covariance
matrix of the multinomial distribution of the nij ’s. Then, on applying the multivariate
version of the central limit theorem, it can be established that, as n → ∞, Pearson’s χ2

statistic has a χ2 distribution with (r−1)(s−1) degrees of freedom. For the representation
of Pearson’s χ2 goodness-of-fit statistic as a generalized distance and as a quadratic form,
and for the proof of its asymptotic distribution, the reader may refer to Mathai and Haubold
(2017). There exist other derivations of this result in the literature.

The quadratic forms specified in (15.5.5) and (15.5.6) can also be interpreted as com-
paring the generalized distance between the vectors Ri and C in (15.5.5) and between the
vectors Cj and R in (15.5.6), respectively. These will also be equivalent to testing the hy-
pothesis Ho : pij = pi.p.j . As well, an interpretation can be provided in terms of profile
analysis: then, the test will correspond to testing the hypothesis that the weighted row pro-
files are similar; analogously, using (15.5.6) corresponds to testing the hypothesis that the
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column profiles in a two-way contingency table are similar. Now, examine the following
item:

P − RC′ =

⎡

⎢
⎢
⎢
⎣

p11 p12 · · · p1s

p21 p22 · · · p2s
...

...
. . .

...

pr1 pr2 · · · prs

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

p1.

p2.
...

pr.

⎤

⎥
⎥
⎥
⎦

[p.1, p.2, . . . , p.s]

=

⎡

⎢
⎢
⎢
⎣

p11 − p1.p.1 p12 − p1.p.2 · · · p1s − p1.p.s

p21 − p2.p.1 p22 − p2.p.2 · · · p2s − p2.p.s
...

...
. . .

...

prs − pr.p.1 pr2 − pr.p.2 · · · prs − pr.p.s

⎤

⎥
⎥
⎥
⎦

.

Referring to our numerical example, these quantities are the following:

P̂ − R̂Ĉ′ =
⎡

⎢
⎣

n11
n

− n1.n.1
n2 · · · n1s

n
− n1.n.s

n2

...
. . .

...
nr1
n

− nr.n.1
n2 · · · nrs

n
− nr.n.s

n2

⎤

⎥
⎦ = 1

100
×

⎡

⎣
6 − (40)(30)/100 14 − (40)(25)/100 16 − (40)(30)/100 4 − (40)(15)/100

17 − (40)(30)/100 5 − (40)(25)/100 8 − (40)(30)/100 10 − (40)(15)/100
7 − (20)(30)/100 6 − (20)(25)/100 6 − (20)(30)/100 1 − (20)(15)/100

⎤

⎦

=
⎡

⎣
−6 4 4 −2

5 −5 −4 4
1 1 0 −2

⎤

⎦ .

15.5.1. Testing the hypothesis of no association in a two-way contingency table

The observed value of Pearson’s χ2 statistic is

χ2 =
[
(−6)2

12
+ (5)2

12
+ (1)2

6

]

+
[
(4)2

10
+ (−5)2

10
+ (1)2

5

]

+
[
(4)2

12
+ (−4)2

12
+ (0)2

6

]

+
[
(−2)2

6
+ (4)2

6
+ (−2)2

3

]

= 16.88.

Given our data, (r − 1)(s − 1) = (2)(3) = 6, and the tabulated critical value is χ2
6,0.05 =

12.59 at the 5% significance level. Since 12.59 < 16.88, the hypothesis of no association
between the classification attributes is rejected as per the evidence provided by the data.
This χ2 approximation may be questionable since one of the expected cell frequencies is
less that 5. For a proper application of this approximation, the cell frequencies ought to be
at least 5.
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15.6. Plot of Row and Column Profiles

Now, (P − RC′)D−1
c means that the columns of (P − RC ′) are multiplied by

1
p.1

, . . . , 1
p.s

, respectively. Then, (P − RC′)D−1
c (P − RC′)′ is a matrix of all square and

cross product terms involving pij −pi.p.j for all i and j , where the s columns are weighted
by 1

p.j
, and if pre-multiplied by D−1

r , the rows are weighted by 1
p1.

, . . . , 1
pr.

, respectively.

Looking at the diagonal elements, we note that Pearson’s χ2 statistic is nothing but

χ2 = n tr[D−1
r (P − RC′)D−1

c (P − RC′)′] (15.6.1)

= n
∑

ij

(pij − pi.p.j )
2

pi.p.j

(15.6.2)

= n(λ2
1 + · · · + λ2

k) (15.6.3)

where λ2
1, . . . , λ

2
k are the nonzero eigenvalues of the matrix D−1

r (P −RC′)D−1
c (P −RC′)′

or of the matrix D
− 1

2
r (P −RC′)D−1

c (P −RC′)′D− 1
2

r with k being the rank of P −RC′. For
the numerical example, the observed value of the matrix Y = (yij ) with yij = pij−pi.p.j√

pi.p.j
,

is obtained as follows, observing that

√
n

p̂ij − p̂i.p̂.j
√

p̂i.p̂.j

=
[
nij − ni.n.j

n

]/√
ni.n.j /n.

From the representation of P̂ − R̂Ĉ′, we already have the matrix nij − ni.n.j /n, that is,
(

(nij − ni.n.j /n)
√

ni.n.j /n

)

=
⎡

⎣
(6 − 12)/

√
12 (14 − 10)/

√
10 (16 − 12)/

√
12 (4 − 6)/

√
6

(17 − 12)/
√

12 (5 − 10)/
√

10 (8 − 12)/
√

12 (10 − 6)/
√

6
(7 − 6)/

√
6 (6 − 5)/

√
5 (6 − 6)/

√
6 (1 − 3)/

√
3

⎤

⎦

=
⎡

⎣
−6/

√
12 4/

√
10 4/

√
12 −2/

√
6

5/
√

12 −5/
√

10 −4/
√

12 4/
√

6
1/

√
6 1/

√
5 0/

√
6 −2/

√
3

⎤

⎦ .

Then,

nYY ′ =
⎡

⎢
⎣

33
5 −43

6
17

√
2

30

−43
6

103
12 −17

√
2

12
17

√
2

30 −17
√

2
12

17
10

⎤

⎥
⎦ . (15.6.4)
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The representation in (15.6.1) has the advantage that

tr[D− 1
2

r (P − RC′)D−1
c (P − RC′)′D− 1

2
r ]

= tr[YY ′], Y = D
− 1

2
r (P − RC′)D− 1

2
c = (yij ),

yij = pij − pi.p.j√
pi.p.j

,
∑

j

nŷ2
ij = χ2 = ntr(Ŷ Ŷ ′). (15.6.5)

Note that Y is r × s and the rank of Y is equal to the rank of P −RC ′, which is k, referring
to (15.6.3). Thus, there are k nonzero eigenvalues associated with the r × r matrix YY ′ as
well as with the s × s matrix Y ′Y , which are λ2

1, . . . , λ
2
k. Since tr(YY ′) = λ2

1 + · · · + λ2
k,

we can represent Pearson’s χ2 statistic as follows, substituting the estimates of pij , pi.

and p.j , etc:

χ2

n
= tr(YY ′) = λ2

1 + · · · + λ2
k

=
k∑

i=1

p̂i.(R̂i − Ĉ)′D̂−1
c (R̂i − Ĉ) (15.6.6)

=
s∑

j=1

p̂.j (Ĉj − R̂)′D̂−1
r (Ĉj − R̂). (15.6.7)

The expressions given in (15.6.6) and (15.6.7) and the sum of the λ2
j ’s are called the total

inertia in a two-way contingency table. We can also define the squared distance between
two rows as

d2
ij(r) = (Ri − Rj)

′D−1
c (Ri − Rj) (15.6.8)

and the squared distance between two columns as

d2
ij(c) = (Ci − Cj)

′D−1
r (Ci − Cj). (15.6.9)

When the distance as specified in (15.6.8) is very small, we may combine the i-th and
j -th rows, if necessary. Sometimes, the cell frequencies are small and we may wish to
combine the small frequencies with other cell frequencies so that the χ2 approximation
of Pearson’s χ2 statistic be more accurate. Then, one can rely on (15.6.8) and (15.6.9) to
determine whether it is indicated to combine rows and columns.

For convenience, let r ≤ s. Let U1, . . . , Ur be the r×1 normalized eigenvectors of YY ′
and let the r × k matrix U = [U1, U2, . . . , Uk], k ≤ r . Let V1, . . . , Vs be the normalized
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eigenvectors of Y ′Y and let the r × k matrix V = [V1, . . . , Vk], k ≤ s. Now, consider the
singular value decomposition

Y = D
− 1

2
r (P − RC′)D− 1

2
c = UΛV ′ (15.6.10)

where UU ′ = Ik = V ′V and Λ = diag(λ1, . . . , λk). Then, we can write

P − RC′ = D
1
2
r UΛV ′D

1
2
c = WΛZ′ (15.6.11)

where W = D
1
2
r U and Z = D

1
2
c V . Let Wj, j = 1, . . . , k, denote the columns

of W = [W1, W2, . . . , Wk] and let Zj, j = 1, . . . , k, denote the columns of Z =
[Z1, Z2, . . . , Zk]. Then, we can write

P − RC′ =
k∑

j=1

λjWjZ
′
j (15.6.12)

where W ′D−1
r W = U ′U = Ik = V ′V = Z′D−1

c Z. Note that P − RC′ is the deviation
matrix under the hypothesis Ho : pij = pi.p.j or

P − RC′ = (pij − pi.p.j ) and Y = (yij ) = D
− 1

2
r (P − RC′)D− 1

2
c =

(
pij − pi.p.j√

pi.p.j

)

.

Thus, the procedure is as follows: If r ≤ s, then compute the r eigenvalues of the r × r

matrix YY ′. If Y is of rank r , YY ′ > O (positive definite), otherwise YY ′ is positive
semi-definite. Let the nonzero eigenvalues of YY ′ be λ2

1, . . . , λ
2
k, assuming that k is the

number of nonzero eigenvalues of YY ′. These will also be the nonzero eigenvalues of
Y ′Y . Compute the normalized eigenvectors from YY ′ and denote those corresponding to
the nonzero eigenvalues by U = [U1, . . . , Uk] where Uj is the j -th column of U . Letting
the normalized eigenvectors obtained from Y ′Y , which correspond to the same nonzero
eigenvalues, be denoted by V = [V1, . . . , Vk], we have

Y = UΛV ′, Λ = diag(λ1, . . . , λk), YY ′ = UΛ2U ′ and Y ′Y = V Λ2V ′. (15.6.13)

Example 15.6.1. Construct a singular value decomposition of the following matrix Q:

Q =
[−1 1 −1 0

1 1 0 2

]

.
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Solution 15.6.1. Let us compute QQ′ as well as Q′Q and the eigenvalues of QQ′. Since

QQ′ =
[ −1 1 −1 0

1 1 0 2

]
⎡

⎢
⎢
⎣

−1 1
1 1

−1 0
0 2

⎤

⎥
⎥
⎦ =

[
3 0
0 6

]

,

the eigenvalues of QQ′ are λ1 = 3 and λ2 = 6. Let us determine the normalized eigen-
vectors of QQ′. Consider the equation [QQ′ − λI ]X = O for λ = 3 and 6, and let
X′ = [x1, x2] and O ′ = [0, 0]. Then, for λ = 3, we see that x2 = 0 and for λ = 6, we note
that x1 = 0. Thus, the normalized solutions are

U1 =
[

1
0

]

and U2 =
[

0
1

]

⇒ U = [U1, U2] =
[

1 0
0 1

]

.

Note that −U1 or −U2 or −U1, −U2 will also satisfy all the conditions, and we could take
any of these forms for convenience. Now, consider the equation (Q′Q − λI)X = O,

where X′ = [x1, x2, x3, x4] and O ′ = [0, 0, 0, 0] for λ = 3, 6. For λ = 3, the coefficient
matrix is

Q′Q − 3I =

⎡

⎢
⎢
⎣

−1 0 1 2
0 −1 −1 2
1 −1 −2 0
2 2 0 1

⎤

⎥
⎥
⎦→

⎡

⎢
⎢
⎣

−1 0 1 2
0 −1 −1 2
0 0 0 0
0 0 0 9

⎤

⎥
⎥
⎦

by elementary transformations. Observe that x4 = 0 so that −x1 +x3 = 0 and −x2 −x3 =
0. Thus, one solution or an eigenvector corresponding to λ = 3 and their normalized form
are ⎡

⎢
⎢
⎣

1
−1

1
0

⎤

⎥
⎥
⎦⇒ V1 = 1√

3

⎡

⎢
⎢
⎣

1
−1

1
0

⎤

⎥
⎥
⎦ .

Now, take λ = 6 and consider the equation (Q′Q − 6I )X = O; the coefficient matrix and
its reduced form obtained through elementary transformations are the following:

⎡

⎢
⎢
⎣

−4 0 1 2
0 −4 −1 2
1 −1 −5 0
2 2 0 −2

⎤

⎥
⎥
⎦→

⎡

⎢
⎢
⎣

1 −1 −5 0
0 −4 −1 2
0 0 −21 0
0 0 9 0

⎤

⎥
⎥
⎦ ,
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which shows that x3 = 0, so that x1 − x2 = 0 and −4x2 + 2x4 = 0. Hence, an eigenvector
and its normalized form are

⎡

⎢
⎢
⎣

1
1
0
2

⎤

⎥
⎥
⎦ ⇒ V2 = 1√

6

⎡

⎢
⎢
⎣

1
1
0
2

⎤

⎥
⎥
⎦ .

Thus, V = [V1, V2]. As mentioned earlier, we could have −V1 or −V2 or −V1, −V2 as the
normalized eigenvectors. As per our notation,

Λ = diag(
√

3,
√

6) and Q = UΛV ′.

Let us verify this last equality. Since

UΛV ′ =
[

1 0
0 1

] [√
3 0

0
√

6

][ 1√
3

− 1√
3

1√
3

0
1√
6

1√
6

0 2√
6

]

=
[

1 −1 1 0
1 1 0 2

]

,

we should take −V1 to obtain Q. Then,

[U1, U2]
[√

3 0
0

√
6

] [−V ′
1

V ′
2

]

= Q,

which verifies the result and completes the computations.

Now, we shall continue with our row and column profile plots. From (15.6.4), we have

nYY ′ =
⎡

⎢
⎣

33
5 −43

6
17

√
2

30

−43
6

103
12 −17

√
2

12
17

√
2

30 −17
√

2
12

17
10

⎤

⎥
⎦ and nY ′Y =

⎡

⎢
⎢
⎢
⎢
⎣

63
12 −47

√
30

60 −11
3

7
√

2
3

−47
√

30
60

43
10

3
√

30
5 −16

√
15

15

−11
3

3
√

30
5

8
3 −2

√
2

7
√

2
3 −16

√
15

15 −2
√

2 14
3

⎤

⎥
⎥
⎥
⎥
⎦

.

The eigenvalues of nYY ′ are λ1 = 15.1369, λ2 = 1.7471 and λ3 = 0 and the normalized
eigenvectors from nYY ′, corresponding to λ1, λ2 and λ3 are U1, U2 , U3, so that U =
[U1, U2, U3] where

U =
⎡

⎣
4.28

−4.99
1

−0.49
−0.22

1

1.41
1.41

1

⎤

⎦ and Λ = diag(
√

15.1369,
√

1.7471, 0).
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For the same eigenvalues λ1, λ2 and λ3, the normalized eigenvectors determined from
nY ′Y , which correspond to the nonzero eigenvalues, are V1 and V2, with

V = [V1, V2] =

⎡

⎢
⎢
⎣

1.10 −0.84
−1.06 −0.16
−0.83 0.28

1 1

⎤

⎥
⎥
⎦ .

Since λ3 = 0, k = 2, and we can take the r ×k, that is, 3×2 matrix G = (gij ) = D
− 1

2
r UΛ

to represent the row deviation profiles and the s × k = 4 × 2 matrix H = (hij ) =
D

− 1
2

c V Λ to represent the column deviation profiles. For our numerical example, it follows
from (15.4.6) that

Dr = diag(0.4, 0.4.0.2) ⇒ D
− 1

2
r = diag

( 1

0.63
,

1

0.63
,

1

0.45

)

Dc = diag(0.30, 0.25, 0.30, 0.15) ⇒ D
− 1

2
c = diag(

1

0.55
,

1

0.50
,

1

0.55
,

1

0.39
)

Λ = diag(
√

15.1369,
√

1.7471, 0) = diag(3.89, 1.32, 0).

We only take the first two columns of U and V since λ3 = 0; besides, only the first two
vectors are required for plotting. Let U(1) and V(1) represent the first two columns of U

and V , respectively. Then, D
− 1

2
r U(1)Λ will be equivalent to multiplying the first and second

columns by 3.89 and 1.32, respectively, and multiplying the first and second rows by 1
0.63

and the third row by 1
0.45 . Then, we have

U(1) =
⎡

⎣
4.28 −0.49

−4.99 −0.22
1 1

⎤

⎦ , D
− 1

2
r U(1)Λ =

⎡

⎣
26.42 −1.03

−30.81 −0.46
6.17 2.09

⎤

⎦ ≡ G2

where G2 is the matrix consisting of the first two columns of G. Hence, the points re-
quired for plotting the row profile are: (26.42, −1.03), (−30.81, −0.46), (6.17, 2.09).
These points being far apart, no two rows should be combined. Now, consider the col-

umn profiles: the effect of D
− 1

2
c V(1)Λ is to multiply the columns of V(1) by 3.89 and 1.32,

respectively, and to multiply the rows by 1
0.55 , 1

0.50 , 1
0.55 , 1

0.39 , respectively. Thus,

V(1) =

⎡

⎢
⎢
⎣

1.10 −0.84
−1.06 −0.16
−0.83 0.28

1 1

⎤

⎥
⎥
⎦ , D

− 1
2

c V(1)Λ =

⎡

⎢
⎢
⎣

7.78 −2.02
−8.25 −0.42
−5.87 −0.67

9.97 3.38

⎤

⎥
⎥
⎦ ≡ H2
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where H2 is the matrix consisting of the first two columns of H . The row profile and the
column profile points are plotted in Fig. 15.6.1 where r next to a point indicates a row
point and c designates a column point. That is, i r indicates the i-th row point and j c, the
j -th column point. It can be seen from this plot that the row points are far apart while the
second and third column points are somewhat close; accordingly, if necessary, the second
and third columns could be combined.

1r
2r

1c

2c
3c

4c

3r

–30 –20 –10 10 20

–2

–1

1

2

3

Figure 15.6.1 Row profile and column profile points

15.7. Correspondence Analysis in a Multi-way Contingency Table

When the data is classified under a number of variables, each variable having a num-
ber of categories, the resulting frequency table is referred to as a multi-way classification.
Correspondence analysis for a multi-way classification involves converting data in a multi-
way classification setting into a two-way classification framework and then, employing the
techniques developed in Sects. 15.5 and 15.6. The first step in this regard consists of creat-
ing an indicator matrix C. In order to illustrate the steps, we will first present an example.
Suppose that 10 persons selected at random from a community, are classified according
to three variables. Variable 1 is gender. Under this variable, we shall consider the cate-
gories male and female. Variable 2 is weight. Under this variable, we are considering three
categories: underweight, normal and overweight. The third variable is education which



Cluster Analysis and Correspondence Analysis 879

is assumed to have four levels: level 1, level 2, level 3 and level 4. Thus, there are three
variables and 9 categories. The actual data are provided in Table 15.7.1.

Table 15.7.1: Ten persons classified under three variables

Variables
Person # Gender Weight Educational level
1 Female Overweight Level 2
2 Female Normal Level 4
3 Male Underweight Level 1
4 Female Normal Level 3
5 Male Overweight Level 1
6 Male Normal Level 2
7 Female Overweight Level 3
8 Female Underweight Level 4
9 Male Normal Level 3
10 Female Overweight Level 1

Table 15.7.2: Entries of the indicator matrix of the data included in Table 15.7.1

Variables
Gender Weight Educational level

Person # M F U N O L1 L2 L3 L4
1 0 1 0 0 1 0 1 0 0
2 0 1 0 1 0 0 0 0 1
3 1 0 1 0 0 1 0 0 0
4 0 1 0 1 0 0 0 1 0
5 1 0 0 0 1 1 0 0 0
6 1 0 0 1 0 0 1 0 0
7 0 1 1 0 0 0 0 1 0
8 0 1 1 0 0 0 0 0 1
9 1 0 0 1 0 0 0 1 0
10 0 1 0 0 1 1 0 0 0
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Next, we construct the indicator matrix C—distinct from C as defined in (15.4.4)—of
the data displayed in Table 15.7.1. If an item is present, we write 1 in the corresponding
location in Table 15.7.2, and if it is absent, we write 0, thus populating this table where
M ≡ Male, F ≡ Female, U ≡ underweight, N ≡ Normal, O ≡ overweight, L1 ≡ Level 1,
L2 ≡ Level 2, L3 ≡ Level 3 and L4 ≡ Level 4. The resulting indicator matrix C is

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1
1 0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0
1 0 0 0 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that since a person will belong to a single category of every variable, the row sum
of every row will always be equal to the number of variables, which is 3 in the example.
The sum of all the column entries under each variable is the number of items classified (10
in the example). We now convert the data into a two-way classification, which is achieved
by converting C into a Burt matrix B, where B = C ′C. In our example,

B = C′C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 0 1 2 1 2 1 1 0
0 6 1 2 3 1 1 2 2
1 1 2 0 0 1 0 0 1
2 2 0 4 0 0 1 2 1
1 3 0 0 4 2 1 1 0
2 1 1 0 2 3 0 0 0
1 1 0 1 1 0 2 0 0
1 2 0 2 1 0 0 3 0
0 2 1 1 0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Observe that the diagonal blocks in C ′C correspond to the variables, gender, weight and
educational level or gender versus gender, weight versus weight, educational level versus
educational level. These blocks are the following:

[
4 0
0 6

]

,

⎡

⎣
2 0 0
0 4 0
0 0 4

⎤

⎦ ,

⎡

⎢
⎢
⎣

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

⎤

⎥
⎥
⎦ .
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Various two-way contingency tables, namely gender versus weight, gender versus educa-
tional level, weight versus educational level, are combined into one two-way table dis-
playing category versus category. The observed Pearson’s χ2 statistic from C′C is seen to
be 79.85. In this case, the number of degrees of freedom is 8 × 8 = 64 and at 5% level,
the tabulated χ2

64,0.05 ≈ 84 > 79.85; hence, the hypothesis of no association in C ′C is
not rejected. Note that this χ2 approximation is unreliable since the expected frequencies
are small. The most relevant parts in the Burt matrix C ′C are the non-diagonal blocks of
frequencies. The two non-diagonal blocks of the first two rows represent the two-way con-
tingency tables for gender versus weight and gender versus educational level. Similarly,
the non-diagonal block in the third to fifth rows represent the two-way contingency table
for weight versus educational level. These are the following, denoted by A1, A2, A3 re-
spectively, where A1 is the two-way contingency table of gender versus weight, A2 is the
contingency table of gender versus educational level and A3 is the table of weight versus
educational level:

A1 =
[

1 2 1
1 2 3

]

, A2 =
[

2 1 1 0
1 1 2 2

]

, A3 =
⎡

⎣
1 0 0 1
0 1 2 1
2 1 1 0

⎤

⎦ .

The corresponding matrices of expected frequencies, under the hypothesis of no associa-
tion between the characteristics of classification, denoted by E(Ai), i = 1, 2, 3 are

E(A1) =
[

0.8 1.6 1.6
1.2 2.4 2.4

]

, E(A2) =
[

1.2 0.8 1.2 0.8
1.8 1.2 1.8 1.2

]

,

E(A3) =
⎡

⎣
0.6 0.4 0.6 0.4
1.2 0.8 1.2 0.8
1.2 0.8 1.2 0.8

⎤

⎦ .

The observed values of Pearson’s χ2 statistic under the hypothesis of no association in
the contingency table, and the corresponding tabulaled χ2 critical values at the 5% signif-
icance level, are the following: A1 : χ2 = 0.63, χ2

2,0.05 = 5.99 > 0.63; A2 : χ2 =
2.36, χ2

3,0.05 = 7.81 > 2.36; A3 : χ2 = 5.42, χ2
6,0.05 = 12.59 > 5.42; hence the

hypothesis would not be rejected in any of the contingency table if Pearson’s statistic were
applicable. Actually, the χ2 approximation is not appropriate in any of these cases since
the expected frequencies are quite small. Hence, decisions cannot be made on the basis of
Pearson’s statistic in these instances.

Observe that the first column of the matrix C corresponds to the count on “Male”, the
second to the count on “Female”, the third to “Underweight”, the fourth to “Normal”, the
fifth to “Overweight”, the sixth to “Level 1”, the seventh to “Level 2”, the eighth to “Level
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3” and the ninth to “Level 4”. Thus, the columns represent the various characteristics or
the various variables and their categories. So, if we were to plot one column as one point in
the two-dimensional space, then by looking at the points we could determine which points
are close to each other. For example, if the “Overweight” column point is close to the
“Male” column point, then there is possibility of association between “Overweight” and
“Male”. Thus, our aim will be to plot each column of C or each column of C ′C as a point
in two dimensions. For this purpose, we may make use of the plotting technique described
in Sects. 15.5 and 15.6. Consider a singular value decomposition of C = UΛV ′, U ′U =
Ik, V ′V = Ik. If C is r × s, s < r, then U is r × k and V is s × k where k is the number
of nonzero eigenvalues of CC′ as well as those of C′C, and Λ = diag(λ1, . . . , λk) where
λ2

j , j = 1, . . . , k, are the nonzero eigenvalues of CC ′ and C′C. In the numerical example,
r = 10 and s = 9. Consider the eigenvalues of C ′C since in this case, the order is smaller
than the order of CC′. Let the nonzero eigenvalues of C ′C be λ2

1 ≥ · · · ≥ λ2
k. From

C′C, compute the normalized eigenvectors corresponding to these nonzero eigenvalues.
This s × k matrix of normalized eigenvectors is V in the singular value decomposition. By
using the same nonzero eigenvalues, compute the normalized eigenvectors from CC ′. This
r × k matrix is U in the singular value decomposition. Since the columns of C and C ′C
represent the various variables and their subdivisions, only the columns are useful for our
geometrical representation, that is, only V will be relevant for plotting the points. Consider
H = V Λ and let λ2

1 ≥ λ2
2 ≥ · · · ≥ λ2

k. Observe that C = UΛV ′ ⇒ C′ = V ΛU ′ = HU ′.
The rows of C′ represent the various variables and their categories. Let h1, . . . , hs be the
rows of H . Then, we have

h1U
′ = Men-row

h2U
′ = Women-row
...

hsU
′ = Level 4-row.

This shows that the rows h1, . . . , hs represent the various variables and their categories.
Since the first two eigenvalues are the largest ones and V1, V2 are the corresponding eigen-
vectors, we can take it for granted that most of the information about the various variables
and their categories is contained in the first two elements in h1, . . . , hs or in the first two
columns weighted by λ1 and λ2. Accordingly, take the first two columns from H and
denote this submatrix by H(2) where

H(2) =

⎡

⎢
⎢
⎢
⎣

h11 h12

h21 h22
...

...

hs1 hs2

⎤

⎥
⎥
⎥
⎦

.
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Plot the points (h11, h12), (h21, h22), . . . , (hs1, hs2). These s points correspond to the s

columns in the r × s matrix C or the s rows in C ′.

Referring to our numerical example, the eigenvalues are

λ2
1 = 11.66, λ2

2 = 5.57, λ2
3 = 5.28, λ2

4 = 3.47, λ2
5 = 2.34,

λ2
6 = 1, 14, λ2

7 = 0.54, λ8 = λ9 = 0,

so that k = 7 and the nonzero eigenvalues,
√

λ2
j , j = 1, . . . , 7, are

λ1 = 3.41, λ2 = 2.36, λ3 = 2.30, λ4 = 1.86, λ5 = 1.53, λ6 = 1.07, λ7 = 0.73.

Thus, the matrix Λ is

Λ = diag(3.41, 2.36, 2.30, 1.86, 1.53, 1.07, 0.73),

and the

total inertia = 11.66 + 5.57 + 5.28 + 3.47 + 2.34 + 1.14 + 0.54 = 30 = tr(C′C).

Noting that 11.66
30 = 0.39 and (11.66+5.57+5.28)

30 = 0.75, we can assert that 75% of the inertia
is accounted for by the first three eigenvalues of C ′C.

The normalized eigenvectors of C ′C, which correspond to the nonzero eigenvalues and
are denoted by V = [V1, . . . , V7], are the following:

V1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.293826
0.615045
0.138401

0.36352
0.406951
0.248836
0.173839
0.306906
0.179291

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.711194
0.512432

−0.0995834
−0.106977
0.00779839
−0.386116

−0.0833586
0.041766
0.228947

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.123362
−0.0941084
−0.0879546

0.638327
−0.521119
−0.428293
0.0446188

0.302598
0.110329

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0732966
0.107206
0.601988
−0.03252

−0.388966
0.167134

−0.164402
−0.357001

0.534772

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

V5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0406003
0.0238456
−0.124608

0.110633
0.0784214
−0.206691

0.754879
−0.584142

0.1004

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.115587
−0.0128351
−0.572877

0.408319
0.0361355

0.400243
−0.367304
−0.382451

0.22109

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, V7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.320998
−0.262335
−0.162227
−0.195339

0.416228
−0.427087
−0.191702
0.0724589

0.604993

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Then, the first two eigenvectors weighted by λ1 and λ2 and the points to be plotted are

λ1V1 = 3.41472

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.293826
0.615045
0.138401
0.36352

0.406951
0.248836
0.173839
0.306906
0.179291

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.00333
2.10021
0.4726

1.24132
1.38962

0.849704
0.593611

1.048
0.612228

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

λ2V2 = 2.36098

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.711194
0.512432

−0.0995834
−0.106977
0.00779839
−0.386116

−0.0833586
0.041766
0.228947

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.67911
1.20984

−0.235114
−0.25257
0.0184118
−0.911613
−0.196808
0.0986087
0.540539

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

Points to be plotted :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1.00333, −1.67911)

(2.10021, 1.20984)

(0.4726, −0.235114)

(1.24132, −0.25257)

(1.38962, 0.0184118)

(0.849704, −0.911613)

(0.593611, −0.196808)

(1.048, 0.0986087)

(0.612228, 0.540539)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

↔

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Men
Women

Underweight
Normal

Overweight
Level 1
Level 2
Level 3
Level 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The plot of these points is displayed in Fig. 15.7.1.

It is seen from the points plotted in Fig. 15.7.1 that the categories underweight and
educational level 2 are somewhat close to each other, which is indicative of a possible
association, whereas the categories underweight and women are the farthest apart.
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Figure 15.7.1 Multiple contingency plot

Exercises 15 (continued)

15.6. In the following two-way contingency table, where the entries in the cells are
frequencies, (1) calculate Pearson’s χ2 statistic and give the representations in (15.5.1)–
(15.5.6); (2) plot the row profiles; (3) plot the column profiles:

↓→ B1 B2 B3 B4

A1 10 15 20 15
A2 15 10 10 5

15.7. Repeat Exercise 15.6 for the following two-way contingency table:

↓→ B1 B2 B3 B4

A1 10 5 15 5
A2 5 10 10 20
A3 10 5 10 5
A4 15 10 5 10

15.8. For the data in (1) Exercise 15.6, (2) Exercise 15.7, and by using the nota-
tions defined in Sects. 15.5 and 15.6, compute the following items: Estimates of (i) A =
D

− 1
2

r (P −RC′)D−1
c (P −RC′)′D− 1

2
r ; (ii) Eigenvalues of A and tr(A); (iii) Total inertia and

proportions of inertia accounted for by the eigenvalues; (iv) The matrix of row-profiles;
(v) The matrix of column-profiles, and make comments.

15.9. Referring to Exercises 15.6 and 15.7, plot the row profiles and column profiles and
make comments.
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15.10. In a used car lot, there are high price, average price and low price cars, the cars
come in the following colors: red, white, blue and silver, and the paint finish is either mat
or shiny. Fourteen customers bought vehicles from this car lot. Their preferences are given
next. (1) Carry out a multiple correspondence analysis, plot the column profiles and make
comments; (2) Create individual two-way contingency tables, analyze these tables and
make comments. The following is the data where the first column indicates the customer’s
serial number:

1 Low price white color mat finish
2 Low price red color shiny finish
3 Average price silver color shiny finish
4 High price red color shiny finish
5 High price blue color shiny finish
6 Average price white color mat finish
7 Average price blue color mat finish
8 High price blue color shiny finish
9 High price red color mat finish
10 Average price silver color mat finish
11 Low price white color shiny finish
12 Average price white color mat finish
13 Average price silver color shiny finish
14 Low price white color shiny finish
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Tables of Percentage Points

Tables 1, 2, 3, 4, 5, 6 and 7 contain probabilities and percentage points that are useful for
testing a variety of statistical hypotheses encountered in multivariate analysis.

Table 1: Standard normal probabilities. Table entry: probability = ∫ x

0
e−t2/2√

2π
dt

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1627 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2882 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3079 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3290 0.3315 0.3340 0.3365 0.3389
1.0 0.3414 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3888 0.3888 0.3906 0.3925 0.3943 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4146 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4278 0.4292 0.4306 0.4319

(continued)
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Table 1: (continued): Standard normal probabilities

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4453 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4610 0.4625 0.4633
1.8 0.4641 0.4648 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767
2.0 0.4773 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.2 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4914 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4933 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4986 0.4987 0.4987 0.4988 0.4988 0.4988 0.4989 0.4989 0.4990 0.4990



Tables of Percentage Points 889

Table 2: Student-t, right tail. Table entry: tν,α where
∫∞
tν,α

f (tν)dtν = α and f (tν) is the density of
a Student-t distribution having ν degrees of freedom

ν α = 0.10 α = 0.05 α = 0.025 α = 0.01 α = 0.005
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
∞ 1.282 1.645 1.966 2.326 2.576
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Table 3: Chisquare, right tail. Table entry: χ2
ν,α where

∫∞
χ2

ν,α
f (χ2

ν )dχ2
ν = α with f (χ2

ν ) being the
density of a chisquare random variable having ν degrees of freedom

ν α =0.995 0.99 0.975 0.95 0.10 0.05 0.025 0.01 0.005 0.001
1 0.0000 0.0002 0.0010 0.0039 0.2.71 3.84 5.02 6.63 7.88 10.83
2 0.0100 00201 0.0506 0.1030 0.4.61 5.99 7.38 9.21 10.60 13.81
3 0.0717 0.1148 0.2160 0.3520 6.25 7.81 9.35 11.34 12.84 16.27
4 0.2070 0.2970 0.4844 0.7110 7.78 9.49 11.14 13.26 14.86 18.47
5 0.412 0.5543 0.831 1.15 9.24 11.07 12.83 15.09 16.75 20.52
6 0.676 0.872 1.24 1.64 10.64 12.59 14.45 16.81 18.55 22.46
7 0.989 1.24 1.69 2.17 12.02 14.07 16.01 18.48 20.28 24.32
8 1.34 1.65 2.18 2.73 13.36 15.51 17.53 20.09 21.95 26.12
9 1.73 2.09 2.70 3.33 14.68 16.92 19.02 21.67 23.59 27.88
10 2.16 2.56 3.25 3.94 15.99 18.31 20.48 23.21 25.19 29.59
11 2.60 3.05 3.82 4.57 17.28 19.68 21.92 24.73 26.76 31.26
12 3.07 3.57 4.40 5.23 18.55 21.03 23.34 26.22 28.30 32.91
13 3.57 4.11 5.01 5.89 19.81 22.36 24.74 27.69 29.82 34.53
14 4.07 4.66 5.63 6.57 21.06 23.68 26.12 29.14 31.32 36.12
15 4.60 5.23 6.26 7.26 22.31 25.00 27.49 30.58 32.80 37.70
16 5.14 5.81 6.91 7.96 23.54 26.30 28.85 32.00 34.27 39.25
17 5.70 6.41 7.56 8.67 24.77 27.59 30.19 33.41 35.72 30.79
18 6.26 7.01 8.23 9.39 25.99 28.87 31.53 34.81 37.16 42.31
19 6.84 7.63 8.91 10.12 27.20 30.14 32.85 36.19 38.58 43.82
20 7.43 8.26 9.59 10.85 28.41 31.41 34.17 37.57 40.00 45.31
21 8.03 8.90 10.28 11.59 29.62 32.67 35.48 38.93 41.40 46.80
22 8.64 9.54 10.98 12.34 30.81 33.92 36.78 40.29 42.80 48.27
23 9.26 10.20 11.69 13.09 32.01 35.17 38.08 41.64 44.18 49.73
24 9.89 10.86 12.40 13.85 33.20 36.42 39.36 42.98 45.56 51.18

(continued)
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Table 3: (continued): Chisquare, right tail

ν α =0.995 0.99 0.975 0.95 0.10 0.05 0.025 0.01 0.005 0.001
25 10.52 11.52 13.12 14.61 34.38 37.65 40.65 44.31 46.93 52.62
26 11.16 12.20 13.84 15.38 35.56 38.89 41.92 45.64 48.29 54.05
27 11.81 12.88 14.57 16.15 36.74 40.11 43.19 46.96 49.64 55.48
28 12.46 13.56 15.31 16.93 37.92 41.34 44.46 48.28 50.99 56.89
29 13.12 14.26 16.05 17.71 39.09 42.56 45.72 49.59 52.34 58.30
30 13.79 14.95 16.79 18.49 40.26 43.77 46.98 50.89 53.67 59.70
40 20.71 22.16 24.43 26.51 51.81 55.76 59.34 63.69 66.77 73.40
50 27.99 29.71 32.36 34.76 63.17 67.50 71.42 76.15 79.49 86.66
60 35.53 37.48 40.48 43.19 74.40 79.08 83.30 88.38 91.95 99.61
70 43.28 45.44 48.76 51.74 85.53 90.53 95.02 100.4 104.2 112.3
80 51.17 53.54 57.15 60.39 96.58 101.9 106.6 112.3 116.3 124.8
90 59.20 61.75 65.75 69.13 107.6 113.1 118.1 124.1 128.3 137.2
100 67.33 70.06 74.22 77.93 118.5 124.3 129.6 135.8 140.2 149.4
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Table 4: F-distribution, right tail 5% points. Table entry: b = Fν1,ν2,0.05 where∫∞
b

f (Fν1,ν2)dFν1,ν2 = 0.05 with f (Fν1,ν2) being the density of an F -variable having ν1 and ν2

degrees of freedom

ν1 : 1 2 3 4 5 6 7 8 10 12 24 ∞
ν2

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 241.9 243.9 249.0 254.3
2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.5 19.5
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.74 8.64 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.77 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.53 4.36
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.84 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.37 3.64 3.57 3.41 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.12 2.93
9 5.12 4.26 3.86 3.63 3.38 3.37 3.29 3.23 3.14 3.07 2.90 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.91 2.74 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.85 2.79 2.61 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.69 2.51 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.67 2.60 2.42 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.60 2.53 2.35 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.48 2.29 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.24 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.45 2.38 2.19 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.41 2.34 2.15 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.38 2.31 2.11 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.35 2.28 2.08 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.32 2.25 2.05 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.30 2.23 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.27 2.20 2.00 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.25 2.18 1.98 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.24 2.16 1.96 1.71

(continued)
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Table 4: (continued): F-distribution, right tail 5% points

ν1 : 1 2 3 4 5 6 7 8 10 12 24 ∞
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.22 2.15 1.95 1.69
27 4.21 3.25 2.96 2.73 2.57 2.46 2.37 2.31 2.20 2.13 1.93 1.67
28 4.20 3.34 2.96 2.71 2.56 2.45 2.36 2.29 2.19 2.12 1.91 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.18 2.10 1.90 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.16 2.09 1.89 1.62
32 4.15 3.29 2.90 1.67 2.51 2.40 2.31 2.24 2.14 2.07 1.86 1.59
34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.12 2.05 1.84 1.57
36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.11 2.03 1.82 1.55
38 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19 2.09 2.02 1.81 1.53
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.08 2.00 1.79 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.99 1.92 1.70 1.89

100 3.92 3.07 2.63 2.45 2.29 2.18 2.09 2.02 1.91 1.83 1.61 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.83 1.75 1.52 1.00
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Table 5: F-distribution, right tail 1% points. Table entry: b = Fν1,ν2,0.01 where∫∞
b

f (Fν1,ν2) dFν1,ν2 = 0.01 with f (Fν1,ν2) being the density of an F -variable having ν1 and ν2

degrees of freedom

ν1 : 1 2 3 4 5 6 7 8 10 12 24 ∞
ν2

1 4052 4999.5 5403 5625 5764 5859 5928 5981 6056 6106 6235 6366
2 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.5 99.5
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.2 27.1 26.6 26.1
4 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.5 14.4 13.9 13.5
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.05 9.89 9.47 9.02
6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.87 7.72 7.31 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.62 6.47 6.07 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.81 5.67 5.28 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.26 5.11 4.73 4.31
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.85 4.71 4.33 3.91
11 0.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.54 4.40 4.02 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.30 4.16 3.78 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.10 3.96 3.59 3.17
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 3.94 3.80 3.43 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.80 3.67 3.29 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.69 3.55 3.18 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.59 3.46 3.08 2.65
18 8.20 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.51 3.37 3.00 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.43 3.30 2.92 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.37 3.23 2.86 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.31 3.17 2.80 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.26 3.12 2.75 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.21 3.07 2.70 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.17 3.03 2.66 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.13 2.99 2.62 2.17

(continued)
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Table 5: (continued): F-distribution, right tail 1% points

ν1 : 1 2 3 4 5 6 7 8 10 12 24 ∞
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.09 2.96 2.58 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.06 2.93 2.55 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.03 2.90 2.52 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.00 2.87 2.49 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.98 2.84 2.47 2.01
32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13 2.93 2.80 2.42 1.96
34 7.45 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.90 2.76 2.38 1.91
36 7.40 5.25 4.38 3.89 3.58 3.35 3.18 3.05 2.86 2.72 2.35 1.87
38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.83 2.69 2.32 1.84
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.80 2.66 2.29 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.63 2.50 2.12 1.60
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.47 2.334 1.95 1.38
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.32 2.18 1.79 1.00
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Table 6: Testing independence. Let Ho : Σ is diagonal in a Np(μ,Σ) population and u = λ2/n

where n is the sample size and λ refers to the λ-criterion. The table entries are the 5th and 1st upper
percentage points of w = −[m+ (2p + 5)/6] ln u where m = n− 1. Ho is rejected for large values
of w. The last line wherein m = ∞ displays the asymptotic chisquare values as w → χ2

p(p−1)/2

5% points
m p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
3 8.020
4 7.834 15.22
5 7.814 13.47 24.01
6 7.811 13.03 20.44 34.30
7 7.811 12.85 19.45 28.75 46.05
8 7.811 12.76 19.02 27.11 38.41 59.25
9 7.812 12.71 18.80 26.37 36.03 49.42 73.79
10 7.812 12.68 18.67 25.96 34.91 46.22 61.76 89.92
11 7.813 12.66 18.58 25.71 34.28 44.67 57.68 75.45
12 7.813 12.65 18.52 25.55 33.89 43.78 55.65 70.43
13 7.813 12.64 18.48 25.44 33.63 43.21 54.46 67.87
14 7.813 12.63 18.45 25.36 33.44 42.82 53.69 66.34
15 7.814 12.62 18.43 25.30 33.31 42.55 53.15 65.33
16 7.814 12.62 18.41 25.25 33.20 42.34 52.77 64.63
17 7.814 12.62 18.40 25.21 33.12 42.19 52.48 64.12
18 7.814 12.61 18.38 25.19 33.06 42.06 52.26 63.73
19 7.814 12.61 18.37 25.16 33.01 41.97 52.08 63.43
20 7.814 12.61 18.37 25.14 32.97 41.89 51.94 63.19
∞ 7.815 12.59 18.31 25.00 32.67 41.34 51.00 61.66

(continued)



Tables of Percentage Points 897

Table 6: Testing Independence

1% points
m p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
3 11.79
4 11.41 21.18
5 11.36 18.27 32.16
6 11.34 17.54 26.50 44.65
7 11.34 17.24 24.95 36.09 58.61
8 11.34 17.10 24.29 33.63 47.05 74.01
9 11.34 17.01 23.95 32.54 43.59 59.36 90.87
10 11.34 16.96 23.75 31.95 42.00 54.83 73.03 109.53
11 11.34 16.93 23.62 31.60 41.13 52.70 67.37 88.05
12 11.34 16.90 23.53 31.36 40.59 51.49 64.64 81.20
13 11.34 16.89 23.47 31.20 40.23 50.73 63.06 77.83
14 11.34 16.87 23.42 31.09 39.97 50.22 62.05 75.84
15 11.34 16.86 23.39 31.00 39.79 49.85 61.36 74.56
16 11.34 16.86 23.36 30.94 39.65 49.59 60.86 73.66
17 11.34 16.85 23.34 30.88 39.54 49.38 60.49 73.01
18 11.34 16.85 23.32 30.84 39.46 49.22 60.21 72.52
19 11.34 16.84 23.31 30.81 39.39 49.09 59.99 72.15
20 11.34 16.84 23.30 30.78 39.33 48.99 59.81 71.85
∞ 11.34 16.81 23.21 30.58 38.93 48.28 58.57 69.92

Note: For p = 2, w = 1 − r2 where r is the sample correlation coefficient. Moreover,
mr2

1−r2 ∼ F1,m where m = n − 1 and n is the sample size; also refer to Sect. 5.6 and
Eq. (6.6.1). Thus, the case p = 2 is omitted from the tables as one can then readily obtain
the requisite critical values from F or Student-t tables in light of these properties.
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Table 7: Testing the equality of the diagonal elements, given that Σ in a Np(μ,Σ) population
is diagonal. Let v = λ2/n where λ is the likelihood ratio test statistic and n is the sample size.
Letting f (v) denote the density of v, the table entries w are the critical values of v such that
F(w) = ∫ w

0 f (v) dv = 0.01, 0.02, 0.025, 0.05, for various values of p and m = n − 1

p = 2 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

2 0.01990 0.03960 0.04937 0.09750
3 0.08083 0.12702 0.14675 0.22852
4 0.15874 0.22173 0.24664 0.34163
5 0.23520 0.30632 0.33318 0.43074
6 0.30387 0.37792 0.40505 0.50053
7 0.36370 0.43784 0.46442 0.55593
8 0.41540 0.48812 0.51378 0.60071
9 0.46009 0.53064 0.55524 0.63751
10 0.49889 0.56694 0.59043 0.66824
11 0.53279 0.59822 0.62062 0.69425
12 0.56258 0.62540 0.64677 0.71654
13 0.58893 0.64921 0.66961 0.73583
14 0.61238 0.67024 0.68972 0.75268
15 0.63336 0.68893 0.70756 0.76753
16 0.65224 0.70564 0.72349 0.78072
17 0.66930 0.72067 0.73778 0.79249
18 0.68479 0.73425 0.75069 0.80307
19 0.69891 0.74659 0.76239 0.81263
20 0.71185 0.75784 0.77305 0.82131
21 0.72372 0.76815 0.78280 0.82923
22 0.73467 0.77761 0.79176 0.83647
23 0.74479 0.78634 0.80000 0.84313
24 0.75417 0.79442 0.80763 0.84927
25 0.76290 0.80190 0.81469 0.85494
26 0.77103 0.80887 0.82126 0.86021
27 0.77862 0.81536 0.82738 0.86511
28 0.78753 0.82143 0.83310 0.86967
29 0.79240 0.82712 0.83845 0.87394
30 0.79867 0.83245 0.84347 0.87794

(continued)
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Table 7: (continued): Testing the Equality of the Diagonal Elements, Given that Σ in a Np(μ,Σ)

Population is Diagonal

p = 3 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

3 0.03171 0.05272 0.06214 0.10378
4 0.07974 0.11611 0.13109 0.19128
5 0.13649 0.18373 0.20222 0.27252
6 0.19382 0.24775 0.26816 0.34301
7 0.24796 0.30559 0.32688 0.40302
8 0.29756 0.35690 0.37844 0.45403
9 0.34240 0.40217 0.42357 0.49760
10 0.38272 0.44212 0.46314 0.53509
11 0.41895 0.47745 0.49798 0.56759
12 0.45153 0.50885 0.52881 0.59599
13 0.48092 0.53687 0.55624 0.62098
14 0.50571 0.56199 0.58075 0.64314
15 0.53164 0.58462 0.60278 0.66289
16 0.55361 0.60510 0.62267 0.68061
17 0.57369 0.62370 0.64071 0.69658
18 0.59210 0.64066 0.65713 0.71105
19 0.60903 0.65619 0.67214 0.72422
20 0.62464 0.67046 0.68592 0.73625
21 0.63908 0.68361 0.69860 0.74729
22 0.65247 0.69577 0.71031 0.75744
23 0.66492 0.70703 0.72115 0.76682
24 0.67653 0.71750 0.73121 0.77550
25 0.68737 0.72726 0.74059 0.78357
26 0.69752 0.73637 0.74933 0.79108
27 0.70704 0.74490 0.75751 0.79808
28 0.71598 0.75290 0.76518 0.80464
29 0.72440 0.76041 0.77238 0.81078
30 0.73234 0.76749 0.77916 0.81655

(continued)
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Table 7: (continued): Testing the Equality of the Diagonal Elements, Given that Σ in a Np(μ,Σ)

Population is Diagonal

p = 4 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

4 0.04504 0.06768 0.07726 0.11713
5 0.08692 0.11996 0.13319 0.18503
6 0.13350 0.17421 0.18994 0.24915
7 0.18050 0.22641 0.24369 0.30699
8 0.22568 0.27488 0.29305 0.35825
9 0.26804 0.31915 0.33776 0.40346
10 0.30724 0.35929 0.37801 0.44332
11 0.34328 0.39559 0.41423 0.47858
12 0.37632 0.42843 0.44684 0.50991
13 0.40659 0.45818 0.47628 0.53786
14 0.43435 0.48519 0.50294 0.56292
15 0.45983 0.50980 0.52715 0.58549
16 0.48328 0.53227 0.54921 0.60591
17 0.50490 0.55286 0.56938 0.62447
18 0.52487 0.57178 0.58768 0.64139
19 0.54336 0.58921 0.60490 0.65688
20 0.56052 0.60532 0.62061 0.67111
21 0.57649 0.62025 0.63514 0.68423
22 0.59137 0.63411 0.64863 0.69635
23 0.60527 0.64702 0.66117 0.70759
24 0.61828 0.65906 0.67286 0.71804
25 0.63048 0.67032 0.68378 0.72777
26 0.64194 0.68088 0.69401 0.73686
27 0.65273 0.69079 0.70360 0.74537
28 0.66289 0.70011 0.71262 0.75334
29 0.67249 0.70889 0.72111 0.76084
30 0.68156 0.71715 0.72912 0.76790

(continued)
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Table 7: (continued): Testing the Equality of the Diagonal Elements, Given that Σ in a Np(μ,Σ)

Population is Diagonal

p = 5 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

5 0.05774 0.08138 0.09103 0.12970
6 0.09523 0.12645 0.13871 0.18581
7 0.13538 0.17235 0.18648 0.23915
8 0.17568 0.21677 0.23215 0.28827
9 0.21473 0.25863 0.27481 0.33284
10 0.25181 0.29753 0.31416 0.37304
11 0.28661 0.33340 0.35026 0.40926
12 0.31908 0.36639 0.38328 0.44191
13 0.34925 0.39668 0.41350 0.47142
14 0.37725 0.42451 0.44117 0.49816
15 0.40323 0.45010 0.46654 0.52246
16 0.42735 0.47369 0.48986 0.54462
17 0.44976 0.49546 0.51134 0.56489
18 0.47061 0.51560 0.53117 0.58350
19 0.49004 0.53426 0.54952 0.60062
20 0.50818 0.55160 0.56655 0.61643
21 0.52513 0.56774 0.58237 0.63107
22 0.54101 0.58280 0.59712 0.64465
23 0.55590 0.59688 0.61089 0.65728
24 0.56989 0.61006 0.62377 0.66907
25 0.58305 0.62243 0.63584 0.68008
26 0.59546 0.63406 0.64718 0.69039
27 0.60717 0.64501 0.65784 0.70007
28 0.61824 0.65533 0.66790 0.70917
29 0.62872 0.66508 0.67738 0.71773
30 0.63864 0.67430 0.68635 0.72582

(continued)
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Table 7: (continued): Testing the Equality of the Diagonal Elements, Given that Σ in a Np(μ,Σ)

Population is Diagonal

p = 6 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

6 0.06938 0.09356 0.10318 0.14077
7 0.10338 0.13335 0.14494 0.18882
8 0.13892 0.17338 0.18643 0.23468
9 0.17443 0.21223 0.22631 0.27744
10 0.20897 0.24917 0.26394 0.31684
11 0.24203 0.28388 0.29909 0.35294
12 0.27336 0.31628 0.33174 0.38595
13 0.30287 0.34641 0.36198 0.41614
14 0.33057 0.37440 0.38997 0.44376
15 0.35653 0.40038 0.41587 0.46908
16 0.38082 0.42451 0.43987 0.49235
17 0.40357 0.44694 0.46213 0.51377
18 0.42487 0.46782 0.48280 0.53355
19 0.44484 0.48729 0.50204 0.55184
20 0.46357 0.50546 0.51997 0.56881
21 0.48117 0.52245 0.53672 0.58458
22 0.49772 0.53837 0.55238 0.59927
23 0.51330 0.55330 0.56706 0.61298
24 0.52799 0.56734 0.58084 0.62581
25 0.54186 0.58054 0.59379 0.63784
26 0.55497 0.59299 0.60599 0.64913
27 0.56738 0.60474 0.61750 0.65975
28 0.57914 0.61585 0.72837 0.66976
29 0.59030 0.62637 0.63865 0.67920
30 0.60089 0.63634 0.64899 0.68813

(continued)
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Table 7: (continued): Testing the Equality of the Diagonal Elements, Given that Σ in a Np(μ,Σ)

Population is Diagonal

p = 7 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

7 0.07993 0.10433 0.11387 0.15046
8 0.11104 0.14004 0.15112 0.19258
9 0.14306 0.17567 0.18792 0.23290
10 0.17492 0.21029 0.22340 0.27081
11 0.20598 0.24341 0.25712 0.30613
12 0.23587 0.27478 0.28890 0.33886
13 0.26439 0.30431 0.31868 0.36912
14 0.29144 0.33202 0.34653 0.39708
15 0.31703 0.35797 0.37253 0.42293
16 0.34117 0.38226 0.39680 0.44685
17 0.36394 0.40499 0.41946 0.46901
18 0.38539 0.42628 0.44063 0.48957
19 0.40562 0.44623 0.46043 0.50870
20 0.42468 0.46495 0.47898 0.52651
21 0.44267 0.48252 0.49637 0.54313
22 0.45966 0.49905 0.51270 0.55867
23 0.47572 0.51461 0.52805 0.57323
24 0.49091 0.52928 0.54251 0.58688
25 0.50529 0.54312 0.55615 0.59972
26 0.51892 0.55621 0.56902 0.61180
27 0.53186 0.56860 0.58120 0.62319
28 0.54415 0.58033 0.59272 0.63394
29 0.55584 0.59147 0.60365 0.64412
30 0.56697 0.60204 0.61402 0.65375

(continued)
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Table 7: (continued): Testing the Equality of the Diagonal Elements, Given that Σ in a Np(μ,Σ)

Population is Diagonal

p = 8 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

8 0.08947 0.11391 0.12334 0.15897
9 0.11816 0.14632 0.15699 0.19653
10 0.14735 0.17850 0.19012 0.23256
11 0.17632 0.20980 0.22215 0.26665
12 0.20460 0.23985 0.25274 0.29867
13 0.23192 0.26849 0.28175 0.32859
14 0.25810 0.29563 0.30913 0.35650
15 0.28309 0.32126 0.33492 0.38250
16 0.30686 0.34544 0.35916 0.40672
17 0.32942 0.36820 0.38194 0.42931
18 0.35081 0.38965 0.40335 0.45038
19 0.37108 0.40985 0.42348 0.47006
20 0.39028 0.42878 0.44241 0.48848
p = 9 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

9 0.09813 0.12249 0.13178 0.16652
10 0.12474 0.15218 0.16250 0.20044
11 0.15160 0.18155 0.19267 0.23304
12 0.17821 0.21015 0.22189 0.26404
13 0.20421 0.23770 0.24990 0.29332
14 0.22939 0.26406 0.27660 0.32088
15 0.25362 0.28917 0.30195 0.34676
16 0.27685 0.31302 0.32596 0.37104
17 0.29904 0.33563 0.34865 0.39380
18 0.32020 0.35704 0.37010 0.41515
19 0.34036 0.37731 0.39036 0.43619
20 0.35955 0.39650 0.40950 0.45401

(continued)
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Table 7: (continued): Testing the Equality of the Diagonal Elements, Given that Σ in a Np(μ,Σ)

Population is Diagonal

p = 10 F(w) = 0.01 F(w) = 0.02 F(w) = 0.025 F(w) = 0.05
m w w w w

10 0.10602 0.13021 0.13936 0.17326
11 0.13083 0.15762 0.16763 0.20420
12 0.15574 0.18467 0.19536 0.23399
13 0.18036 0.21101 0.22224 0.26243
14 0.20445 0.23646 0.24810 0.28943
15 0.22782 0.26090 0.27285 0.31498
16 0.25039 0.28428 0.29645 0.33910
17 0.27209 0.30658 0.31890 0.36184
18 0.29291 0.32781 0.34022 0.38329
19 0.31284 0.34800 0.36047 0.40351
20 0.33189 0.36721 0.37968 0.42259

Note: For large sample size n, we may utilize the approximation −2 ln λ ≈ χ2
p−1 for the

null distribution of λ, where λ = vn/2 is the lambda criterion, n is the sample size and
χ2

p−1 denotes a central chisquare random variable having p − 1 degrees of freedom. The
null hypothesis will be rejected for large values of −2 ln λ since it is rejected for small
values of the test statistics λ or v.
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Illić, V., 911
Iranmanesh, A., 911
Izenman, A.J., 908

J
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