
Chapter 4
Bayesian Interpretation
of Regularization

Abstract In the previous chapter, it has been shown that the regularization approach
is particularly useful when information contained in the data is not sufficient to
obtain a precise estimate of the unknown parameter vector and standard methods,
such as least squares, yield poor solutions. The fact itself that an estimate is regarded
as poor suggests the existence of some form of prior knowledge on the degree of
acceptability of candidate solutions. It is this knowledge that guides the choice of
the regularization penalty that is added as a corrective term to the usual sum of
squared residuals. In the previous chapters, this design process has been described
in a deterministic setting where only the measurement noises are random. In this
chapter, we will see that an alternative formalization of prior information is obtained
if a subjective/Bayesian estimation paradigm is adopted. The major difference is
that the parameters, rather than being regarded as deterministic, are now treated
as a random vector. This stochastic setting permits the definition of new powerful
tools for both priors selection, e.g., through the maximum entropy principle, and for
regularization parameters tuning, e.g., through the empirical Bayes approach and its
connection with the concept of equivalent degrees of freedom.

4.1 Preliminaries

We have seen that the regularization approach can be used to effectively solve esti-
mation problems that are otherwise ill-conditioned. In particular, a penalty is added
as a corrective term to the usual sum of squared residuals. In this way, between two
candidate solutions achieving the same squared loss, the regularizer is chosen such
as to penalize candidate solutions that depart from our prior knowledge on some
features of the unknown parameter vector.

It is worth noting that the regularization approach lies within a frequentist
paradigm in which the observed data, affected by noise, are random variables, but
the unknown parameter vector is deterministic in nature. For linear-in-parameter
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models, regularization yields an estimate that, though biased, may be preferable to
the unbiased least squares estimate in view of the smaller variance. In particular,
the tuning of the regularization parameter aims at an advantageous solution of the
bias-variance dilemma. By trading an excessive variance for some bias, a smaller
mean squared error may be achieved, as exemplified by the James–Stein estimator.
An alternative formalization of prior information is obtained if a subjective/Bayesian
estimation paradigm is adopted. The major difference is that the parameters, rather
than being regarded as deterministic, are now treated as a random vector.

In order to introduce the Bayesian paradigm, it can be useful to start with a simple
example in which the parameters do depend on the result of a random experiment.
Consider a metabolism model for which the parameter vector θ can take only two
possible values, θh and θd , associated with healthy and diabetic patients, respectively.
The model specifies p(Y |θ), where Y are observations collected from a randomly
chosen patient with 90% probability of being healthy and 10% probability of being
diabetic. In this simple case, model identification amounts to deciding between θh
and θd . It is also clear that θ is a discrete random variable with p(θ = θh) = 0.9
and p(θ = θd) = 0.1. These probabilities summarize the prior information about the
unknown parameter, before any observation is collected. Once the data Y become
available, the Bayes formula can be used to compute the posterior probability

p(θh |Y ) = p(Y |θh)p(θh)
p(Y )

= p(Y |θh)p(θh)
p(Y |θh)p(θh) + p(Y |θd)p(θd) . (4.1)

Of course, p(θd |Y ) = 1 − p(θh |Y ). In particular, if the data Y are consistent with
diabetes symptoms, it may well happen that p(θd |Y ) > 0.5, in which case θ = θd
would be taken as the final estimate.

In the previous example, the prior probability distribution assigned to θ reflects a
real experiment that is the random choice of a patient from a populationwhere 90%of
subjects are healthy, which implies a prejudice in favour of θ = θh . In other words,
the prior distribution ranks the candidate parameters according to the available a
priori knowledge. If we look at the numerator of (4.1), we see that it combines a
priori information with the data through the product of the prior probability p(θh)
and the likelihood p(Y |θh). In the example, the population was a binary one (either
healthy or diabetic), but we can imagine more complex populations allowing for
several countable or even uncountable possible values of θ .

In the actual Bayesian paradigm a further step is made: the parameters θ are
assigned a prior probability p(θh), even if there does not exist an underlying experi-
ment that draws the model from a population of possible models. According to the
subjective definition of probability, p(θ = θ̄ ) represents the (subjective) degree of
belief that θ is going to take the value θ̄ . In particular, in analogy with the regulariza-
tion penalty, it is possible to rank the possible values of θ , assigning a low probabil-
ity to values whose occurrence is deemed unlikely. In our context, the intrinsically
subjective nature of the prior probability, a controversial issue in the confrontation
between the frequentist and Bayesian paradigms, is specular to the subjective choice
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of the regularization penalty: rather than expressing the preference for some solu-
tions through the choice of a proper penalty, the preference is formulated by means
a prior distribution.

As shown in the following, many formulas and results can be indifferently derived
adopting either the regularization or the Bayesian paradigm. However, the Bayesian
approach has its pros. In particular, the tuning of the regularization parameter, rather
than being addressed on an ad hoc basis, can be formulated as a statistical estimation
problem. Moreover, the Bayesian paradigm offers a very natural way to asses uncer-
tainty intervals, whereas the regularization paradigm has a harder time assessing the
amount of bias in the estimate. Among the cons, one may mention the need for a
deeper probabilistic background in order to gain a full comprehension of all aspects.

Throughout the chapter we will mainly focus on the linear Gaussian case, but
the approach is more general and some hints at generalizations will be provided. In
addition, we will use θ to denote the stochastic vector that has generated the data,
in contrast with the deterministic θ0 used in the classical setting discussed in the
previous chapter.

4.2 Incorporating Prior Knowledge via Bayesian
Estimation

We consider the problem of estimating a parameter vector θ ∈ R
n , based on the

observation vector Y ∈ R
N . The two ingredients of Bayesian estimation are the

prior distribution of θ , also known by short as prior, and the conditional distribution
of Y given θ . As already observed, the basic assumption is that the parameter vector
θ is not completely unknown, but rather some prior knowledge is available that
is formulated in terms of subjective probability, specified as a probability density
function:

p(θ) : Rn �→ R.

The density function p(θ) is chosen by the user so as to assign a low probability to
values whose occurrence is deemed unlikely. For instance, if θ is a scalar parameter
whose value is believed to lie more or less around 30, hardly smaller than 20 and
hardly larger than 40, this prior knowledge can be embedded in a Gaussian density
with E θ = μθ = 30 and standard deviation σθ = 5:

θ ∼ N (30, 25).

In fact, under this distribution, p (|θ − μθ | > 2σθ ) = p (|θ − 30| > 10) < 0.05.
Although not impossible, it is considered unlikely that values of θ too distant from
30 are going to occur. A natural question is how and when our prior knowledge is
sufficient to specify a distribution. This crucial issue calls for the notion and role of
hyperparameters, see Sect. 4.2.4, and for the possible use of the maximum entropy
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principle as a way to obtain an entire probability distribution from partial knowledge
relative to its moments, see Sect. 4.6.

The second ingredient is the conditional distribution of Y given θ that, when
considered as a function of θ , is also known as likelihood:

L(θ |Y ) = p(Y |θ) = p(Y, θ)

p(θ)
,

where p(Y, θ) is the joint probability distribution of the random vectors Y and θ . The
likelihood is usually obtained from some mathematical model of the data. Consider,
for instance, the simple model

Yi = θ
√
i + ei , i = 1, . . . , N ,

where ei ∼ N (0, σ 2) are independent and identically distributed measurement
errors, with known variance σ 2. Conditional on θ , i.e., assuming that θ is known, Yi
is Gaussian with

E [Yi |θ ] = θ
√
i, Var (Yi |θ) = σ 2

so that, in view of independence, the likelihood is

L(θ |Y ) = p(Y |θ) =
N∏

i=1

p(Yi |θ), p(Yi |θ) = N (θ
√
i, σ 2).

When both the prior distribution p(θ) and the likelihood p(Y |θ) have been spec-
ified, the Bayes formula yields the posterior distribution

p(θ |Y ) = p(Y |θ)p(θ)

p(Y )
.

We have seen that all our prior knowledge was embedded in the prior. In a similar
way, all the knowledge obtained by the combination of prior informationwith the new
informationbrought by the observations is nowembedded in the posterior distribution
p(θ |Y ), denoted by short as posterior.

Although all the relevant information is encapsulated within the posterior, a point
estimate is often required for practical or communication purposes. The Maximum
A Posteriori (MAP) estimate is the value that maximizes the posterior:

θMAP = argmax
θ

p(Y |θ). (4.2)

Its interpretation is simple, as it represents the most likely value, once the prior
knowledge has been updated taking into account the observations. Alternatively, the
mean squared error
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MSE(θ̂) = E

[(
θ̂ − θ

)2 |Y
]

can be used as a criterion to select the point estimate θ̂ . Above, E (·|Y ) denotes the
expected value taken with respect to the posterior distribution p(θ |Y ). The following
classical result from estimation theory (whose proof is in Sect. 4.13.1) then holds.

Theorem 4.1 The minimizer of the MSE

θB = argmin
θ̂

MSE(θ̂)

is known as Bayes estimate and can be shown to be equal to the conditional mean:

θB = E [θ |Y ] .

A third point estimate is the conditional median used especially in view of its
statistical robustness when the posterior is obtained numerically via stochastic sim-
ulation algorithms, see Sect. 4.10.

When, in addition to a point estimate, an assessment of the uncertainty is needed,
it can be derived from the posterior through the computation of a properly defined
credible region Cγ ∈ R

n such that

Pr(θ ∈ Cγ |Y ) = γ. (4.3)

For example, Cγ could be taken as the smallest region such that (4.3) holds, a choice
that goes under the name of highest posterior density region.

4.2.1 Multivariate Gaussian Variables

In this subsection, some basic properties and definitions of multivariate Gaussian
variables are recalled. This review is instrumental to the derivation of the Bayesian
estimator when observations and parameters are jointly Gaussian, see Sect. 4.2.2. In
turn, this will pave theway to the analysis of the linearmodel under additiveGaussian
measurement errors, see Sect. 4.2.3.

A random vector Z = [Z1 . . . Zm]T is said to be distributed according to a non-
degenerate m-variate Gaussian distribution if its joint probability density function is
of the type

p(z1, . . . , zm) = 1√
(2π)m det V

exp− 1
2 (z−μ)T V−1(z−μ), (4.4)

where V is a symmetric positive definite matrix and μ is some vector in Rm .
It can be shown that

E (Z) = μ, Var (Z) = V .
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Then, the notation
Z ∼ N (μ, V )

(already used before in the scalar case) indicates that Z is a multivariate Gaussian
(Normal) random vector with mean μ and variance matrix V .

Property 4.1 If Z ∼ N (μ, V ) and Y = AZ, where A ∈ R
n×m, n ≤ m, is a full-

rank deterministic matrix, then

Y ∼ N (Aμ, AV AT ).

In particular, it follows that the marginal distributions of the entries of Z are
Gaussian:

Zi ∼ N (μi , Vii ).

Property 4.2 Assuming Z ∼ N (μ, V ), let X = [Z1 . . . Zn]T , Y = [Zn+1 . . . Zm]T ,
where 1 ≤ n < m, and partition μ and V accordingly:

μ =
[

μX

μY

]
,

[
VXX VXY

VY X VYY

]
.

Then, p(X |Y = y) is a multivariate Gaussian density function with

E (X |Y = y) = μX + VXY V
−1
YY (y − μY )

Var(X |Y = y) = VXX − VXY V
−1
YY VY X

and we can write

(X |Y = y) ∼ N
(
μX + VXY V

−1
YY (y − μY ), VXX − VXY V

−1
YY VY X

)
,

where X |Y = y stands for the random vector X conditional on Y = y.

4.2.2 The Gaussian Case

Let us consider the case in which the observation vector Y ∈ R
N and the unknown

vector θ ∈ R
n are jointly Gaussian:

[
θ

Y

]
∼ N

([
μθ

μY

]
,

[
Σθ ΣθY

ΣY θ ΣY

])
, ΣY > 0. (4.5)

The key idea behind Bayesian estimation is referring to the posterior distribution of
θ given Y as representative of the state of knowledge about the unknown vector. It
follows from Property 4.2 that such posterior is Gaussian as well:
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θ |Y ∼ N
(
μθ + ΣθYΣ−1

Y (Y − μY ),Σθ − ΣθYΣ−1
Y ΣY θ

)
. (4.6)

In view of Gaussianity, θMAP coincides with the conditional expectation E (θ |Y ):

θB = θMAP = E (θ |Y ) = μθ + ΣθYΣ−1
Y (Y − μY ). (4.7)

The reliability of the estimate can be assessed by the posterior variance

Σθ |Y = Var(θ |Y ) = Σθ − ΣθYΣ−1
Y ΣY θ

based on which the so-called credible intervals can be derived as explained below.
The posterior variance of θi is the i-th diagonal entry of the posterior covariance

matrix:
σ 2

θi |Y = [
Σθ |Y

]
i i .

Observing that θi |Y ∼ N (θB
i , σ 2

θi |Y ), it follows that

Pr
(
θB
i − 1.96σθi |Y ≤ θi ≤ θB

i − 1.96σθi |Y |Y ) = 0.95 (4.8)

so that [θB
i − 1.96σθi |Y , θB

i + 1.96σθi |Y ] is the 95%-credible interval for the parameter
θi , given the observation vector Y . If two or more parameters are jointly considered,
the notion of credible region can be obtained in a similar way. In the Gaussian case,
such regions are suitable (hyper)-ellipsoids centred in θB.

4.2.3 The Linear Gaussian Model

The Bayesian approach can be applied to the estimation of the standard linear model
in matrix form

Y = Φθ + E, E ∼ N (0,ΣE ), ΣE > 0 (4.9)

in which Y ∈ R
N and the parameter vector θ is no more regarded as a deterministic

quantity, but as a random vector independent of E . In particular, we assume that some
prior information is available which is embedded in a Gaussian prior distribution

θ ∼ N (μθ ,Σθ), Σθ > 0.

Since Y is the linear combination of the jointly Gaussian vectors θ and E , the vec-
tors Y and θ are jointly Gaussian as well. Hereafter, positive definiteness of Σθ

is assumed if not stated otherwise. The singular case, see Remark 4.1, amounts to
assuming perfect knowledge of some linear combination of the unknown parameters
or, equivalently, to constrain the estimated vector θ to belong to a prescribed sub-
space. The ability to incorporate this type of constraint is not unique to the Bayesian
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approach. In the context of the deterministic regularization, an example is given by
the optimal regularization matrix P = θ0θ

T
0 , derived in Sect. 3.4.2.1.

In order to obtain the Bayes estimate according to (4.7), we need to compute
μY = E (Y ), ΣθY = Cov(θ,Y ), and ΣY = Var(Y ):

μY = E (Y ) = Φμθ

Var(Y ) = Var(Φθ) + Var(E) = ΦΣθΦ
T + ΣE

Cov(θ,Y ) = Cov(θ,Φθ) + Cov(θ, E) = ΣθΦ
T .

Then, we can apply (4.7) to obtain

θB = μθ + ΣθΦ
T (ΦΣθΦ

T + ΣE )−1(Y − Φμθ) (4.10)

Var(θ |Y ) = Σθ − ΣθΦ
T (ΦΣθΦ

T + ΣE )−1ΦΣθ. (4.11)

The proofs of the following two classical results are reported in Sects. 4.13.2 and
4.13.3.

Theorem 4.2 (Orthogonality property)

E
[
(θB − θ)Y T

] = 0. (4.12)

The following lemma, whose proof is in Sect. 4.13.3, is useful in order to obtain
an alternative expression that proves more convenient, especially when n � N .

Lemma 4.1 It holds that

ΣθΦ
T (ΦΣθΦ

T + ΣE )−1 = (ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E .

By applying the previous lemma, the alternative expression of the Bayes estimate is
obtained

θB = (ΦTΣ−1
E Φ + Σ−1

θ )−1(ΦTΣ−1
E Y + Σ−1

θ μθ ) (4.13)

Var(θ |Y ) = (ΦTΣ−1
E Φ + Σ−1

θ )−1. (4.14)

As already noted, the Bayes estimate coincides with θMAP, the maximum of the
posterior density:

p(θ |Y ) ∝ p(Y |θ)p(θ).

Recall that, in view of the assumed linear model (4.9),

Y |θ ∼ N (Φθ,ΣE )

and note that
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log p(θ) = c1 − 1

2
(θ − μθ)

TΣ−1
θ (θ − μθ) (4.15)

log p(Y |θ) = c2 − 1

2
(Y − Φθ)TΣ−1

E (Y − Φθ), (4.16)

where c1 and c2 are constantswe are not concernedwith. Therefore, themaximization
of the posterior density can be written as

θMAP = argmax
θ

log p(Y |θ) + log p(θ)

= argmax
θ

(Y − Φθ)TΣ−1
E (Y − Φθ) + (θ − μθ)

TΣ−1
θ (θ − μθ)

whose solution is easily shown to be given by (4.13). This shows that, underGaussian-
ity assumptions, the Bayes estimate of the linear model can be seen as a regularized
least squares estimator with quadratic regularization term (ReLS-Q), see Sect. 3.4.
In particular, if

ΣE = σ 2 IN , μθ = 0, (4.17)

the Bayes and MAP estimators,

θB = θMAP = argmin
θ

‖Y − Φθ‖2 + θT P−1θ, (4.18)

coincide with the ReLS estimator with regularization matrix P = Σθ/σ
2. Under the

further assumption Σθ = λIn , the MAP estimator coincides with a ridge regression
estimator with γ = σ 2/λ.

Remark 4.1 WhenΣθ = P , where P = PT ≥ 0 is singular, one can still use (4.10)
to obtain the Bayes estimate, while (4.13) and the quadratic problem (4.18) are no
more valid due to the nonexistence ofΣ−1

θ . Nevertheless, by replicating the derivation
in Remark 3.1, it is still possible to interpret the Bayes estimate as the solution of a
constrained quadratic problem. In particular, under (4.17), we have that

θB = argminθ ‖Y − Φθ‖22 + θT P+θ (4.19)

subj. to UT
2 θ = 0, (4.20)

where U2 was defined in Remark 3.1, as part of the singular value decomposition of
P . The result can be interpreted as follows. A singular variance matrix means that
we have perfect knowledge on some linear combination of the parameter vector. In
particular,

Var
[
UT

2 θ
] = UT

2 Var (θ)U2

= UT
2

[
U1 U2

] [
ΛP 0
0 0

] [
U1 U2

]T
U2 = 0,
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where, with reference to the SVD of P , we have exploited the fact that UT
2 U1 = 0.

As a consequence,
Pr(UT

2 θ = U2μθ) = 1,

thus justifying the presence of the equality constraints in the quadratic problem
(4.19)–(4.20), where μθ = 0 is assumed. Recalling the orthogonality of U1 and U2,
we have thatUT

2 θ = 0 implies that θ ∈ Range(U1) = Range(P). Therefore, the con-
strained quadratic problem (4.19)–(4.20) can also be equivalently reformulated as

θ B = argmin
θ ∈ Range(P)

‖Y − Φθ‖2 + θT P+θ. (4.21)

One can also assess that the solution of this problem can be written as

θB = PΦT (ΦPΦT + ΣE )+Y,

an expression which does not require invertibility of any matrix.
In conclusion, the Bayes estimate always exists and is unique. In any case, it can

be written as (4.7) with Σ−1
Y replaced by its pseudoinverse.

The Bayesian interpretation of deterministic regularization can be exploited to
obtain a guideline for the selection of the regularization matrix. The simplest case is
when some statistics, e.g., based on samples coming from past problems, is available
for the parameter vector θ . Then, the Bayesian interpretation suggests to select the
covariance matrix of θ , divided by the error variance σ 2, as regularization matrix. If
examples from the past are not available, one may rely on prior knowledge, telling
that some entries of θ have smaller variance than others or that some correlation
exists between the entries.

4.2.4 Hierarchical Bayes: Hyperparameters

In the cases in which prior information on the parameters is not sufficient to specify
a prior, it is common to resort to hierarchical Bayesian models. Instead of fixing the
prior, a family of priors is considered, parametrized by one ormore hyperparameters.
As an example, consider the case in which prior knowledge could be formalized in
terms of zero-mean independent and equally distributed parameters whose absolute
value is not too large. In absence of more precise information on their size, we could
adopt the following prior:

θ ∼ N (0, λIN ),

where the scalar λ, called hyperparameter, enters the game as a further unknown
quantity. More in general, the prior distribution p(θ |α) may depend on a hyperpa-
rameter vector α. One may also want to consider a hyperparameter vector β entering
the definition of the likelihood p(Y |θ, β). The most common example is when the
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measurement variance σ 2 is not known and is therefore treated as a hyperparameter.
In the following, the vector of all hyperparameters will be denoted by

η = [
αTβT

]T
.

For a given η, we will denote by θMAP(η) and θB(η) the corresponding MAP and
Bayes estimates:

θMAP(η) = argmax
θ

p(θ |Y, η) (4.22)

θB(η) = E (θ |Y, η) =
∫

θp(θ |Y, η)dθ, (4.23)

where

p(θ |Y, η) = p(Y |θ, β)p(θ |α)∫
p(Y |θ, β)p(θ |α)dθ

. (4.24)

4.3 Bayesian Interpretation of the James–Stein Estimator

In this section, we show that the James–Stein estimator can be seen as a particular
Bayesian estimator. As seen, in Eq. (1.2), the measurements model is

Y = θ + E, E ∼ N (0, σ 2 IN ). (4.25)

In a Bayesian setting, the parameter vector is regarded as a random vector, whose
distribution reflects our state of knowledge. In particular, we assume

θ ∼ N (0, λIN ), (4.26)

where λ plays the role of hyperparameter. It follows that θ and Y are zero-mean
jointly Gaussian variables with

ΣθY = E (θY T ) = E (θθT ) = λIN , ΣY = E (YY T ) = (λ + σ 2)IN . (4.27)

According to (4.7), the Bayes estimate is given by the conditional expectation

E (θ |Y ) = ΣθYΣ−1
Y Y = λ

λ + σ 2
Y = (

1 − rBayes
)
Y, (4.28)

where

rBayes = σ 2

λ + σ 2
. (4.29)
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It is apparent that the estimator (4.28) has the same structure as James–Stein’s one,
with r replaced by rBayes.

Since Y and θ are jointly Gaussian, E (θ |Y ) = θMAP, where

θMAP = argmin
θ

‖Y − θ‖2
σ 2

+ ‖θ‖2
λ

= argmin
θ

‖Y − θ‖2 + σ 2

λ
‖θ‖2

which highlights the fact that E (θ |Y ) is the solution of a regularized least squares
problem, controlled by the regularization parameter σ 2/λ.

If the variances λ and σ 2 could be assigned on the basis of prior knowledge, the
similarity would be only formal. Let us make a step forward, considering the case in
which the variance σ 2 is given, while λ is estimated from the data. The basic idea is
that the hyperparameter λ could be tuned based on the observed vector Y and plugged
into (4.29) to obtain an estimate of rBayes. Alternatively, one may focus directly on
finding a sensible estimate of rBayes. In this respect, we are going to show that Stein’s
r is an unbiased estimate of rBayes under the Gaussian model (4.25) and (4.26) [6].
For this purpose, we will exploit a property of the inverse chi-square variable.

Definition 4.1 (chi-square random variable) The sum of the squares of n standard
Gaussian independent random variables is a nonnegative valued random variable
known as chi-square variable with n degrees of freedom:

χ2
n =

n∑

i=1

X2
i , Xi ∼ N (0, 1).

Its mean and expectation are

E
(
χ2
n

) = n, Var
(
χ2
n

) = 2n.

The inverse of a chi-square variable is called inverse chi-square. For n > 2, its mean
is

E

[
1

χ2
n

]
= 1

n − 2
. (4.30)

Now, assume N > 2 and observe that

‖Y‖2
λ + σ 2

=
∑n

i Y
2
i

λ + σ 2
∼ χ2

N .

Recalling that the expectation of the inverse chi-square is equal to 1/(N − 2), we
have that

E

[
λ + σ 2

‖Y‖2
]

= E

[
1

χ2
N

]
= 1

(N − 2)
.

Therefore,
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E (r) = E

[
(N − 2)σ 2

‖Y‖2
]

= σ 2

λ + σ 2
= rBayes .

This means that James–Stein’s shrinking coefficient r can be seen as an unbiased
estimator of the shrinking coefficient rBayes appearing in the formula of the posterior
expectation.

The example is instructive under several respects. First, it shows that, under suit-
able probabilistic assumptions, the typical structure of regularized estimators can be
justified through Bayesian arguments. The second point has to do with the tuning of
the regularization parameters. In the empirical Bayes approach, see Sect. 4.4, there
is a preliminary step in which a point estimate of hyperparameters is obtained by
standard estimation methods. Then, this point estimate is plugged into the expres-
sion of the Bayesian estimator. Although a full Bayesian approach would call for the
joint estimation of parameters and hyperparameters, the two-step empirical Bayes
approach not only conjugates simplicity and effectiveness but provides a probabilistic
underpinning to regularized identification methods.

4.4 Full and Empirical Bayes Approaches

When the prior, and possibly the likelihood, include hyperparameters, Bayesian esti-
mation becomes more complex and gives rise to alternative approaches. In principle,
we want to obtain the posterior distribution

p(θ |Y ) = p(Y |θ)p(θ)

p(Y )
.

However, if a hierarchical Bayesian model is adopted, we do not know p(θ), but only
p(θ |η). At the cost of assigning a prior p(η) also to the hyperparameters, the prior
p(θ) can be obtained by marginalization of the joint probability density:

p(θ) =
∫

p(θ, η)dη =
∫

p(θ |η)p(η)dη.

In general, this integral has to be computed numerically, e.g., by Monte Carlo meth-
ods. This leads to full Bayesian methods that compute the desired p(θ |Y ) regarding
both parameters and hyperparameters as random variables. Some remarks on these
methods will be given in Sect. 4.10.

The justification for a simpler computational scheme stems from the following
reformulation of the posterior:

p(θ |Y ) =
∫

p(θ, η|Y )dη =
∫

p(θ |η,Y )p(η|Y )dη. (4.31)
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Observe that
p(η|Y ) ∝ p(Y |η)p(η), (4.32)

where L(η|Y ) = p(Y |η) is the likelihood of the hyperparameter vector η. It is also
called marginal likelihood because it is obtained from the marginalization with
respect to θ of the joint density p(Y, θ |η):

L(η|Y ) =
∫

p(Y, θ |η)dθ =
∫

p(Y |θ, η)p(θ |η)dθ. (4.33)

If data are sufficiently informative, the marginal likelihood has good chances to
be unimodal and sharply peaked in a neighbourhood of the maximum likelihood
estimate

ηML = argmax
η

p(Y |η).

When this happens and p(η) is rather uninformative (as it should be), from (4.32) it
follows that p(η|Y ) is peaked as well. Then, as long as the properties of p(θ |η,Y )

do not change rapidly with η near ηML, the integral (4.31) can be approximated as

p(θ |Y ) � p(θ |ηML,Y ) = p(Y |θ, ηML)p(θ |ηML)

p(Y |ηML)
.

In practice, this suggests to compute the posterior using the prior p∗(θ) = p(θ |ηML)

associated with the maximum likelihood estimate of hyperparameters. More in gen-
eral, Empirical Bayes (EB) methods adopt a two-stage scheme. In the first step, a
point estimate η∗ is computed which is then kept fixed in the second step, when the
posterior of the parameters is obtained, based on the prior p∗(θ) = p(θ |η∗).

Among the advantages of the approach one may mention its simplicity, especially
when there are few hyperparameters and the posterior p(θ |Y, ηML) is easily obtained
as in the jointly Gaussian case. Moreover, the tuning of η admits an intuitive inter-
pretation as the counterpart of model order selection in classic parametric estimation
methods. Themain drawback is that the EBmethod fails to propagate the uncertainty
of the point estimate η∗.

Under the linear Gaussian model (4.9), the integral (4.33) admits a closed-form
solution. In fact, since

Y ∼ N (Φμθ(η),Σ(η)), Σ(η) = ΦΣθ(η)ΦT + ΣE (η),

we have

log L(η|Y ) = −1

2
log(2π det(Σ)) − 1

2
(Y − Φμθ)

TΣ−1(Y − Φμθ), (4.34)

where in the right-hand side dependence on η has been omitted for simplicity.
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Therefore, application of Empirical Bayes estimation to the linear model (4.9)
would consist of the following two steps:
Step 1:

η∗ = ηML = argmax
η

L(η|Y ).

Step 2: Let μθ = μθ(η
∗), ΣE = Σ(η∗), Σθ = Σθ(η

∗) and compute the posterior
expectation according to Sect. 4.2.3.

When the likelihood and the prior are such that integral (4.33) cannot be com-
puted explicitly, an approximation is needed. In particular, one can resort to the
Laplace approximation, which is based on a second-order Taylor expansion of
log p(Y, θ |η) around θMAP(η) defined in (4.22), from which an integrable approxi-
mation of p(Y, θ |η) appearing in (4.33) is obtained. Note, however, that the Laplace
approximation has to be recalculated for each evaluation of L(η|Y ) occurring during
the iterative computation of ηML.

4.5 Improper Priors and the Bias Space

The use of priors is most useful whenever the data alone are not sufficient to provide
reliable parameter estimates but there exists some a priori knowledge that can be
exploited. It may happen that for some parameters the introduction of a prior is not
possible or not desirable, because their estimation can be satisfactorily performed
anyway, given the information in the data. This can be accounted for by assuming
that such parameters have improper priors.

In order to deal with the case where p parameters θ P ∈ R
p have a proper prior

and the remaining n − p parameters θ I ∈ R
n−p have an improper prior, consider the

following model:

Y = Φθ + E, Φ = [
Ω Ψ

]
, θ =

[
θ P

θ I

]
(4.35)

θ ∼ N (0,Σθ ), E ∼ N (0, σ 2 IN ) (4.36)

Σθ =
[

Σ 0
0 aIn−p

]
, Σ > 0. (4.37)

The (asymptotically) improper prior for θ I is obtained by letting a → ∞ so that θ I

has infinite variance, i.e., its density is flat. This amounts to complete lack of prior
knowledge for the last n − p entries of the parameter vector θ that, for simplicity, is
assumed to be zero mean. The use of improper priors in a Bayesian setting has the
same effect as the introduction of abias space in a deterministic regularization setting.
Within such a subspace, parameters are immune from regularization, a feature that
could be useful to apply regularization only where needed without causing undesired
distortions. The following theorem, whose proof is in Sect. 4.13.4, is analogous to
a result obtained in [22] to obtain a Bayesian interpretation of smoothing splines. It
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illustrates the asymptotic behaviour of posterior means and variances as a goes to
infinity.

Theorem 4.3 (adapted from [22]) If rank(Φ) = n and rank(Ω) = n − p, then

lim
a→∞E (θ I |Y ) = (Ψ T M−1Ψ )−1Ψ T M−1Y

lim
a→∞E (θ P |Y ) = ΣΩT M−1(In − Ψ (Ψ T M−1Ψ )−1Ψ T M−1)Y

M = ΩΣΩT + σ 2 IN

lim
a→∞Var (θ |Y ) = σ 2

(
ΦTΦ + σ 2

[
0 0
0 Σ−1

])−1

.

An interesting benefit of improper priors is the possibility of reducing the number
of hyperparameters by treating some of them as unknowns whose prior is improper.
Letting the symbol 1n×1 denotes a column vector of ones, assume, for example,
that θ ∼ N (μ1n×1,Σθ), i.e., all the scalar entries of θ share the same prior mean
μ. In most cases, very little is known about μ that could be therefore regarded
as a hyperparameter to be tuned by marginal likelihood maximization. It can be
then treated as a deterministically known variable, according to the Empirical Bayes
approach, see Sect. 4.4. By this choice, however, the hyperparameter is fixed to its
point estimate and its uncertainty is not propagated, implying that the uncertainty of
θB will be underestimated if assessed by (4.14).

Alternatively, μ can be treated as a further random parameter. For this purpose,
define θ̃ = θ − μ and consider the model

θ̄ =
[

θ̃

μ

]
, Σθ̄ =

[
Σθ 0
0 a

]

Y = Φ̄θ̄ + E, Φ̄ = [
Φ Φ1n×1

]

θ̄ ∼ N (0,Σθ̄ ), E ∼ N (0, σ 2 IN ).

This formulation decreases the number of hyperparameters, without introducing
prejudices (provided we let a → ∞). More importantly, it is now possible to assess
the joint uncertainty of the estimates of μ and θ̃ through the posterior variance
Var(θ̄ |Y ).

4.6 Maximum Entropy Priors

A major appeal of the Bayesian paradigm lies in its ability to provide a rational
foundation to regularization: one starts from prior knowledge and then proceeds
with its formalization in terms of a probabilistic prior, from which the regularization
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penalty is finally derived. However, there is a stumbling block in the way, because
the available prior knowledge is often too vague to avoid arbitrariness in the choice
of the prior distribution. As a matter of fact, the derivation of systematic approaches
for the selection of prior distributions is a classic topic of Bayesian estimation theory.
In this section, the approach based on entropy maximization is briefly reviewed.

The starting point is the observation that, even when prior information is absent
or very limited, there are candidate distributions that are obviously preferable, due to
symmetry arguments. Assume, for instance, that candidate values for a scalar param-
eter θ are known to belong to a finite set {θi , i = 1, . . .m} and no further information
is available. Then, the only reasonable prior distribution will be p(θ = θi ) = 1/m. In
fact, assigning unequal probabilities would create an unjustified asymmetry, given
that our prior information does not make any distinction between the m possible
values of the parameter.

The case of a continuous-valued parameter θ taking values in a finite interval
[a, b] can be addressed in a similar way. In this case, a reasonable prior distribution
is the uniform one:

p(θ) =
{ 1

b−a , a ≤ θ ≤ b
0, elsewhere

.

In both examples, we might say the chosen distributions are those that reflect the
maximum ignorance about the unknown parameter.

The next step is to formalize this notion of maximum ignorance in contexts where
some partial information about θ is available. This can be done by means of the
notion of entropy of a probability distribution. For a discrete distribution p(·) taking
values p(θi ) on a numerable set {θi }, the entropy H is defined as

H(p) = −
∑

i

p(θi ) log p(θi ).

Note that the minimum possible entropy H(p) = 0 occurs when the probability
is concentrated at a unique value θ̄ . This is the case of a maximally informative
distribution such that p(θ = θ̄ ) = 1. Conversely, if the set {θi } has cardinality m,
the maximum value H(p) = log(m) is achieved in correspondence of the uniform
distribution p(θ = θi ) = 1/m,∀i . In other words, the larger the entropy, the less
information is conveyed by the distribution.

For continuous-valued random variables, the notion of differential entropy h(p)
is introduced:

h(p) = −
∫

Dθ

p(θ) log p(θ)dθ,

where Dθ denotes the support of the distribution. Note that, among distributions
with finite support, the maximum possible (differential) entropy is achieved by the
uniform distribution.

The principle ofMaximum Entropy (MaxEnt) states that the admissible distribu-
tionwith largest entropy is the one that best represents the current state of knowledge.
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The admissible distributions are those that satisfy a set of constraints, chosen so as
to incorporate all the available prior knowledge. For instance, if the prior knowledge
amounts to knowing that θ ∈ [a, b], the prior suggested by the MaxEnt principle is
the uniform distribution. Other types of constraints are typically expressed as expec-
tations of functions of the parameters θ . In particular, consider a random variable θ ,
subject to known values ηi of m expectations

E [gi (θ)] =
∫

gi (θ)p(θ)dθ = ηi , i = . . . ,m. (4.38)

Then, we have the following useful result.

Theorem 4.4 (General form of maximum entropy distributions, based on [12])
Among all the distributions satisfying (4.38), the maximum entropy one is of expo-
nential type

p(θ) = A exp(−λ1g1(θ) − . . . − λmgm(θ)), (4.39)

where λi are m constants determined from (4.38) and A is such that

A
∫ +∞

−∞
exp(−λ1g1(θ) − . . . − λmgm(θ))dθ = 1. (4.40)

Example 4.5 (MaxEnt prior from information on expected absolute value)Assume
that prior knowledge is summarized by the expectation E |θ | = η. Then, the MaxEnt
prior is the solution of the constrained optimization problem

max
p

h(p) s.t. E |θ | = η.

Obviously, m = 1 and g1(θ) = |θ |. In view of (4.39) and (4.40), p(θ) is a Laplace
distribution:

p(θ) = 0.5λe−λ|θ |.

The value of λ is found by imposing the constraint on the expectation:

∫ +∞

−∞
0.5|θ |λe−λ|θ |dθ = η.

Since the constraint on the expectation is satisfied for λ = 1/η, the following Laplace
distribution is eventually obtained:

p(θ) = e− |θ |
η

2η
.

Therefore, starting from a very partial information, such as a guess on the expected
absolute value of the parameter, it is possible to completely specify a prior distribu-
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tion that: (i) is coherent with the prior knowledge and (ii) does not introduces undue
assumptions because it is the least informative one, so far as entropy is taken as a
measure of informativeness. One could object that it is scarcely realistic to assume
prior knowledge of the expected absolute value of θ . However, if we adopt the empir-
ical Bayes framework, the objection is circumvented by the possibility of treating η

as a hyperparameter that will be estimated from data.
Therefore, prior knowledge may just tell that the expectation of |θ | is finite,

without specifying a value for this expectation. The MaxEnt principle then suggests
the functional form of the prior that incorporates a hyperparameter η, whose tuning,
e.g., by marginal likelihood maximization, see Sect. 4.4, will be the first step of the
actual estimation algorithm. As it will be seen in the following, this particular prior
is associated with the Bayesian interpretation of the regularization penalty employed
by the so-called Lasso estimator that has been already introduced in a deterministic
regularization setting in Sect. 3.6.1.1. �

For our purposes, of particular interest are MaxEnt priors satisfying constraints
on the second-order moments. In the scalar case, we have the following classical
result, e.g., see [19].

Proposition 4.1 (based on [12]) Let θ be a zero-mean random variable with known
variance E θ2 = λ. Then, the MaxEnt distribution is normal:

θ ∼ N (0, λ).

Also in this case, the necessity of specifyingλ is not an issue, because the unknown
variance can be regarded as a hyperparameter and tuned by marginal likelihood
maximization. In other words, if the only prior knowledge is that θ has a finite,
yet unknown, variance, the MaxEnt principle suggests the use of a normal prior
parametrized by its variance.

When θ is a vector, amultivariate priormight be derived according to the following
proposition.

Proposition 4.2 (based on [12]) Let θ be a zero-mean n-dimensional random vec-
tor whose entries have known variances E θ2

i = λi , i = 1, . . . , n. Then, the MaxEnt
distribution is a multivariate normal with diagonal covariance matrix:

θ ∼ N (0,Σθ), Σθ = diag{λi }.

The importance of this result is twofold. First, also in the multivariate case, the
least informative distribution under second moment constraints is of normal type.
Moreover, if the covariances are unknown, it is seen that the MaxEnt principle yields
independent distributions.

A shortcoming of themaximumentropy approach is that the resulting distributions
are not invariant with respect to reparametrizations of the unknown vector. To make
an example, we have already seen that the maximum entropy distribution of θ in a
finite interval [1, 2] is uniform. On the other hand, if the reparametrization ψ = 1/θ
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is adopted and the MaxEnt approach is applied to ψ , the resulting prior will be a
uniform distribution for ψ in [0.5,1], which corresponds to

p(θ) =
{

2
θ2 , 1 ≤ θ ≤ 2
0, elsewhere,

which is obviously different from a uniform distribution. A possible way to limit
arbitrariness is to specify that, before applying the MaxEnt principle, one should
first identify the “object of interest”. Indeed, choosing either θ or 1/θ as object of
interest is going to yield different MaxEnt priors.

4.7 Model Approximation via Optimal Projection �

Approximate low-ordermodels are commonly used evenwhen there is awareness that
the real data are generated by a more complex model. Motivations may range from
their use for control design purposes to better interpretability of the phenomena under
investigation. Unfortunately, under model misspecification, several nice properties
enjoyed by standard estimators are no more valid. In particular, a naive application
of the least squares may provide far less than satisfactory results. In this section, it is
shown that, within the Bayesian framework, the search for an optimal approximate
model can be given a rigorous formulation that admits a projection-based solution.

We assume that the data Y are distributed according to (4.9), which summarizes
our state of knowledge. However, rather than resorting to Bayesian estimation of
the vector θ , an approximate model, typically of low order, is searched for. For
instance, if θi were the samples of an impulse response, one might be interested in
approximating them by a parametric model:

θ � g(ζ ), g(ζ ) = [
g1(ζ ) · · · gn(ζ )

]T
,

where ζ = [
ζ1 · · · ζq

]T
is the unknown parameter vector. For example, in order to

approximate the sequence θi by means of a single exponential function, it suffices to
let q = 2 and

gi (ζ ) = ζ1e
ζ2i ,

where ζ1 is the amplitude and ζ2 is the rate coefficient of the exponential.
A very natural estimator is the least squares one:

ζ LS = argmin
ζ

‖Y − Φg(ζ )‖2.

Note that ζ LS coincideswith themaximum likelihood estimate if the followingmodel
is assumed:

Y = Φg(ζ ) + E, E ∼ N (0, σ 2 IN ).
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In the present context, however, no claim ismade that reality conforms to our approx-
imatemodel. It maywell be that the true θ , beingmore complex than its parsimonious
parametric model g(ζ ), is better represented by themodel (4.9). Nevertheless, we are
interested in finding the best approximation of θ within a set P = {g(ζ )|ζ ∈ R

q , }
of parametric approximations.

Under model (4.9), the optimal approximate model g∗ can be defined as the one
that minimizes the mean squared error E ‖θ − g‖2. For a generic model g = g(ζ ),
parametrized by the vector ζ ∈ R

q , q ≤ n, we have that

g∗ = g(ζ ∗), ζ ∗ := argmin
ζ

E
[‖θ − g(ζ )‖2|Y ]

, (4.41)

where the conditional expectation is taken with reference to the probability measure
specified by (4.9). The following theorem, whose proof is in Sect. 4.13.5, was first
derived in the context of linear system identification [20]. It shows that the optimal
approximation is the projection of the Bayes estimate θB onto the set P .

Theorem 4.6 (Optimal approximation, based on [20]) Assume that (4.9) holds.
Then,

ζ ∗ = argmin
ζ

‖θB − g(ζ )‖2. (4.42)

In view of the last theorem, the best approximation g(ζ ) ∈ P can be computed by
a two-step procedure. First, the Bayes estimate θB is obtained and in the second step
the optimal g(ζ ∗) is calculated as the solution of the least squares problem (4.42).

An interesting question is whether the obtained approximation is still optimal if
the goal is minimizing the error, not with respect to θ , but with respect to the noiseless
outputΦθ . In other words, the goal is finding go that minimizes ‖Φθ − Φgo)‖2. This
can be done by introducing a weighted norm in the cost function:

go = g(ζ o), ζ o := argmin
ζ

E
[‖θ − g(ζ )‖2W

∣∣Y
]
, (4.43)

where ‖x‖2W stands for xTWx . In particular, if W = ΦTΦ, then

‖θ − g(ζ )‖2W = ‖Φθ − Φg(ζ )‖2.

By extending the proof of Theorem 4.6 to the case of a weighted norm, the following
projection result is obtained.

Theorem 4.7 (Optimal weighted approximation, based on [20]) Assume that (4.9)
holds. Then,

ζ o = argmin
ζ

‖θB − g(ζ )‖2W . (4.44)

The consequence is that different approximations go are obtained depending on
their prospective use. If the scope is just approximating θ , then W = In , but, if the
scope is predicting the outputs, then W = ΦTΦ and a different result is obtained.
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4.8 Equivalent Degrees of Freedom

In this section, the Bayesian estimation problem for the linear model is analysed
by means of a diagonalization approach. The purpose is twofold: (i) the equivalent
degrees of freedom of the Bayesian estimator are introduced together with their
relationship with suitable weighted squared sums of residuals and squared sums of
estimated parameters; (ii) it is shown thatηML, theMLestimate of the hyperparameter
vector, satisfies meaningful conditions involving the degrees of freedom. Finally, the
obtained results are applied to the tuning of the regularization parameter, defined
as the ratio between scaling factors for the noise variance ΣE and the parameter
variance Σθ . For the sake of simplicity, in this section, we assume μθ = 0.

Let us consider the case when the hyperparameters are just two scaling factors
for the covariance matrices ΣE and Σθ , that is,

Σθ = λK , λ > 0 (4.45)

ΣE = σ 2Ψ, σ 2 > 0 (4.46)

η = [
λ σ 2

]T
, (4.47)

where K and Ψ are known definite positive matrices. In such a case, it is immediate
to see that the Bayes estimate

θB =
(

ΦTΨ −1Φ + σ 2

λ
K−1

)−1

ΦTΨ −1Y

depends only on the ratio γ = σ 2/λ, which behaves as a deterministic regularization
parameter. This means that only the ratio between the scaling factors is relevant to
the computation of a point estimate, although both of them are needed to compute the
posterior variance (4.14). When Ψ = IN and K = In , the above estimator provides
a Bayesian interpretation to the classical ridge regression estimator. In particular, γ
can be interpreted as a noise-to-signal ratio and its tuning reformulated as a statistical
estimation problem.

Given a positive definite symmetric matrix S, let S1/2 = (
S1/2

)T
be its symmetric

square root, i.e., S1/2S1/2 = S. Now, consider the singular value decomposition

Ψ −1/2ΦK 1/2 = UDV T ,

where U and V are square matrices such that UTU = IN and V T V = In and
D ∈ R

N×n is a diagonal matrix with diagonal entries {di }, i = 1, . . . , n, see (3.134).
Moreover, define

Ȳ = UTΨ −1/2Y

Ē = UTΨ −1/2E

θ̄ = V T K−1/2θ.
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Observe that

E
(
Ē Ē T

) = UTΨ −1/2E EETΨ −1/2U = σ 2UTU = σ 2 IN .

Analogously, E
(
θ̄ θ̄T

) = λIn . Moreover,

Ȳ = UTΨ −1/2(Φθ + E) = UTΨ −1/2ΦK 1/2VV T K−1/2θ + Ē

= UTUDV T V θ̄ + Ē = Dθ̄ + Ē .

In view of these properties, it follows that the original Bayesian estimation prob-
lem admits the following diagonal reformulation:

Ȳ = Dθ̄ + Ē, Ē ∼ N (0, σ 2 IN ), θ̄ ∼ N (0, λIn), (4.48)

where Ē and θ̄ are independent of each other.
In view of statistical independence, we have N independent scalar models:

ȳi = di θ̄i + v̄i , i = 1, . . . , n

ȳi = v̄i , i = n + 1, . . . , N ,

where v̄i ∼ N (0, σ 2), i = 1, . . . , N , and θ̄i ∼ N (0, λ), i = 1, . . . , n.
By (4.11), it is straightforward to see that the Bayes estimates are

θ̄B
i = λdi ȳi

σ 2 + λd2
i

= di ȳi
γ + d2

i

, i = 1, . . . , n

or, in matrix form,
θ̄B = (DT D + γ In)

−1DT Ȳ .

Let the residuals be defined as ε̄i = ȳi − d̄i θ̄B
i , i = 1, . . . , N , where

d̄i =
{
di , 1 ≤ i ≤ n
0, n + 1 ≤ i ≤ N

. (4.49)

Then, we have

ε̄i = yi − d̄2
i ȳi

γ + d̄2
i

= γ ȳi
γ + d̄2

i

(4.50)

E ε̄2i = γ 2E ȳ2i
(γ + d̄2

i )
2

= γ 2(d̄2
i λ + σ 2)

(γ + d̄2
i )

2
= σ 2γ

γ + d̄2
i

= σ 2

(
1 − d̄2

i

γ + d̄2
i

)
(4.51)

or, in matrix form,
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ε̄ = γ (DT D + γ IN )−1Ȳ , E ‖ε̄‖2 = σ 2
(
N − trace(D(DT D + γ IN )−1DT )

)
.

(4.52)
It is worth noting that the above relationships do not hold for a generic regulariza-

tion parameter γ , but only when γ = σ 2/λ. In the remaining part, we present some
results that were first derived in the context of Bayesian deconvolution in [5]. The
proof of the following proposition is in Sect. 4.13.6.

Proposition 4.3 (based on [5]) For a given hyperparameter vector η, let WRSS
denote the following weighted squared sum of residuals:

WRSS = (Y − ΦθB)TΨ −1(Y − ΦθB),

where θB = E [θ |Y, η]. Then,

E (WRSS) = σ 2(N − trace(H(γ ))),

where
H(γ ) = Φ(ΦTΨ −1Φ + γ K−1)−1ΦTΨ −1

is the so-called hat matrix.

As already noted, see (3.64), when ΣE = σ 2 IN , the predicted output Ŷ = ΦθB

and the measured output Y are related through the hat matrix:

Ŷ = H(γ )Y.

In order to better understand the link between the hat matrix and the degrees of
freedom, just consider the standard linear model Y = Φθ + E, θ ∈ R

n , and the cor-
responding LS estimate θLS = (ΦTΦ)−1ΦT Y . The predicted output is Ŷ = HLSY ,
where HLS = Φ(ΦTΦ)−1ΦT enjoys the property trace(HLS) = n.

It is this analogy that justifies the introduction of equivalent degrees of freedom
which we already encountered in (3.65) as a function of the regularized estimate θR

described in the deterministic context. Its definition, here derived starting from the
stochastic context, is reported below stressing its dependence on the regularization
parameter γ .

Definition 4.2 (equivalent degrees of freedom) The quantity

dof(γ ) = trace(H(γ )), 0 ≤ dof(γ ) ≤ n (4.53)

is called equivalent degrees of freedom.

In view of (4.52),

dof(γ ) =
n∑

i=1

d2
i

d2
i + γ
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so that dof(γ ) is a monotonically decreasing function of γ with 0 ≤ dof(γ ) ≤ n.
The equivalent degrees of freedom provide an easily understandable measure of the
flexibility of estimator: for instance, if they are approximately equal to three, the
Bayesian estimator has a flexibility comparable to a model with three parameters.
For linear-in-parameter models estimated by ordinary or weighted least squares, the
degrees of freedom coincide with the rank of the regressor matrix and, therefore,
they can take only integer values. The equivalent degrees of freedom of the Bayesian
estimator, conversely, are a nonnegative real number controlled by γ .

The next theorem establishes a connection between the degrees of freedom and
the ML estimate

ηML =
[
λML

(
σ 2

)ML
]T

of the hyperparameter vector. Accordingly, we define

γML =
(
σ 2

)ML

λML
.

Moreover, we introduce the following weighted squared sum of estimated parame-
ters:

WPSS = (θB)T K−1θB = ∥∥θ̄B
∥∥2 =

n∑

i=1

d2
i ȳ

2
i

(γ + d2
i )

2
. (4.54)

The proof of the following result is in Sect. 4.13.7.

Theorem 4.8 (based on [5]) Assume that model (4.9) holds where Σθ and ΣE

are as in (4.46)–(4.47). Then, the ML estimates of the hyperparameters satisfy the
following necessary conditions:

WRSS = (
σ 2

)ML (
N − dof(γML)

)
(4.55)

WPSS = λMLdof(γML). (4.56)

By taking the ratio between (4.55) and (4.56), the following proposition is
obtained.

Proposition 4.4 (based on [5]) If λML and
(
σ 2

)ML
are nonnull and finite, then

γML = dof(γML)

N − dof(γML)

WRSS

WPSS
. (4.57)

This last corollary can be used as a simple and practical tuning procedure as it requires
just a line search on the scalar γ . Of course, (4.57) relies on the necessary conditions
of Theorem 4.8, so that one has to check if the solution corresponds to a maximum
of the likelihood function.
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4.9 Bayesian Function Reconstruction

In this section, the Bayesian estimation approach is illustrated through its application
to the reconstruction of an unknown function from noisy samples. The observations
will be generated by adding pseudorandom noise to a known function g(x), so that
the performances of alternative estimators can be directly assessed by comparison
with the ground truth. The selected g(x) is the same function (3.26) used in the
previous chapter in order to illustrate polynomial regression:

g(x) = (sin(x))2(1 − x2), x ∈ [0, 1]. (4.58)

Also the noise model is the same:

yi = g(xi ) + ei , i = 1, . . . , N . (4.59)

We let N = 40, x1 = 0, x40 = 1, and x2, . . . , x39 are evenly spaced points between
x1 and x40. Finally, ei , i = 1, . . . , 40, are i.i.d. Gaussian distributed with mean zero
and standard deviation 0.034.

The problem of estimating θi = g(ti ), i.e., the samples of the unknown function,
is a particular case of the linear Gaussian model (4.9) with Φ = IN , that is,

Y = θ + E, E ∼ N (0, σ 2 IN ). (4.60)

SinceΦ is square, in this case, the number n of unknowns coincides with the number
N of observations.

The noisy data and the true function are displayed in the top left panel of Fig. 4.1.
It is assumed that the available prior knowledge regards the “regularity” of g(·) and
the knowledge that g(0) = 0. A possible probabilistic translation of this qualitative
knowledge is assuming that θi is a so-called random walk:

θi = θi−1 + wi , i = 1, . . . , N , θ0 = 0,

where wi ∼ N (0, λ) are independent random variables. In fact, under the random
walk model, the first difference

θi − θi−1 = wi

has a finite variance, equal to λ. Hence, if we approximate the derivative of g(·) by
the first difference θi − θi−1, this approximation is less than 1.96

√
λwith probability

0.95, which guarantees that the profile of the function cannot vary too quickly. Note
that, due to the qualitative nature of the prior knowledge, the precise value of λ is
unknown, so that it has to be treated as a hyperparameter. Conversely, it is assumed
that the true value of σ 2 is known. Summarizing, we have
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Fig. 4.1 Function reconstruction example. Top left: noisy data and true function. Top right, bottom
left and bottom right: Residual sum of squares, i.e., the sum of the squared differences between
the function values and their estimates, degrees of freedom and marginal loglikelihood against
the hyperparameter λ. The oracle denotes the value that minimizes RSS while ML indicates the
maximizer of the marginal likelihood

θi =
i∑

j=1

w j , i = 1, . . . , N

or, in matrix form,

θ = Fw, F =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
, w =

⎡

⎢⎢⎢⎢⎢⎣

w1

w2

w3
...

wN

⎤

⎥⎥⎥⎥⎥⎦
.
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Observing that Var(w) = λIN , the prior variance of the parameter vector is

Σθ = λFFT = λ

⎡

⎢⎢⎢⎣

1 1 . . . 1
1 2 . . . 2
...

...
...

...

1 2 . . . N

⎤

⎥⎥⎥⎦ .

For a given λ, the Bayes estimate θB is obtained according to (4.10) and can be
written as

θB = Σθ

(
Σθ + σ 2 IN

)−1
Y.

The corresponding equivalent degrees of freedom, obtained by (4.53), are now
thought as a (monotonically nondecreasing) function of λ, i.e.,

dof(λ) = trace H(λ), H(λ) = Σθ

(
Σθ + σ 2 IN

)−1
, Σθ = λFFT .

In the bottom left panel of Fig. 4.1, the degrees of freedom are plotted against λ.
For small values of λ they are close to zero and get closer to N = 40 as λ goes to
infinity. It is a rather general feature that the function dof(λ) is better visualized on
a semilog scale. In order to tune the regularization parameter λ, one can resort to the
maximization of the marginal loglikelihood:

λML = argmax
λ

{
−1

2
log(2π det(Σ)) − 1

2
Y TΣ−1Y

}

Σ = Σθ + σ 2 IN = λFFT + σ 2 IN .

It turns out thatλML = 4.92e − 4, the corresponding degrees of freedombeing 12.17.
For the sake of comparison, λ = 6.61e − 4 is the best possible value, i.e., the one
provided by an oracle that exploits the knowledge of the true function in order
to minimize the sum of the squared reconstruction errors. This latter quantity is
function of λ and here denoted by RSS(λ). As seen in the top right panel of Fig. 4.1,
marginal likelihood maximization achieves RSS = 9.80e − 2, not much worse than
RSS = 9.71e − 2 achieved by the oracle, whose associated degrees of freedom are
13.88. Therefore, in this specific case, the marginal likelihood criterion somehow
underestimates the complexity of the model.

In Fig. 4.2, the estimates obtained in correspondence of six different values of
λ are displayed. It is apparent that for λ = 1e − 6 and λ = 1e − 5 the estimated
function is overregularized, while overfitting occurs for λ = 1e − 1 and λ = 1e − 2.
The two bottom panels display the oracle and ML estimates, the former exhibiting a
slightly more regular profile.

Finally, observing that in our case ΣθY = Σθ , we have

Σθ |Y = Var(θ |Y ) = Σθ − ΣθΣ
−1
Y Σθ
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Fig. 4.2 Function reconstruction example. The panels display the Bayes estimates ĝ(x) corre-
sponding to six different values of the hyperparameter λ, including the one provided by the oracle
and the maximum likelihood one
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Fig. 4.3 Function reconstruction example. True function and Empirical Bayes estimate ĝ(x) based
on λML together with its 95% Bayesian credible intervals

and we can compute the 95% Bayesian credible intervals, according to (4.8). As it
can be seen from Fig. 4.3, the credible limits successfully capture the uncertainty, as
demonstrated by the fact that the true function lies within the limits.

This simple example has shown that Bayesian estimation can be effectively
employed in order to reconstruct an unknown function without need of assuming
a specific parametric structure, e.g., polynomial or other. The key idea is the use
of a smoothness prior, expressed through the assumed prior distribution of the first
differences of the function. The associated variance λ is treated as a hyperparameter
that can be tuned via marginal likelihood maximization. Altogether, this is a flexi-
ble Empirical Bayes scheme that can be employed as a general-purpose black-box
estimator.

Of interest is also the fact that the considered function could have been the impulse
response of a dynamical system. In this respect, the example highlights also the limits
of the approach.Afirst issue, easily fixable, has to dowith the insufficient smoothness
of the estimate. As seen in Fig. 4.3, the true function is significantly smoother than
its estimate. As a matter of fact, it is not difficult to increase the regularity of the
Bayes estimate: for instance, it suffices to assume that the samples θi = g(xi ) are an
integrated random walk:
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θi = θi−1 + ξi

ξi = ξi−1 + wi ,

where wi ∼ N (0, λ) are again independent and identically distributed. This prior
distribution is going to yield smoother profiles. Rather interestingly, the obtained
estimate can be seen as the discrete-time counterpart of cubic smoothing splines, a
method widely used for the nonparametric reconstruction of unknown functions.

A more serious issue regards extrapolation properties of the estimate that are in
turn connected with the type of asymptotic decay shown by stable impulse responses.
As it can be seen from Fig. 4.3, oscillations and credible intervals do not tend to
dampen as x increases.While it would be easy to compute the Bayes estimate also for
values far beyond the observation window, the result would be disappointing. Indeed,
coherently with the diffusive nature of random walks, the width of the credible band
would diverge, which is unnecessarily conservative when a stable impulse response
is reconstructed. It appears that the task of identifying impulse responses calls for
prior distributions that are specifically suited to the their features, especially the
asymptotic ones. The development of these prior distributions, or equivalently the
design of suitable regularization penalties, will be a central topic of the subsequent
chapters.

4.10 Markov Chain Monte Carlo Estimation

As already mentioned in Sect. 4.4, in the full Bayesian approach the estimate

p(θ |Y ) =
∫

p(θ, η|Y )dη =
∫

p(θ |η,Y )p(η|Y )dη

requires amarginalizationwith respect to the hyperparameter vectorη. In general, this
integral cannot be computed analytically. Nevertheless it can be computed numer-
ically by means of Markov Chain Monte Carlo (MCMC) methods that generate
pseudorandom samples drawn from the joint posterior density p(θ, η|Y ). The Gibbs
sampling (GS) algorithm is the most straightforward and popular MCMC method.
Its goal is to simulate a realization of a Markov chain, whose samples, though not
independent of each other, form an ergodic process whose stationary distribution
coincides with the desired posterior. Hence, provided that the burn-in phase is dis-
carded, the posterior distribution is approximated by the histogram of the samples.
In order to generate the samples, at each step a random extraction is made from a
proposal distribution. In the Gibbs sampler, the proposal distribution is the so-called
full conditional, that is, the probability of a given element of the parameter vector
given the data and the current values of all other elements.

For the linear Gaussian model (4.9), a Gibbs sampler may be implemented as
follows:
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1. Select initializations η0, θ0, and let k = 0.
2. Draw a sample η(k+1) from the full conditional distribution p(η|θ(k),Y ).
3. Draw a sample θ(k+1) from the full conditional distribution p(θ |η(k+1),Y ).
4. If k = kmax , end, else k = k + 1 and go to step 2.

This stochastic simulation algorithm generates a Markov chain whose stationary
distribution coincides with p(θ, η|Y ). Therefore, though correlated, the generated
samples {θ(k), η(k)} can be used to estimate the (joint and marginal) posterior dis-
tributions and also the posterior expectations via the proper sample averages. For
example,

1

N

N∑

k=1

θ(k) � E (θ |Y ).

The choice of the prior distributions p(θ |η) and p(η|Y ) has a critical influence on the
efficiency of the scheme. The priors are called conjugate, when for each parameter
the prior and the full conditional belong to the same distribution family. This implies
that the same random variable generators can be used throughout the simulation.

Considermodel (4.9), whereΣE is known andΣθ = λK , withλ unknown.Below,
we describe a Gibbs sampling scheme for obtaining the posterior distributions of θ

and η = λ. For θ , the prior is θ |λ ∼ N (0, λK ). A conjugate prior for λ is the inverse
Gamma distribution:

1

λ
∼ Γ (g1, g2), g1, g2 > 0.

In other words, it is assumed that 1/λ is distributed as a Gamma random variable, so
that

p

(
1

λ

)
∝

(
1

λ

)g1−1

e−(
g2
λ ).

With this choice of the prior, the full conditional of 1/λ will be distributed as a
suitable Gamma variable, ∀k. More precisely, it can be shown that, if

p
(
θ̄ |λ) ∼ N (0, λIN ), p

(
1

λ

)
∼ Γ (g1, g2)

then

p

(
1

λ

∣∣∣∣θ̄
)

∼ Γ

(
g1 + N

2
, g2 +

∥∥θ̄
∥∥2

2

)
. (4.61)

Recall that the mean and variance of the Gamma random variable are g1/g2 and
g1/g22 , respectively. For the prior to be as uninformative as possible, we let g1 and g2
decrease to zero. Under these assumptions, the Gibbs sampler unfolds as follows:

1. Initialize λ and θ , e.g., using the empirical Bayes estimates

λ(0) = λML , θ0 = θB = E (θ |λML ,Y )
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and let k = 0.
2. Draw a sample 1/λ(k+1) from the full conditional distribution

p

(
1

λ

∣∣∣∣θ
(k),Y

)
= p

(
1

λ

∣∣∣∣θ
(k)

)
= Γ

(
N

2
,
θ (k)T K−1θ(k)

2

)
. (4.62)

3. Draw a sample θ(k+1) from the full conditional distribution

p
(
θ
∣∣λ(k+1),Y

) = N
(
E (θ |λ(k+1),Y ),Var(θ |λ(k+1),Y )

)

whose mean and variance are obtained according to (4.10) or (4.13).
4. If k = kmax , end, else k = k + 1 and go to step 2.

Above, the expression of the full conditional (4.62) is a direct consequence of the
conjugacy property (4.61), as it can be seen by letting θ̄ = K−1/2θ(k), where K−1/2

is a symmetric matrix such that K−1/2K−1/2 = K−1.
When there are other hyperparameters to tune, e.g., the noise variance σ 2, the

MCMC scheme can be properly extended. Provided that they exist, conjugate priors
ensure an efficient sampling from the proposal distributions that generate the random
samples, although a variety of MCMC schemes are available that deal with non-
conjugate priors at the cost of an increased computational effort.

The main advantage of MCMC methods is that they implement the full Bayesian
framework that is only approximated by the empirical Bayes scheme. In particular,
MCMC methods do not neglect the hyperparameter uncertainty which is correctly
propagated to the parameter estimate. However, as already discussed in Sect. 4.4, if
data are informative enough to ensure a precise estimate of the hyperparameters, the
difference between MCMC and empirical Bayes estimates (and associated credible
regions) may be of minor importance.

4.11 Model Selection Using Bayes Factors

As discussed in Sect. 2.6.2, one fundamental issue is the selection of the “best”model
inside a class of postulated structures. In the classical setting, this can be performed
using criteria like AIC (2.34) and BIC (2.36) or adopting a cross-validation strategy.
We will now see that the Bayesian approach provides a powerful alternative based
on the concept of posterior model probability.

Let M i be a model structure parametrized by the vector xi . In the system iden-
tification scenario discussed in Chap. 2, the structures could be ARMAX models of
different complexity. Hence, each xi would correspond to the θ i parametrizing (2.1)
and containing the coefficients of rational transfer functions of different orders. If
little knowledge on them were available, poorly informative prior densities could be
assigned. Another example concerns the function estimation problem illustrated in
Sect. 4.9. Here, xi could contain the samples θ i of the unknown function g modelled
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as a stochastic process. Then, the different structures could represent different covari-
ances of g defined by a random walk or an integrated random walk. Each covariance
would then depend on an unknown hyperparameter vector ηi containing the variance
of the random walk increments and possibly also of the measurement noise. So, in
this case, one would have xi = [θ i ηi ]. Here, ηi is a random vector with flat priors
typically assigned to the variances to include just nonnegativity information.

Now, suppose that we are given m competitive structures M i . An important
conceptual step is to interpret even them as (discrete) random variables, each having
probability Pr(M i ) before seeing the data Y . The selection of the best model has
then a natural answer: one should select the structure having the largest posterior
probability Pr(M i |Y ). Using Bayes rule, one has

Pr(M i |Y ) =
∫
p(Y |M i , xi )dxi Pr(M i )

p(Y )
.

A typical choice is to think of the structures as equiprobable, so that Pr(M i ) = 1/m
for any i . Then, one can select theM i maximizing the so-called Bayesian evidence
given by

p(Y |M i ) =
∫

p(Y |M i , xi )dxi .

Note that this corresponds to the marginal likelihood where all the parameter uncer-
tainty connected with the i-th structure has been integrated out. Given two structures
M 1 and M 2, the Bayes factor is also defined as follows:

B12 = p(Y |M 1)

p(Y |M 2)
.

Hence, large values of B12 indicate that data strongly supportM 1 as opposed toM 2.
For the computation of the Bayesian evidence, the same numerical considerations

reported at the end of Sect. 4.4 then hold. In particular, when the evidence cannot be
computed explicitly, approximations are needed given by the Laplace approximation.
Also the BIC criterion is often adopted. In particular, in the function estimation
problem one can integrate out θ . Then, one can evaluate the complexity of the model
using the marginal likelihood optimized w.r.t. the hyperparameters ηi , then adding a
term which penalizes the dimension of the hyperparameter vector. This will be also
discussed later on in Sect. 7.2.1.1.

MCMC can be also used to compute the evidence by simulating from posterior
distributions and using the harmonic mean of the likelihood values, see Sect. 4.3 in
[14]. A more powerful and complex approach employs MCMC techniques able to
jump between models of different dimensions, an approach known in the literature
as reversible jump Markov chain Monte Carlo computation [10].
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4.12 Further Topics and Advanced Reading

There is an extensive literature debating on the interpretation of probability as a quan-
tification of personal belief and it would be impossible to give a satisfactory account
of all the contributions. The reader interested in studyingmotivations and foundations
of subjective probabilitymay refer to [4, 16]. One of themerits of Bayesian probabil-
ity is its efficacy in addressing ill-posed and ill-conditioned problems, including also
a wide class of statistical learning problems. The connection between deterministic
regularization andBayesian estimation has been pointed out by several authors in dif-
ferent contexts. Two examples related to spline approximation and neural networks
are given by [8, 15].

The choice and tuning of the priors is undoubtedly the crux of any Bayesian
approach. It is not a surprise that the tuning of hyperparameters via the Empirical
Bayes approach emerged early as a practical and effective way to deploy Bayesian
methods in real-world contexts, see [6] for its use in the study of the James–Stein esti-
mator. Since the 1980s, thanks to the advent of Markov chain Monte Carlo methods,
full Bayesian approaches have become a viable alternative, motivating reflections on
the pros and cons of the two approaches, see, for instance, [17]. In particular, the
connection between Stein’s Unbiased Risk Estimator (SURE), equivalent degrees
of freedom and the robustness of marginal likelihood hyperparameter tuning has
been investigated by [1, 21]. The choice of the prior distributions is somehow more
controversial. In the present chapter, we exposed the principles of the maximum
entropy approach, mainly following [12], but other approaches have been advocated
for finding non-informative priors. A requirement could be invariance with respect
to change of coordinates, enjoyed, for instance, by Jeffreys’ prior [13].

It not unusual to have parameters that should be left immune from regularization.
In the Bayesian approach, this corresponds to the absence of prior information,
usually expressed through an infinite variance prior. Although the case could be
treated by assigning large variances to some parameters, it is numericallymore robust
useful to use the exact formulas. Their derivation by a limit argument followed [22].

The idea of deriving approximated parametric models by a suitable projection of
the Bayes estimate conforms to Hjalmarsson’s advice “always first model as well as
possible” [11]. The projection result has been derived in [23] for Gaussian processes
and subsequently extended to general distributions in [20].

The equivalent degrees of freedom of a regularized estimator have been studied in
the context of smoothing by additive [2] and spline models [3, 9], while a discussion
specialized to the case of Bayesian estimation can be found in [5, 17].

Starting by the seminal paper [7], the use of stochastic simulation for computing
posterior distributions according to a full Bayesian paradigm has gained a wider
and wider adoption, especially when there exist conjugate priors that allow efficient
sampling schemes. In particular, this is possible for the linear model discussed in
this chapter, whose MCMC estimation is discussed in [18].
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4.13 Appendix

4.13.1 Proof of Theorem 4.1

For simplicity, the proof is given in the scalar parameter case. We have that

dMSE(θ̂)

d θ̂
= d

d θ̂

∫ +∞

−∞
(θ̂ − θ)2p(θ |Y )dθ

= 2θ̂
∫ +∞

−∞
p(θ |Y )dθ − 2

∫ +∞

−∞
θp(θ |Y )dθ

= 2
(
θ̂ − E [θ |Y ]

)
.

Moreover,
d2MSE(θ̂)

d θ̂2
= 2

∫ +∞

−∞
p(θ |Y )dθ = 2 > 0.

Therefore, θB = E [θ |Y ] minimizes MSE(θ̂).

4.13.2 Proof of Theorem 4.2

Let X = θB − θ denote the estimation error. Recalling that E [Y − Φμθ ] =
E [E] = 0, from (4.10) it follows that E X = 0. Note also that X and Y are jointly
Gaussian and

Cov(X,Y ) = E [X (Y − E Y )T ] = E [XY T ] − E XE Y T = E [XY T ].

Now, using (4.7), we have

E [XY T ] = E
[
(θB − θ)Y T

]

= ΣθYΣ−1
Y E

[
(Y − μY )Y T

] − E
[
(θ − μθ)Y T

]

= ΣθYΣ−1
Y (E

[
(YY T

] − μYμT
Y ) − E

[
θY T

] − μθμ
T
Y

= ΣθYΣ−1
Y ΣY − ΣθY = 0.

4.13.3 Proof of Lemma 4.1

By applying the matrix inversion lemma (3.145) and proceeding with simple matrix
manipulations,
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ΣθΦ
T (ΣE + ΦΣθΦ

T )−1 = ΣθΦ
T (Σ−1

E − Σ−1
E Φ(ΦTΣ−1

E Φ + Σ−1
θ )−1ΦTΣ−1

E )

= ΣθΦ
TΣ−1

E − ΣθΦ
TΣ−1

E Φ(ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E

= Σθ(I − ΦTΣ−1
E Φ(ΦTΣ−1

E Φ + Σ−1
θ )−1)ΦTΣ−1

E

= Σθ(Φ
TΣ−1

E Φ + Σ−1
θ − ΦTΣ−1

E Φ)(ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E

= (ΦTΣ−1
E Φ + Σ−1

θ )−1ΦTΣ−1
E .

4.13.4 Proof of Theorem 4.3

In view of (4.13), the conditional variance is

Var(θ |Y ) =
(

ΦTΦ

σ 2
+ Σ−1

θ

)−1

= σ 2

(
ΦTΦ + σ 2

[
a−1 In−p 0

0 Σ−1.

])−1

.

In view of (4.7)

E (θ |Y ) = ΣθΦ
T (ΦΣθΦ

T + σ 2 In)
−1Y =

[
ΣΩT

aΨ T

]
(aΨ Ψ T + M)−1Y.

By replicating the passages of Lemma 4.1

aΨ (aΨ Ψ T + M)−1 =
(

Ψ T M−1Ψ + In−p

a

)−1

Ψ T M−1.

Moreover, by applying the matrix inversion lemma, see (3.145),

(aΨ Ψ T + M)−1 = M−1 − M−1Ψ

(
Ψ T M−1Ψ + In−p

a

)−1

Ψ T M−1

= M−1 − M−1Ψ (Ψ T M−1Ψ )−1
(
In−p + 1

a
(Ψ T M−1Ψ )−1

)−1

Ψ T M−1.

Then, letting a → ∞ complete the proof. Observe that all the inverse matrices
appearing in the proof exist due to the full-rank assumptions made on Φ and Ψ .

4.13.5 Proof of Theorem 4.6

The expectation in (4.41) can be rewritten as
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E
[∥∥θ − θB + θB − g(ζ )

∥∥2
∣∣∣Y

]

= E
[∥∥θ − θB

∥∥2 + 2
(
θ − θB)T (

θB − g(ζ )
) + ∥∥θB − g(ζ )

∥∥2
∣∣∣Y

]

= E
[∥∥θ − θB

∥∥2
∣∣∣Y

]
+ E

∥∥θB − g(ζ )
∥∥2

.

The proof follows by observing that in the last equation the first term does not depend
on ζ . In the last passage, we have exploited the fact that θB|Y is deterministic and
equal to E (θ |Y ).

4.13.6 Proof of Proposition 4.3

First observe that

WRSS = ‖ε̄‖2 =
N∑

i=1

γ 2 ȳ2i
(γ + d̄2

i )
2
. (4.63)

Hence, in view of (4.52)

EWRSS = σ 2
(
N − trace(D(DT D + γ IN )−1DT )

)
.

On the other hand, by simple matrix manipulations, it turns out that

UTΨ −1/2HΨ 1/2U = D(DT D + γ IN )−1DT .

Finally, recalling that trace(AB) = trace(BA),

trace(UTΨ −1/2HΨ 1/2U ) = trace(Ψ 1/2UUTΨ −1/2H) = trace(H)

thus proving the thesis.

4.13.7 Proof of Theorem 4.8

Without loss of generality, the proof refers to the diagonalized Bayesian estimation
problem (4.48). The marginal loglikelihood function is

N∑

i=1

log(d̄2
i λ + σ 2) +

N∑

i=1

ȳ2i
d̄2
i λ + σ 2

+ κ,

where κ denotes a constant we are not concerned with. By equating to zero the partial
derivatives with respect to σ 2 and λ we obtain
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N∑

i=1

1

d̄2
i λ + σ 2

−
N∑

i=1

ȳ2i
(d̄2

i λ + σ 2)2
= 0

n∑

i=1

d2
i

d2
i λ + σ 2

−
n∑

i=1

d2
i ȳ

2
i

(d2
i λ + σ 2)2

= 0.

In view of (4.54) and (4.63),

σ 2 (N − dof(γ )) − WRSS = 0

λdof(γ ) − WPSS = 0,

which concludes the proof.
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