
Chapter 2
Ultralight Bosonic Dark Matter Theory

Derek F. Jackson Kimball, Leanne D. Duffy, and David J. E. Marsh

Abstract The basic theoretical concepts motivating the hypothesis that dark matter
may consist of ultralight spin-0 or spin-1 bosons are explored. The origin of bosons
with masses � 1 eV from spontaneous and explicit symmetry breaking is illustrated
with examples. The origins and characteristics of nongravitational couplings or
“portals” between ultralight bosons and Standard Model particles and fields are
considered, with particular attention paid to the cases of the axion-photon and axion-
fermion interactions. Theoretical motivations for the existence of ultralight bosons,
besides as an explanation of dark matter, are examined, with particular focus on the
Peccei-Quinn solution to the strong CP problem (resulting in the QCD axion) and a
dynamical solution to the hierarchy problem (the “relaxion” hypothesis, based on a
particular axion-Higgs coupling in the early universe). Mechanisms for non-thermal
production of ultralight bosonic dark matter are examined.

2.1 Introduction

This book explores the hypothesis that dark matter consists predominantly of
ultralight bosons. In this chapter we discuss the theoretical motivation for the
ultralight bosonic dark matter (UBDM) hypothesis and the testable predictions
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derived from it, considering a number of relevant examples along the way. At the
outset several questions naturally arise:

• If we suppose that dark matter is a bosonic field, how do we describe that from a
theoretical perspective?

• Why would such bosons be “ultralight”—with masses � 1 eV/c2?
• How could such ultralight bosonic matter interact with known Standard Model

particles and fields?
• Why should one expect that there exist bosons beyond those already discovered

(e.g., photons, gluons, W and Z-bosons, and the Higgs boson)?
• How could ultralight bosons be created in the early universe in sufficient

abundance to match the dark matter density observed today?

2.2 Bosonic Field Lagrangians

From the perspective of both classical and quantum field theory (QFT), a common
place to begin trying to understand the physics of a new particle is to write down the
Lagrangian (or more specifically, the Lagrangian density L) of the corresponding
field. The following several sections draw heavily from textbooks on QFT, such as
Refs. [1–5], which offer more detail and further explanation of many of the key
points addressed. Let us start by assuming we are dealing with a scalar field φ(r, t);
the quantum excitations of the scalar field φ̂(r, t) are spin-0 bosons.1 This choice is
motivated both by simplicity and because axions and axionlike particles (ALPs),
some of the most prominent dark matter candidates, are spin-0 bosons. Further
motivation for considering scalar fields is derived from the discovery of the Higgs
boson [6, 7], proving that elementary spin-0 bosons do indeed exist in nature [8].

The Lagrangian L describing the scalar field will naturally depend on the rate of
change of φ in time, ∂0φ = ∂φ/∂t , and the derivative of φ with respect to the spatial
coordinates, ∇φ. (In this chapter we will use natural units where h̄ = c = 1, see the
discussion of units and conversion factors in the prefatory material at the beginning
of this text.) We require thatL be Lorentz invariant, so we will build our Lagrangian
from the four-derivative of φ,

∂μφ = ∂φ

∂xμ
=

(
∂

∂t
,∇

)
φ , (2.1)

=
(

∂φ

∂t
,
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
, (2.2)

which is manifestly Lorentz invariant. In the following we use the Einstein
summation convention for repeated indices, with Greek indices such as μ running
from 0 → 3, where 0 indicates the time-like component and 1, 2, and 3 are the
spacelike components. The metric tensor describing flat spacetime is

1 The “hat” on the scalar field denotes that we treat φ̂ as an operator.
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gμν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ = diag [1,−1,−1,−1] , (2.3)

which takes contravariant (upper) indices to covariant (lower) indices: xμ = gμνx
ν .

For simplicity, motivated at least in part by the principle of Occam’s razor, we
will also want to choose a form of L that depends on the lowest order of derivatives
possible.2 Since L is a scalar and ∂μφ is a four-vector, at a minimum we must use
the inner product of the four-derivatives of φ, and so our first guess at L is

L = 1

2
∂μφ∂μφ = 1

2

(
∂μφ

)2
, (2.4)

= 1

2

∂2φ

∂t2
− 1

2
(∇φ)2 , (2.5)

where the factor of 1/2 is included to simplify future results, and we use the
metric for flat spacetime. In analogy with the Lagrangian from classical mechanics
describing particles, the term (1/2)

(
∂μφ

)2 is often associated with a “kinetic”
energy of the field.

So what can we learn from our guess for L about the properties of φ? By using
Eq. (2.4) in the Euler–Lagrange equation,

∂L
∂φ

− ∂μ

(
∂L

∂
(
∂μφ

)
)

= 0 , (2.6)

noting that

∂L
∂φ

= 0 (2.7)

and

∂L
∂
(
∂μφ

) = ∂μφ , (2.8)

we find from Eq. (2.6) that

∂μ∂μφ = ∂2φ

∂t2 − ∇2φ = 0 . (2.9)

2 In principle, theories with higher-order derivatives are possible, but are associated with non-
local effects and causality violation. Models involving such higher-order derivatives include, for
example, theories of modified gravity (see, e.g., Ref. [9]).
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Note that Eq. (2.9) shows that jμ = ∂μφ is a conserved current, since ∂μjμ =
0. The conservation of the current jμ is a consequence of the continuous shift
symmetry of the Lagrangian under the transformation φ → φ + constant, a result of
Noether’s theorem [10].

Equation (2.9) is a wave equation for φ and thus has solutions of the form

φ(r, t) = ϕ0e
i(k·r−ωt) , (2.10)

where ϕ0 is the amplitude of this particular mode of the scalar field, ω is the
frequency, and k is the wave vector. In natural units, the frequency ω is equivalent to
the energy E of φ, as can be derived by applying the energy operator Ê = i(∂/∂t)

to φ(r, t). Similarly, the wave vector k is equivalent to the momentum p of φ, as
can be derived by applying the momentum operator p̂ = −i∇ to φ(r, t).

Substituting Eq. (2.10) into Eq. (2.9), we obtain the dispersion relation

ω2 = |k|2 , (2.11)

or, equivalently,

E = |p| . (2.12)

What does Eq. (2.12) imply about our scalar field φ? One of the key ideas of QFT
is that particles can be interpreted as quantum excitations of fields. The dispersion
relation (2.12) thus implies that if the field φ has zero momentum, |p| = 0, then it
has zero energy, E = 0, which means the particles associated with φ have zero rest
mass (m = 0). Note that, in fact, these considerations also apply to classical fields.
The dispersion relation for a classical field defines a “mass” based on the curvature
of the dispersion around |k| = 0.

But in order to match the astrophysical observations discussed in Chaps. 1 and 3,
the particles associated with φ must behave as cold dark matter and thus cannot be
massless. To get a theory of particles with mass, we need to modify the Lagrangian
density (2.5) so that there is some energy “cost” to having a non-vacuum field value.
This can be done by adding to our Lagrangian a potential energy term that depends
on φ such that

L = 1

2

(
∂μφ

)2 − 1

2
m2φ2 , (2.13)

where, again, the factor m2/2 is chosen to obtain the correct units and with future
results in mind, and the potential energy term has a minus sign since the Lagrangian
is the kinetic minus the potential energy (thus the larger the field φ, the larger the
potential energy). To show that our theory describes massive particles, we can re-
derive the dispersion relation using L from Eq. (2.13). Since now
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Fig. 2.1 Plot comparing the
dispersion relation for a
massless boson (red line)
based on Eq. (2.12) with that
for a massive boson (blue
curve) based on Eq. (2.17). A
key feature of the massive
boson is the energy cost for
zero-momentum excitations
of the field, shown by the
nonzero intercept of the
dispersion curve on the
energy axis

∂L
∂φ

= −m2φ , (2.14)

the Euler–Lagrange equation (2.6) gives

(
∂μ∂μ + m2

)
φ = 0 , (2.15)

which is the Klein–Gordon equation. The solutions of the Klein–Gordon equa-
tion (2.15) are also of the form

φ(r, t) = ϕ0e
−i(Et−p·r) , (2.16)

but with the dispersion relation

E2 = |p|2 + m2 , (2.17)

which shows that if the field φ has zero momentum, |p| = 0, then it has energy
equal to the rest mass of the associated particle E = m. Thus the Lagrangian in
Eq. (2.13) describes a relatively simple model for massive particles that could be
dark matter.

Figure 2.1 compares the dispersion relation for massless particles derived from
Eq. (2.4) to that for massive particles derived from Eq. (2.13). Already we can note
an interesting feature of the scalar field that will be repeatedly referenced throughout
this text, namely that a nonrelativistic bosonic field, for which |p| � m, oscillates
at the Compton frequency: ω ≈ m.
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2.3 Why New Bosons Might Be Ultralight

So far, from the considerations in Sect. 2.2, we have from Eq. (2.13) a model of a
scalar field whose particles have mass m. But, as discussed in Chap. 1, the UBDM
hypothesis suggests that the dark matter particles have masses � 0.1 eV (and even
perhaps as small as m ∼ 10−22 eV!), a small value compared to most known
Standard Model particles with nonzero masses.3 This invites the question: from a
theoretical perspective, why might we expect new bosons to be ultralight? One of the
main motivations for postulating the existence of new bosons with ultralight masses
comes from the physics of spontaneous symmetry breaking, which we explore in
this section.

Let us reconsider our model Lagrangian for the scalar field,

L = 1

2

(
∂μφ

)2 − V (φ) , (2.18)

where we designate V (φ) as the potential energy density term. In Eq. (2.13), we
chose V (φ) = m2φ2/2, but in principle we could try other potentials and investigate
the consequences. In fact, this is a familiar approach used throughout physics: one
might imagine that the true potential describing nature is some complicated function
of φ, but one can always Taylor expand such a function:

V (φ) =
∞∑

n=0

cn

n!φ
n , (2.19)

where cn are constants. As long as the series converges, the first few terms of the
Taylor expansion (2.19) may offer a reasonable approximation for V (φ). With this
in mind, let us consider the following potential:

V (φ) = μ2

2
φ2 + λ

4!φ
4 , (2.20)

where λ is a constant. In Eq. (2.20) we take only the first two terms with even powers
of φ from the expansion (2.19) to keep V (φ) symmetric about φ = 0, so that V (φ)

is invariant under the transformation φ0 → −φ0. Also note that truncating the series
at the φ4 term is convenient as it makes the theory renormalizable (see, for example,
chapter 31 of Ref. [1]). The potential described by Eq. (2.20) is shown in the plot
on the top in Fig. 2.2. The minimum of this potential at φ = 0 corresponds to the
vacuum state of the field and the quantum excitations of φ are bosons with mass
m = μ, as can be seen in the limit where φ � 1, in which case V (φ) → μ2φ2/2
and thus matches the potential from Eq. (2.13).

3 Neutrinos, of course, have nonzero but comparatively small masses: the sum of the three different
mass eigenstates for neutrinos is � 0.1 eV [11].
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Fig. 2.2 The purple plot on the top shows a quartic scalar field potential V (φ) with a positive
quadratic term [Eq. (2.20)], the blue plot on the bottom shows V (φ) with a negative quadratic term
[Eq. (2.21)]

What if instead we construct a potential

V (φ) = −μ2

2
φ2 + λ

4!φ
4 , (2.21)

where the quadratic term is negative instead of positive? Then we get a shape of the
potential as shown in the plot on the bottom in Fig. 2.2. Now there are two minima of
the field at φ �= 0 (Problem 2.1). This means that the ground state of the field, which
will be one of the two minima, breaks reflection symmetry and is not invariant under
the transformation φ0 → −φ0 (whereas, crucially, V (φ) still possesses reflection
symmetry). This illustrates the essence of spontaneous symmetry breaking and
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shows how the vacuum expectation value of the field acquires a nonzero amplitude
(see Problem 2.1).

•? Problem 2.1 Vacuum Field and Boson Mass in Spontaneous Symmetry
Breaking

Solve for the minima of the potential V (φ) described by Eq. (2.21). These are
the two possible vacua or “vacuum expectation values” of the field φ, both of
which are nonzero. Thus the field φ has the property that even when there are no
bosons present, the field is nonzero, possibly with relatively large amplitude. This
is in contrast to the more familiar case of the electromagnetic field whose vacuum
expectation value is zero, so that where there are no photons present the average
electromagnetic field is zero. Also find the new mass of the boson.

Solution on page 309.

Still we have not yet seen why bosons associated with the field φ might be
ultralight. Let us introduce a new model, this time with two different scalar fields,
α(r, t) and β(r, t). We construct a potential for these two scalar fields similar to
that from Eq. (2.21):

V (α, β) = −μ2

2

(
α2 + β2

)
+ λ

4!
(
α2 + β2

)2
. (2.22)

The potential V (α, β), plotted in Fig. 2.3, possesses what is known as a global
SO(2) symmetry: it is invariant with respect to rotations in the α-β plane. It is
a global symmetry because in order to maintain invariance with respect to the
transformation, the fields at all points in spacetime must be rotated in the same way
in the α-β plane. The label SO(2) for the symmetry originates from group theory:
“SO” refers to the special orthogonal group, namely the group of all orthogonal
matrices4 whose determinants = 1 (this condition is what makes this subgroup of
all orthogonal matrices “special”). SO(2) is the special orthogonal group of 2 × 2
matrices, equivalent to the group of rotations about a point in two dimensions.

Now, instead of two potential minima as in the case of V (φ) from Eq. (2.21)
(see Problem 2.1), there are an infinite number of minima on a ring of radius
ρ0 = √

α2 + β2 = √
6μ2/λ centered at (α = 0, β = 0). This is seen by writing

Eq. (2.22) in terms of u = α2 + β2,

V (u) = −μ2

2
u + λ

4!u
2 , (2.23)

4 An orthogonal matrix is a matrix whose inverse equals its transpose.
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Fig. 2.3 Plot of the potential
V (α, β) from Eq. (2.22)

and then finding the minimum with respect to u:

[
∂V

∂u

]
u=umin

= − μ2

2
+ λ

12
umin = 0 (2.24)

⇒ umin = 6μ2

λ
. (2.25)

What happens when this system undergoes spontaneous symmetry breaking?
Suppose the system “falls into” a particular ground state of the system. Without loss
of generality, let us choose the ground state (α = α0 = √

6μ2/λ, β = β0 = 0).
In order to investigate small perturbations around this particular field minimum, we
can re-write the Lagrangian in terms of the variables

ᾱ ≡ α − α0 = α −
√

6μ2

λ
, (2.26)

β̄ ≡ β − β0 = β , (2.27)

noting that

∂μᾱ = ∂μα , (2.28)

∂μβ̄ = ∂μβ . (2.29)

The Lagrangian with the potential from Eq. (2.22), written in terms of ᾱ and β̄, is
given by

L = 1

2

(
∂μᾱ

)2 + 1

2

(
∂μβ̄

)2 + μ2

2

[
(ᾱ + α0)

2 + β̄2
]

− λ

4!
[
(ᾱ + α0)

2 + β̄2
]2

,

(2.30)
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which is equivalent to

L =1

2

(
∂μᾱ

)2 + 1

2

(
∂μβ̄

)2 + 3

2

μ4

λ
− μ2ᾱ2 − μ

√
λ

6
ᾱ3 − λ

4! ᾱ
4

− λ

4! β̄
4 − μ

√
λ

6
ᾱβ̄3 − λ

12
ᾱ2β̄2 .

(2.31)

•? Problem 2.2 Lagrangian for Two Scalar Fields

Derive Eq. (2.31) from Eq. (2.30).

Solution on page 310.

The physics described by L is unchanged by resetting the zero of the potential,
so the constant term in Eq. (2.31), 3μ4/(2λ2), can be subtracted. As a first
approximation, let us consider only small amplitude field excitations and therefore
neglect terms higher than second order in the fields ᾱ, β̄:

L ≈ 1

2

(
∂μᾱ

)2 + 1

2

(
∂μβ̄

)2 − μ2ᾱ2 . (2.32)

The part of the Lagrangian describing the ᾱ field has a form analogous to Eq. (2.13)
and thus represents a field whose quantum excitations are bosons of mass m = √

2μ.
The part of the Lagrangian describing the β̄ field has a form analogous to Eq. (2.4)
and thus represents a field whose quantum excitations are massless bosons. The m =
0 excitations of the β̄ field are known as Goldstone bosons [12], massless bosons
appearing whenever a continuous symmetry, in this case SO(2), is spontaneously
broken (a consequence of Goldstone’s theorem [13]). The reason that the β̄ bosons
are massless can be intuited from the shape of the potential plotted in Fig. 2.3, shown
in an “overhead” view in Fig. 2.4. Small excitations of the β̄ field (indicated by the
double-headed purple arrow in Fig. 2.4) around the ground state (indicated by the
purple dot in Fig. 2.4) occur essentially without any increase in potential energy,
as they are along the ring of minima in the “trough” of the potential V (α, β). In
contrast, excitations of the ᾱ field are perpendicular to the double-headed purple
arrow in Fig. 2.4, where the potential resembles that of a simple harmonic oscillator,
corresponding to the massive bosons associated with the potential of Eq. (2.13).

So far, our model based on the potential from Eq. (2.22) shows no indication
of an ultralight field: rather we have one field (ᾱ) that has an arbitrary mass and
another field (β̄) that is massless. The appearance of an ultralight field requires one
more ingredient in our model: explicit symmetry breaking on top of the spontaneous
symmetry breaking. By explicit symmetry breaking we mean that the global SO(2)

symmetry of the potential V (α, β) of Eq. (2.22) is itself broken, so that V (α, β) is
no longer symmetric with respect to rotations in the α-β plane. In theories proposing
ultralight bosons, such explicit symmetry breaking occurs due to, for example, non-
perturbative effects in quantum chromodynamics (QCD), leading to so-called “soft”
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Fig. 2.4 Overhead view of
the potential V (α, β) from
Eq. (2.22). The purple dot
indicates the (arbitrary)
ground state after
spontaneous symmetry
breaking at (α = α0 =√

6μ2/λ, β = β0 = 0). The
double-headed purple arrow
indicates small perturbations
of the β field around
β = β̄ = 0, requiring
approximately zero energy as
seen from Eq. (2.32). Thus
the quantum excitations of
the β field are massless
bosons, a consequence of
Goldstone’s theorem

explicit breaking of the symmetry (where “soft” refers to the fact that the symmetry
is restored at high energy scales), or even effects associated with quantum gravity
(which is generically expected to violate global symmetries), see the reviews [14–
19] for further discussion. For the purposes of our present investigations, let us
invoke explicit symmetry breaking of the potential by “tilting” V (α, β) toward the
original vacuum state from the spontaneously broken symmetry (α0, β0) by adding
the term

Vε = −ελα3
0α (2.33)

to the potential of Eq. (2.22), so the Lagrangian is now

L = 1

2

(
∂μα

)2 + 1

2

(
∂μβ

)2 + μ2

2

(
α2 + β2

)
− λ

4!
(
α2 + β2

)2 + ελα3
0α . (2.34)

In Eqs. (2.33) and (2.34), ε � 1 is a small parameter characterizing the symmetry
breaking. Figure 2.5 shows a plot of the potential (the tilt is greatly exaggerated so
as to be clearly visible).

The explicit symmetry breaking due to Vε shifts the minimum of the potential
with respect to α, as seen in Problem 2.3.

•? Problem 2.3 Explicit and Spontaneous Symmetry Breaking

Keeping only terms to first order in ε, verify that the minimum of the potential in
Eq. (2.34), namely

V (α, β) = −μ2

2

(
α2 + β2

)
+ λ

4!
(
α2 + β2

)2 − ελα3
0α , (2.35)
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Fig. 2.5 Plot of the potential
from Eq. (2.34), showing
explicit symmetry breaking.
The potential is tilted toward
the original vacuum state
(α0, β0) identified in Fig. 2.4

occurs at

α = α0(1 + 3ε) , (2.36)

β = 0 , (2.37)

where, as before, α0 = √
6μ2/λ. Thus in order to investigate small perturbations

around this particular field minimum, the Lagrangian (2.34) can be re-written in
terms of the variable

ā = α − α0(1 + 3ε) . (2.38)

By writing L in terms of ā, keeping only first order terms in ε and second order or
smaller terms in the fields ā and β, and also appropriately resetting the zero of the
potential (allowing all constant terms to be subtracted), show that the potential (2.35)
can be approximated as

V (ā, β) ≈ μ2ā2 + 3εμ2β2 . (2.39)

Solution on page 311.

Based on Eq. (2.39), the Lagrangian for the fields resulting from both sponta-
neous and explicit symmetry breaking can be approximately described as

L = 1

2

(
∂μā

)2 + 1

2

(
∂μβ

)2 − μ2ā2 − 3εμ2β2 , (2.40)

which shows that due to the explicit symmetry breaking, the β field has acquired a
small mass ∝ √

ε,

m2
β ≈ 6εμ2 . (2.41)
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Thus β represents the sought-after ultralight bosonic field: the quantum excitations
of the β field are commonly known as a pseudo-Goldstone bosons or pseudo-
Nambu-Goldstone bosons (pNGBs in the literature, see, for example, Ref. [12]).5

In order to connect our somewhat simplistic model to more realistic UBDM
scenarios, it is useful to re-parameterize the descriptions of the explicit and
spontaneous symmetry breaking. We can associate a characteristic energy scale f

with the spontaneous symmetry breaking based on the depth of the potential [see,
e.g., Eqs. (2.23) and (2.25)],

|V min| ∼ μ4

λ2 ∼ f 4 , (2.42)

where we note that V (α, β) represents an energy density and thus, in natural units,
is proportional to the fourth power of energy. The energy scale � describing the
explicit symmetry breaking can be characterized by the associated part of the
potential [Eq. (2.33)], namely

|Vε | ≈ ελα4
0 ∼ ε

μ4

λ
∼ �4 . (2.43)

The mass of the β boson [Eq. (2.41)] can now be re-written in terms of f and �:

m2
β ∼ εμ2 ∼

(
ε
μ4

λ

)
×

(
λ

μ2

)
, (2.44)

∼ �4

f 2 . (2.45)

Since the mass of the β boson scales as m ∼ �2/f , if f  � (which corresponds
to ε being small), as is the case in many beyond-the-Standard-Model theories
incorporating such effects, then indeed the new boson can be ultralight. Note that we
have an additional symmetry restored in the limit where ε → 0, namely the SO(2)

symmetry, and thus we say that the ultralight mass of the pseudo-Goldstone boson
is “technically natural.”

Specific models of ultralight bosons suggest particular values for the spontaneous
symmetry breaking scale f and the explicit symmetry breaking scale �. For
example, the spontaneous symmetry breaking might occur at the Planck scale, in
which case f ∼ 1028 eV. A possible source of (soft) explicit symmetry breaking
arises from the strong interaction, in which case the explicit symmetry breaking
scale is given by the QCD confinement scale (the energy scale above which
calculations of the strong coupling constant diverge), i.e., � ∼ 108 eV. Employing

5 Goldstone bosons resulting from spontaneous symmetry breaking are massless, while pseudo-
Goldstone bosons, possessing relatively small but nonzero masses, result from the combination of
spontaneous and explicit symmetry breaking as considered here.



44 D. F. Jackson Kimball et al.

these energy scales in Eq. (2.45) gives a boson mass of m ∼ 10−12 eV, which is
much, much lighter than any Standard Model boson with nonzero mass.

Tutorial: Spontaneous and Explicit Breaking of the U(1) Symmetry of a
Complex Scalar Field

In this tutorial, we offer another example elucidating the origin of an ultralight
bosonic field from the combination of spontaneous and explicit symmetry breaking.
Instead of the two real scalar fields α and β considered above, let us consider a
single complex scalar field ϕ, where we can make the correspondence:

ϕ = α + iβ . (2.46)

Then the Lagrangian corresponding to the potential in Eq. (2.22) can be written as

L = 1

2

(
∂μϕ

)†(
∂μϕ

) + μ2

2
ϕ†ϕ − λ

4!
(
ϕ†ϕ

)2
. (2.47)

Next we can re-parametrize the complex field using polar coordinates:

ϕ = ρeiθ , (2.48)

which yields a new form for the Lagrangian (2.47):

L = 1

2

(
∂μρ

)2 + 1

2
ρ2(∂μθ

)2 + μ2

2
ρ2 − λ

4!ρ
4 . (2.49)

Note that the Lagrangian described by Eqs. (2.47) and (2.49) exhibits a global U(1)

symmetry for ϕ, namely that a global transformation ϕ → ϕeiθ ′
has no effect on

L. U(1) refers to the one-dimensional unitary group, i.e., complex numbers with
magnitude = 1, and so the U(1) symmetry is a symmetry with respect to rotations
in the complex plane. The correspondence between rotations in the complex plane
for ϕ and rotations in the real α-β plane is a consequence of the fact that U(1) is
isomorphic to SO(2).

Similarly to the case of the two real-valued fields α and β, minima of the potential
occur in a ring with radius ρ = ρ0 = √

6μ2/λ. Let us assume that the U(1)

symmetry is spontaneously broken such that ρ → ρ0 and θ → 0. Then we can
re-write the Lagrangian in terms of ρ̄ = ρ − ρ0, which, after some algebra, yields

L = 1

2

(
∂μρ̄

)2 + 1

2
ρ2

0

(
∂μθ

)2 − μ2ρ̄2 − λ

6
ρ0ρ̄

3 − λ

24
ρ̄4 +

(
ρ̄2

2
+ ρ0ρ̄

)(
∂μθ

)2
,

(2.50)
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Fig. 2.6 Schematic diagram showing the effect of explicit symmetry breaking due to a tilt by an
angle ε of the quartic potential for the complex scalar field ϕ (see Figs. 2.3 and 2.5 for illustrations
of the analogous case for two real scalar fields, with and without tilt, respectively). The edge of
the disk represents the ring of minima with respect to ρ at ρ ≈ ρ0 (radius ρ0 shown by the solid
blue line). If the potential is tilted by an angle ε, the potential acquires a θ-dependence given by
(∂V/∂α)δα (illustrated by the solid vertical red line). Here the solid purple radial line indicates a
particular value of ϕ = ρ0e

iθ , α = Re(ϕ), δα ≈ ρ0(cos θ − 1) (illustrated by the dashed red line),
and ∂V/∂α = −εμ2ρ0

where in Eq. (2.50) we have dropped all constant terms, since they have no effect on
the physics. Note that in Eq. (2.50), the terms independent of θ and linear in ρ̄ have
cancelled out, similarly to the derivation of Eq. (2.31) discussed in Problem 2.2.
Retaining only second order or lower terms in ρ̄ and θ , we obtain

L ≈ 1

2

(
∂μρ̄

)2 + 1

2
ρ2

0

(
∂μθ

)2 − μ2ρ̄2 , (2.51)

which is analogous to Eq. (2.32). Note that θ = β/ρ0 ∼ β/f , where f is the
spontaneous symmetry breaking scale defined in Eq. (2.43).

Next, we introduce explicit symmetry breaking by tilting the potential appearing
in the Lagrangian (2.49) by an angle ε toward θ = 0. Figure 2.6 illustrates the
parametrization of the explicit symmetry breaking. The tilt by ε causes the potential
to acquire a θ -dependence. For ϕ = ρ0e

iθ , the real part of the field is Re(ϕ) = α =
ρ0 cos θ . The minimum of the tilted potential is at θ = 0, and so the change in the
potential with respect to the minimum is given by

δV (θ) = ∂V

∂α
δα = εμ2ρ2

0(1 − cos θ) , (2.52)

where δα = −ρ0(1 − cos θ). Including this term in the Lagrangian (2.51), we have

L ≈ 1

2

(
∂μρ̄

)2 + 1

2
ρ2

0

(
∂μθ

)2 − μ2ρ̄2 − εμ2ρ2
0(1 − cos θ) . (2.53)
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As a final step, to connect this result to the form of the potential most commonly
encountered in the literature on UBDM, we use the relationships outlined in
Eqs. (2.42), (2.43), and (2.45), along with the correspondence noted earlier, θ ∼
β/f , to write:

V (β) = m2
bf

2
[

1 − cos

(
β

f

)]
= �4

[
1 − cos

(
β

f

)]
. (2.54)

V (β) can be expanded about β = 0 to give

V (β) ≈ 1

2
m2

bβ
2 ≈ 1

2

�4

f 2 β2 , (2.55)

which can be compared to the β2 term in Eq. (2.40).

End of Tutorial

2.4 Portals Between the Dark Sector and the Standard Model

The next major question we will address is how ultralight bosonic fields can interact
nongravitationally with Standard Model particles and fields. To develop some
intuition about such interactions, let us begin by continuing to work with our simple
model of an ultralight bosonic field developed in Sect. 2.3. From a QFT perspective,
interactions between two different fields arise when terms appear in the Lagrangian
involving both fields as factors. In this way we can investigate interactions between
the α (or ā) and β fields analyzed in Sect. 2.3. While the approximate Lagrangian of
Eq. (2.40) has no such terms, they appear if we expand the Lagrangian of Eq. (2.34)
to third order in the products of the fields, as shown in Problem 2.4.

•? Problem 2.4 Interactions Between Two Scalar Fields

Using the results from the solution to Problem 2.3, expand the potential of
Eq. (2.34) to third order in the products of the fields, thereby deriving two new
“interaction” terms:

V int(ā, β) = λ

6
α0ā

3 + λ

6
α0β

2ā . (2.56)

Solution on page 313.
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The constant factor in front of the terms in Eq. (2.56) represents the coupling
constant g characterizing the strength of the interaction between the fields (or the
self-interaction in the case of the ā3 term). The coupling constant can be re-written
in terms of the spontaneous symmetry breaking scale f :

g = λα0

6
= 1√

6

μ2

f
∼ μ2

f
. (2.57)

Accounting for the interaction terms gives a new approximate Lagrangian,

L ≈ 1

2

(
∂μā

)2 + 1

2

(
∂μβ

)2 −μ2ā2 − 3εμ2β2 + 1√
6

μ2

f
ā3 + 1√

6

μ2

f
β2ā . (2.58)

Equations (2.57) and (2.58) highlight another important generic feature of
ultralight bosonic fields that makes them good candidates to be dark matter: the
coupling to other particles and fields generally scales as 1/f , so if the symmetry
breaking scale is at a very large energy, such as the grand unified theory (GUT)
scale (f ∼ 1025 eV = 1016 GeV) or Planck scale (f ∼ 1028 eV = 1019 GeV),
nongravitational interactions of the ultralight bosons are strongly suppressed,
consistent with astrophysical observations as discussed in Chaps. 1 and 3, and also
consistent with the results of the many null experiments described throughout this
book.

2.4.1 Interactions Between Ultralight Bosonic Fields and
Standard Model Particles

If terms describing the Standard Model particles and fields and their interactions
are incorporated into the Lagrangian, along with terms describing ultralight bosonic
fields, a variety of interaction terms are possible [20]. Many of the couplings studied
both in the experiments discussed in this book, as well as in numerous theories
of beyond-the-Standard-Model physics, are listed in Table 2.1 (note that the list
of couplings is not exhaustive6). If dark matter consists primarily of ultralight
bosonic fields, these possible nongravitational interactions can be classified into a

6 The couplings listed in Table 2.1 only include operators up to a certain dimension (see discussion
in Ref. [20]). Also, Table 2.1 is compiled assuming a particular basis for the fermions, other bases
permit different forms of the couplings. For axions, in particular, it is significant that the fermion
interactions generate the other axion interactions via the chiral anomaly, called an “anomaly”
because it is a case where a classical symmetry of the Lagrangian does not map to a quantum
symmetry for the corresponding Lagrangian. In the low temperature limit (where T is well below
the QCD phase transition temperature ∼200 MeV), the gluon interaction generates the axion mass
via soft explicit breaking of the chiral symmetry due to mixing with pions as described in the
tutorial at the end of Sect. 2.5.1. In the high temperature limit, the axion mass is generated via
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Table 2.1 Couplings of ultralight bosonic fields to Standard Model particles and fields.
Examples of ultralight bosons include scalars φ, axions (or axionlike particles, ALPs) a, and
dark/hidden photons, described by a vector potential Xμ and field strength Fμν . Standard Model
particles include Higgs bosons h, gluons Gμν , photons Fμν , and fermions ψ . The dual gluon
field tensor is denoted G̃μν and the dual electromagnetic tensor is denoted F̃ μν , and Aμ is the
photon vector potential. General terms from the Standard Model are denoted by Osm. Note that
because the Lagrangian is real-valued, the operators must take the appropriate form depending
on whether the considered fields are real or complex. The usual Dirac matrices are denoted γμ

and γ5 = −iγ0γ1γ2γ3, and σμν = (i/2)[γ μ, γ ν ]. The rightmost column list the chapters of
the present book in which experiments probing such effects are discussed. Table adapted from
Refs. [20] and [24]

Spin Type Operator Interaction Chapters

0 Scalar φh†h Higgs portal 8, 10

0 Scalar φnOsm (n = 1, 2) Dilaton 8, 10

0 Scalar φ†∂μφψ†γ μψ Current-current 8, 10

0 Pseudoscalar aGμνG̃μν Axion-gluon 6

0 Pseudoscalar aFμνF̃μν Axion-photon 4, 5, 7, 9

0 Pseudoscalar
(
∂μa

)
ψ†γ μγ5ψ Axion-fermion 6, 8, 10

1 Vector Xμψ†γ μψ Minimally coupled 8

1 Vector FμνFμν , AμXμ Photon-hidden-photon mixing 7

1 Vector Fμνψ
†σμνψ Dipole interaction 6, 8, 10

1 Axial vector Xμψ†γ μγ 5ψ Minimally coupled 6, 8, 10

few different phenomenological “portals” between the Standard Model and the dark
sector [24], where the portals can be classified by the physical effects the UBDM
generates in experiments. In this section, for illustrative purposes, we analyze a few
of these different interactions and portals.

Before analyzing particular cases, though, let us consider some general features
of the interactions listed in Table 2.1. The first column of Table 2.1 lists the
spin of the boson. Here we consider spin-0 (as discussed in Sects. 2.2 and 2.3)
and spin-1 bosons, encompassing the majority of presently studied beyond-the-
Standard-Model theories.7 The second column considers the parity symmetry
(P ) of the interaction. Parity is the symmetry with respect to spatial inversion
(reflection of coordinate axes through the origin): under spatial inversion, P -
odd quantities change sign (pseudoscalars and vectors) and P -even quantities are
invariant (scalars and axial vectors). Parity symmetry is among the key discrete
symmetries characterizing interactions, others include time-reversal (T ) and charge-

instantons [21, 22]. For further discussion of the chiral anomaly and instantons, see, e.g., Ref. [2].
For the dilaton, the interactions are defined in the Einstein conformal frame [23].
7 The limitation to bosons with spin ≤ 1 is due in part to the fact that at present there are unresolved
theoretical questions concerning the validity, naturalness, and allowed interactions for spin-2 fields
with nonzero mass [20]. Presently there is no known effective field theory for bosons with spin ≥ 3
that is valid above the boson mass [20].
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conjugation (C).8 The discrete symmetry properties of an interaction inform the
nature of the experiment necessary to observe signatures of particular classes of
UBDM candidates.

2.4.2 Axion-Photon Interaction

Let us begin by considering one of the most widely studied UBDM interactions,
the axion-photon coupling. The axion-photon coupling is used to convert axions or
ALPs into photons in the presence of strong magnetic fields. This is the technique
at the heart of the microwave cavity haloscopes described in Chap. 4, the axion
helioscopes searching for axion/ALP emission from the Sun described in Chap. 5,
axion/ALP searches with “dark matter radios” using lumped-element resonators
described in Chap. 7, and light-shining-through-walls experiments discussed in
Chap. 9. The fourth row of Table 2.1 describes an operator involving factors of both
a spin-0 pseudoscalar axion (ALP) field a and the product of the electromagnetic
field tensor (Faraday tensor) Fμν with the dual field tensor F̃μν . The Faraday tensor
Fμν is given by [30]

Fμν = ∂μAν − ∂νAμ (2.59)

=

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎠ , (2.60)

where Aμ is the four-potential and Ei and Bi are the electric and magnetic field
components in the Cartesian basis. The dual field tensor is given by

F̃αβ = 1

2
εαβμνF

μν, (2.61)

where εαβμν is the Levi-Civita totally antisymmetric tensor. We note the general
structure of the operator for the axion-photon interaction, one factor of the ultralight
bosonic field a, and two factors of the photon field. This structure is similar to the
interaction terms studied in Problem 2.4, seen perhaps most clearly by writing the
operator in terms of the four-potential Aμ:

aFμνF̃μν = aεμναβ
(
∂μAν∂αAβ

)
, (2.62)

8 Famously, Wu et al. [25] discovered that the weak interaction violated parity conservation in
1957, and later in 1964 Christenson, Cronin, Fitch, and Turlay [26] discovered violation of
the combined CP symmetry. Observations of atomic parity violation [27–29] were crucial in
establishing the existence of parity-violating neutral weak currents mediated by the Z-boson.
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showing that indeed this term represents an interaction between an axion and two
photons.

The term in the Lagrangian describing the axion-photon interaction is

Laγ γ = gγ

4

α

π

a

fa

FμνF̃μν = gaγ γ

4
aFμνF̃μν , (2.63)

where gγ is a dimensionless model-dependent coupling factor, α is the fine structure
constant, fa is the spontaneous symmetry breaking scale for the axion/ALP field,
and gaγ γ = gγ α/(πfa) is the axion-photon coupling constant. Note that the axion-
photon coupling is proportional to 1/fa , exhibiting the characteristic suppression
derived in Eqs. (2.57) and (2.58). The form of the Lagrangian in terms of the electric
field E and magnetic field B is

Laγ γ = gγ

α

π

a

fa

E · B ≈ gaγ γ aE · B . (2.64)

•? Problem 2.5 Axion-Photon Interaction

Derive Eq. (2.64).

Solution on page 314.

In experiments, the magnetic field B appearing in Eq. (2.64) is generated in the
laboratory by, for example, current circulating in a superconducting coil, and the
electric field E represents the field of the resultant photon generated from the axion.
The conversion of axions into photons in a magnetic field is known as the inverse
Primakoff effect [31–33], illustrated by the Feynman diagram in Fig. 2.7.

One method to calculate the observable physical consequences resulting from
the axion-photon interaction is to apply the Euler–Lagrange equation to the
Lagrangian describing electromagnetism plus the axion-photon Lagrangian of
Eq. (2.63), namely

L = −1

4
FμνFμν − JμAμ + gaγ γ

4
aFμνF̃μν , (2.65)

where Jμ is the electromagnetic current and Aμ is the gauge potential. The Euler–
Lagrange equation in this case produces a version of Maxwell’s equations that
includes the effects of an axion field, as discussed in Refs. [32–35]:

∇ · E = ρ + gaγ γ B · ∇a , (2.66)

∇ · B = 0 , (2.67)
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a gaγγ γ

γ∗

Fig. 2.7 Feynman diagram illustrating the inverse Primakoff effect, where an axion a is converted
into a real photon γ by interacting with a virtual photon γ ∗ sourced by a magnetic field (a
virtual photon is one that does not need to satisfy the energy-momentum relationship or “on-shell”
dispersion equation, see discussion in Refs. [1–5]). The axion-photon interaction is parameterized
by the axion-photon coupling constant gaγ γ , see Eqs. (2.63) and (2.64)

∇ × E = −∂B

∂t
, (2.68)

∇ × B = ∂E

∂t
+ J + gaγ γ

(
E × ∇a − ∂a

∂t
B

)
, (2.69)

where ρ is the charge density and J is the electric current density.
Physical observables that can be searched for in experiments can be derived

from these modified Maxwell’s equations. (A similar approach for understanding
hidden photon experiments is described in detail in Chap. 7.) Consider, for example,
a region of vacuum (ρ = 0 and J = 0) bounded by a perfect conductor in the
shape of an infinite cylinder with radius R. Inside this cylindrical region, a magnetic
field B0 is applied along the cylinder axis (ẑ), such that B = B0z for r ≤ R

and B = 0 for r > R. Further, let us assume that the Compton wavelength
of the axion (equal to 1/ma in natural units, where ma is the axion mass) is
large compared to the cylinder dimensions, maR � 1. This is the case for “dark
matter radio” experiments (discussed in Chap. 7) that search for UBDM candidates
whose Compton wavelengths are so large that construction of resonant cavities is
impractical. In such cases the axion de Broglie wavelength is also large compared
to the cylinder dimensions, meaning that the spatial gradient of the axion field can
be neglected in this treatment (∇a ≈ 0). To analyze this system, we differentiate
between the total magnetic field B and the induced fields E and B from the axion-
photon interaction, such that B = B0 + B. With these assumptions, noting that
B0  B, the modified Maxwell’s equations become

∇ · E = 0 , (2.70)

∇ · B = 0 , (2.71)



52 D. F. Jackson Kimball et al.

∇ × E = −∂B
∂t

, (2.72)

∇ × B = ∂E
∂t

− gaγ γ

∂a

∂t
B0 . (2.73)

Taking the curl of Eq. (2.73), and making use of the identity

∇ × (∇ × B) = ∇(∇ · B) − ∇2B , (2.74)

as well as Eqs. (2.71) and (2.72), we find

−∇2B = ∂

∂t

(
−∂B

∂t

)
− gaγ γ

∂a

∂t
(∇ × B0) = −∂2B

∂t2 , (2.75)

where we used the fact that ∇ × B0 = 0. A similar approach yields

−∇2E = −∂2E
∂t2

+ gaγ γ

∂2a

∂t2
B0 , (2.76)

and so we arrive at the wave equations

∇2B− ∂2B
∂t2 = 0 , (2.77)

∇2E− ∂2E
∂t2 = −gaγ γ

∂2a

∂t2 B0 . (2.78)

As discussed in Sect. 2.2, if axions are the dark matter, they are nonrelativistic
and thus manifest as a field oscillating at the Compton frequency ma . As noted
in Chap. 1, the axion field has a relatively long coherence time, so a good initial
model for the axion field is

a(r, t) = a0e
i(k·r−mat) , (2.79)

where k is the wave vector. Taking into account the cylindrical symmetry of the
cavity and the boundary condition that the electric field parallel to the conducting
surface at r = R is zero, the wave equations (2.77) and (2.78) are solved by

E(r, t) = gaγ γ a0e
−imatB0

(
1 − J0(mar)

J0(maR)

)
, (2.80)

B(r, t) = igaγ γ a0e
−imatB0φ̂

(
J1(mar)

J1(maR)

)
, (2.81)

where Jn(x) is the is the nth order Bessel function of the first kind [36, 37], and
where we have used the fact that eik·r ≈ 1. For mar ≤ maR � 1, the Bessel
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functions can be approximated by the lowest order terms in their Taylor expansion,
and so

E(r, t) ≈ gaγ γ a0e
−imatB0

(
m2

aR
2 − m2

ar
2
)

, (2.82)

B(r, t) ≈ igaγ γ a0e
−imatB0φ̂(mar) . (2.83)

Note that in this case, the magnitude of the induced electric field is suppressed
compared to that of the magnetic field by a factor of ≈ maR � 1.

Based on the above analysis, it is evident that the axion field is a source term
that can, in principle, generate measurable electromagnetic energy via the inverse
Primakoff effect. Experiments searching for axion and ALP dark matter using the
axion-photon coupling are discussed in detail in Chaps. 4, 5, and 9, and the closely
related case of dark matter radio searches for hidden photons is discussed in Chap. 7.

2.4.3 Axion-Fermion Interaction

A number of experiments search for couplings between axions/ALPs and fermions,
for example, the Cosmic Axion Spin Precession Experiment (CASPEr, see
Ref. [38]) and the QUest for AXions experiment (QUAX, see Ref. [39]) discussed
in Chap. 6 and the Global Network of Optical Magnetometers to search for Exotic
physics (GNOME, see Refs. [40, 41]) described in Chap. 10, as well as experiments
searching for long-range interactions between fermions mediated by axions or
ALPs (such as the Axion Resonant InterAction Detection Experiment, ARIADNE,
see Ref. [42]), discussed in Chap. 8.

One possible axion-fermion interaction is described by the Lagrangian term

Laff = gf

fa

(
∂μa

)
ψ†γ μγ5ψ , (2.84)

where gf is a dimensionless model-dependent coupling factor and ψ†γ μγ5ψ is
the axial-vector current for a Standard Model fermion f. The Hamiltonian Haf
describing this interaction can be calculated from the Euler–Lagrange equations
according to

Hafψ = −γ0

[
∂Laff

∂ψ† − ∂μ

(
∂Laff

∂
(
∂μψ†

)
)]

, (2.85)

= − gf

fa

γ0γ
μγ5ψ

(
∂μa

)
. (2.86)

The Dirac matrices can be evaluated according to
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γ0γ
μγ5 = (γ0γ0γ5,−γ0γ1γ5,−γ0γ2γ5,−γ0γ3γ5) , (2.87)

= (γ5,−�1,−�2,−�3) , (2.88)

= (γ5,−�) , (2.89)

where the parentheses enclose a list of the individual components of γ0γ
μγ5,

evident from the definition γ μ = (γ0, γ1, γ2, γ3), and where

� =
(

σ 0
0 σ

)
, (2.90)

with σ being the Pauli spin matrices, and where we have employed the identities

γ0γ0 = 1 (2.91)

and

γ0γiγ5 = �i . (2.92)

Thus the HamiltonianHaf appearing in Eq. (2.86) can be written as

Hafψ = − gf

fa

(γ5,−�)ψ∂μa , (2.93)

= − gf

fa

(
γ5ψ

∂a

∂t
+ (�ψ) · ∇a

)
, (2.94)

and taking the nonrelativistic limit, in which the spacelike component is much larger
than the time-like component, Eq. (2.94) becomes

Haf ≈ − gf

fa

S

|S| · ∇a , (2.95)

where S is the fermion spin and |S| is the spin magnitude. It is important to note that
not only does Haf generate an interaction between spins and the spatial gradient of
the axion field but also an interaction between spins who are moving with respect
to an axion field, since the momentum operator p = −i∇. This effect is known as
the “axion wind” interaction and is a consequence of the fact that the field gradient
is frame-dependent. The axion gradient interaction (encompassing the effects of
spatial gradients and the wind interaction) is searched for in experiments such as
CASPEr (the Cosmic Axion Spin Precession Experiment [43–45]) and GNOME
(the Global Network of Optical Magnetometers for Exotic physics searches [40, 41,
46]) as discussed in Chaps. 6 and 10, respectively.
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2.5 Theoretical Motivations for Ultralight Bosons

As noted in Chap. 1, theoretically well-motivated dark matter candidates have
additional hints of their existence beyond just the evidence for dark matter. In other
words, well-motivated dark matter candidates also solve other mysteries of physics.
One of the most prominent examples of such a UBDM candidate is the axion, which
originally emerged from an elegant solution to the strong CP problem [47, 48], the
mystery of why CP -violating nuclear electric dipole moments are many orders of
magnitude smaller than nominally predicted by quantum chromodynamics (QCD).
As a consequence this particular ultralight boson is known as the QCD axion.
A variety of other theories have emerged predicting similar axionlike particles
(ALPs) [19]. One example such is the relaxion, proposed to solve the hierarchy
problem [49], the question of why the Higgs boson mass is so much lighter than the
Planck mass (or, in other words, why the electroweak interaction so much stronger
than gravity). Axions and ALPs also offer a mechanism to explain the asymmetry
between matter and antimatter in the universe [50, 51]. Attempts to unify general
relativity and quantum field theory, such as string theories, generically predict the
existence of axions, ALPs and other spin-0 bosons [52, 53] as well as spin-1 bosons
such as dark or hidden photons [54, 55]. The key takeaway is that ultralight bosons
are well-motivated from a wide variety of theoretical perspectives. In this section we
explore the basic ideas behind some illustrative examples of ultralight bosons, the
QCD axion, the relaxion, and axions arising from the extra dimensions appearing in
string theory.

2.5.1 Peccei-Quinn Solution to the Strong CP Problem and
the QCD Axion

The QCD axion is a natural consequence of the solution to the strong CP problem
first proposed by Peccei and Quinn [47, 48, 56, 57]. The strong CP problem is
related to the non-observation of a permanent electric dipole moment (EDM) of the
neutron [58] and various nuclei [59] (such as 199Hg, which gives the best constraint
at present [60]). The magnitude of the neutron EDM dn is predicted by the Standard
Model to be [61–64]

|dn| ∼ 10−16θ̄QCD e · cm , (2.96)

where θ̄QCD is a CP -violating parameter appearing in the Lagrangian for the strong
interaction. θ̄QCD is a phase angle that, in principle, can take on any value, so, based
on “naturalness” its value (modulo 2π ) should nominally be θ̄QCD ∼ 1. Thus the
Standard Model nominally predicts a neutron EDM of |dn| ∼ 10−16 e·cm. However,
the current experimental limit on the neutron EDM is [58]

|dn| < 1.8 × 10−26 e · cm , (2.97)
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which leads to the conclusion that
∣∣θ̄QCD

∣∣ � 2 × 10−10 (the 199Hg EDM constraint
[60] suggests a similar limit [65, 66]). One may wonder if θ̄QCD is simply a very
small number by accident. However, the observable θ̄QCD actually arises from two
contributions to the Standard Model. For these two contributions to cancel with such
precision would be unnatural.

The first of these contributions is the θ parameter, which appears in a term in the
QCD Lagrangian:

Lθ = θ
αs

8π
G(a)

μν G̃(a)μν , (2.98)

where αs ∼ 1 is the coupling constant for the gluon field, G
(a)
μν is the gluon field

strength tensor (where a = 1, 2, . . . , 8 indicate the eight gluon color charges),
and G̃(a)μν = (1/2)εμναβG

(a)
αβ is the dual gluon field strength tensor (the gluon

field strength tensor is analogous to the Faraday tensor for electromagnetism, see,
for example, Refs. [2, 3]). Note that G

(a)
μν G̃(a)μν violates CP symmetry, just as

FμνF̃μν ∝ E · B does for electromagnetism (as seen from the fact that E · B

is P - and T -odd). The θ parameter is associated with the QCD vacuum state
|θ〉 parametrized by the angle 0 ≤ θ < 2π (see Refs. [14, 16] for further
discussion). However, it turns out that the angle θ is not invariant with respect to
chiral transformation (i.e., parity transformation or helicity exchange) for nonzero
quark masses.

While in the limit of massless quarks, QCD would possess a chiral symmetry,
such a symmetry is broken by the Adler-Bell-Jackiw anomaly [67, 68] if the
quark masses are nonzero. For massive quarks, QCD physics is invariant under the
following transformation of the quark fields and masses, qi and mi , respectively,
and the vacuum parameter θ :

qi → eiαiγ5/2 , (2.99)

mi → e−iαi mi , (2.100)

θ → θ −
N∑

i=1

αi , (2.101)

where αi are the phases of the N quark fields.9 While θ is thus not an invariant of
QCD, the combination

θ̄QCD ≡ θ − arg
(
detMq

) = θ − arg

(
N∏

i=1

mi

)
(2.102)

9 Note that Eq. (2.101), a rotation of the fermion determinant, is highly nontrivial: for more detailed
discussion see Refs. [14–17] and for a pedagogical treatment see Ref. [5].
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is invariant and thus observable (Mq is the quark mass matrix, see Refs. [2, 69] for
definition and discussion). The strong CP problem is the question of why θ̄QCD is
so small. Given that θ describes the QCD vacuum and that quark masses are due
to the Higgs mechanism, a naive estimate for such a phase parameter is that it is of
order one. Therefore the observed exceedingly small θ̄QCD is unnatural.

The Peccei-Quinn solution to the strong CP problem allows θ̄QCD to be small
in a natural way, by promoting it to a dynamical variable that naturally relaxes
to zero, at the minimum of a potential. To do this, the Standard Model must be
extended with the introduction of additional degrees of freedom, while preserving
the existing symmetries of the Standard Model. To achieve this, Peccei and Quinn
[47, 48] introduced a global, chiral U(1) symmetry, now known as the Peccei-Quinn
(PQ) symmetry, U(1)PQ (see the tutorial at the end of Sect. 2.3 involving the U(1)

symmetry). This symmetry is spontaneously broken at some scale, fa , a parameter
of the model, and the resulting pseudo-Nambu-Goldstone boson is the axion.

The way in which the required additional degree of freedom is introduced is
model-dependent. Peccei and Quinn originally tied the symmetry breaking scale to
the electroweak scale, but this resulted in an axion with a mass and couplings that
would have been observed in experiments, and thus this original axion model was
rapidly ruled out. Other axion models were quickly proposed that resulted in a much
lighter axion with small couplings to Standard Model particles. The nature of these
couplings made these axions difficult to detect, and thus they are sometimes called
“invisible” axion models.

Here, we will review the Peccei-Quinn-Weinberg-Wilczek (PQWW) axion
model [47, 48, 56, 57]. The original Peccei-Quinn proposal was implemented using
two Higgs doublets hu and hd , which, respectively, couple to the up-type quarks
with isospin +1/2, and the down-type quarks with isospin −1/2. The quark masses
are then generated from the following Yukawa couplings to the neutral components
of the Higgs fields

Lm = yu
i u

†
Lih

0
uuRi + yd

i d
†
Lih

0
ddRi + h.c., (2.103)

where for N total quarks, there are N/2 up-type quarks, ui , and N/2 down-type
quarks, di , subscripts L and R denote left and right quark chirality, respectively, and
the yi are the Yukawa couplings to the quark type denoted by the superscript. Peccei
and Quinn chose the Higgs potential to be

V (hu, hd) = −μ2
uh

†
uhu + μ2

dh
†
dhd +

∑
i,j

(
Aijh

†
i hih

†
j hj + Bijh

†
i hjh

†
j hi

)
,

(2.104)
where the coefficient matrices (Aij ) and (Bij ) are real and symmetric, and the sum
is over the two types of Higgs fields. The UPQ(1) invariance is manifested as the
Lagrangian, L ≡ Lm + V , is invariant under the following transformations:

ui → e−iαuγ5ui (2.105)
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di → e−iαdγ5di (2.106)

hu → ei2αuhu (2.107)

hd → ei2αd hd . (2.108)

Under the transformations (2.105)–(2.108), by applying Eqs. (2.101) and (2.102)
one finds that θ̄QCD is also transformed according to

θ̄QCD → θ̄QCD − N(αu + αd) . (2.109)

In this model, when the Universe cools to the electroweak symmetry breaking
scale, the neutral Higgs acquire vacuum expectation values,

〈h0
u〉 = vue

iPu/vu (2.110)

〈h0
d〉 = vdeiPd/vd , (2.111)

where Pu and Pd are the Nambu-Goldstone fields. One linear combination of these
fields becomes the longitudinal component of the Z-boson, Z, as per standard
electroweak symmetry breaking, and the other combination is the axion field, a:

Z = Pu cos βv − Pd sin βv (2.112)

a = Pu sin βv + Pd cos βv . (2.113)

Using Eqs. (2.110) through (2.113) gives the following for the quark masses in
Eq. (2.103):

−Lm = mu
i u

†
Lie

(i sin βv/vu)auRi + md
i d

†
Lie

(i cos βv/vd )adRi + h.c. , (2.114)

where the quark masses are mu
i = yui vu and md

i = yd
i vd .

Using the quark transformations of Eqs. (2.105) and (2.106) with Eq. (2.109),
the axion dependence can be removed from the quark mass terms. The change in
θ̄QCD due to the transformation of Eq. (2.109) can be absorbed by a redefinition of
the axion field. This end result is that the θ̄QCD parameter of QCD is replaced by
the axion field a. That is, a static parameter required to have a single value, which
is not necessarily small, is replaced by a dynamical field. When given a potential,
this dynamical field will relax to the minimum of the potential, providing a natural
explanation for CP conservation in the Standard Model.

Tutorial: Mass of the QCD Axion

The axion mass, ma , depends on the value of the axion decay constant, fa , via
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ma � 6 × 10−6 eV

(
1012 GeV

fa

)
. (2.115)

This was first derived using the methods of current algebra by Weinberg [56], and
by Bardeen and Tye [70], although Bardeen and Tye used the name “higglet” for the
axion at this early stage of its study. Note that as in Eq. (2.45), the mass of the axion
is ∝ 1/fa .

The axion mass can be determined by considering the chiral effective Lagrangian
at low energies for axions and pions. This may be written as

Lπa = 1

2
∂μa′∂μa′ + f 2

π

4
Tr

[
∂μU†(π)∂μU(π)

]

+ �3
QCD Tr

[
MqU(π)e−ia′/(2fa) + h.c.

]
, (2.116)

where �QCD ∼ 200 MeV is the QCD confinement scale (which gives rise to the
explicit symmetry breaking for the QCD axion, and is thus roughly equivalent to
the � discussed in Sect. 2.3), the pion triplet is represented by the field π , and

U(π) = exp

(
iπ · σ

fπ

)
, (2.117)

with fπ as the pion decay constant, 93 MeV, and σ are the Pauli matrices. The third
term in Eq. (2.116) describes the explicit breaking of chiral symmetry for pions and
axions and works in much the same way as the breaking of the U(1) symmetry
discussed in the tutorial at the end of Sect. 2.3 and illustrated in Fig. 2.6. Therefore
�QCD plays a role analogous to the � discussed in Sect. 2.3. The origin of this
symmetry breaking term is discussed in further detail in Refs. [71, 72] and can also
be understood in analogy with the theory of antiferromagnetism [12].

The physical axion and neutral pion fields can be evaluated by expanding around
the minimum of the potential arising from explicit symmetry breaking, assuming
two light quarks [56, 71, 72], to give

π0
phys = π0 + md − mu

md + mu

fπ

2fa

a′ + O
(

f 2
π

f 2
a

)
(2.118)

aphys = a′ − md − mu

md + mu

fπ

2fa

π0 + O
(

f 2
π

f 2
a

)
, (2.119)

and the corresponding masses for these fields are then

m2
π0 = �3

QCD
mu + md

f 2
π

+ O
(

f 2
π

f 2
a

)
(2.120)
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m2
a = �3

QCD
mumd

f 2
a (mu + md)

+ O
(

f 2
π

f 2
a

)
(2.121)

≈ f 2
πm2

π

f 2
a

mumd

(mu + md)2
. (2.122)

With the accepted values of mπ , fπ , mu, and md , the axion mass is as given in
Eq. (2.115).

This tutorial computed the axion mass using chiral perturbation theory in QCD,
which is valid for temperatures far below the QCD phase transition (technically,
a cross over), T � �QCD ≈ 200 MeV. At high temperatures, the axion mass
becomes temperature dependent, i.e., ma = ma(T ). The temperature dependence
can be estimated using the so-called instanton methods, where the canonical “dilute
instanton gas approximation” leads to [73, 74]:

ma ∝ T −4 . (2.123)

Non-perturbative lattice QCD methods can interpolate through the QCD phase
transition between the two regimes, see Ref. [75]. As we will see, the temperature
dependence of the axion mass plays an important role in determining the UBDM
relic density in this model.

The power of temperature in the relation Eq. (2.123) depends on the particle
content of the Standard Model. The power T −4 is valid in a limited regime, and
changes at higher temperatures where there are more effectively massless particles.
A generic ALP does not obtain its mass from QCD. If the ALP mass comes, for
example, from a strongly coupled “hidden sector” based on, but not equivalent to,
the Standard Model, then the temperature dependence can be found via methods
described in, for example, Ref. [76].

End of Tutorial

2.5.2 The Hierarchy Problem and the Relaxion

One of the greatest mysteries of theoretical physics is the hierarchy problem: why is
gravity is so much weaker than all other forces? At the heart of this problem is the
question of why the observed Higgs mass (mh ≈ 125 GeV) is so much lighter than
the Planck mass (MPl ∼ 1019 GeV), for one would expect that quantum corrections
would cause the effective Higgs mass to be closer to the Planck scale [77–79].
Attempts to solve the hierarchy problem include, for example, supersymmetry [80]
and large (sub-mm) extra dimensions [81, 82]. Graham et al. [49] propose that
instead the hierarchy problem can be solved by dynamic relaxation of the effective
Higgs mass from the Planck scale to the electroweak scale in the early universe.
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The dynamics are driven by inflation and a coupling of the Higgs boson to a spin-0
particle dubbed the relaxion. The relaxion could, in principle, be the QCD axion or
an ALP [49] and could also constitute the dark matter [83–85]. (although it should
be noted that there are issues with fine-tuning in some models [86].)

The basic idea is that inflation in the early universe causes the relaxion field to
evolve in time, and because of the coupling between the relaxion and the Higgs,
the effective Higgs mass evolves as well. The coupling between the relaxion and
the Higgs generates a periodic potential for the relaxion once the Higgs’ vacuum
expectation value (VEV) becomes nonzero. When the periodic potential barriers
become large enough, the time evolution of the relaxion halts and the effective mass
of the Higgs settles at its observed value. The electroweak symmetry breaking scale
is a special point in the evolution of the Higgs mass. This explains why the Higgs
mass eventually settles at the observed value: relatively close to the electroweak
scale and far from the Planck scale.

Following the discussion of Refs. [49, 87], let us suppose that the dynamics of
the Higgs h and a relaxion ϕ are governed by a potential of the form

Vr(ϕ, h) = �3gϕ − 1

2

(
�2 − g�ϕ

)
|h|2 + ε�3

ch cos (ϕ/f ) , (2.124)

where � is the “ultraviolet cutoff” of the effective field theory (the energy scale
beyond which the theory is no longer valid), g is a coupling parameter, �c is the
energy scale at which soft explicit symmetry breaking for the relaxion occurs (�c ∼
�QCD for the QCD axion), and f is the spontaneous symmetry breaking scale for the
relaxion. The first term in Eq. (2.124), �3gϕ, is the leading order term of a Taylor
expansion of the relaxion potential arising due to the g-coupling. The second term in
Eq. (2.124) gives the effective mass mh of the Higgs since it is of the form m2

h|h|2/2
[see, for example, the discussion surrounding Eq. (2.13)], so

m2
h ≈ g�ϕ − �2 . (2.125)

The third term in Eq. (2.124), ε�3
ch cos (ϕ/f ), describes the periodic potential for

the relaxion arising from explicit symmetry breaking (for example, due to QCD
effects). A sketch of the potential Vr(ϕ, h) is shown in Fig. 2.8.

Now suppose that in the very early universe during inflation, the relaxion field
starts with a large value, ϕ � �/g (indicated by the rightmost faded red dot
in Fig. 2.8). It is energetically favorable for ϕ to decrease, and so, under certain
conditions, the relaxion field will “slowly roll” down the potential (as indicated by
the dashed green arrow and subsequent less faded red dots appearing to the left in
Fig. 2.8). The rolling can be slow due to Hubble friction, which arises from the term
3H(t)∂ϕ/∂t appearing in the equation of motion for a scalar field in an expanding
universe, where H(t) is the Hubble parameter (as discussed in Sect. 2.6.1). As
long as the Hubble friction is sufficiently large so that the dynamics are in the
overdamped regime, then ϕ reaches a “terminal velocity” and the dynamics are
independent of the initial conditions. When the evolution of ϕ reaches the critical
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Fig. 2.8 Plot of the relaxion potential Vr(ϕ, h) and illustration of the dynamics. The relaxion
field ϕ starts at a relatively large value (shown by the faded red dots) and then “slowly rolls”
down the potential (as indicated by the green dashed arrow), decreasing in amplitude, which in
turn decreases mh according to Eq. (2.125). When the Higgs’ vacuum expectation value becomes
nonzero at the onset of spontaneous symmetry breaking at mh = 0 (marked by the dashed purple
line), the amplitude of the periodic potential for ϕ increases. Shortly after spontaneous symmetry
breaking occurs the potential wells become too deep and ϕ becomes trapped in a local minimum
(shown by the leftmost red dot marked by the red arrow), which sets the scale of mh at a value
� �, far from the Planck scale

point ϕ = �/g where mh = 0, spontaneous symmetry breaking occurs (via
mechanisms analogous to those discussed in Sect. 2.3), and the Higgs develops a
nonzero vacuum expectation value 〈h〉. As ϕ decreases further, 〈h〉 grows and the
amplitude of the periodic potential for ϕ grows as well. When the periodic potential
barriers become sufficiently large, the relaxion will settle into a local minimum (as
indicated by the leftmost red dot marked with a red arrow in Fig. 2.8). Again the
“slow rolling” condition caused by Hubble friction is important to trap ϕ in the
local minimum.

The crucial point is that the local minimum where ϕ settles is close to where
mh ≈ 0, far from � and the Planck scale, thereby offering a possible dynamical
solution to the hierarchy problem.

2.5.3 UBDM from Extra Dimensions

String theory [88] provides a ubiquitous font of inspiration for new and exotic
physics, and the case of UBDM scenarios is no exception. String theory dictates
that physics takes place not in the usual four dimensions of spacetime, but in ten. In
general relativity (GR) the geometry of the extra dimensions of spacetime should be
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described by new functions in the metric tensor, which themselves depend on space
and time. Furthermore, the curvature of space itself gravitates and carries energy.
The extra dimensions of spacetime in string theory must be small enough such that
we have not noticed them. However, since the curvature of these extra dimensions
can change from place to place, we might feel the gravitational influence of these
changes. This is one way in which string theory realizes UBDM, giving rise to scalar
moduli and pseudoscalar axions.

Let us look at a simple example, which occurs in string theory, but also in any
theory with extra spacetime dimensions (such as Kaluza–Klein theory [89, 90],
Randall–Sundrum theory [91, 92], and various higher dimensional supergravity
theories [93]). Consider the case with spacetime being D-dimensional, given by
(3+1) dimensional flat Minkowski space (the manifoldM4), with coordinates t, x,
and one extra compact dimension (the manifold S1, topologically the circle), with
coordinate θ around it. In GR, this is specified by the metric:

ds2 = −dt2 + dx2 + ρ(x, θ, t)2L2dθ2 . (2.126)

The dimensionless scalar function ρ specifies how the radius of the “circle” varies
compared to a reference length scale L (the typical size of the extra dimension,
which should be small). ρ can vary along the circle’s circumference as θ changes,
and is also a function of space and time in “our” dimensions of Minkowski space.
The field ρ is known as the radion. Such a situation is possible to picture if we
imagine that space is a single dimension like a tightrope, and ρ describes how the
cross section of the tight rope varies along its length. If we walk along the tightrope,
we cannot see the change in ρ, but a small creature like an ant could, by circling the
rope. We may, however, indirectly notice a change in the thickness of the rope, its
texture, or some other property.

General relativity tells us that the physics of the theory described by Eq. (2.126)
is determined by the Einstein–Hilbert action:

S = MD−2
D

2

∫
dtd3xLdθ

√−gDRD , (2.127)

where D is the total number of spacetime dimensions, MD is the D-dimensional
reduced Planck mass, gD is the D-dimensional metric determinant, and RD is the
D-dimensional Ricci scalar.

Without going into the details, all we need to know is that the Ricci scalar is a
function which is second order in derivatives of the metric components, in this case
ρ. The θ dependence of ρ can be found by expanding in terms of the eigenfunctions
of S1, in this case leading simply to a Fourier series:

ρ(x, θ, t) =
∑
n

ρn(x, t) cos (nθ) . (2.128)
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The components ρn are four dimensional scalars known as the Kaluza–Klein
“tower.” It is now possible, if a little cumbersome, to analytically perform the
integral dθ in Eq. (2.127), leaving an action that is second order in derivatives of
the scalar fields ρn. This process of doing the integral over the compact coordinates,
in this case θ , goes under the fancy name of “dimensional reduction”—but it is
simply an integral of a series expansion.

A little thought should convince you that derivatives with respect to θ in the
Ricci scalar pull down powers of n for n > 0. Thus the modes in the tower with
n > 0 have terms in the action like (n2/L2)ρ2

n: this looks like a mass term for ρn,
which is large if L is small. Thus, for low energy physics we typically neglect the
higher modes in the Kaluza–Klein tower. The lowest order solution with n = 0 is
simply a theory quadratic in derivatives of ρ0, i.e., we have the action of a massless
scalar field! In other words, in our four dimensional Minkowski space, we “see” the
change in size of the extra dimension as we move from place to place and in time as
the changing value of a massless scalar field.

Including more physics, the field ρ0 can also pick up a small mass, like in the
examples of small “explicit symmetry breaking” discussed in previous sections,
giving a perfect arena for UBDM to emerge. In a more complex example, we could
envisage extra dimensions with weird and wonderful topologies beyond S1. In this
case we require many fields like ρ to describe the compact space, and these fields
are called moduli. Our metric, Eq. (2.126), made a particular symmetry assumption
with no “off-diagonal” components. If we include these, as in the original Kaluza–
Klein theory, we obtain new vector fields (i.e., hidden photons) in four dimensions.
In string theory, there can be many hundreds of such fields. Finally, if we add
supersymmetry and other string theory physics into the mix, then we end up not just
with scalars but also with pseudoscalar ALPs and many other weird and wonderful
fields that “come along for the ride.”

2.6 Non-thermal Production of UBDM

As discussed previously, due to the very small mass of UBDM candidates, cold
populations that can provide all the dark matter of the Universe must be created
out-of-equilibrium. If thermally produced [94], such particles will have too high
a kinetic energy to serve as cold dark matter. Cold populations of UBDM can be
produced via a non-equilibrium process known as vacuum misalignment [95–98].
When inflation causes the UBDM field to be homogeneous within our horizon,
vacuum misalignment is the dominant production mechanism for UBDM particles.
If the UBDM candidate is the product of a phase transition which occurs after
inflation, the production of the UBDM particle from cosmic strings and domain
walls must also be considered (which is, in essence, another form of vacuum
misalignment, but for the UBDM field as a whole).
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2.6.1 Vacuum Misalignment

The essence of the vacuum misalignment mechanism is that the initial value of the
field is different from the minimum of the field’s potential, the vacuum expectation
value. When this occurs, the field can oscillate around the minimum of the potential,
and the energy density in the oscillating field is the UBDM. This process is
commonly called vacuum misalignment, as the initial value of the field is misaligned
with the potential minimum. (The process is also referred to as vacuum realignment
in the literature.)

On large scales, the Universe is known to be isotropic, homogeneous, and
expanding, which means it can be described by a Friedmann–Robertson–Walker
(FRW) metric, i.e.,

− ds2 = −dt2 + R2(t)dx · dx , (2.129)

where (t, x) are co-moving coordinates and R(t) is the scale factor. For a scalar
field, φ, with an effective potential, V (φ), the equation of motion can be derived
by writing the Lagrangian using the FRW metric instead of the metric for flat
spacetime, yielding:

(
∂2

∂t2 + 3
Ṙ(t)

R(t)

∂

∂t
− 1

R2(t)
∇2

)
φ(t, x) + ∂V

∂φ
= 0 . (2.130)

In the case of the hidden photon dark matter candidate, we will shortly discuss
that the spatial parts of the vector boson field obey an equation of this form.
Equation (2.130) is the equation of a harmonic oscillator in an FRW spacetime.
When the field is homogeneous over the scale of interest, the spatial derivative in
Eq. (2.130) can be neglected. Identifying the Hubble parameter, H(t) = Ṙ(t)/R(t)

(determined from the energy density of radiation in the early universe), the resulting
equation is

(
∂2

∂t2 + 3H(t)
∂

∂t

)
φ(t, x) + ∂V

∂φ
= 0 . (2.131)

When the condition

3

2
H(t) 

√
1

φ

∂V

∂φ
(2.132)

is met, the field is overdamped and does not oscillate. Essentially, one wavelength of
the field does not fit inside the horizon, and the field is thus “frozen in” and unable
to oscillate. When the potential meets the criterion
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3

2
H(t) �

√
1

φ

∂V

∂φ
, (2.133)

a wavelength of the field is contained within the horizon, and it becomes free to
oscillate. The energy in these oscillations is determined by the initial condition,
which is the displacement, or misalignment, of the field from the potential minimum
(see discussion in the tutorial at the end of Sect. 2.3, where the potential develops a
periodic dependence on the phase angle θ describing the bosonic field due to explicit
symmetry breaking). We denote this angle θi , which corresponds to a field value
φi . The field can relax so that the rms value is zero, and the vacuum is effectively
realigned.

2.6.2 Vector Field Misalignment

For a vector UBDM candidate arising from kinetic mixing, a phase transition does
not occur and a cold population of hidden photons can be entirely produced by
vacuum misalignment. While this mechanism was originally discussed in terms of
the axion [95–97], we will cover the hidden photon here first, as it is a more simple
case. That the spatial component of a light vector boson can also satisfy Eq. (2.131)
and result in a cold population was first discussed in Ref. [98].

The hidden photon field, Xμ, will be uniform over the scale of the horizon after
inflation, with an initial random value. As it is spatially uniform, ∂iXμ ∼ 0, and the
resulting equation of motion is [98]

(
∂2

∂t2 + 3H(t)
∂

∂t

)
Xi (x) + m2

γ ′Xi (x) = 0 (2.134)

with the mass term giving an effective potential when mγ ′ �= 0. When the condition
of Eq. (2.133) is met and H(t) ∼ mγ ′ , the field can begin to oscillate and act as cold
dark matter.

A simple bound on mγ ′ can be obtained by requiring that the particle’s Compton
wavelength permit structure formation on kiloparsec scales [98, 99]. Then the
requirement that 1 kpc < h̄/

(
mγ ′vesc

)
, where vesc is the escape velocity of the

structure, gives a bound mγ ′c2 ≥ 1.7 × 10−24 eV. More detailed bounds can be
obtained from considering decays, interactions of the hidden photon with other
particles, and experimental observations [98]. Further discussion is in Chap. 3.



2 Ultralight Bosonic Dark Matter Theory 67

2.6.3 Scalar Field Misalignment

For scalar (or pseudoscalar) fields that occur as the pseudo-Nambu-Goldstone
boson, such as axions and ALPs, there are two temperature scales that govern
the non-equilibrium production mechanisms of the particles in the early Universe.
These are the temperature at which spontaneous symmetry breaking occurs, TSB ,
and the temperature at which the boson field acquires an effective potential, T eff.
For the QCD axion, TSB is the temperature at which the Peccei-Quinn symmetry is
spontaneously broken, TPQ. In addition to vacuum misalignment, other topological
effects may contribute to the cold population of axions in the Universe, depending
on the relationship between TPQ and the inflationary reheating temperature, TR . For
ALPs from string models, TSB is the Kaluza–Klein scale,10 generally assumed to be
far above the inflationary reheating temperature. Thus, for ALPs it is commonly
accepted that vacuum misalignment is the method by which a potential ALP dark
matter population is produced in the early Universe.

In the scalar cases, at TSB , a global chiral symmetry is spontaneously broken, and
the phase can take on any value, θi . If TSB > TR , a value of the initial misalignment
angle in one region of space can be inflated such that the misalignment angle has the
same value everywhere within the horizon. In this case, non-equilibrium production
of the scalar particles is similar to that of a cold population of hidden photons
occurring due to vacuum misalignment as discussed in Sect. 2.6.2. For axions, if
TPQ < TR , fluctuations in local temperature mean that spontaneous symmetry
breaking will be seeded at different locations within the horizon, and each location
will select a different value of φi . At the interface of regions with different φi ,
topological axion strings and domain walls will occur. These are not observed, so we
surmise that they have decayed via the various available channels. In the following,
we will discuss vacuum misalignment in detail, similar to Ref. [100], and touch on
the other production mechanisms. A more in-depth discussion of axion cosmology
is given by Ref. [101]. In the following, we will refer to the axion, but the discussion
also applies to ALPs.

The second temperature scale for the axion, T eff, is when a significant mass term
for the axion arises. The chiral anomaly couples the axion to the gauge field, and the
gauge field instantons induce a potential and hence a mass for the axion through soft
explicit symmetry breaking (following the basic ideas discussed in Sect. 2.3). This
occurs at the scale when the quark-gluon plasma condenses to hadrons. We denote
this time t1 and at this temperature, mat1 ∼ 1 [95–97]. Note that TQCD � 1 GeV.
For ALPs from string theory, similar non-perturbative effects create a potential for
the ALP and, consequently, a mass.

When ma becomes significant, the axion field gains an effective periodic
potential, analogous to that described by Eq. (2.54),

10 The Kaluza–Klein scale is the energy scale associated with the size of the compactified or
“curled-up” extra dimensions in string theory [88].
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V (φ) = m2
a(T )f 2

a

(
1 − cos

(
φ

fa

))
= m2

a(T )f 2
a (1 − cos θ) , (2.135)

where θ = φ/fa . At low temperatures, the axion mass is given by Eq. (2.115)

ma � 6 × 10−6 eV

(
1012 GeV

fa

)
,

as discussed in the tutorial at the end of Sect. 2.5.1. At higher temperatures—while
the potential is effectively “turning on”—the axion mass has a temperature depen-
dence (which can be calculated using lattice QCD, see discussion in Ref. [75]).

Using the effective potential given by Eq. (2.135) with Eq. (2.131), the equation
of motion governing the axion field dynamics is

(
∂2

∂t2
+ 3H(t)

∂

∂t

)
φ(t, x) + m2

a(T (t))fa sin θ = 0 . (2.136)

The dependence of temperature on time in the early universe is discussed in Chap. 3.
Using Eq. (2.136), the density of cold axions can be estimated as follows. For small
oscillations near θ = 0, sin θ ≈ θ and

(
∂2

∂t2 + 3H(t)
∂

∂t

)
φ(t, x) + m2

a(t)φ(t, x) = 0 . (2.137)

At temperatures above T eff, θ is approximately constant, and ma can be neglected.
When mat1 ∼ 1, the field begins to oscillate, which corresponds to the time [101]

t1 � 2 × 10−7 s

(
fa

1012 GeV

) 1
3

(2.138)

and

T eff � 1 GeV

(
1012 GeV

fa

) 1
6

. (2.139)

Alignment of the field will occur on the order of the same timescale, and thus its
momentum is on the order of

pa(t1) ∼ 1

t1
. (2.140)

If fa ∼ 1012 GeV, then ma ∼ 6 μeV, and the field momentum will be pa ∼
10−9 eV. From this estimate, it is easily seen that the initial momentum of a
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population of axions from vacuum misalignment is much less than the axion mass,
thus the population is nonrelativistic, or cold.

The question of whether or not a sufficient number of axions are produced to
account for all the dark matter in the Universe can be addressed by estimating the
energy density. Expanding around the potential minimum, this density is

ρ = f 2
a

2

(
θ̇2 + m2

a(t)θ
2
)

. (2.141)

The virial theorem gives

〈θ̇2〉 = m2
a〈θ2〉 = ρ

f 2
a

. (2.142)

The energy density of these nonrelativistic axions (for the given potential) scales
with the expansion of the Universe (see Problem 3.1) as

ρ ∝ ma(t)

R3(t)
. (2.143)

For the initial misalignment angle, θi , the energy density in coherent axion
oscillations is

ρi = 1

2
m2

a(t1)f
2
a θ2

i = 1

2
m2

a(t1)φ
2
i . (2.144)

Given matter dominated expansion of the Universe until today, the axion density
scales with Eq. (2.143), to give today’s average axion density,

ρ0 ∼ ρi

ma(t0)

ma(ti)

R3(ti)

R3(t0)
, (2.145)

or

ρ0 ∼ 1

2
f 2

a

ma

t1

R3(t1)

R3(t0)
φ2

i , (2.146)

using Eq. (2.144) and mat1 ∼ 1. The initial misalignment angle, θi , has a single
value if TPQ is greater than the inflationary reheat temperature, TR . In the case
when TPQ < TR , φi can have several different values within the horizon, and
additionally, higher-order modes of Eq. (2.136) can be occupied. Under these
circumstances, Eq. (2.146) gives the correct expression for the zero-momentum
mode if we replace θi with its average within the horizon, expected to be O(1).
Using Eqs. (2.115), (2.138), and (2.139), and assuming ma(T ) ∝ T −4, the energy
density in axions from this population today is
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�a ∼
(

fa

1012 GeV

) 7
6

. (2.147)

For TPQ > TR and θi ∼ 1, this gives the cold axion population today. For TPQ <

TR , it is expected that there is an equal contribution from the sum of all higher-
order modes, and possible contributions from string and wall decay. A thorough
discussion of all these contributions can be found in Ref. [101].
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