®

Check for
updates

Chapter 5
Introducing directionality with diffusion
tensors

In this chapter, we focus on how to transfer information from diffusion tensor
imaging (DTI) data to our finite element methods. To do so, we will need
to overcome a few practical challenges. In particular, the raw DTI data can
contain non-physiological data, especially near the CSF. Moreover, the raw
DTI data is represented both in terms of a different coordinate system and
at a different resolution than the computational mesh. To overcome the first
challenge, we will use local extrapolation of nearby valid values; to overcome
the second challenge, we will co-register ! the data with the images used to
construct the computational mesh.
Specifically, we will:

e process the diffusion tensor images to extract mean diffusivity and fractional
anisotropy 2 data, and

e map the DTI tensor data into a finite element representation created from
the T1-weighted images.

1 See Section 5.2.3.
2 Mean diffusivity and fractional anisotropy are defined in (5.1) and (5.2), respectively.

© The Author(s) 2022 81
K.-A. Mardal et al., Mathematical Modeling of the Human Brain,

Simula SpringerBriefs on Computing 10,

https://doi.org/10.1007/978-3-030-95136-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95136-8_5&domain=pdf

82 5 Introducing directionality with diffusion tensors

5.1 Extracting mean diffusivity and fractional anisotropy
5.1.1 Extracting and converting DTI data

The DTI data must first be extracted from a DICOM dataset. We use Dicom-
Browser to extract a D'TT series from the book data-set in Chapter 2.3, and the
resulting files are available in dicom/ernie/DTI. Our next task is to convert the
extracted DTT images to a single volume image and to produce supplementary
information files about the DTI image data for downstream postprocessing.
Various open source tools are available for the processing of DTI data [60].
Here, we continue to use FreeSurfer and its associated command-line tools.
As in chapter 3.1.2, we can select any of the files extracted from the DICOM
DTTI data (dicom/ernie/DTI) to start the process; here, we arbitrarily choose
IM_1496 and launch the FreeSurfer command mri_convert:

$ cd dicom/ernie/DTI
$ mri_convert IM_1496 dti.mgz

This process, when successful, creates three files: dti.mgz, dti.bvals, and
dti.voxel_space.bvec. The last two, plain text files, contain information re-
garding the b-values and b-vectors associated with the DTI data. The b-vectors
and b-values are selected as part of the imaging process; they determine the
direction (b-vector) and strength (b-value) of the pulsed magnetic diffusion
gradient used during the diffusion weighted imaging scan. For instance, Fig-
ure 5.1 shows an axial slice measured with the same choice of b-value but
different b-vectors. Once the scan has taken place, we can read this informa-
tion but it cannot be altered without scanning the patient again.

5.1.2 DTI reconstruction with FreeSurfer

Next, we aim to reconstruct comprehensive DTI data from the volume, b-value,
and b-vector files using the FreeSurfer command dt_recon. The command
takes an input volume (following --i), b-vector and b-values files (following
--b), an output directory --o, and the recon-all subject ID --s (see Chap-
ter 3.1.2). Within our book data directory dicom/ernie/DTI, we can launch
the following commands:

5.1 Extracting mean diffusivity and fractional anisotropy 83

Fig. 5.1 Axial DTI slices measured with different b-vectors. The resolution in the
diffusion tensor image is typically lower (here, 96x96x50) compared to that in the T1
images; the latter are, canonically, 256x256x256.

$ export SUBJECTS_DIR=my-freesurfer-dir
$ dt_recon --i dti.mgz --b dti.bvals dti.voxel_space.bvecs --s
ernie --o $SUBJECTS_DIR/ernie/dti

with my-freesurfer-dir replaced by the FreeSurfer subject’s directory (e.g.
freesurfer/ from the book data-set).

This command produces multiple output files, 3 including tensor.nii.gz,
register.dat, and register.1lta. The registration in dt_recon uses the reg-
istration command bbregister ¢ to register the DTI data [3]. Files with the
suffix .nii are in the NIfTT format. Of these, tensor.nii.gz is the spatially
varying diffusion tensor. Further, an eigendecomposition of this tensor in terms
of spatially varying eigenvalues A1, A2, and A3 and eigenvectors vy, ve, and vs
is given in the files eigvals.nii.gz and eigvecl.nii.gz,eigvec2.nii.gz,
and eigvec3.nii.gz.

3 The command above will store the files in $SUBJECTS_DIR/ernie/dti. Al-
ternatively, you can run mri2fem/chp5/all.sh which will create a directory
mri2fem/chp5/ernie-dti that includes the same set of the files as well. You will need
FSL installed to use dt_recon (see Chapter 2.4.1).

4 This registration step is done automatically by FreeSurfer using the subject’s pre-
viously FreeSurfer-processed data that is assumed to be available at this stage of
the book; see Chapter 3.1.2 for the necessary steps. The mathematical details of co-
registration are further discussed in Section 5.2.3.

84 5 Introducing directionality with diffusion tensors

5.1.3 Mean diffusivity and fractional anisotropy

In addition, dt_recon produces the NIfTT files adc.nii.gz and fa.nii.gz
for the mean (or apparent) diffusivity (MD) and fractional anisotropy (FA),
respectively. The mean diffusivity is given by

1
MD = g()\l + Ao + /\3), (51)

and fractional anisotropy is defined [39] by

paz — L4 —)+ (A2 — X3)® + (A3 — \1)? (5.2)
2 M43+ A3 ' ’

NIfTI files can be viewed in ParaView. You might first need to enable

0.0e+00 38603 g 10
Apparent Diffusion Coefficient Fractional Anisotropy

Fig. 5.2 Mean diffusivity (left) and fractional anisotropy (right) as shown in ParaView.

the NIfTI viewer plugin by selecting the ParaView menu option labeled
[Tools—)Manage Plugins], selecting ° [AnalyzeNifT IReaderWriter] and then

clicking | Load Selected | You can then open and view .nii files in ParaView,

5 The correct plugin may also be named AnalyzeNifTIIO in earlier versions (i.e. before
5.7.0) of ParaView.

5.2 Finite element representation of the diffusion tensor 85

just as you would any other file. To unzip .nii.gz to .nii, one can use mri_convert:

$ mri_convert adc.nii.gz adc.nii
$ mri_convert fa.nii.gz fa.nii

Let us open adc.nii and verify that we can reproduce Figure 5.2 (left); the
process will be the same for fa.nii. After loading the AnalyzeNifTIIO plu-
gin, described above, and opening adc.nii click . You will likely see
an empty three-dimensional cube in the view window. In the left pane, find
the Representation option and change this to Volume. You should now see
something that looks similar to a ‘brain in a box’ viewed from the top. Now
click [Filters%Alphabetical] and select Slice. In the left pane, find the option
labeled Normal; it should be under the option labeled Origin. Change the
Normal from 1 0 0to 0 1 0 and click .

In the left pane, once more, hide the object adc.nii by clicking the picture
of the eye next to its name. Now, rotate the view window so that you can
see the X—Z plane; the result should look similar to Figure 5.2. We can make
it look more similar by changing the color scheme. In the left pane, find the
section labeled Coloring. Mouse over the buttons here until you find the but-
ton labeled Choose preset. Click this and select the Black, blue and white
color scheme, click and then close the color scheme preset window. The
image you see now was saved and post-processed to remove the border outside
the skull to produce Figure 5.2 (left). You can repeat these steps with fa.nii,
this time using the jet color scheme, to reproduce Figure 5.2 (right).

The average FA value is generally around 0.5 and changes by around 2%
between day and night [68]. Anisotropy decreases with age, declining around
14% between 30 to 80 years [40] and can change by up to 50% in certain
areas of the brain of a person with Alzheimer’s disease compared with healthy
subjects [49]. In the ernie data (Figure 5.2), the median white matter FA
value is 0.3, with a minimum of 0.009 and a maximum of 0.9998.

5.2 Finite element representation of the diffusion tensor

In this section, we:

e ensure that the DTT data have a valid eigendecomposition (with positive
eigenvalues),

86 5 Introducing directionality with diffusion tensors

e map the DTT tensor into a finite element tensor function defined on a finite
element mesh, and
e briefly discuss co-registration.

5.2.1 Preprocessing the diffusion tensor data

The DTT data can be quite rough compared to the T'1 data and our correspond-
ing finite element meshes; DTI data is typically at a low resolution of 96x96x50
while T1 resolution is typically much higher at 256x256x256. ¢ Moreover, the
signal can be disturbed near the cerebrospinal fluid (CSF), which makes the
data in certain areas of the cortical gray matter and in regions near the ventri-
cle system less reliable. Indeed, inspection of the eigenvalues of the DTT tensor
shows non-physiological (zero and/or negative) eigenvalues. To ensure a phys-
iologically (and mathematically) reasonable diffusion tensor, we recommend
preprocessing the diffusion tensor prior to numerical simulation. In particular,
in this chapter we present two scripts that:

e check the DTI tensor data for non-physiological values and
e replace non-physiological with physiological values in the DTI tensor,

respectively.

Creating brain masks

First, we will use FreeSurfer to create masks of the brain. A mask is a type
of filter where voxels (significantly) outside the brain are set to zero and all
other voxels are set to a value of one. Using our white matter parcellation data
(included in freesurfer/ernie/mri/wmparc.mgz), we can create brain masks
as follows:

$ mri_binarize --i wmparc.mgz --gm --dilate 2 --o mask.mgz

The dilate flag determines the extent to which the mask should be extended
outside the brain surface provided by wmparc.mgz. Examples of such masks
are shown in Figure 5.3.

6 See Figure 2.3 (left) versus Figure 5.1.

5.2 Finite element representation of the diffusion tensor 87

Fig. 5.3 Brain masks created using mri_binarize with dilate ranging from zero to
three.

Examining the DTI data values

We can work with the DTI data in a very similar manner as we did for the
parcellation (image) data in Chapter 4.4.1. We will again use NiBabel to load
the image data, use the vox2ras functions for the mapping between the dif-
ferent image coordinate systems (DTI voxel space and T1 voxel space), and
process the data as NumPy arrays. The complete script can be run as

$ cd mri2fem/chpb
$ python3 check. dti.py --dti tensor.nii.gz --mask mask.mgz

We import the key packages:

import argparse
import numpy
import nibabel

from nibabel.processing import resample_from_to
numpy .seterr (divide=’ignore’, invalid=’ignore’)

88 5 Introducing directionality with diffusion tensors

We define the function check_dti_data that takes the DTI tensor and mask
files as input:

def check_dti_data(dti_file, mask_file, order=0):
Load the DTI image data and mask:
dti_image = nibabel.load(dti_file)
dti_data = dti_image.get_fdata()

mask_image = nibabel.load(mask_file)
mask = mask_image.get_fdata().astype(bool)

Examine the differences in shape
print ("dti shape ", dti_data.shape)
print ("mask shape ", mask.shape)

M1, M2, M3 = mask.shape

Now, the important coordinate transformations can be handled as follows:

Create an empty image as a helper for mapping
from DTI voxel space to Tl voxel space:
shape = numpy.zeros((M1, M2, M3, 9))

vox2ras = mask_image.header.get_vox2ras ()
Nii = nibabel.niftil.Niftillmage
helper = Nii(shape, vox2ras)

Resample the DTI data in the T1 voxel space:
image = resample_from_to(dti_image, helper, order=order)
D = image.get_fdata ()

Before computing eigenvalues, we run

Reshape D from M1 x M2 x M3 x 9 into a N x 3 x 3:
D = D.reshape(-1, 3, 3)

Compute eigenvalues and eigenvectors
lmbdas, v = numpy.linalg.eigh(D)

and we compute the fractional anisotropy and check the validity of each voxel
value, as follows:

Compute fractional anisotropy (FA)
FA = compute_FA (1lmbdas)

Define valid entries as those where all eigenvalues are
positive and FA is between 0 and 1

positives = (lmbdas[:,0]>0)*(1lmbdas[:,1]>0)*(1lmbdas[:,2]>0)
valid = positives*(FA < 1.0)*(FA > 0.0)

valid = valid.reshape ((M1, M2, M3))

5.2 Finite element representation of the diffusion tensor 89

Find all voxels with invalid tensors within the mask

ii, jj, kk = numpy.where((“valid) *mask)

print ("Number of invalid tensor voxels within the mask ROI:
", len(ii))

Reshape D from N x 3 x 3 to M1 x M2 x M3 x 9
D = D.reshape ((M1,M2,M3,9))

return valid, mask, D

The above snippet makes use of the function compute_FA, which is also defined
in check_dti.py, to compute (5.2). The result is a vector FA whose entries con-
tain the fractional anisotropy computed at each available DTT data location.
The term positives is a binary vector, with the same number of entries as FA;
it has a value of one if all three of the eigenvalues for the region corresponding
to the array index are positive, and zero otherwise. The vector valid is there-
fore a second binary vector whose indices correspond to the locations where
DTI data are available. The value at each index of valid is one precisely when
all of the eigenvalues are positive and the fractional anisotropy there is larger
than zero but less than one. The valid vector is therefore a mask that indi-
cates where the DTT tensor contains physically admissible values. The valid
mask is then reshaped 7 to fit the dimensions of the original mask, created from
the mask_file, and the number of zeros, corresponding to invalid entries, is
computed and reported in the final lines.

Improving DTT values by extrapolation and resampling to T1 space

If numerous invalid DTT voxel data are reported, by check_dti.py as discussed
above, we can attempt to improve the DTI data by extrapolating from adjacent
valid voxel locations to correct nearby invalid data. The correction script is
mri2fem/chp5/clean_dti_data.py and can be run as

$ cd mri2fem/chpb
$ python3 clean_ dti_data.py --dti tensor.nii.gz --mask mask.mgz
--out tensor-clean.nii

7 The term reshaped here means that the (tensor) data is reorganized into an expected
form. An example would be reshaping a 1 x 9 (row) tensor to a 3 X 3 (matrix) tensor
by putting the first three entries of the 1 X 9 tensor in the first row, the next three in
the second row and the last three in the final row of the 3 x 3 tensor.

90 5 Introducing directionality with diffusion tensors

and the main functionality reads

def clean_dti_data(dti_file, mask_file, out_file, order=3,
max_search=9):
valid, mask, D = check_dti_data(dti_file, mask_file,
order=order)
Zero out "invalid" tensor entries outside mask,
and extrapolate from valid neighbors
D["mask] = numpy.zeros(9)
D[(~valid)*mask] = numpy.zeros(9)
ii, jj, kk = numpy.where((~valid)*mask)
for i, j, k in zip(ii, jj, kk):
D[i, j, k, :1 =\
find_valid_adjacent_tensor(D, i, j, k, max_search)

Create and save clean DTI image in T1 voxel space:
mask_image = nibabel.load(mask_file)

M1, M2, M3 = mask.shape

shape = numpy.zeros ((M1, M2, M3, 9))

vox2ras = mask_image.header.get_vox2ras()
Nii = nibabel.niftil.Niftillmage
dti_image = Nii(D, vox2ras)

nibabel.save(dti_image, out_file)

The first operation carried out by the clean_dti_data function is to call
check_dti_data, which we discussed in the previous section. Recall that,
among other things, the check_dti_data function returns a tensor represen-
tation (D) of the DTT data that has been converted from DTI voxel space coor-
dinates to T1 voxel space coordinates. 8 Next, we will search for a valid tensor
in directly adjacent voxels using the function find_valid_adjacent_tensor
defined in clean_dti_data.py. If no valid tensor is found nearby, the search
range is iteratively increased.

The script determines that a nearby tensor, in the valid region, contains
valid data if a non-zero mean diffusivity (MD) is also calculated there. Once
one or more, nearby valid value(s) are found, replacement data is chosen. If
only one valid value is found, it is directly used. If there are multiple valid

8 T1 coordinates are the same coordinates used by the computational meshes that
were constructed, in previous chapters, from the surfaces extracted from FreeSurfer
segmented T1 data. Thus, D is now expressed in terms of coordinates that make sense
when used alongside the computational meshes

5.2 Finite element representation of the diffusion tensor 91

tensors within the search range, the tensor data® with MD value closest to
the median of the non-zero MD is chosen as a replacement:

def find_valid_adjacent_tensor(data, i, j, k ,max_iter):
Start at 1, since 0 is an invalid tensor
for m in range (1, max_iter+1)
Extract the adjacent data to voxel i, j, k
and compute the mean diffusivity.
= datali-m:i+m+1, j-m:j+m+1, k-m:k+m+1,:]
= A.reshape(-1, 9)
MD = (A[:, O]+ A[:, 4] + A[:,8])/3.

= e 3

If valid tensor is found:
if MD.sum() > 0.0:
Find index of the median valid tensor, and return
corresponding tensor.
index = (numpy.abs(MD - numpy.median(MD[MD>0]))).
argmin ()
return A[index]

print("Failed to find valid tensor")
return datali, j, kI

5.2.2 Representing the DTI tensor in FEniCS

With the DTI data checked and potentially improved, we are now ready to
map our preprocessed DTI image (now in T1 voxel space) onto a FEniCS
mesh. We will use the code located in mri2fem/chp5/dti_data to_mesh.py
to accomplish this task. To begin, we assume that we have a mesh available
(e.g. ernie-brain-32.h5 from Chapter 4.4.2), that we have loaded the clean
DTI image and data in dti_image and dti_data, respectively, and that we
have the ras2vox transform associated with this image. We can retrieve the
vox2ras and ras2vox transformations associated with the data by

9 Because of the way the valid mask is constructed, a tensor with invalid data can
violate either the required condition that all of the eigenvalues must satisfy A\; > 0 or
the required condition that the FA must satisfy 0 <FA< 1. In either case, the search
for a nearby valid tensor identifies a nearby candidate and replaces the whole of the
tensor information at the invalid tensor location. Thus, all of required conditions are
satisfied, at the previously invalid location, after the data replacement.

92 5 Introducing directionality with diffusion tensors

Transformation to voxel space from mesh coordinates
vox2ras = dti_image.header.get_vox2ras_tkr ()
ras2vox = numpy.linalg.inv(vox2ras)

To represent the diffusion tensor in FEniCS, we create a FEniCS Function
over a TensorFunctionSpace of (discontinuous) piecewise constant polyno-
mial fields ("DG", 0):

Create a FEniCS tensor field:
DGO9 = TensorFunctionSpace (mesh, "DG", 0)
D = Function(DGO09)

For each cell, we need to associate an identifying coordinate value so that
we can associate the cells of our mesh to the voxel data. One possibility is to
extract the cell midpoints as we have done before; here, we opt to extract the
coordinates of the degrees of freedom associated with a DG FunctionSpace
object that we will define on our mesh and convert these to voxel indices:

Get the coordinates xyz of each degree of freedom
DGO = FunctionSpace(mesh, "DG", 0)
imap = DGO.dofmap().index_map ()
num_dofs_local = (imap.local_range()[1] \
- imap.local_range () [0])
xyz = DGO.tabulate_dof_coordinates ()
xyz = xyz.reshape((num_dofs_local, -1))

Convert to voxel space and round off to find
voxel indices

ijk = apply_affine(ras2vox, xyz).T

i, j, k = numpy.rint(ijk).astype(’int’)

The above snippet first retrieves the coordinates of the TensorFunctionSpace
degrees of freedom on our mesh and applies the ras2vox transformation to
determine coordinates in voxel space.

We can now reshape the DTI data into a cell-wise structure based on the
extracted indices® (now in voxel space):

Create a matrix from the DTI representation
D1 = dti_datali, j, k]

10 Voxels are located based on the degree of freedom (DOF) coordinates from the
FunctionSpace object. This approach guarantees that there are no missing values as
every coordinate maps to some voxel. However, some voxels may correspond to more
than one mesh cell as there may be more cells in the mesh than there are voxels e.g. if
the mesh has a lower resolution than the resolution of the T1 (voxel) image space.

5.2 Finite element representation of the diffusion tensor 93

print (D1.shape)

With the reshaped DT data in hand, we assign these to a FEniCS tensor field,
D, allowing the data to be saved alongside the mesh data.

Assign the output to the temnsor function
D.vector (D) [:] = Di.reshape(-1)

The FEniCS tensor field DTI data can be saved alongside the mesh for later
use in FEniCS simulations with

Now store everything to a new file - ready for use!
hdf = HDF5File(mesh.mpi_comm(), outfile, ’w’)

hdf .write (mesh,"/mesh")

hdf .write(D, "/DTI")

The resulting fiber directions, shown in Figure 5.4, can be inspected visually.

5.2.3 A note on co-registering DTI and T1 data

As we have seen, FreeSurfer uses several different coordinate systems to label
the position of data in its various output files. Thus, to combine different types
of data into something we can use in FEniCS simulations, we need to extract
information about the different coordinate systems used in the files and be
able to map between these different coordinate systems. This process is known
as co-registration. The scripts we have presented use NiBabel functionality to
handle co-registration; this section provides additional information regarding
co-registration, for both context and completeness.

In short, let &1 = (21,y1,21) and x3 = (22, Y2, 22) represent the same phys-
iological point in R3 but represented with respect to two different coordinate
systems (bases). Then, there is an affine transformation such that

To = AIl + b, (53)

for A € R®*3 and b € R3. The mapping is often stored instead as a 4 x 4 ma-
trix, where the last row can be ignored. As this equivalent 4 x 4 representation
often appears in the discussions, and software documentation, within the neu-
roimaging community, we also show it here; the above affine transformation
(5.3) can also be written as:

94 5 Introducing directionality with diffusion tensors

Fig. 5.4 Upper panels show fiber directions (DTI eigenvectors) colored by the frac-
tional anisotropy in the axial and coronal planes. The lower panels show a zoom focus-
ing on the boundary between gray matter and the cerebrospinal fluid. Note that the
vector nature of the data can be seen more clearly in bottom panel images where the
fibers can be seen to have clear directionality.

T2 ay a1z a3 b T
Y2 | _ | G21 G22 G23 by Y1
z3 | |asias2azzbs | | 21
1 0 0 0 1 1

where the a;; are the entries of the matrix A and the b; are the entries of the
vector b.

The term co-registration specifically refers to the determination of the trans-
formation matrix A and vector b corresponding to a pair of files. A key step
in the co-registration of T1 and DTT images, or any pair of images in general,
is to ascertain the type of coordinate system used when initially storing these
images. Towards this end, we can make use of the mri_info command. Co-
ordinate system information regarding the FreeSurfer-processed T1 images is
stored in the file orig.mgz. We can interrogate this file by:

5.2 Finite element representation of the diffusion tensor 95

$ cd $SUBJECTS_DIR/ernie/mri
$ mri_info orig.mgz --orientation
LIA

The output LIA means that the T1 image files were generated with respect to
the ‘Left Inferior Anterior’ coordinate system (see [3] for details). Coordinate
system information regarding the FreeSurfer-processed DTI images is stored in
the file tensor.nii.gz. We can interrogate this file, once more using mri_info,

by:

$ cd $SUBJECTS_DIR/ernie/dti
$ mri_info tensor.nii.mgz --orientation
LPS

The coordinate systems can be understood as follows: the positive direction
in the sagittal plane can be either (L)eft or (R)ight, the positive direction in the
coronal plane can be either (P)osterior or (A)nterior, and the positive direction
in the axial plane can be either (I)nferior or (S)uperior. Furthermore, the order
of the planes can be different, that is, the third axis might not correspond to
the axial plane. For instance, let us examine the coordinate systems described
by the abbreviations LIA and LPS. We see that the coronal plane corresponds
to the third axes (A) in LIA and second axes (P) in LPS, and we have the
opposite for the axial plane (I vs. S). Thus, these coordinate systems differ by
the choice of a positive direction in the coronal and axial planes, in addition
to their order.

Both coordinate systems describe voxel spaces, and we thus need to take into
account any difference in voxel sizes. We can obtain voxel sizes (in millimeters)
by further using mri_info:

$ cd $SUBJECTS_DIR/ernie/dti
$ mri info tensor.nii.gz | grep voxel\ sizes
voxel sizes: 2.500000, 2.500000, 2.500000

$ cd $SUBJECTS_DIR/ernie/mri
$ mri_info orig.mgz | grep voxel\ sizes
voxel sizes: 1.000000, 1.000000, 1.000000

We observe that the voxel sizes differ, and therefore the transformation
matrix needs to be scaled from 2.5 mm to 1.0 mm. Thus, the matrix transfor-
mation will have the form:

04 0 0
A=10 0 -04
0 -04 0

96 5 Introducing directionality with diffusion tensors

The vector b gives the difference between the origins of the two coordinate
systems.

Note, however, that this affine transformation matrix is not quite realistic.
First, it assumes that there is no rotational difference between the brains. Sec-
ond, due to the lack of offset vector b as in (5.3), this transformation assumes
that the origins have the same anatomical position. This is unlikely to be the
case, since the magnetic resonance images differ in modality or occurrence
(i.e. taken at different times). Therefore, to find the affine transformation ma-
trix, we need to find the optimal overlap of the brain contour in the magnetic
resonance images. This can be done manually, but it is preferable to do this
using registration tools such as bbregister, which was used with dt_recon
in Chapter 5.1.2. In our example, the affine transformation matrix can com-
puted by taking the inverse of the augmented matrix found in register.lta!!
located in folder $SUBJECTS_DIR/ernie/dti. The augmented matrix is a com-
bination of the matrix A and the vector b with the following structure:

o

The approximated transformation matrix becomes

04 0.0 —-0.1
A=1]-0.1 0.0 —04{,
0.0 —0.4 0.0
and the translation vector
9.0
b= (106.4
7.7

11 This file was created by bbregister as part of the dt_recon command discussed in
Section 5.1.2.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

	Chapter 5 Introducing directionality with diffusion tensors
	5.1 Extracting mean diffusivity and fractional anisotropy
	5.1.1 Extracting and converting DTI data
	5.1.2 DTI reconstruction with FreeSurfer
	5.1.3 Mean diffusivity and fractional anisotropy

	5.2 Finite element representation of the diffusion tensor
	5.2.1 Preprocessing the diffusion tensor data
	5.2.2 Representing the DTI tensor in FEniCS
	5.2.3 A note on co-registering DTI and T1 data

