Skip to main content

A Closer Overview of Phage Infections

  • Chapter
  • First Online:
Bacteriophages as Drivers of Evolution

Abstract

Phage life cycles can be differentiated into adsorption, infection, and release stages. Not all adsorptions progress to infections, however, with infection defined here as beginning at the point of phage nucleic acid entry into the bacterial cytoplasm. A basic distinction that can be made between different types of successful, not phage-destructive infections is whether they do or do not lead directly to the production and release of virions (virion-productive versus reductive infections) and then, if virions are produced and released, how that release takes place. In terms of these latter, productive infections, release can occur either lytically or chronically. This chapter takes a closer look at some of the biology of lytically virion-releasing phage infections as well as chronically virion-releasing phage infections, particularly as relevant to understanding phages as drivers of bacterial evolution. Additional and greater emphasis, however, is placed on gaining an appreciation of the biology of lysogenic cycles including from ecological and evolutionary perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2011) Lysis from without. Bacteriophage 1:46–49

    Article  Google Scholar 

  • Abedon ST (2022) Evolution of bacteriophage latent period length. In: Dickins TE, Dickens BJA (eds) Evolutionary biology: new perspectives on its development. Springer

    Google Scholar 

  • Avlund M, Dodd IB, Semsey S, Sneppen K, Krishna S (2009) Why do phage play dice? J Virol 83:11416–11420

    Article  CAS  Google Scholar 

  • Campbell A (1961) Conditions for the existence of bacteriophages. Evol Internat J Organ Evol 15:153–165

    Article  Google Scholar 

  • Campbell AM (1996) Cryptic prophages. In: Neidhardt FC (ed) Escherichia coli and Salmonella cellular and molecular biology. ASM Press, Washington, DC, pp 2041–2046

    Google Scholar 

  • Danis-Wlodarczyk KM, Wozniak, DJ, Abedon ST (2021) Treating bacterial infections with bacteriophage-based enzybiotics: in vitro, in vivo and clinical application. Antibiotics 10:1497

    Article  CAS  Google Scholar 

  • Dennehy JJ, Abedon ST (2021) Phage infection and lysis. In: Harper D, Abedon ST, Burrowes BH, McConville M (eds) Bacteriophages: biology, technology, therapy. Springer, New York, pp 341–383

    Chapter  Google Scholar 

  • Gilcrease EB, Casjens SR (2018) The genome sequence of Escherichia coli tailed phage D6 and the diversity of Enterobacteriales circular plasmid prophages. Virology 515:203–214

    Article  CAS  Google Scholar 

  • Gill JJ, Abedon ST (2003) Bacteriophage ecology and plants. APSnet feature. https://www.apsnet.org/edcenter/apsnetfeatures/Documents/2003/BacteriophageEcology.pdf

  • Hendrix RW, Casjens SR (2008) The role of bacteriophages in the generation and spread of bacterial pathogens. In: Hensel M, Schmidt H (eds) Horizontal gene transfer in the evolution of pathogenesis. Cambridge University Press, Cambridge, UK, pp 79–112

    Chapter  Google Scholar 

  • Hobbs Z, Abedon ST (2016) Diversity of phage infection types and associated terminology: the problem with ‘lytic or lysogenic’. FEMS Microbiol Lett 363:fnw047

    Article  Google Scholar 

  • Horiuchi K (1983) Co-evolution of a filamentous bacteriophage and its defective interfering particles. J Mol Biol 169:389–407

    Article  CAS  Google Scholar 

  • Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:1511–1520

    Article  Google Scholar 

  • Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS, Klaus JS, Adhya SL (2017) Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation. MBio 8:e02115–e02116

    Article  CAS  Google Scholar 

  • Kutter E, Bryan D, Ray G, Brewster E, Blasdel B, Guttman B (2018) From host to phage metabolism: hot tales of phage T4’s takeover of E. coli. Viruses 10:387

    Article  Google Scholar 

  • Lehnherr H (2006) Bacteriophage P1. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford

    Google Scholar 

  • Little JW (2006) Gene regulatory circuitry of phage λ. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 74–82

    Google Scholar 

  • McLeod SM, Kimsey HH, Davis BM, Waldor MK (2005) CTXϕ and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 57:347–356

    Article  CAS  Google Scholar 

  • Meynell GG (1969) Exclusion, superinfection immunity and abortive recombinants in I+ × I+ bacterial crosses. Genet Res 13:113–115

    Article  CAS  Google Scholar 

  • Paez-Espino D, Roux S, Chen IA, Palaniappan K, Ratner A, Chu K, Huntemann M, Reddy TBK, Pons JC, Llabres M, Eloe-Fadrosh EA, Ivanova NN, Kyrpides NC (2019) IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucl Acids Res 47:D678–D686

    Article  CAS  Google Scholar 

  • Ptashne M (2004) Genetic switch: phage lambda revisited. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Ravin NV (2006) N15: the linaer plasmid prophage. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 448–456

    Google Scholar 

  • Roux S, Enault F, Hurwitz BL, Sullivan MB (2015) VirSorter: mining viral signal from microbial genomic data. PeerJ 3:e985

    Article  Google Scholar 

  • Schneider CL (2021) Bacteriophage-mediated horizontal gene transfer: transduction. In: Harper DR, Abedon ST, Burrowes B, McConville M (eds) Bacteriophages: biology, technology, therapy. Springer, New York, pp 151–192

    Chapter  Google Scholar 

  • Shapiro JW, Turner PE (2018) Evolution of mutualism from parasitism in experimental virus populations. Evoltion 72:707–712

    Article  Google Scholar 

  • Sinha V, Goyal A, Svenningsen SL, Semsey S, Krishna S (2017) In silico evolution of lysis-lysogeny strategies reproduces observed lysogeny propensities in temperate bacteriophages. Front Microbiol 8:1386

    Article  Google Scholar 

  • Song W, Sun HX, Zhang C, Cheng L, Peng Y, Deng Z, Wang D, Wang Y, Hu M, Liu W, Yang H, Shen Y, Li J, You L, Xiao M (2019) Prophage hunter: an integrative hunting tool for active prophages. Nucl Acids Res 47:W74–W80

    Article  CAS  Google Scholar 

  • Stent GS (1963) Molecular biology of bacterial viruses. WH Freeman and Co., San Francisco, CA

    Google Scholar 

  • Strathern A, Herskowitz I (1975) Defective prophage in Escherichia coli K12 strains. Virology 67:136–143

    Article  CAS  Google Scholar 

  • Wilson GG, Young KKY, Edlin GJ, Konigsberg W (1979) High-frequency generalized transduction by bacteriophage T4. Nature (London) 280:80–82

    Article  CAS  Google Scholar 

  • Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S, Fujie M (2007) New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153:2630–2639

    Article  CAS  Google Scholar 

  • Yehle CO, Ganesan AT (1972) Deoxyribonucleic acid synthesis in bacteriophage SPO1-infected Bacillus subtilis. I. Bacteriophage deoxyribonucleic acid synthesis and fate of host deoxyribonucleic acid in normal and polymerase-deficient strains. J Virol 9:263–272

    Article  CAS  Google Scholar 

  • Young R (1992) Bacteriophage lysis: mechanisms and regulation. Microbiol Rev 56:430–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abedon, S.T. (2022). A Closer Overview of Phage Infections. In: Bacteriophages as Drivers of Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-94309-7_2

Download citation

Publish with us

Policies and ethics