Skip to main content

Exercise-Regulated Skeletal Muscle Glucose Uptake

  • Chapter
  • First Online:
Exercise Metabolism

Abstract

Muscle glucose uptake during exercise is regulated by a coordinated increase in glucose delivery (via increased blood flow and glucose moving out of the capillaries into the interstitial space), by facilitated glucose transport into the myocytes and by intramyocellular metabolism. The facilitative glucose transporter GLUT4 is translocated to the sarcolemma and the t-tubules, and GLUT4 translocation is essential for glucose transport into the myocytes during exercise. Several molecular mechanisms have been proposed to regulate insulin-independent GLUT4 translocation during in vivo conditions, but the regulation of both exercise-stimulated GLUT4 translocation and the integrative glucose uptake process by exercise remains incompletely understood. GLUT4 intrinsic transporter activity may also be regulated during exercise although there is no firm evidence for this. The multitude of mechanisms involved in muscle glucose uptake stimulation during exercise ensure the delivery of easily combustible fuel to the working muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott MJ, Bogachus LD, Turcotte LP (2011) AMPKα2 deficiency uncovers time dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle. J Appl Physiol 111:125–134

    Article  CAS  PubMed  Google Scholar 

  • Abel ED et al (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104:1703–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J (1974) Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest 53:1080–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balon TW, Nadler JL (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82:359–363

    Article  CAS  PubMed  Google Scholar 

  • Bangsbo J, Madsen K, Kiens B, Richter EA (1997) Muscle glycogen synthesis in recovery from intense exercise in humans. Am J Physiol–Endocrinol Metab 273

    Google Scholar 

  • Birk JB, Wojtaszewski JFP (2006) Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle. J Physiol 577:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair DR, Funai K, Schweitzer GG, Cartee GD (2009) A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle. Am J Physiol–Endocrinol Metab 296

    Google Scholar 

  • Bradley SJ, Kingwell BA, McConell GK (1999) Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes 48:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Bruton JD, Katz A, Westerblad H (1999) Insulin increases near-membrane but not global Ca2+ in isolated skeletal muscle. Proc Natl Acad Sci U S A 96

    Google Scholar 

  • Bultot L et al (2016) Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. Am J Physiol–Endocrinol Metab 311:E706–E719

    Article  PubMed  PubMed Central  Google Scholar 

  • Calbet JAL et al (2007) Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol 103:969–978

    Article  PubMed  Google Scholar 

  • Capaldo B et al (1999) Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. Diabetes 48:958–966

    Article  CAS  PubMed  Google Scholar 

  • Cartee GD, Holloszy JO (1990) Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am J Physiol–Endocrinol Metab 258

    Google Scholar 

  • Chambers MA, Moylan JS, Smith JD, Goodyear LJ, Reid MB (2009) Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol 587:3363–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZP et al (2003) Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52:2205–2212

    Article  CAS  PubMed  Google Scholar 

  • Christiansen D, Eibye K, Hostrup M, Bangsbo J (2020) Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. J Physiol 598:2337–2353

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF et al (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol Respir Environ Exerc Physiol 55:230–235

    CAS  PubMed  Google Scholar 

  • Dawson D et al (2002) Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound. Am J Physiol–Endocrinol Metab 282

    Google Scholar 

  • DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J (1981) Synergistic interaction between exercise and insulin on peripheral glucose uptake. J Clin Invest 68:1468–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzamko N et al (2008) AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J Physiol 586:5819–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson JR et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etgen GJ, Fryburg DA, Gibbs EM (1997) Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway. Diabetes 46:1915–1919

    Article  CAS  PubMed  Google Scholar 

  • Fam BC et al (2012) Normal muscle glucose uptake in mice deficient in muscle GLUT4. J Endocrinol 214:313–327

    Article  CAS  PubMed  Google Scholar 

  • Fritzen AM et al (2015) 5′-AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4. J Physiol 593:4765–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fueger PT, Bracy DP, Malabanan CM, Pencek RR, Wasserman DH (2004a) Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation. Am J Physiol–Endocrinol Metab 286

    Google Scholar 

  • Fueger PT et al (2004b) Control of exercise-stimulated muscle glucose uptake by GLUT4 is dependent on glucose phosphorylation capacity in the conscious mouse. J Biol Chem 279:50956–50961

    Article  CAS  PubMed  Google Scholar 

  • Fueger PT et al (2007) Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J Physiol 582:801–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii N et al (2005) AMP-activated protein kinase α2 activity is not essential for contraction-and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280:39033–39041

    Article  CAS  PubMed  Google Scholar 

  • Gaster M, Poulsen P, Handberg A, Schrøder HD, Beck-Nielsen H (2000) Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle. Am J Physiol–Endocrinol Metab 278

    Google Scholar 

  • Gaster M et al (2004) GLUT11, but not GLUT8 or GLUT12, is expressed in human skeletal muscle in a fibre type-specific pattern. Pflugers Arch Eur J Physiol 448:105–113

    Article  CAS  Google Scholar 

  • González-Alonso J, Calbet JAL, Nielsen B (1999a) Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol 520:577–589

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Alonso J et al (1999b) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86:1032–1039

    Article  PubMed  Google Scholar 

  • Hargreaves M, Kiens B, Richter EA (1991) Effect of increased plasma free fatty acid concentration on muscle metabolism in exercising men. J Appl Physiol 70:194–201

    Article  CAS  PubMed  Google Scholar 

  • Havel RJ, Pernow B, Jones NL (1967) Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J Appl Physiol 23:90–99

    Article  CAS  PubMed  Google Scholar 

  • Heinonen I et al (2013) Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle. Nutr Metab (Lond) 10:43

    Article  CAS  Google Scholar 

  • Henríquez-Olguín C et al (2019) The emerging roles of nicotinamide adenine dinucleotide phosphate oxidase 2 in skeletal muscle redox signaling and metabolism. Antioxid Redox Signal 31:1371–1410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henríquez-Olguin C et al (2019) Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 10

    Google Scholar 

  • Hespel P, Richter EA (1990) Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J Physiol 427:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hespel P, Vergauwen L, Vandenberghe K, Richter EA (1995) Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 44:210–215

    Article  CAS  PubMed  Google Scholar 

  • Higaki Y, Hirshman MF, Fujii N, Goodyear LJ (2001) Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50:241–247

    Article  CAS  PubMed  Google Scholar 

  • Higaki Y et al (2008) Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway. Am J Physiol–Endocrinol Metab 294

    Google Scholar 

  • Hingst JR et al (2020) Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Mol. Metab. 40

    Google Scholar 

  • Hirschfield W et al (2000) Nitric oxide release and contractile properties of skeletal muscles from mice deficient in type III NOS. Am J Physiol–Regul Integr Comp Physiol 278

    Google Scholar 

  • Hong YH, Betik AC, Mcconell GK (2014) Role of nitric oxide in skeletal muscle glucose uptake during exercise. Exp Physiol 99:1569–1573

    Article  CAS  PubMed  Google Scholar 

  • Hong YH, Yang C, Betik AC, Lee-Young RS, McConell GK (2016) Skeletal muscle glucose uptake during treadmill exercise in neuronal nitric oxide synthase-μ knockout mice. Am J Physiol–Endocrinol Metab 310:E838–E845

    Article  PubMed  Google Scholar 

  • Hong YH et al (2015a) No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats. Am J Physiol–Regul Integr Comp Physiol 308:R862–R871

    Article  CAS  PubMed  Google Scholar 

  • Hong YH et al (2015b) Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice. J Appl Physiol 118:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Howlett KF, Andrikopoulos S, Proietto J, Hargreaves M (2013) Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion. Physiol Rep 1

    Google Scholar 

  • Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5

    Google Scholar 

  • Ihlemann J, Ploug T, Galbo H (2001) Effect of force development on contraction induced glucose transport in fast twitch rat muscle. Acta Physiol Scand 171:439–444

    Article  CAS  PubMed  Google Scholar 

  • Ihlemann J, Ploug T, Hellsten Y, Galbo H (1999) Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol–Endocrinol Metab 277

    Google Scholar 

  • Ihlemann J, Ploug T, Hellsten Y, Galbo H (2000) Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol–Endocrinol Metab 279

    Google Scholar 

  • Jensen TE, Angin Y, Sylow L, Richter EA (2014) Is contraction-stimulated glucose transport feedforward regulated by Ca2+? Exp Physiol 99

    Google Scholar 

  • Jensen TE et al (2007) Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Am J Physiol–Endocrinol Metab 292

    Google Scholar 

  • Jensen TE et al (2012) EMG-normalised kinase activation during exercise is higher in human gastrocnemius compared to soleus muscle. PLoS One 7

    Google Scholar 

  • Jensen TE et al (2014a) Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Mol Metab 3

    Google Scholar 

  • Jensen TE et al (2014c) Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmic reticulum Ca2+ release. Mol Metab 3

    Google Scholar 

  • Jørgensen NO et al (2021) Direct small molecule ADaM-site AMPK activators reveal an AMPKγ3-independent mechanism for blood glucose lowering. Mol Metab 51:101259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joyner MJ, Casey DP (2015) Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiol Rev 95:549–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczmarczyk SJ et al (2003) Threshold effects of glucose transporter-4 (GLUT4) deficiency on cardiac glucose uptake and development of hypertrophy. J Mol Endocrinol 31:449–459

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Broberg S, Sahlin K, Wahren J (1986a) Muscle ammonia and amino acid metabolism during dynamic exercise in man. Clin Physiol 6:365–379

    Article  CAS  PubMed  Google Scholar 

  • Katz A, Broberg S, Sahlin K, Wahren J (1986b) Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol–Endocrinol Metab 251

    Google Scholar 

  • Katz A, Sahlin K, Broberg S (1991) Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. Am J Physiol–Endocrinol Metab 260

    Google Scholar 

  • Katz EB, Stenbit AE, Hatton K, Depinho R, Charron MJ (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377:151–155

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen J et al (2002) Myocardial and skeletal muscle glucose uptake during exercise in humans. J Physiol 542:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy JW et al (1999) Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A (2000) Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci 113:279–290

    Article  CAS  PubMed  Google Scholar 

  • Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK (2002) Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes 51:2572–2580

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M, Kiens B, Hargreaves M, Richter EA (1991) Influence of active muscle mass on glucose homeostasis during exercise in humans. J Appl Physiol 71:552–557

    Article  CAS  PubMed  Google Scholar 

  • Kjøbsted R et al (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32:1741–1777

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjøbsted R et al (2019) AMPK and TBC1D1 regulate muscle glucose uptake after, but not during, exercise and contraction. Diabetes 68:1427–1440

    Article  PubMed  CAS  Google Scholar 

  • Kleinert M et al (2017) Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. J Physiol 595:4845–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen JR et al (2020) Growth factor-dependent and -independent activation of mTORC2. Trends Endocrinol Metab 31:13–24

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen S, Hargreaves M, Richter EA (1996a) Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. Am J Physiol–Endocrinol Metab 70(1):E197–E201

    Article  Google Scholar 

  • Kristiansen S, Youn J, Richter EA (1996b) Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles. Biochim Biophys Acta 1282:71–75

    Article  PubMed  Google Scholar 

  • Kristiansen S, Asp S, Richter EA (1996c) Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions. Am J Physiol–Regul Integr Comp Physiol 271

    Google Scholar 

  • Kristiansen S, Hargreaves M, Richter EA (1997) Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. Am J Physiol–Endocrinol Metab 272

    Google Scholar 

  • Lang F, Artunc F, Vallon V (2009) The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 18:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanner JT et al (2006) The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes 55:2077–2083

    Article  CAS  PubMed  Google Scholar 

  • Lanner JT et al (2009) Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin-mediated glucose uptake in adult skeletal muscle cells. FASEB J 23:1728–1738

    Article  CAS  PubMed  Google Scholar 

  • Lau KS et al (2000) nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiol Genomics 2000:21–27

    Article  Google Scholar 

  • Lawrence JC, Piper RC, Robinson LJ, James DE (1992) GLUT4 facilitates insulin stimulation and cAMP-mediated inhibition of glucose transport. Proc Natl Acad Sci U S A 89:3493–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Young RS et al (2009) Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem 284:23925–23934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Young RS et al (2010) Endothelial nitric oxide synthase is central to skeletal muscle metabolic regulation and enzymatic signaling during exercise in vivo. Am J Physiol–Regul Integr Comp Physiol 298

    Google Scholar 

  • Linden KC, Wadley GD, Garnham AP, McConell GK (2011) Effect of l-arginine infusion on glucose disposal during exercise in humans. Med Sci Sports Exerc 43:1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Luczak ED, Anderson ME (2014) CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol 73:112–116

    Article  CAS  PubMed  Google Scholar 

  • Lund S, Holman GD, Schmitz O, Pedersen O (1995) Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A 92:5817–5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundsgaard AM, Kiens B (2014) Gender differences in skeletal muscle substrate metabolism–molecular mechanisms and insulin sensitivity. Front Endocrinol 5

    Google Scholar 

  • Maarbjerg SJ et al (2009) Genetic impairment of AMPKα2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Am J Physiol–Endocrinol Metab 297

    Google Scholar 

  • MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87:1483–1490

    Article  CAS  PubMed  Google Scholar 

  • McConell GK (2020) It’s well and truly time to stop stating that AMPK regulates glucose uptake and fat oxidation during exercise. Am J Physiol Endocrinol Metab 318:E564–E567

    Article  CAS  PubMed  Google Scholar 

  • McConell G, Fabris S, Proietto J, Hargreaves M (1994) Effect of carbohydrate ingestion on glucose kinetics during exercise. J Appl Physiol 77:1537–1541

    Article  CAS  PubMed  Google Scholar 

  • McConell GK, Wadley GD, Le Plastrier K, Linden KC (2020) Skeletal muscle AMPK is not activated during 2 h of moderate intensity exercise at ∼65% V̇O2peak in endurance trained men. J Physiol 598:3859–3870

    Article  CAS  PubMed  Google Scholar 

  • McConell GK et al (2005) Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol 568:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillin SL, Schmidt DL, Kahn BB, Witczak CA (2017) GLUT4 is not necessary for overload-induced glucose uptake or hypertrophic growth in mouse skeletal muscle. Diabetes 66:1491–1500. (American Diabetes Association Inc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merry TL, Dywer RM, Bradley EA, Rattigan S, McConell GK (2010a) Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat. J Appl Physiol 108:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Merry TL, Steinberg GR, Lynch GS, McConell GK (2010b) Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK. Am J Physiol–Endocrinol Metab 298

    Google Scholar 

  • Merry TL, Lynch GS, McConell GK (2010c) Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction. Am J Physiol–Regul Integr Comp Physiol 299

    Google Scholar 

  • Merry TL et al (2010d) N-acetylcysteine infusion does not affect glucose disposal during prolonged moderate-intensity exercise in humans. J Physiol 588:1623–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller LLV et al (2020) The p21-activated kinase 2 (PAK2), but not PAK1, regulates contraction-stimulated skeletal muscle glucose transport. Physiol Rep 8

    Google Scholar 

  • Mortensen SP, Askew CD, Walker M, Nyberg M, Hellsten Y (2012) The hyperaemic response to passive leg movement is dependent on nitric oxide: a new tool to evaluate endothelial nitric oxide function. J Physiol 590:4391–4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen SP et al (2005) Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol 566:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen SP et al (2009) ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. Am J Physiol–Regul Integr Comp Physiol 296

    Google Scholar 

  • Mu J, Brozinick JT, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer JR, Renkin EM, Borrero LM (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Phys 167:13–46

    Article  CAS  Google Scholar 

  • Park DR, Park KH, Kim BJ, Yoon CS, Kim UH (2015) Exercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT4 translocation in skeletal muscles. Diabetes 64:1224–1234

    Article  CAS  PubMed  Google Scholar 

  • Patwell DM, McArdle A, Morgan JE, Patridge TA, Jackson MJ (2004) Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med 37:1064–1072

    Article  CAS  PubMed  Google Scholar 

  • Ploug T et al (1998) Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol 142. http://www.jcb.org

  • Raun SH et al (2018) Rac1 muscle knockout exacerbates the detrimental effect of high-fat diet on insulin-stimulated muscle glucose uptake independently of Akt. J Physiol 596

    Google Scholar 

  • Reichard GA et al (1961) Blood glucose metabolism in man during muscular work. J Appl Physiol 16:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Rhein P et al (2021) Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle. Mol Metab 51:101228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter EA (1996) Glucose utilization. Handb Physiol Sect 12 Exerc Regul Integr Mult Syst Ed by Rowell LB Shepherd JT New York Oxford Univ Press

    Google Scholar 

  • Richter EA (2020) Is GLUT4 translocation the answer to exercise stimulated muscle glucose uptake? Am J Physiol Endocrinol Metab 320(2):E240–E243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richter EA, Hargreaves M (2013) Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev 93:993–1017

    Article  CAS  PubMed  Google Scholar 

  • Roberts CK, Barnard RJ, Scheck SH, Balon TW (1997) Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. Am J Physiol–Endocrinol Metab 273

    Google Scholar 

  • Roepstorff C et al (2002) Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol–Endocrinol Metab 282

    Google Scholar 

  • Roepstorff C et al (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol–Endocrinol Metab 288

    Google Scholar 

  • Rohlenova K, Veys K, Miranda-Santos I, De Bock K, Carmeliet P (2018) Endothelial cell metabolism in health and disease. Trends Cell Biol 28:224–236

    Article  CAS  PubMed  Google Scholar 

  • Romijn JA et al (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab 265

    Google Scholar 

  • Rose AJ, Alsted TJ, Kobberø JB, Richter EA (2007) Regulation and function of Ca2+−calmodulin-dependent protein kinase II of fast-twitch rat skeletal muscle. J Physiol 580:993–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose AJ, Kiens B, Richter EA (2006) Ca2+−calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol 574:889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross RM, Wadley GD, Clark MG, Rattigan S, McConell GK (2007) Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats. Diabetes 56:2885–2892

    Article  CAS  PubMed  Google Scholar 

  • Ryder JW et al (1999a) In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle. Biochem J 342:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder JW et al (1999b) Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J 13:2246–2256

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ (2003) Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol–Endocrinol Metab 285

    Google Scholar 

  • Sanders CA, Levinson GE, Abelmann WH, Freinkel N (1964) Effect of exercise on the peripheral utilization of glucose in man. N Engl J Med 271:220–225

    Article  CAS  PubMed  Google Scholar 

  • Sandström ME et al (2006) Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol 575:251–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schultz TA, Lewis SB, Westbie DK (1977) Glucose delivery: a modulator of glucose uptake in contracting skeletal muscle. Am J Physiol Endocrinol Metab Gastrointest Physiol 2

    Google Scholar 

  • Shamni O et al (2017) Supportive data on the regulation of GLUT4 activity by 3-O-methyl-D-glucose. Data Br 14:329–336

    Article  Google Scholar 

  • Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y (2003) Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 35:455–464

    Article  CAS  PubMed  Google Scholar 

  • Sjøberg KA, Rattigan S, Hiscock N, Richter EA, Kiens B (2011) A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging in humans and rat. Am J Physiol Heart Circ Physiol 301

    Google Scholar 

  • Sjøberg KA et al (2017) Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes 66:1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Stenbit AE et al (1996) Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle. J Clin Invest 98:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylow L, Kleinert M, Richter EA, Jensen TE (2017a) Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Nat Rev Endocrinol 13:133–148

    Article  CAS  PubMed  Google Scholar 

  • Sylow L, Møller LLV, Kleinert M, Richter EA, Jensen TE (2014) Rac1–a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Exp Physiol 99:1574–1580

    Article  CAS  PubMed  Google Scholar 

  • Sylow L, Møller LLV, Kleinert M, Richter EA, Jensen TE (2015) Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1. J Physiol 593

    Google Scholar 

  • Sylow L et al (2013a) Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Diabetes 62:1139–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylow L et al (2013b) Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 62(6):1865–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylow L et al (2016) Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol 594:4997–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylow L et al (2017b) Rac1 and AMPK account for the majority of muscle glucose uptake stimulated by ex vivo contraction but not in vivo exercise. Diabetes 66

    Google Scholar 

  • Treebak JT et al (2007) AS160 phosphorylation is associated with activation of α 2β2γ1- but not α 2β2γ3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am J Physiol–Endocrinol Metab 292

    Google Scholar 

  • Ueda S et al (2010) Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 24(7):2254–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:295–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassilopoulos S et al (2009) A role for the CHC22 clathrin heavy-chain isoform in human glucose metabolism. Science (80-) 324:1192–1196

    Article  CAS  Google Scholar 

  • Wahren J, Felig P, Ahlborg G, Jorfeldt L (1971) Glucose metabolism during leg exercise in man. J Clin Invest 50:2715–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Hansen PA, Marshall BA, Holloszy JO, Mueckler M (1996) Insulin unmasks a COOH-terminal GLUT4 epitope and increases glucose transport across T-tubules in skeletal muscle. J Cell Biol 135:415–430

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (2018) Oxidized CaMKII (ca 2+ /calmodulin-dependent protein kinase II) is essential for ventricular arrhythmia in a mouse model of Duchenne muscular dystrophy. Circ Arrhythmia Electrophysiol 11

    Google Scholar 

  • Whichelow MJ, Butterfield WJH, Abrams ME, Sterky G, Garratt CJ (1968) The effect of mild exercise on glucose uptake in human forearam tissues in the fasting state and after oral glucose administration. Metabolism 17:84–96

    Article  CAS  PubMed  Google Scholar 

  • Witczak CA et al (2010) CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am J Physiol–Endocrinol Metab 298

    Google Scholar 

  • Wojtaszewski JFP, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J Physiol 528:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright DC, Hucker KA, Holloszy JO, Han DH (2004) Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53:330–335

    Article  CAS  PubMed  Google Scholar 

  • Yazdani S, Jaldin-Fincati JR, Pereira RVS, Klip A (2019) Endothelial cell barriers: transport of molecules between blood and tissues. Traffic 20:390–403

    Article  CAS  PubMed  Google Scholar 

  • Zaid H, Talior-Volodarsky I, Antonescu C, Liu Z, Klip A (2009) GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochem J 419:475–484

    Article  CAS  PubMed  Google Scholar 

  • Zierath JR et al (1998) Restoration of hypoxia-stimulated glucose uptake in GLUT4-deficient muscles by muscle-specific GLUT4 transgenic complementation. J Biol Chem 273:20910–20915

    Article  CAS  PubMed  Google Scholar 

  • Zinker BA, Lacy DB, Bracy DP, Wasserman DH (1993) Role of glucose and insulin loads to the exercising limb in increasing glucose uptake and metabolism. J Appl Physiol 74:2915–2921

    Article  CAS  PubMed  Google Scholar 

  • Zisman A et al (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924–928

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Novo Nordisk foundation, the Independent Research Fund Denmark, and/or the Lundbeck foundation to LSH, TEJ, GKM, and EAR and the Danish Diabetes Academy funded by the Novo Nordisk Foundation to COL, JRK, and GKM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas E. Jensen or Erik A. Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jensen, T.E., Knudsen, J.R., Henriquez-Olguin, C., Sylow, L., McConell, G., Richter, E.A. (2022). Exercise-Regulated Skeletal Muscle Glucose Uptake. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_6

Download citation

Publish with us

Policies and ethics