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Chapter 10
Your Smartphone Knows you Better than 
you May Think: Emotional Assessment ‘on 
the Go’ Via TapSense

Surjya Ghosh, Johanna Löchner, Bivas Mitra, and Pradipta De

�Introduction

Emotions have an enormous impact on our momentary performance, health, and 
way of relating to others, hence on the quality of a persons’ life. In particular, the 
experience of unpleasant (or pleasant) emotions is directly related to an individual’s 
well-being. Emotions are influenced by subjective experiences and memories and 
the context the individual is in, and it seems almost impossible to measure this phe-
nomenon objectively, reliably, and validly. Indeed, capturing human emotional 
states has been a challenging task for researchers for decades, leading to numerous 
theories about emotions, moods, and feelings. Specifically, psychometrics focuses 
on the theory and techniques of psychological measurements, including the QoL 
measurements. The emerging field of affective computing promises to overcome 
some methodological difficulties that lead to limitations in traditional methods of 
psychometrics. Affective computing is the study of technologies that can quantita-
tively measure human emotion from different clues. It is based on the hypothesis 
that an individual’s digital footprint is highly correlated with their perceptions, feel-
ings, and resulting behaviors and that extracting and analyzing this data collected 

S. Ghosh (*) 
BITS Pilani, Goa, India
e-mail: surjyag@goa.bits-pilani.ac.in 

J. Löchner 
German Youth Institute, Munich, Germany
e-mail: loechner@dji.de 

B. Mitra 
Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
e-mail: bivas@cse.iitkgp.ac.in 

P. De 
Microsoft Corporation, Atlanta, USA
e-mail: prade@microsoft.co

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94212-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-94212-0_10#DOI
mailto:surjyag@goa.bits-pilani.ac.in
mailto:loechner@dji.de
mailto:bivas@cse.iitkgp.ac.in
mailto:prade@microsoft.co


210

over time can prove that “your smartphone knows you better than you may think.” 
In addition to the fact that people use their digital devices extensively, being the first 
and last thing used during a normal day [1]—this statement becomes even more valid.

In this chapter, we discuss the current development within the affective comput-
ing area while focusing on assessing emotions via personal technologies. Firstly, we 
define emotions as a complex interplay of different components (sensory, cognitive, 
physiological, expressive, motivational) over time. Several emotion theories have 
been developed in the past years, along with emotions being classified into three 
dimensions: valence, arousal, and dominance [2]. Among these emotion theories, 
the Component Process Model [3] stands out, revealing the emotional process that 
leads to an individual’s perception and processing of negative and positive life expe-
riences. As an extension of this model, the Emotional Competence Model [4] 
hypothesizes that mental well-being and adverse psychopathology (e.g., anxiety, 
depression) greatly depends on a well-functioning emotional process. This depends 
on the individual’s experienced emotional response, perception of the situation, 
adequate appraisal, and emotional regulation. Hence, emotional competence plays 
a key role in maintaining a person’s quality of life. Furthermore, the knowledge and 
perception of emotions are basic abilities that may elicit more adaptive emotion 
regulation strategies (like an acceptance of an uncontrollable stressor).

To capture individuals’ emotions (e.g., for clinical or research reasons), mostly 
self-reports for negative and positive emotions are conducted using psychometri-
cally validated questionnaires of concepts as, e.g., stress, depression, and well-being 
with a recall period of days to months. These assessment instruments face the prob-
lem that (i) self-reports are rather subjective and often biased by, e.g., time and 
motivation to fill out often many questions and (ii) they are influenced to a great deal 
by the current psychological state interfering with the recall of someone’s mood 
days to weeks ago. To overcome these issues, new assessment methods arose in the 
past years using personal digital technologies. For example, the Experience 
Sampling Method (ESM), also known as Ecological Momentary Assessment 
(EMA) [5–7], is increasingly used in psychology to trigger self-reports for emotions 
and behaviors momentarily, i.e., as closely as possible to the subject’s daily life 
experiences, periodically (randomly or at fixed intervals) or in an event-driven fash-
ion [6, 8].

Traditionally, different modalities such as facial expression [9–13], speech pros-
ody [14–20], physiological signals like ECG, EEG, HR, GSR blood, brain, posture, 
[21–27] are explored for emotion assessment. Additionally, other sources can be 
used to extract emotions using smartphones and internet usage, which is discussed 
in this chapter. To determine the emotion states, often these affect-aware systems 
deploy a machine learning model. Therefore, conventional machine learning mod-
els like Support Vector Machine (SVM), Random Forest, Bayesian approaches were 
used in affective computing [28, 29]. In these approaches, first, a set of features 
(which can distinguish one emotion from another) were extracted manually from, 
e.g., the physiological signals. These features were correlated with the emotion 
ground truth labels (self-reports) to construct the emotion inference model. With the 
latest advances in the Deep Neural Network models, the conventional approaches 
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were replaced by state-of-the-art AI models such as Convolutional Neural Network 
(CNN), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN) [28, 
29]. The advances in this field have helped to overcome the manual feature engi-
neering effort and helped obtain very high classification performance in the affect 
classification. The advances in affective computing have led to many affect-aware 
applications such as emotion-aware music player, affective tutor, mood monitor, 
which influence the quality of life [30–34]. The key working principle of such 
emotion-aware applications is to collect physiological and behavioral data from dif-
ferent modalities and to train a machine learning model for emotion inference.

Given the current accelerating scale of developments in personal technologies, 
new assessment techniques for emotions emerged. We present the design and devel-
opment of a smartphone keyboard interaction-based emotion assessment applica-
tion. Specifically, among different types of interactions performed in smartphones, 
keyboard interactions are highly interesting. They represent the input/output inter-
action between the user and the phone for, e.g., information, communication, or 
entertainment [35]. Additionally to the interaction itself, the interactive content may 
be of high interest. The research shows that not only individuals often express 
momentary emotions on social networks’ platforms [36, 37], but also a person’s 
language was found to reveal his/her momentarily psychological state [38].

In our research, we focus on the smartphone interaction itself. Hence, we have 
designed and implemented an Android application TapSense, which can unobtru-
sively log users’ typing patterns (without actual content) and trigger self-reports for 
four types of emotion (happy, sad, stressed, relaxed) leveraging the ESM method. 
Different typing features like typing speed and error rate are extracted from the typ-
ing data and correlated with the emotion self-reports to develop a personalized emo-
tion assessment model. However, as the conventional ESM-driven self-report 
collection for model construction is labor-intensive and fatigue-inducing, we also 
investigate how the self-report collection approach can be further optimized for suit-
able probing moments and reduced probing rate. So, we also have developed an 
adaptive 2-phase ESM schedule (integrated into TapSense), which balances the 
probing rate and self-report collection time and probes the individual at the oppor-
tune moments. The first phase balances between probing rate and self-report collec-
tion time and trains an ‘inopportune moment assessment’ model. The second phase 
operationalizes such a model so that no triggering is done at an inopportune moment. 
We investigate the implications of this ESM design on the emotion classification 
performance.

We evaluate the proposed approach in a 3-week ‘in-the-wild study involving 22 
participants. Our first important result demonstrates that using smartphone key-
board interaction; we can determine the emotion states (happy, sad, stressed, 
relaxed) with an average AUCROC of 78%. The next major result shows the perfor-
mance of the proposed ESM approach. It demonstrates that the proposed 2-phase 
ESM schedule (a) assesses inopportune moments with an average accuracy 
(AUCROC) of 89% (b) reduces the probing frequency by 64% (c) while enabling 
the collection of the self-reports in a more timely manner, with a reduction of 9% on 
average in elapsed time between self-report sampling and event occurrence. The 
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proposed design also helps to improve self-report response quality by (a) improving 
valid response rate to 96% and (b) yielding a maximum improvement of 24% in 
emotion classification accuracy (AUCROC) over the traditional ESM schedules.

The chapter is organized as follows. Firstly, in Sect. 2, we discuss the definitions 
and the nature of emotions and their importance for the daily life experience, which 
influences an individual’s quality of life. In Sect. 3, we present traditional psycho-
metric assessment instruments for emotions and different assessment methods 
leveraging affective computing developments and beyond. The background, study 
design, and empirical evaluation of TapSense—a smartphone-based approach for 
assessing emotions are presented in Sect. 4. We discuss and conclude the chapter 
findings in Sect. 5.

�Background and Related Work

This section presents the definition and models covering the concept of emotions 
(2.1), their importance for the quality of life (2.2). It attempts to capture emotions 
via traditional (2.3) and more novel, data-driven approaches (2.3).

�Definition of Relevant Domain Concepts

Emotions, moods, and psychological states play a key role in our personal, profes-
sional, and social life. Also, interpersonal relationships, professional success, and 
mental well-being depend greatly on how we cope with stressful events and navi-
gate adverse emotional experiences. Often the terms: emotions, effects, feelings, 
and moods are confused in language usage. Feelings most commonly involve invari-
ably a direct response of the autonomic nervous system (ANS) involving organ 
functions (e.g., change in respiration pattern, adrenaline rush). At the same time, an 
umbrella term refers to all basic senses of feelings, ranging from unpleasant to 
pleasant (valence) and from excited to calm (arousal). Moods differ from feelings, 
emotions, and affects in that they are experienced as extended in time (c.f., mood 
stability by Peters, 1984) but are also subject to certain situational fluctuations [39]. 
Very similar is the psychological concept of state, referring to a person’s mental 
state at a certain point in time, introduced by Cattell and Scheier [40] as a counter-
part to the concept of timely persisting (personality, motivational, cognitive) traits. 
In contrast, emotions are a much more complex mental construct consisting of sev-
eral components as the physiological response and lasting from minutes to hours.

Research on emotions is usually based on the central evolutionary importance of 
emotions for human survival. It defines emotions as “a genetic and acquired moti-
vational predisposition to respond experientially, physically and behaviorally to 
certain internal a02nd external variables” [41]. In the context of survival, emotions 
imply complex communication patterns and information [42–44], as the feedback 
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of an individual’s inner state on different levels enables a biological adaptation to 
the physical and psychosocial environment. Therefore, emotions are further viewed 
as complex, genetically anchored behavioral chains that contribute to an individu-
al’s homeostasis through various feedback loops [45]. Since the research of Ekman 
[46], it has become known that elementary emotions such as fear, joy, or sadness 
show themselves independently of the respective culture. These basic emotions are 
closely coupled to simultaneously occurring neuronal processes. However, how 
people communicate and express visible parameters, such as facial expression, are 
influenced by the values, roles, and socialization practices that vary across cultures 
[47, 48], age, and gender [49].

Emotions can be divided categorically into primary, secondary, and combined 
forms: primary emotions are fundamental, while secondary emotions are emotions 
about emotions (such as guilt over gloating). Ekman distinguishes six basic emo-
tions: happiness, sadness, anger, fear, surprise, and disgust [46]. In contrast, Izard 
[50] speaks of ten fundamental emotions (1) interest/excitement, (2) pleasure/joy, 
(3) surprise/fright, (4) sorrow/pain, (5) anger/rage, (6) disgust/repugnance, (7) dis-
dain/contempt, (8) fear/contempt, (9) shame/shyness/humiliation, and (10) guilt/
repentance. Another way to categorize emotions relates to their highly variable mul-
tidimensional nature: emotions can be categorized into the dimensions as positive or 
negative (polarity/valence), strong or weak (intensity/arousal), easy or hard to 
arouse (reactivity), and based on the situation they occur (idiosyncratic vs. universal 
situation) [51]. Following partly those dimensions, Russel’s Circumplex model is 
the most commonly used emotion model to capture emotion on a continuous scale 
[52]. It represents every emotion as a tuple of valence and arousal. There exist also 
a valence, arousal, and dominance model (more commonly known as the VAD 
model), which captures every emotion as a set of triplets (valence, arousal, domi-
nance) in a continuous scale [2] (see Fig. 10.1).

Following the earlier mentioned, there exists an empirically validated theoretical 
process model of emotion—the Component Process Model (CPM) [54] and the 
Emotional Competence Process Model (ECP), further implying the adaptive and 
maladaptive emotional functioning [4]. In the CPM, emotions are identified within 
the overall process in which low-level cognitive appraisals, particularly relevance 
processing, trigger physical reactions, behaviors, and subjective feelings (Fig. 10.2). 
As a foundation, CPM provides a differentiated theory of the various dimensions of 
emotions. Emotions are interpreted here as synchronizing several components that 
interact over time during a defined process regarding the emergence, appraisal, 
awareness, regulation, and knowledge of emotions. For example, an emotional situ-
ation emerges due to a specific trigger (e.g., a job interview), evoking in the appraisal 
(“I hope I perform well—the interviewer does not look friendly at all”) which 
results in a certain emotional reaction (e.g., adrenaline release, sweating, nervous-
ness, tension). At the moment, a person is aware of this condition and the fact that 
they can regulate their condition (e.g., by taking a deep breath). They can categorize 
their emotional reaction (and those of others in return).

The emotional response components cover sensory, cognitive, physiological, 
motivational, and expressive components [55]. Initially, the sensory component 
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enables a subject to recognize an emotional event through the senses (e.g., see, feel). 
Through the cognitive component, the individual can identify possible relation-
ships between itself and the event based on its subjective experiences. The individ-
ual then makes a subjective evaluation of the perception of the event (appraisal). 
This goes along with the two-factor theory of emotions. As early as the 1960s, 
Schachter and Singer pointed to the cognitive evaluation of a physical response as 
key to the subsequent emotional sensation [56]. A subject can react to the same 
event with a different evaluation—depending on his personal world view, value 
system, and current physiological state. It is resulting in different physical responses 
to feelings. Depending on the subjective evaluation outcome, the individual reacts 
by releasing certain neurotransmitters and hormones, thus changing its physiologi-
cal state (physical component). This altered state corresponds to the experience of 
an emotion. According to Lazarus’ appraisal theory [57], the emotional experience 
first arises through cognitive evaluation and interpreting an emotional stimulus as 
manageable or not. The motivational component follows the event’s evaluation 
and is modulated by the current physiological (or emotional) state. The motivation 
to a certain action of a person is oriented to an actual-target comparison and the 
prediction of the effect of conceivable actions. For example, the emotion of anger 
can result in both the motivation for an attack action (e.g., in the case of a suppos-
edly inferior opponent) and the motivation for a flight action (e.g., in the case of a 
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supposedly superior opponent). The expressive component refers to the way emo-
tion is expressed. This primarily concerns nonverbal behavior, such as facial expres-
sions, speech, and gestures.

�Importance of Feelings Moods, Psychological States

From an evolutionary perspective, emotions play a very important role in motiva-
tion, behavior, and attention: they make us act, direct our attention to certain stimuli 
that might have pleasant or unpleasant consequences for us, and give us signals so 
that we adjust our behavior to obtain or avoid those consequences. In a modern 
context, it is not only about our survival and related incentives but also about sec-
ondary incentives, such as money, status, entertainment, or others. Moreover, emo-
tions regulate the intensity and duration of different behaviors and cause the learning 
of those behaviors that were successful under certain conditions (e.g., joy has a 
pleasant effect on us and motivates us to repeat the behavior) and mark in memory 
(e.g., via disgust, anger) those that led to failure. In the same way, emotions function 
in regulating our social interactions, being reinforced by a pleasant (or non-pleasant) 
effect. This leads to the formation of bonds or rivalries, which provide us with ori-
entation in the social structure. Some distinct emotions may have even a more 
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specific function, as shown in Table 10.1 [59, 60]. It is part of our daily lives to be 
confronted with the experience of such emotions and to respond to them. How 
people deal with different emotional events varies widely. The distinction between 
“positive” and “negative” emotions is questionable due to emotions’ functionality.

As depicted in the ECP, there is a great body of literature showing that both posi-
tive and negative emotions greatly impact our well-being and mental health (see 
meta-analysis [61]). It has been demonstrated, for example, that people suffering 
from depression have difficulties in identifying (Rude & McCarthy, 2003), bearing 
and accepting their emotions [62, 63]. In numerous disorders, the presence of unde-
sirable affective states (such as anxiety or depressed mood) in an inappropriate 
intensity or duration is among a diagnostic criterion of the disorder (e.g., in anxiety 
disorders or depression). Also, a whole range of cognitive and behavioral symptoms 
of mental disorders can be understood as dysfunctional attempts to avoid or termi-
nate such undesirable states. Examples include alcohol or substance abuse, self-
injurious behavior, or eating attacks.

Given the nature of variety in the emotional response and experience regarding 
intensity, duration, personality, and situational aspects, it is poorly defined when a 
certain emotional phenomenon can be considered inappropriate, abnormal, or even 
psychopathological [64]. This poses a challenge to psychometricians, researchers, 
and clinical diagnosticians to make the most valid (clinical) judgment or classifica-
tion and eventually initiate appropriate and effective treatment.

�Assessment of Emotions

Traditional assessment of emotions is based on self-reports via questionnaire and 
interview (3.1).1 For many years now, other approaches aiming to capture a person’s 
emotions more objectively and independently than subjective self-reports were 
developed. In the following, assessment methods deriving from physiology-based 

1 Of note, not all psychometric approaches for assessing the whole emotional process (or parts of 
it) can be displayed here. Further research attempts to improve questionnaires’ reliability, like eye-
tracking experiments (while filling in a questionnaire), appraisal biases, and knowledge of 
emotions.

Table 10.1  Example Functions of Emotions

Emotion Function

Fear Protective function: Avoidance of danger, injury, creating distance to source of danger
Anger Destruction function: Overcoming something that stands in the way of need 

satisfaction (e.g. nutrition)
Pleasure Intake function: Receiving positive stimulus from the external world that supports or 

nourishes the individual
Disgust Rejection function: Excrete harmful substance
Surprise Orientation function: Increased attention to take in information about a new stimulus
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emotion assessment such as blood and brain (3.2), expression-based emotion assess-
ment such as facial expression, speech, and posture (3.3) are discussed. Moreover, 
digital footprints of emotions can be approached via social network platforms and 
smartphone data collection (3.4), including momentary ecological assessment. In 
the final part of this section, we compare the advantages and disadvantages of the 
presented assessment methods (3.5).

�Self-Report-Based Methods for Emotion Assessment

In the traditional psychometric approaches, emotions are usually measured with 
self-report questionnaires, leveraging time- and cost-efficient instruments and 
enabling access to the cognitive component of someone’s emotions. It is noteworthy 
that those instruments aim to assess single emotions and approach “concepts” as 
stress, depression, or well-being, indicating well-functioning (or dysfunctional) 
emotional processes over time. Questionnaires differ on how they are evaluated 
regarding their standardized psychometric properties as test objectivity, reliability, 
and validity [65]. Usually, factor analyses are conducted to evaluate the underlying 
constructs’ factor structure in the designed questionnaire. Standardization is usually 
carried out using large and representative samples, which allow the classification of 
individual test results compared to the norm sample. Ideally, t-values or percentiles 
are defined for this purpose based on extensive psychometric studies. For the dis-
tinction between pathological and healthy reactions and clinical diagnosis, clinical 
samples are also collected.

To capture the emotion self-reports in the general population, often different 
scales are used, guided by the above-mentioned emotion models. In Table 10.2, an 
overview of some well-established questionnaires, including the item number and 
recall period, is given. For example, the Self-Assessment Manikin (SAM) is a non-
verbal pictorial assessment technique that directly measures the pleasure, arousal, 
and dominance associated with a person’s affective reaction [77]. Similarly, there is 
an Affect Balance Scale (ABS), based on a model that posits the existence of two 
independent conceptual dimensions—positive effect (PAS) and negative affect 
(NAS)—each related to overall psychological well-being by an independent set of 
variables [68]. The more widely accepted PANAS scale is a 10-item mood scale that 
comprises the Positive and Negative Affect Schedule (PANAS) [67]. Additionally, a 
flourishing scale determines psychological flourishing and feelings [92] in relevant 
areas such as purpose in life, relationships, self-esteem, feelings of competence, and 
optimism.

To make a clinical diagnosis of an affective disorder, clinical questionnaires are 
based on the clinical diagnostic criteria: symptom description, duration, intensity, 
distress, and psychosocial consequences based on the classification criteria of 
DSM-V [93] and ICD-10 [94]. However, for a valid diagnosis, a structured clinical 
interview is the gold standard (e.g., SKID [95]. Nevertheless, clinical questionnaires 
are frequently used to validate the diagnosis and evaluation of the treatment process 
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Table 10.2  Overview of example, well-established questionnaires assessing emotions

Construct Scale Name
Number 
of Items

Recall 
Period Reference

Affect The affect balance scale 
(ABS)

10 Past few 
weeks

Bradburn (1969) [66]

Affect The positive and negative 
affect scale (PANAS)

20 n/a Watson et al. (1988) 
[67]

Affect Affect balance scale 10 Past few 
weeks

Moriwaki (1974) [68]

Anxiety Manifest anxiety scale 50/28 n/a Taylor (1953) [69]
Anxiety Self-rating anxiety scale 20 Overall Zung (1965) [70]
Anxiety Beck anxiety inventory 21 n/a Beck et al., (1988) [71]
Anxiety, 
depression

The depression anxiety 
stress scales

21 Past 
week

Antony, Bieling, Cox, 
Enns, & Swinson 
(1998) [72]

Anxiety State-trait anxiety 
inventory

40 Current Spielberger (1989) [73]

Anxiety Generalized anxiety 
Disorder-7 (GAD-7)

7 Past 
2 weeks

Spitzer et al., (2006) 
[74]

Anxiety The Hamilton anxiety 
rating scale

14 n/a Hamilton, (1959) [75]

Coherence Sense of coherence scale 29 Overall Antonosky, (1993) [76]
Emotions Self-assessment manikin 3 Current Bradley & Lang (1994) 

[77]
Depression Patient health 

questionnaire (PHQ-9)
9 Past 

2 weeks
Kroenke, Spitzer, & 
Williams, 2001 [78]

Depression The hospital anxiety and 
depression scale

14 Past 
week

Zigmond & Snaith, 
(1983) [79]

Depression Beck depression inventory 21 Past 
2 weeks

Beck, Steer, & Brown 
(1996) [80]

Depression Zung self-rating 
depression scale

20 Current Zung, (1965) [70]

Depression Center for Epidemiologic 
Studies Depression Scale 
(CES-D)

20 Past 
week

Lewinsohn et al., 
(1997) [81]

Depression Carroll rating scale (CRS) 
for depression

52 n/a Carroll, Feinberg, 
Smouse, Rawson, & 
Greden, (1981) [82]

Emotional 
competence

Geneva emotional 
competence test (GECo)

110 Current Schlegel & Mortillaro 
(2019) [83]

Emotion 
recognition

Geneva emotion 
recognition test 
(GERT/-S)

83/42 Current Schlegel, Grandjean,
& Scherer (2014) [84], 
[85]

Psychopathology Symptom-checklist 
SCL-20-R

90 Past 
week

Hamilton, (1959) [75]

Rumination Ruminative response scale 22 n/a Treynor, Gonzalez, & 
Nolen-Hoeksema, 
(2003) [86]
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and follow-up. For example, the Beck’s Depression Inventory (BDI-II, [80]) is com-
monly used in research to diagnose depression. The BDI-II contains 30 items refer-
ring to depressive symptoms someone may have experienced the past two weeks 
with different intensity. Assessing depressive symptoms in nine items, the PHQ-9 
corresponds to the depression module of the Patient Health Questionnaire (PHQ, 
[78]). Unlike many other depression questionnaires, the PHQ-9 captures one of the 
nine DSM-IV criteria for diagnosing “major depression” with each question. Again, 
due to depression classification criteria, the recall period is two weeks. The 
Depression Anxiety Stress Scale (DASS, [72]) covers 42 Items on those three 
related emotional states in the last week by not focusing on one specific affective 
disorder. In contrast to assessing mental illness, there are fewer instruments for 
assessing mental well-being. For example, the Warwick-Edinburgh Mental Well-
Being Scale (WEMWBS) aims to assess positive feelings an individual may have 
experienced to a certain extent in the past two weeks.

Overall, questionnaires to assess emotions (for clinical use) have the advantage 
of not requiring experienced experts, lead to scalable, comparable results, and are 
time and cost-efficient than clinical interviews. Besides, the object is an individual’s 
emotional experience, and therefore the subjectivity of self-reports makes sense to 
capture someone’s psychological strain. However, self-report questionnaires face 
big shortcomings in the assessment of emotions over time. Most instruments (cov-
ering the classification criteria of DSM-V and ICD-10) refer to a recall period of up 
to two weeks (see Table 10.2 for examples). Therefore, they are greatly biased by 
memory effects [96] and the motivation of an individual [97]. Studies are showing 
the questionnaire results are more negative when filled on Mondays while Saturday 
mornings are “the happiest moment during the week” and consequently provoke 
more positive test results [98, 99]. Other bias factors are fatigue and other non-
assessed personal conditions (e.g., bad news occurring just that specific assessment 
day), as well as misunderstanding of the items and social desirability (aiming “to 
look good,” even in anonymous surveys) [100, 101]. This specific subjectivity is 

Table 10.2  (continued)

Construct Scale Name
Number 
of Items

Recall 
Period Reference

Stress Perceived stress scale 
perceived stress test (PSS)

14 Past 
month

Cohen, Kamarck, 
Mermelstein, (1983) 
[87]

Well-being General health 
questionnaire

60 Past few 
weeks

Goldberg & Hillier 
(1979) [88]

Well-being Warwick-Edinburgh 
mental Well-being 
scale—WEMWBS

14 Past 
2 weeks

Stewart-Brown, et al.
(2011) [89]

Well-being EuroQol instrument 
EQ-5D-3L

15 Current Herdman et al.,(2011) 
[90]

Worrying Penn State worry 
questionnaire—(PSWQ)

16 n/a Hopko et al., (2003) 
[91]
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wanted to a somewhat extent since it also informs the examiner about a person’s 
perception and interpretation. Nevertheless, the objectivity of assessment is always 
limited greatly by these interpretation biases.

�Physiology-Based Emotion Assessment

As mentioned above, emotions are represented not only by the cognitive but also 
physical and expressive components. While the cognitive aspect of emotion cannot 
be observed directly, the physical and expressive aspects are often manifested in 
different bodily signals. An emotional state influences underlying human biology 
and psychophysiology, as well as the resulting behaviors. For example, stress can be 
manifested in hormonal changes; anxiety can be manifested in terms of a high pulse 
rate, while happiness can be expressed via laughter. As we point out in the following 
subsections, some of these manifestations are captured and modeled to determine 
the emotion in affective computing.

�Emotional Assessment from Blood

The emotional state of the human may be assessed via blood-based analytics, as the 
emotional state influences the individual’s hormonal status. Especially in the field of 
biological psychiatry research, plasmatic biomarkers have been leading endeavors. 
The five most named plasmatic biomarkers (BDNF, TNF- alpha, IL-6, C-reactive 
protein, and cortisol) are classically used to predict psychiatric disorders like schizo-
phrenia, major depressive disorder, or bipolar disorder [21]. In a meta-analysis, pat-
terns of variation of those features were identified between those most important 
psychiatric disorders. The results indicated robust variations across studies but also 
showed similarities among disorders. The authors conclude that the implemented 
biomarkers may be interpreted as transdiagnostic systemic consequences of psychi-
atric illness rather than diagnostic markers. This is in line with another review of 
Funalla et al. showing evidence for diagnostic biomarkers associated with obsessive-
compulsive disorder (OCD) but did not show diagnostic specificity [102]. A com-
monly used indicator for stress is the cortisol concentration found in human blood 
or saliva [103]. Overall, in this chapter, we do not focus on plasmatic biomarkers; 
we mention these for completeness.

�Emotional Assessment from Brain

Other biological features to determine emotions with a rather high accuracy can be 
extracted from brain electroencephalography (EEG) [22]. With the help of EEG, 
the assessment of the brain’s summed electrical activity is enabled by recording 
the voltage fluctuations on the surface of the head. Emotion extraction is 
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consequently based on arousal and categorized into valence and excitation. EEG 
evaluation is traditionally performed by pattern recognition by the trained evalua-
tor or by an automatic evaluation. For emotions, the patterns of alpha and beta 
waves are key classifiers. The alpha wave is associated with mild relaxation or 
relaxed alertness, with eyes closed (frequency range between 8 and 13 Hz). A beta 
wave has different causes and meanings and may occur during constant tensing of 
a muscle or during active concentration (frequency range between 13 and 30 Hz). 
According to Choppin (2000), high valence is associated with high beta power in 
the right parietal lobe and high alpha power in the brain’s frontal lobe [104]. High 
beta power in the parietal lobes is associated with higher arousal in emotions, 
while the alpha activity is lower but also located in the parietal lobes. More specifi-
cally, negative emotions are represented by activity in the right frontal lobe, 
whereas positive emotions result in high power in the brain’s left frontal part. EEG 
was found to achieve 88.86% accuracy for four emotions: sad, scared, happy, and 
calm [105]. After assessing the EEG waves and extracting the particular emotional 
features, classifiers are trained for emotion identification. Popular is the Canonical 
Correlation Analysis (CCA) [106], Artificial Neural Network (ANN) [107], Fisher 
linear discriminant projection [24], and Adaptive Neuro-Fuzzy Interference 
System (ANFIS) [108]. Using K-Nearest Neighbor (KNN) [109], and Support 
Vector Machine (SVM) [105, 110] Mehmood and Lee (2016) used five frequency 
bands (beside alpha and beta, delta, theta, gamma waves) and identified the four 
emotions sad, scared, happy and calm with an accuracy rate of 55% (KNN) and 
58% (SVM).

In a more clinical setting, Khodayari-Rostamabd [111] used EEG data to pre-
dict the pharmaceutical treatment response of schizophrenic patients. A set of 
features was classified using the kernel partial least squares regression method to 
perform response prediction on the positive and negative syndrome scale (PANSS) 
with 85% accuracy. In another sample aiming to predict psychopharmacological 
treatment response (SSRI), the same research group extracted candidate features 
from the subject’s pre-treatment EEG using a mixture of factor analysis (MFA) 
model in a sample with patients suffering from depression [112]. The proposed 
method’s specificity is 80.9%, while sensitivity is 94.9%, for an overall predic-
tion accuracy of 87.9%. Besides EEG, also functional Magnetic Resonance 
Imaging (fMRI) is used to assess emotions, especially by exploring the amygdala 
activity [113, 114]. Zhang et al. [114] analyzed connectivity change patterns in 
an fMRI data-driven approach in 334 healthy participants before and after induc-
ing stress. Besides, the participants’ cortisol level was taken to classify pre- and 
post-stress states. The machine learning model revealed that the discrimination 
relied on activation in the dorsal anterior cingulate cortex, amygdala, posterior 
cingulate cortex, and precuneus and with a 75% accuracy rate. The advantage of 
using EEG for assessing emotions is that the data extraction is independent of 
facial or verbal expression that could be impaired due to, e.g., paraplegia, facial 
paralysis, but the necessity of a lab and the complex, costly installation and main-
tenance of equipment is a big disadvantage not only for the practical field but also 
research projects [22].
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�Emotional Assessment from Physiological Signal Collection

A lot has been written about assessment of the emotional state of the individual 
from the physiological state—via, e.g., EEG (mentioned above), Electrocardiogram 
(ECG), Electromyography (EMG), Electrooculography (EOG), Galvanic Skin 
Response (GSR), Heart Rate (HR), Body Temperature (T), Blood Oxygen Saturation 
(OXY), Respiration Rate (RR), or Blood Pressure analytics (BP) [115–118]. From 
the technical perspective, the existing physiological signal-driven emotion assess-
ment methods can also be divided into three categories (a) traditional machine 
learning methods, (b) deep neural network-based method, and (c) sequence-
based models.

Conventional Machine Learning Approach  In the case of traditional machine 
learning-based approaches, first, a set of features are extracted from the captured 
data, and then different algorithms are used for model construction. Apart from the 
time domain characteristics, to leverage the spectral-domain characteristics such as 
power spectral density (PSD), spectral entropy (SE) is computed using Fast Fourier 
Transform (FFT) or Short-term Fourier Transform (STFT).

SVM is probably the most widely used in physiological signal base emotion 
recognition among various machine learning algorithms. Das et  al. extracted 
Welch’s PSD of ECG and Galvanic Skin Response (GSR) signals for emotion rec-
ognition [119]. Liu et al. extracted a set of features from EEG and eye signals and 
used a linear SVM to determine three emotion states [120]. However, as regular 
SVM does not work in the imbalanced dataset, Liu et al. constructed an imbalanced 
support vector machine to solve the imbalanced dataset problem, which increased 
the punishment weight to the minority class and decreased the punishment weight 
majority class [121]. A few authors also used KNN (K = 4) to classify four emotions 
with the four features extracted from ECG, EMG, GSR, and RR [121]. In [115], the 
authors collected 14 features of 34 participants as they watch three sets of 10-min 
film clips eliciting fear, sadness, and neutrality, respectively. Analyses used sequen-
tial backward selection and sequential forward selection to choose different feature 
sets for 5 classifiers (QDA, MLP, RBNF, KNN, and LDA). Wen et al. used RF to 
classify five emotional states with features extracted from OXY, GSR, and HR [122].

Deep Learning-Based Approach  Among different deep learning-based 
approaches, CNN is one of the most widely used. Martinez et al. trained an efficient 
deep convolution neural network (CNN) to classify four cognitive states (relaxation, 
anxiety, excitement, and fun) using skin conductance and blood volume pulse sig-
nals [123]. Giao et al. used the Convolutional Neural Network (CNN) for feature 
abstraction from EEG signal [124]. In [125], several statistical features were 
extracted and sent to the CNN and DNN. Song et al. used dynamical graph convo-
lutional neural networks (DGCNN), which could dynamically learn the intrinsic 
relationship between different EEG channels represented by an adjacency matrix to 
facilitate feature extraction [126]. DBN is also widely used for emotion recognition. 
It learns a deep input feature through pre-training. Zheng et al. introduced a recent 

S. Ghosh et al.



223

advanced deep belief network (DBN) with differential entropy features to classify 
two emotional categories (positive and negative) from EEG data, where a Hidden 
Markov Model (HMM) was integrated to accurately capture a more reliable emo-
tional stage switching [127]. Huang et al. extracted a set of features and applied 
DBN in mapping the extracted feature to the higher-level characteristics space 
[128]. In the work of [129], instead of the manual feature extraction, the raw EEG, 
EMG, EOG, and GSR signals directly inputted to the DBN, where the high-level 
features according to the data distribution could be extracted.

Sequence-Based Models  To capture the temporal aspects of the physiological sig-
nals, often sequence-based models are used. For example, Li et al. applied CNN 
first to extract features from EEG and then applied LSTM to train the classifier, 
where the classifier performance was relevant to the output of LSTM in each time 
step [130]. In the work of [131], an end-to-end structure was proposed, in which the 
raw EEG signals in 5 s-long segments were sent to the LSTM networks, in which 
autonomously learned features. Liu et  al. proposed a model with two attention 
mechanisms based on multi-layer LSTM for the video and EEG signals, which 
combined temporal and band attentions [132].

Overall, as the captured signals are noisy, several pre-processing techniques are 
often used to eliminate the noise introduced from different sources such as cross-
talk, measurement error, and instrument interference. The commonly used prepro-
cessing techniques include filtering [133], Discrete Wavelet Transform (DWT) 
[134], Independent Component Analysis (ICA) [135], Empirical mode decomposi-
tion (EMD) [136].

The overall psychophysiological approach for emotional assessment is cumber-
some and not straightforward to be deployed in real-time for real-time accurate 
emotion recognition. Besides, the required complex laboratory setup (e.g., EEG) is 
time and cost-intensive.

�Expression-Based Emotion Assessment

Following the cognitive and physical components of emotions, we focus on express-
ing emotions in this section. We describe facial and verbal emotion recognition, as 
well as how posture may reflect human emotional states.

�Facial Emotion Recognition (FER)

We broadly divide facial emotion recognition-related works into the following two 
groups (a) conventional FER approach and (b) deep learning-based FER approach.

Conventional FER Approach  For automatic FER systems, various types of con-
ventional approaches have been studied. First, all these approaches assess the face 
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region and then extract a set of geometric features, appearance features, or a hybrid 
of geometric and appearance features on the target face. For the geometric features, 
the relationship between facial components is used to construct a feature vector for 
training [137, 138]. For example, Ghimire and Lee [138] used two types of geomet-
ric features based on 52 facial landmark points’ position and angle. First, the angle 
and Euclidean distance between each pair of landmarks within a frame are calcu-
lated. Second, the distance and angles are subtracted from the corresponding dis-
tance and angles in the video sequence’s first frame. For the classifier, two approaches 
are used, using multi-class AdaBoost with dynamic time warping, and SVM on the 
boosted feature vectors.

The appearance features are usually extracted from the global face region [139] 
or different face regions containing different types of information [140–143]. An 
example of using global features includes the exploration by Happy et al. [139]. The 
authors utilized a local binary pattern (LBP) histogram of different block sizes from 
a global face region as the feature vectors. They classified various facial expressions 
using a principal component analysis (PCA). This method’s classification perfor-
mance is poor as it cannot reflect local variations of the facial components to the 
feature vector. A few explorations also used features from different face regions as 
they may have different levels of importance, unlike a global-feature-based 
approach. For example, the eyes and mouth contain more information than the fore-
head and cheek. Ghimire et al. [144] extracted region-specific appearance features 
by dividing the entire face region into domain-specific local regions. An incremen-
tal search approach is used to identify important local regions, reducing feature 
vector size, and improving classification performance.

For hybrid features, some approaches [144, 145] have combined geometric and 
appearance features to complement the two approaches’ weaknesses and provide 
even better results in certain cases.

Deep Learning-Based FER Approach  The most adopted one in deep neural 
network-based FER is CNN. The main advantage is to completely remove or highly 
reduce the dependence on physics-based models and/or other pre-processing tech-
niques by enabling “end-to-end” learning directly from input images [146]. Breuer 
and Kimmel [147] investigated the suitability of CNNs on different FER datasets 
and showed the capability of networks trained on emotion assessment and FER-
related tasks. Jung et al. [148] used two different types of CNN: the first extracts 
temporal appearance features from the image sequences. The second CNN extracts 
the temporal geometry features from temporal facial landmark points. These two 
models are combined using a new integration method to boost the performance of 
facial expression recognition.

However, as CNN-based methods are not suitable for capturing the temporal 
sequence, a hybrid approach combining both CNN (for spatial features) and 
LSTM (for temporal sequence) was developed. LSTM is a special type of RNN 
capable of learning long-term dependencies. Kahou et al. [149] proposed a hybrid 
RNNCNN framework for propagating information over a sequence using a 
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continuously valued hidden-layer representation. In this work, the authors pre-
sented a complete system for the 2015 Emotion Recognition in the Wild (EmotiW) 
Challenge [150]. They proved that a hybrid CNN-RNN architecture for a facial 
expression analysis could outperform a previously applied CNN approach using 
temporal averaging for aggregation. Kim et  al. [151] utilized representative 
expression-states (e.g., the onset, apex, and offset of expressions), specified in 
facial sequences regardless of the expression intensity. Hasani and Mahoor [152] 
proposed the 3D Inception-ResNet architecture followed by an LSTM unit that 
together extracts the spatial relations and temporal relations within the facial 
images between different frames in a video sequence. Graves et al. [153] used a 
recurrent network to consider the temporal dependencies present in the image 
sequences during classification. This study compared the performance of two 
types of LSTM (bidirectional LSTM and unidirectional LSTM) and proved that a 
bidirectional network provides significantly better performance than a unidirec-
tional LSTM.

In summary, hybrid CNN-LSTM (RNN) based FER approaches combine an 
LSTM with a deep hierarchical visual feature extractor such as a CNN model. 
Therefore, such a hybrid model can learn to recognize and synthesize temporal 
dynamics for tasks involving sequential images. Each visual feature determined 
through a CNN is passed to the corresponding LSTM, and it produces a fixed or 
variable-length vector representation. The outputs are then passed into a recurrent 
sequence-learning module. Finally, the predicted distribution is computed by apply-
ing softmax [154, 155]. A limitation of this approach is the challenge of capturing 
the facial expression in real-time in daily life as a natural reaction to an emotional 
experience. Additionally, privacy issues can be a problem if a person does not want 
to be visually recorded during such intimate moments.

�Speech Based Emotion Recognition (SER)

The existing literature on speech emotion recognition (SER) is also broadly divided 
into the following two categories (a) Conventional SER approach and (b) deep 
learning-based SER approach.

Conventional SER Approach  In traditional SER systems, there are mainly three 
steps—(a) signal pre-processing, (b) feature extraction, and (c) classification. At 
first, acoustic pre-processing such as denoising, segmentation is carried out to 
determine relevant units of the speech signal [156–158]. Once the pre-processing is 
done, several short-term characteristics of the signal such as energy, formants, and 
pitch are extracted, and short-term classification of the speech segment is done 
[159]. On the contrary, for long-term classification, mean, standard deviation is 
used [160]. Among prosodic features, the intensity, pitch, rate of spoken words, and 
variance play an important role in identifying various types of emotions from the 
input speech signal [161]. The relationship between different vocal parameters and 
their relation to emotion is often explored in SER. Parameters such as intensity, 
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pitch, and rate of spoken words, and quality of voice are frequently considered 
[162]. The intensity and pitch are often correlated to activation so that the value of 
intensity increases along with high pitch and vice versa [163, 164]. Factors that 
affect the mapping from acoustic variables to emotion include whether the speaker 
is acting, there are high speaker variations, and the individual’s mood or personality 
[165, 166].

In the existing SER literature, there are two types of classifiers—linear and non-
linear. Linear classifiers usually perform classification based on object features with 
a linear arrangement of various objects [166]. In contrast, non-linear classifiers are 
utilized for object characterization in developing the non-linear weighted combina-
tion of such objects [167–170]. The GMMs are utilized for the representation of the 
acoustic features of sound units. The HMMs, on the other hand, are utilized for 
dealing with temporal variations in speech signals [171].

Deep Learning-Based SER Approach  In SER approaches, different types of 
deep neural networks are used. Senigallia et al. used a 2D CNN with Phoneme 
data as input data to determine 7 emotion states [172]. Zhao et al. combined Deep 
1D and 2D CNN for high-level learning features from input audio and log-mel 
spectrograms for emotion classification [173]. Convolutional Neural Network 
(CNN) also uses the layer-wise structure and can categorize the seven universal 
emotions from the defined speech spectrograms [174]. In [175], an SER technique 
based on spectrograms and deep CNN is presented. The model consists of three 
fully connected convolutional layers for extracting emotional features from the 
speech signal’s spectrogram images. Pablo et al. obtained emotional expressions 
that are spontaneous and can easily be classified into positive or negative [176]. 
Mao et al. trained the CNN to learn affect salient features and achieved robust 
emotion recognition with the variational speaker, language, and environ-
ment [177].

The hybrid networks consisting of CNN and RNN are also used in SER [178–
180]. This enables the model to obtain both frequency and temporal dependency in 
a given speech signal. Sometimes, a reconstruction-error-based RNN for continu-
ous speech emotion recognition is also used [181]. SER algorithms based on CNNs 
and RNNs have been investigated in [180]. The deep hierarchical CNNs architec-
ture for feature extraction has also been combined with LSTM network layers. It 
was found that CNN’s have a time-based distributed network that provides results 
with greater accuracy. Zhao et al. used a hybrid RCNN model to determine basic 
emotion [182]. Wootaek et al. used a deep hierarchical feature extraction architec-
ture of CNNs combined with LSTM network layers for better emotion recognition 
[180]. Like FER, capturing the speech in real-time as a reaction to the emotional 
experience is a challenging issue. In addition to interfering with privacy, someone 
may express emotions without using expressed language because they are alone or 
do not want to speak, especially in emotional moments. Although individuals tend 
to adapt quickly to being observed, the awareness of being recorded might interfere 
with someone’s speech and expression of emotions.
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�Emotional Assessment from Posture

In contrast to research on automatic emotion recognition focusing on facial expres-
sions or physiological signals, little research has been done on exploiting body pos-
tures. However, they can be useful for emotion recognition and even more accurate 
than facial features [23]. Bodily postures refer to the physical expression compo-
nent of emotions and an important channel of communication. Since it is challeng-
ing to categorize the expressed posture to discrete emotions due to the variety of 
validated emotion poses, researchers in this field focus first on defining features, 
aiming for understanding the cohesion and dimensional ratings with high validity 
[183]. Therefore, studies recorded actors displaying concrete, discrete emotions, 
and the recordings were then rated by the study participants categorizing these emo-
tions. For example, Lopez et al. asked study participants to categorize emotion pos-
tures depicting five emotions (joy, sadness, fear, anger, and disgust) and to rate 
valence and arousal for each emotion pose. Besides a successful categorization of 
all emotion categories, participants accurately identified multiple distinct poses 
within each emotion category. The dimensional rating of arousal and valence 
showed interesting overlaps and distinctions, increasing further granularity of dis-
tinct emotions. Similarly, the Emotion Recognition Test (GERT) [85] was devel-
oped to test the emotional recognition ability using video clips with sound 
simultaneously presenting facial, vocal, and emotional expression based on the pos-
ture by using various data and video material and relatively large samples to vali-
date. Individuals using the GERT test material are asked to watch video clips and 
rate the displayed emotions to assess their emotion recognition ability.

Postures are also captured using movement sensor data from smartwatches or 
mobile phones [184]. Quiroz et al. observed the movement sensor logged by the 
smartwatches of 50 participants differentiated between the emotions happy, sad, 
and neutral as a response to an emotional stimulus in an experimental setting. 
Furthermore, the response was validated by additional data from the Positive Affect 
and Negative Affect Schedule Questionnaire (PANAS). Emotional states could be 
assessed well by self-report and data obtained from the smartwatch with high accu-
racy across all users for classification of happy versus sad emotional states. Although 
the categories here depict only two emotions and other categorization difficulties 
need to be evaluated, movement sensors’ usage still appears promising for emotion 
recognition purposes. Another smartphone-based approach also uses information 
about postures for recognizing emotions but uses self-reported body postures [185]. 
A mobile application was developed that classifies (based on the nearest neighbor 
algorithm) inserted poses into Ekman’s six basic emotion categories and a neutral 
state. Emotion recognition accuracy was evaluated using poses reported by a sample 
of users.

Although digital devices may be included to capture postures in real-time, this 
data collection is challenging to conduct in a person’s daily life and close to their 
natural expression of emotions. Due to the necessity of leveraging, e.g., the use of 
cameras, this method is obtrusive and implies the same privacy issues we discussed 
in the context of FER and SER.
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�Internet-Use Based Emotion Assessment

This subsection presents the emotion assessments based on the internet usage of an 
individual. Firstly, analysis on social networks (3.4.1) is discussed, followed by 
smartphone-based emotion assessment (3.4.2) and smartphone-based experience 
sample methods (3.4.3).

�Social Network Analysis

Digital records of an individual’s behavior are extracted, including linguistic style, 
sentiment, online social networks, and other activity traces, which can be used to 
infer the individual’s psychological state. In particular, social networking platforms 
are becoming increasingly popular. They have recently been used more extensively 
to study emotions, as they are easily accessible to users, and researchers can collect 
the necessary information with the users’ consent. Based on this approach, Chen 
et al. aimed to identify users with depression or at risk of depression by assessing 
the individual’s expressed emotions from Twitter posts over time [36]. In another 
study, voluntarily shared Facebook Likes for N = 58,000 users were used to predict 
several highly sensitive personality attributes [37]: sexual orientation, ethnicity, 
religious and political views, personality traits, intelligence, happiness, use addic-
tive substances, parental separation, age, and gender. All attributes were predicted 
with high accuracy, especially the ethnic origin and gender. Other emerging 
approaches focus on Spotify music or Instagram picture extraction as a feature to 
predict personality or mood outcomes [186].

Furthermore, studies focus on language content in social media networks or mes-
saging systems to discover depressive symptoms, the so-called Natural Language 
Processing (NLP) [187]. The depressive language was characterized by more nega-
tive and extreme words such as “always, everybody, never” [188]. The challenge 
with this data is that communication on Twitter, Facebook may be heavily distorted 
by aspects of social desirability and specific motivations that drive someone to 
express themselves on the Internet. Furthermore, data collection from someone’s 
account may face privacy issues.

�Smartphone-Based Emotion Assessment

Smartphones are personal devices that individuals carry around with them almost 
all the time [189]. They include a plethora of onboard sensors (e.g., accelerometer, 
gyroscope, GPS) and can sense different user activities passively (e.g., mobility, app 
usage history) [190]. In this subsection, we review the smartphone-based methods 
for emotion assessment in its user’s natural daily environments. We consider the 
usage-based assessment methods, as well as touch-based ones.
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Usage-Based Emotion Recognition Methods  The smartphone provides numer-
ous data sources for collecting real-world data about emotions. For example, defined 
FER and SER assessments can also be extracted from the smartphone’s camera and 
microphone. Other smartphone-based sensing sources are connectivity (WIFI on/
off), smartphone status (screen, battery, power-saving mode), calls (type, duration), 
text messages (type, length), notifications (apps, category), calendar (initial query, 
logging of new entries), technical data (anonymized user ID, IP address, mobile 
phone type) [191]. Harari et al. [192] sensed conversations, phone calls, text mes-
sages, and messaging and social media applications for individual trait assessment. 
Namely, they collected sensing data in five semantic categories (communication & 
social behavior, music listening behavior, app usage behavior, mobility, and general 
day- & night-time activity) and used a machine learning approach (random forest, 
elastic net) to predict personality traits.2 MoodScope proposed to infer mood exploit-
ing multiple information channels, such as SMS, email, phone call patterns, applica-
tion usage, web browsing, and location [143]. In EmotionSense, Rachuri et al. used 
multiple Emotional Prosody Speech and Transcripts library features to train the 
emotion classifier [195]. In the same vein, researchers also demonstrated that aggre-
gated features obtained from smartphone usage data could indicate the Big-Five 
personality traits [196]. We also find that there are multiple works, which use differ-
ent information sources to infer the presence of a particular emotional state. For 
example, Pielot et al. tried to infer boredom from smartphone usage patterns like 
call details, sensor details, and others [197]. In their work on assessing stress, Lu 
et  al. built a stress classification model using several acoustic features [198]. 
Similarly, Bogomolov et al. showed that daily happiness [199] and daily stress [200] 
could be inferred from mobile phone usage, personality traits, and weather data.

Touch-Based Emotion Recognition Methods  Widespread availability of touch-
based devices and a steady increase [35] in the usage of instant messaging apps 
open a new possibility of inferring emotion from touch interactions. Therefore, 
research groups started to focus on typing patterns (Shapsough et al., 2016) using a 
built-in sensor (a smart keyboard) and using machine learning techniques to assess 
emotions based on different aspects of typing. For example, Lee et al. designed a 
Twitter client app and collected data from various onboard sensors, including typing 
(e.g., speed), to predict one user’s emotion in the pilot study [201]. Similarly, Gao 
et  al. used multiple finger-stroke-related features to identify different emotional 
states during touch-based gameplay [202]. Ciman et al. assessed stress conditions 
by analyzing multiple features of smartphone interaction, including swipe, scroll, 
and text input interactions [203]. Kim et al. [204] proposed an emotion recognition 
framework analyzing touch behavior during app usage, using 12 attributes from 3 

2 Personality traits are generally described as relatively stable patterns of thought, feelings, and 
behaviors and are therefore well related to emotional theories [193, 194].
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onboard smartphone sensors. Although focused on narrow application scenarios, all 
of these works point to the value of touch patterns in emotion assessment.

�Smartphone-Based Experience Sampling Method Design

One of the key requirements to develop a smartphone-based emotion assessment 
system is to collect emotion ground truth labels, which are typically collected as 
emotion self-reports by deploying an Experience Sampling Method (ESM), also 
known as an Ecological Momentary Assessment (EMA). The Experience Sampling 
Method (ESM) is a widely used tool in psychology and behavioral research for in-
situ sampling of human behavior, thoughts, and feelings [5, 205]. The ubiquitous 
use of smartphones and wearable devices helps in the more flexible design of ESM, 
aptly termed as mobile ESM (mESM) [206–208]. It allows the collection of rich 
contextual information (e.g., sensor information, application usage data) along with 
behavioral data at an unprecedented scale and granularity. Frameworks like Device 
Analyzer, UbiqLog, AWARE, ACE, MobileMiner, or MQoL-Lab [190] have been 
designed to infer user’s context based on sensor data, application usage details of 
the smartphones [142, 209–213]. While these frameworks help in the automatic log-
ging of sensor data, self-reports related to various aspects of human life (like emo-
tion) still require direct input from the user.

Balancing Probing Rate and Self-Report Timeliness  In the ESM studies, the 
participant burden mainly arises from repeatedly answering the same survey ques-
tions. Time-based, event-based schedules are the most commonly used ESM sched-
ules [214]. Time-based approaches aim to reduce probing rate (at the cost of fine 
granularity), while event-driven ones try to collect self-report timely (at the cost of 
a high probing rate). Recently, hybrid ESM schedules are designed combining 
time-based and event-based ones to trade-off between probing rate and self-report 
timeliness [215]. With the proliferation of smartphones, and other wearable devices, 
more intelligent and less intrusive survey schedules, including these limiting the 
maximum number of triggers, increasing the gap between two consecutive probes, 
have been designed. Several open-source software platforms, like ESP [216], my 
experience [217], psychology [218], Personal Analytics Companion [219], are 
available on different mobile computing platforms to cater to ESM experiments.

Maintaining Response Quality Via Interruptibility-Aware Designs  Recent 
advancements in interruptibility-aware notification management recommend sev-
eral strategies to probe at opportune moments leveraging contextual information 
(e.g., placing between two activities like sitting and walking, after completing one 
task such as messaging or reading a text on mobile) [220–222]. In [223], the authors 
showed that features like the last survey response, phone’s ringer mode, and user’s 
proximity to the screen could predict whether the recipient will see a notification 
within a few minutes. Leveraging these findings, intelligent notification strategies 
were developed, which resulted in a higher compliance rate and improved response 
quality [224, 225]. However, one of the major challenges of using such details in 
mobile-based ESM design is resource overhead and privacy. Designing ESM sched-
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ules based on the underlying study can overcome such limitations [226]. Ideally, an 
ESM schedule shall optimize the probing rate (like time-based schedules), reduce 
latency (like event-based schedules), and probing moments (like interruptibility-
aware schedules) (Table 10.3).

�Pros and Cons in Different Emotion Assessment Approaches

In the previous sections, we have presented different approaches to assess emo-
tions. Table 10.4 summarizes the pros and cons of the different self-report and 
sensing methods of data collection. We pointed out that self-report questionnaires 
have the advantage of being rather a time and cost-efficient (for assessors) and 
enable to reveal cognitions that are otherwise hard to capture. Furthermore, the 
subjectivity of an individual’s view on their emotions expressed via self-reporting 
might be wanted in some contexts (e.g., for clinical diagnostics). However, self-
reports are challenged by numerous confounding variables as fatigue, interpreta-
tion and memory biases, non-assessed personal conditions, misunderstanding of 
the items, and social desirability [100, 101]. Some physiological assessment meth-
ods might be more objective (like EEG or blood) but require a laboratory and 
complex setup and controlled environment. Due to this limitation, real-time 
assessment of emotions close to an individual’s everyday life experience is not 
possible.

Additionally, some research is based on induced emotional states. Emotional 
reactions can be induced in experimental settings. However, the transfer and gener-
alizability of such results into an individual’s real-life is doubtable. Besides, the 
period of data collection is often limited, and collecting a high volume of data from 
a large number of participants is difficult. Finally, the participants need to partici-
pate actively and contribute to the data collection effort (via self-reports).

In most cases, the data collection cannot be done passively and, consequently, 
lacks unobtrusiveness. Moreover, most of the discussed methods focus only on one 
data collection source (e.g., speech, EEG alpha waves, or social network analysis). 
They are, therefore, very limited regarding the complex emotional process described 
in the CPM [4].

ESM Schedule Probing rate Timeliness
Opportune 

probing
Time-based (TB) (e.g. [31], 
[144]) 
Event-based (EB) (e.g. [194],
[226])
Hybrid [214]

Interruptibility-aware (e.g.
[8], [220], [223], [227])
Ideal ESM schedule

Table 10.3  Summarization of the existing ESM design approaches
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In the context of emotional assessment, novel, personal sensing methods embed-
ded in daily life via wearables and smartphones promise to overcome some of those 
issues by providing real-time observations [143, 197, 207, 209–211]. These devices 
can capture data passively from different modalities without user intervention, log 
app usage behavior, and leverage different computational models on the device for 

Table 10.4  Pro’s and Con’s of Emotion Assessment Methods

Method Pro Con
Questionnaire-based Emotion Assessment

Self-report 
questionnaires

– Easy to conduct
– Access to cognitions
– Time-efficient for examiners
– Established and accepted in 
practical fields
– Privacy is given
– Standardization for the 
classification of individual 
results available

– Several biases (memory, interpretation, 
social desirability)
– Time consuming for participants (not 
examiners)

Physiology-based emotion assessment
Blood – Objective assessment of 

autonomous nervous system 
(ANS) reaction
– Standardization for the 
classification of individual 
results available

– Intrusive
– Not applicable outside a laboratory
– Focus on a single factor

Brain – Objective assessment of brain 
activity as emotional response
– Standardization for the 
classification of individual 
results available

– Not applicable outside a laboratory
– High costs
– High setup up requirements
– Focus on a single factor

Posture – Naturalistic expression
– Setup needed (cameras, 
posture logging devices)
– Important channel of 
communication

– Categories vary greatly, no 
standardization
– Interpretation of postures is limited
– Focus on one class of emotion 
expression only

Expression-based emotion assessment
Facial emotion 
recognition

– Objective assessment of 
expression of emotions
– No language needed
– Passive data collection 
possible

– Recording in real-time in daily life may 
be difficult
– Privacy issues
– Camera needs to capture facial 
expression
– Awareness of being recorded might 
interfere natural reaction

Speech emotion 
recognition

– No laboratory setup needed, 
objective
– No body language and 
physical parameters needed
– Passive data collection 
possible

– Recording in real-time in daily life may 
be difficult
– Privacy issues
– Awareness of being recorded might 
interfere natural reaction
– No standardization

Smartphone—And internet-based emotion assessment
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emotion inference. As a result, these devices are very promising to determine 
emotion-based behavior based on different usage patterns. However, the approach is 
still novel, and some participants are concerned about their privacy [227]. These 
concerns must be taken into account seriously but contrasted by the fact that per-
sonal information is shared openly on the Internet nowadays. This ambiguity is 
labeled as Privacy Paradox and known since 2006 [228].

�Tapsense: Smartphone Typing Based Emotion Assessment

This chapter specifically focuses on assessing the individual’s emotional state from 
the smartphone usage patterns via the authors’ TapSense study. Therefore, in this 
section, we first describe the overall research approach of the keyboard interaction 
study. We focus on a typing-based emotion assessment scenario, which helps to 
identify the key requirements to design the emotion assessment model and the self-
report collection approach using an Experience Sampling Method (ESM) (Sect. 
5.1.). In Sect. 5.2, the TapSense field study and data analysis are presented, and in 
Sect. 5.3. evaluated. In Sect. 5.4, the study is discussed.

Table 10.4  (continued)

Method Pro Con
Questionnaire-based Emotion Assessment

Social network – Time and cost efficient
– No special laboratory or 
technical equipment needed
– Real-time behaviour 
accessible
– Passive data collection 
possible

– Only specific part of daily expressed 
emotions visible as embedded in a social 
network use context
– Focusing on just a single class of 
behaviour
– Biased by social desirability and other 
motivations to communicate on social 
platforms
– Objectivity and/or standard values not 
given

Ecological 
momentary 
assessment

– No specific setup needed to 
conduct
– Unobtrusive
– Real time assessment in daily 
life
– Access to cognitions

– Self-report with potential biases (social 
desirability, interpretation bias)
– Data protection issues
– No standardization

Smartphone-
based sensing

– No specific setup needed to 
conduct
– Unobtrusive
– Real time assessment in daily 
life
– Passive data collection 
possible
– Great variety of data sources 
possible
– Execute different models for 
emotion inference

– Data protection issues
– Perceived as “scary” by participants
– No standardization
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�Background

The overall approach for the TapSense study is shown in Fig. 10.3. First, we gath-
ered a set of requirements to design the keyboard interaction-based emotion assess-
ment tool, followed by the actual design and implementation of the TapSense 
application. We discuss the study in detail and analyze the collected data. Finally, 
we evaluate the performance of the TapSense application and discuss the lessons 
learned from this study.

�Requirements

TapSense study relies on the users’ smartphone usage patterns. We explain the 
scenario of typing-based emotion assessment in Fig. 10.4. As the user performs 
typing activity, we extract his/her typing sessions and the amount of time he/she 
stays in a single mobile application without. For example, when a user uses 

Requirement
Gathering

Designing
TapSense

TapSense Study
& Data Analysis

TapSense 
Evaluation

Discussion & 
Lessons Learnt

Fig. 10.3  Overall 
approach of the TapSense 
requirements gathering, 
study design, data analysis, 
performance evaluation, 
and discussion
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WhatsApp without switching to other applications from t1 till t2, then we define 
elapsed time between t1 and t2 as a Typing Session. Once the user completes the 
session, he/she is probed via an ESM, i.e., emotion self-report, which is consid-
ered the emotion ground truth. Later, several features are extracted from the typ-
ing sessions and correlated with the emotion self-report to develop an emotion 
assessment model. This scenario suggests consideration of the following 
requirements,

•	 Trace keyboard interaction for emotion assessment: The key requirements 
while determining emotions from the typing sessions is to make sure that (a) the 
typing details are captured correctly so that the relevant features can be extracted 
(b) the emotion ground truths are collected (ESM) and (b) an accurate emotion 
assessment model is constructed. We discuss these aspects further in this 
section.

•	 ESM design for self-report collection: Probing a user after every session may 
induce fatigue due to many probes. So, the probing moments should be chosen 
in such a manner that it captures the user’s response accurately (i.e., before it 
fades away from the user’s memory) and at the same time, the probing rate is not 
too high. We discuss in detail the ESM design further in this section.

Fig. 10.4  TaspSense Approach: Typing Session-based ESM-triggering scenario
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�Design and Implementation of TapSense

TapSense consists of the following key components as in Fig.  10.5. TapLogger 
records the user’s typing activity. It implements a virtual keyboard for tracing key-
board interactions. ProbeEngine runs on the phone to generate the user’s ESM noti-
fications and collects the ESM responses. The typing details and the associated 
emotion self-reports are made available at the server via the Uploader module that 
synchronizes with the server occasionally, or, if the user is offline, once the user 
connects to the Internet. The emotion assessment model is constructed on the server-
side to determine the different emotional states from the typing details and the emo-
tion self-reports. In parallel, a set of typing features is also extracted to construct the 
inopportune moment assessment model, which feeds back the ProbeEngine to opti-
mize the probe generation. Next, we discuss the two key components of TapSense 
(a) emotion assessment from keyboard interaction, (b) ESM design for the emotion 
self-report collection.

TapLogger: Keyboard Interaction Collection
The TapLogger module of TapSense implements an Input Method Editor (IME) 
[229] provided by Android OS, and we refer to it as the TapSense keyboard 
(Fig. 10.6). It is the same as any QWERT keyboard; it provides similar functional-
ities as any Google keyboard. We have selected a standard keyboard because we 
aimed to provide similar functionalities. The user’s keyboard interaction experience 
does not deviate much from what he/she is used to. It differs from others, as it has 
the additional capability of logging user’s typing interactions, which, for security 
reasons, is not available in Google keyboard. To ensure user privacy, we do not store 
or record the characters typed. The logged information is the timestamp of each tap 
event, i.e., when a character is entered and the key input’s categorical type, such as 
an alphanumeric key or delete key.

TapLogger ProbeEngine

Uploader

Smartphone Server

Feature Extraction

Inopportune Moment
Detection Model

Emotion Detection
Model

Fig. 10.5  TapSense High-level System Architecture
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ProbeEngine: Emotion Self-Report Collection (ESM)
The ProbeEngine module of TapSense issues the ESM self-report probes by deliv-
ering a self-report questionnaire (Fig. 10.7). This survey questionnaire provides 
the option (happy, sad, stressed, relaxed) to record ground truth about the user’s 
emotion while typing. This captures four largely represented emotions from four 

Fig. 10.6  TapSense 
Keyboard

Fig. 10.7  Emotion 
Self-report UI
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different quadrants of the Circumplex model [52], as shown in Fig. 10.8. We select 
these discrete emotions as their valence-arousal representation is unambiguous on 
the Circumplex plane. Any discrete emotion and its unambiguous representation 
on the valence-arousal plane are equivalents [230]. We also include the “No 
Response” option to select this option to indicate the current probing moment is 
inopportune.

�Emotion Assessment Model Construction

The emotion assessment model in TapSense is responsible for determining the four 
emotion states based on the keyboard interaction pattern. This is implemented on 
the server-side once the typing interaction details and the emotion self-reports 
details are available.

Activeness

Afraid Astonished

Energetic

Excited

Glad

Satisfied

Calm

Tired
Sleepy

Gloomy

Depressed

Anxious

Tense

Happy

Relaxed
Sad

Stressed

P
leasure

Fig. 10.8  Circumplex Model
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Emotion Assessment Features  From raw data collected within every Typing 
Session, we extract a set of typing features as defined in Table 10.5. For every ses-
sion, we compute the ITDs, i.e., the elapsed time between two consecutive keypress 
events for all the presses. We derive the mean of all ITDs in the session and use it as 
typing speed. We define it as the Mean Session ITD (MSI). We compute the back-
space and delete keys present in a session and use it as a feature. This is used as the 
representation of typing mistakes made in a session.

Similarly, we use the fraction of special characters in a session, session duration, 
and typed text length in a session as features. Any non-alphanumeric character is 
considered a special character. We use the last emotion self-report as a label for the 
model [215, 231]. However, at the later stage, when the TapSense model is opera-
tional, we use the predicted emotion for the last session as the feature value for the 
current session.

Emotion Assessment Model  Trees-based machine learning approaches have been 
accurate in the context of emotion assessment in the past [201, 232]. We design a 
Random Forest (RF) based personalized multi-state emotion assessment model 
using the features described in Table 10.5 to assess the emotions. As typing patterns 
vary across individuals, derived, features will vary. Hence we construct a personalized 
model. We implement these models in Weka [233], building 100 Random Forest 
decision trees with a maximum depth of the tree set as ‘unlimited’ (i.e., the tree is 
constructed without pruning). We then derive the RF models’ performance by deriv-
ing the mean and variability of the accuracy for the 100 RF-based models.

�Experience Sampling Method Design

The ESM used in TapSense is optimized in two phases. Phase 1 balances probing 
rate and timeliness of self-report collection, and Phase 2 tries to probe at the oppor-
tune moments when the user’s attention is available. We achieve this by designing a 
two-phase ESM [234]. We summarize it in Fig.  10.9. In Phase 1, we combine 
policy-based schedules to balance probing rate and timeliness and learn the 

Table 10.5  Features used to Construct TapSense Emotion Assessment Model

Feature Name Feature Description

Session typing speed 
(MSI)

Average of all ITDs present in the typing session

Session length Number of characters typed in the typing session
Session duration Time duration of the typing session
Backspace percentage Fraction of backspace and delete keys typed in the typing session
Special character 
percentage

Fraction of special characters (non-alphanumeric) typed in the 
typing session

Last ESM trigger 
response

Emotion label as provided by the user

ITD elapsed time between two consecutive keypress events [ms]
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inopportune moment assessment model. In Phase 2, we make the inopportune 
moment assessment model operational. We discuss both phases in detail now.

Phase 1: Balancing ESM Probing Frequency and Timeliness  The collection of 
ESM emotion self-reports at the end of every typing session would help collect the 
labels close to the event, but it would lead to the generation of too many probes and 
user burden. To trade off these two conflicting requirements, we first assess the 
quality of the session itself, i.e., we make sure that there is a sufficient amount of 
typing done in a typing session for it to be considered. We issue the ESM probe only 
(a) if the user has performed a sufficient amount of typing, i.e., a minimum L = 80 
characters in a typing session, and (b) a minimum time interval, i.e., W = 30 min-
utes has elapsed since the last ESM probe. To ensure the labels are collected close 
to the typing session, we use the polling interval parameter (T = 15  seconds) to 
check if the user has performed a sufficient amount of typing within a session. We 
describe the selection of threshold values based on initial field trials in Appendix 1. 
We name this ESM schedule the Low Interference High Fidelity (LIHF) ESM 
schedule (Fig. 10.9 (Phase 1)).

Phase 2: Inopportune Moment Assessment Model  As we collect self-reports, 
we obtain both “No Responses” and valid emotion responses. We leverage these 
labels to build the inopportune moment assessment model (Table 10.6).

We use typing session duration and the typing length in a session as features 
since lengthy and longer typing sessions may indicate high user engagement and not 
be the ideal moment for triggering a probe. Besides, there may be some types of 

Acess Typing every T time

Text Length
> L?

Phase 1

Phase 2

Changed
App?

Elapsed Time
> W?

Inopportune
Moment?

Trigger ESM Probe

No

No

No

No

Yes

Yes

Yes

Yes

Fig. 10.9  Balancing ESM 
Probing Frequency and 
Timeliness: ESM 
Triggering Steps
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applications like media, games when the users may not be interrupted for probing. 
So, we include the application type also as a feature. We categorize the applications 
into one of the 7 categories: Browsing, Email, Media, Instant Messaging (IM), 
Online Social Network (OSN), SMS, and ‘Misc,’ following the application’s 
description in the Google Play Store. Moreover, we use the label of the last ESM 
probe response as a feature. We use it to determine whether the user continues to 
remain occupied in the current session and if he/she marked the previous session 
with “No Response.” However, once the model is operational and deployed, we use 
the predicted value of the inopportune moment for the last session as the current 
session’s feature value. Table  6summarizes the features used to implement the 
model. We construct a Random Forest-based prediction model to assess the inop-
portune moments for all the users. The model is augmented with the LIHF schedule 
to assess and eliminate inopportune probes (Fig. 10.9 [Phase 2]).

�TapSense: Field Study and Data Analysis

In this section, we discuss the TapSense field study and the dataset collected from 
the study.

�Study Participants

We recruited 28 university students (22 males, 6 females, aged 24–35  years) to 
evaluate TapSense. We installed the application on their smartphones and instructed 
them to use it for 3 weeks. Three participants left the study in between, and the other 
three participants have recorded less than 40 labels. We have discarded these 6 users 
and collected data from the remaining 22 participants (18 males, 4 females). The 
ethics committee approved the study under the approval order IIT/SRIC/SAO/2017.

�Instruction and Study Procedure

During the field study, we executed only Phase 1, where we implement the LIHF 
schedule for self-report collection. We instructed participants to select the 
TapSense keyboard as the default keyboard. We informed the participants that 

Table 10.6  Features Used To Detect Inopportune Moments

Feature Name Feature Description

Session duration Duration of the typing session
Session length Length of the text in the typing session
App category Category of the application
Last ESM trigger response Last ESM trigger response
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when they switch from an application after completing typing activity, they may 
receive a survey questionnaire as a pop-up to record their emotions. We also 
advised the participants not to dismiss the pop-up if they are occupied; instead, 
they were asked to record “No Response” if they do not want to record emotion at 
that moment.

�Collected Dataset

We have collected 4609 typing sessions during this study period, which consti-
tute close to 200 hours of typing labeled with an emotional state of all the partici-
pants (N = 22). Out of these sessions, we record 642 “No Response” sessions, 
which is nearly 14% of all recorded sessions. Notably, the actual number of ESM 
triggers is less than the number of typing sessions because, as per the LIHF 
policy, if two sessions are close (as defined by W in Fig. 10.8), only one ESM 
will be triggered to cater to both the sessions. We summarize the final dataset in 
Table 10.7.

�EMA Self-Report Analysis

The users have reported two types of responses (a) One of the four valid emotions 
or (b) “No Response.” While the valid emotion labels are used to construct the emo-
tion assessment model, the “No Response” labels are important to design the inop-
portune moment assessment model for the ESM.

Emotion Labels Analysis  We show the distribution of different emotion states for 
every user in Fig. 10.10. We have observed that ‘relaxed’ is the most dominant emo-
tional state for most of the users. Overall, we have acquired 14%, 9%, 30%, 47% 
sessions tagged with happy, sad, stressed, and relaxed emotion states.

Table 10.7  Collected Data Summary

Number of participants N = 22 (18 m, 4 f)

Total typing events 942,827
Total typing sessions 4609
Total typing duration (in Hr.) 199.1
Mean typing sessions (per user) 209 (std. dev 167.2)
Minimum number of typing sessions for a user 46
Maximum number of typing sessions for a 
user

549

Total ESM triggers 2554
Mean ESM trigger (per user) 116.1 (std. dev 71.9)
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No Response Analysis  We show the user-wise distribution of “No Response” 
sessions in Fig. 10.11a. Although for most users, the fraction of “No Response” 
labels is relatively low, for a few users, it is more than 40%. We observe the 
application-wise distribution of “No Response” sessions in Fig. 10.11b; the major-
ity of the “No Response” labels are associated with Instant Messaging (IM) appli-
cations like WhatsApp. We also compare the distribution of total “No Response| 
and total valid emotion labels at weekday, weekend, working hour (9 am-9 pm), 
and non-working hour in Fig.  10.11c. We infer the working hour based on the 
timestamp of the ESM response. We compute the percentage of total “No 
Response,” and the percentage of total other sessions is recorded at these times. 
However, in our dataset, we do not observe any major differences among these 
distributions. We also explore the time-wise distribution of No Response sessions 
in Fig. 10.11d, which indicates that a small number of No Response sessions were 
recorded during the late-night from 3 am onwards. This can be attributed to overall 
less engagement during late night.
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�TapSense Evaluation

In this section, first, we discuss the experiment setup. Then we evaluate the emotion 
classification performance and the ESM performance. Finally, we discuss the limi-
tations of the study.

�Experimental Setup

During the field study, we used the LIHF ESM schedule for collecting self-reports. 
However, to perform a comparative study across different policies, we require data 
from time-based and event-based ESM schedules under identical experimental con-
ditions from every participant. In the actual deployment, identical conditions are 
impossible to repeat over different time frames. Hence, we generate traces for the 
other policy-based schedules from the data collected using LIHF ESM. We outline 
the generation steps for these traces in Appendix 2. We show the distribution of 
emotion labels obtained from different schedules after trace generation in Fig. 10.12.

�Baseline ESM Schedules

Different ESM schedules, listed in Table 10.8, used for comparison are described.

•	 Policy-based ESM: We focus on the Phase 1 approach (i.e., without optimizing 
the triggering) and use three policy-based ESM schedules—Time Based (TB), 
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Event-Based (EB), and LIHF.  In the case of TB, probes are issued at a fixed 
interval (3  hours). In EB’s case, after every typing session, a probe is issued 
while LIHF implements the LIHF policy. These approaches do not use an inop-
portune moment assessment model. Comparing these schedules helps to under-
stand their effectiveness in reducing the probing rate and collecting 
self-reports timely.

•	 Model-based ESM: We use the following model-based ESM schedules—TB-M, 
EB-M, and LIHF-M. These ESM schedules implement TB, EB, and LIHF sched-
ules in Phase 1, respectively, followed by the inopportune moment assessment 
model operational in Phase 2. In all these schedules, the model is constructed 
using the same set of features (Table 10.6) extracted from relevant trace (i.e., for 
TB-M, the model is constructed from the trace of TB and similarly). Comparison 
of these model-driven schedules helps to understand the efficacy of the model in 
assessing the inopportune moments and whether applying the model with any 
off-the-shelf ESM is good enough to improve survey response quality.
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Table 10.8  Different ESM Schedules based on the Policy used in Phase 1 and Usage of the Model 
in Phase 2

ESM Schedule Phase 1 Phase 2

TB Time-based No model is used.
EB Event-based No model is used.
LIHF LIHF No model is used.
TB-M Time-based Inopportune moment detection model
EB-M Event-based Inopportune moment detection model
LIHF-M LIHF Inopportune moment detection model
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�Overall Performance Metrics

We use the classification accuracy to measure the emotion classification perfor-
mance, and as for the ESM performance, we assess it along with the probing rate 
index and its reduction wrt. The classical self-report approach, timely self-report 
collection, inopportune moment identification, and valid response rate collection.

Emotion Assessment: Classification Accuracy (Weighted AUCROC)  The per-
formance of supervised learning algorithms highly depends on the quality of labels 
[235]. The label quality can adversely impact classification accuracy [236, 237]. In 
our research, we use Typing Session emotion classification accuracy. We measure it 
in terms of the weighted average of AUCROC (aucwt) using AUCROC from four 
different emotional states. Let fi, auci indicate the fraction of samples and AUCROC 
for emotion state i respectively, then aucwt = ∑∀i ∈ {happy, sad, stressed, relaxed}fi ∗ auci.

�ESM Performance Metrics

Probe Frequency Index (PFI)  We compare the probing frequencies of different 
ESM schedules using PFI, defined as follows. Let there be different ESM sched-
ules (e ∈ E) and Ni

e  denotes the number of probes issued for the user i for an 
ESM schedule e, then PFI for user i for ESM schedule e is 

expressed as, PFI
N

e N
i
e i

e

i
e

=
" ( ),max

.

The Recency of Label (RoL)  The timeliness of self-report response collection is 
measured using RoL defined as follows. Let there be different ESM schedules 
(e ∈ E), and di

e  denotes average elapsed time between typing and probing for user 
i for an ESM schedule e, then RoL for user i for ESM schedule e is 
expressed as, RoL

d

e d
i
e i

e

i
e

=
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.

Inopportune Moment Identification  We measure Precision, Recall and F-score 
for inopportune moment assessment. We also compute the weighted AUCROC 
(aucwt) for the inopportune and opportune moments. Let fi, auci indicate the fraction 
of samples and AUCROC for class i respectively, then 
aucwt = ∑∀i ∈ {inopportune, opportune}fi ∗ auci.

Valid Response Rate (VRR)  We also compare the percentage of valid emotion 
labels for different ESM schedules. Let there be different ESM schedules (e ∈ E), 
and nre denotes the fraction of No Response sessions recorded for ESM e, then Valid 
Response Rate for ESM e is expressed as VRRe = (1 − nre) ∗ 100.
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�Emotion Assessment: Classification Performance

The emotion classification accuracy for different ESMs is shown in Fig. 10.13. We 
observe that the LIHF-M outperforms other schedules with a mean AUCROC of 
78%. It returns a maximum improvement of 24% with respect to TB and an improve-
ment of 5% with respect to EB. We also observe that after applying the inopportune 
moment assessment model, the mean AUCROC (aucwt) improves (by 4%) for each 
corresponding schedule (TB, EB, LIHF).

We also show the user-wise emotion assessment AUCROC (aucwt) corresponding 
to the LIHF-M schedule in Fig. 10.14a. The quality of the prediction for each emotion 
category is presented in Fig. 10.14b. The emotion states are identified with an average 
f-score between 54% and 74%. We observe that the relaxed state is identified with the 
highest f-score, followed by sad, stressed, and happy states, respectively. As data vol-
ume increases, as in the case of the relaxed state, the performance metrics improve.
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Influence of Emotion Assessment Features
We find the importance of the input features used for emotion assessment using the 
‘InfoGainAttributeEval’ method from Weka. We compute the average Information 
Gain (IG) of every feature and rank them in Table 10.9. We observe that the last 
ESM response is the most discriminating feature, followed by features like typing 
speed and backspace percentage. All the features are found to have an input into the 
model for the emotion assessment.

�ESM Performance

In this section, we evaluate the ESM’s performance in terms of the three parameters 
(ESM probing rate, self-report timeliness, and opportune probing moments).

Probing Rate Reduction
We compare the average number of probes issued by each ESM schedule in 
Fig. 10.15a. We observe that time-based ESM (TB) issues the minimum number of 
probes, event-based ESM (EB) issues the maximum number of probes, while LIHF 
ESM lies in between. It is observed that the average number of probes is reduced by 
64% for LIHF ESM policy.

We also perform the user-wise comparison using the Probe Frequency Index 
(PFI) metric in Fig. 10.15b. For all users, PFI for LIHF ESM is lower than that of 
event-based ESM.  Across all users, there is an average improvement of 54% in 
PFI. Time-based ESM is the best in PFI but does not capture self-reports timely, as 

Table 10.9  Ranking of Features Used to Construct TapSense Emotion Assessment Model

Feature name Rank Average IG.

Last ESM trigger response 1 0.468
Session typing speed 2 0.376
Backspace percentage 3 0.270
Session length 4 0.231
Special character percentage 5 0.203
Session duration 6 0.181
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shown later. LIHF ESM schedule enforces a minimum elapsed time between two 
successive probes; it generates fewer probes and reduces probing rate compared to 
event-based ESM.

Timely Self-Report Collection
We measure how close to the event (i.e., typing session completion) the ESM sched-
ule collects the self-report. We compare the average elapsed time between typing 
completion and self-report collection for different ESM schedules in Fig. 10.16a. 
The average elapsed time is the least for event-based ESM, highest for time-based 
ESM, while for the LIHF, it lies in between. The average elapsed time for label col-
lection is reduced by 9% for LIHF.

We also compare the recency of labels using RoL in Fig. 10.16b. We observe that 
for every user, RoL is minimum for EB, and for most of the users, RoL is maximum 
in the case of TB, while for LIHF, the RoL lies in between. In the case of EB, we 
issue the probe as soon as the typing event is completed; it can collect self-reports 
very close to the event, resulting in the lowest RoL. On the contrary, in TB, we per-
form probing at an interval of 3 hours. As a result, there is often a large gap between 
typing completion and self-report collection, resulting in high RoL. However, in the 
case of LIHF, we keep accumulating events and separate two consecutive probes by 
at least half an hour; we compromise to some extent in the label recency, yet less 
than in the case of TB.

Inopportune Moment Assessment
We compare the inopportune moment classification performance of three model-
based approaches in Fig. 10.17a. We observe that the LIHF-M attains an accuracy 
(AUCROC) of 89%, closely followed by EB-M (88%), while TB-M (75%) per-
forms poorly. We also note the precision, recall, and F-score values of identifying 
inopportune moments in Fig. 10.17b using the LIHF-M schedule. We also report the 
recall rate of inopportune moments for every user in Fig. 10.17c. We observe that 
for 14% of the users, the recall rate is greater than 75%, and for 60% of the users, 
the recall rate is greater than 50%. It is observed that users with many “No Response” 
(Fig. 10.8a) get more benefit using the inopportune moment assessment model. In 
summary, the proposed model combined with LIHF ESM performs best, while 
other ESM schedules also assess the inopportune moments accurately with 
this model.

a b
1800

1500

1200

900

600

300

0
EB LIHF

ESM schedule
User

Average elapse time RoL comparison

A
vg

. e
la

ps
ed

tim
e 

(in
 s

ec
.)

R
oL

TB

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10 12 14

EB LIHF TB

16 18 20 22

Fig. 10.16  Timeliness of the ESM collection across schedules: Average elapsed time and the 
Recency of Label. (a) Average elapse time (b) RoL comparison

10  Your Smartphone Knows you Better than you May Think: Emotional Assessment…



250

Influence of Inopportune Moment Assessment Features
We find the importance of every feature by ranking them based on the information 
gain (IG) achieved by adding it for predicting the inopportune moment. We use the 
InfoGainAttributeEval method from Weka [233] to obtain the information gain of 
each feature. Our results (in Table 10.10) show that the last ESM probe response is 
the most important feature, followed by the application category.

Valid Response Collection
We compare the valid response rate (VRR) for LIHF, LIHF-M schedules in 
Fig. 10.18. We do not consider other schedules as those labels were generated syn-
thetically. The VRR for LIHF is 86%, and the same for LIHF-M is 96%. This fur-
ther proves the effectiveness of the inopportune moment assessment model. As the 
model is in place for LIHF-M, it assesses and skips probing at the inopportune 
moments, thereby improving the number of valid emotion responses..

�TapSense Study Discussion and Lessons Learnt

In our research, we leverage the user’s smartphone for accurate and timely emotion 
assessment. We designed, developed, and evaluated TapSense, which passively logs 
typing behavior and develops a personalized machine learning model for multi-state 
emotion detection. We log the keyboard interactions (typing patterns and not the 
actual content) of the user and infer four types of emotions (happy, sad, stressed, 
relaxed). We also proposed an intelligent ESM-based self-report collection method 
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Table 10.10  Ranking of Features Used to Construct Inopportune Moment Model

Feature Name Rank Average IG

Last ESM trigger response 1 0.669
App category 2 0.053
Session length 3 0.019
Session duration 4 0.012
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and integrated the same with TapSense, optimizing the manual self-report collec-
tion. We evaluate the emotion classification performance and the ESM performance 
of TapSense in a 3-week in-the-wild study involving 22 participants. The empirical 
analysis reveals that the TapSense can infer emotions with an average accuracy of 
78%. It also demonstrates the efficacy of the proposed ESM in terms of probing rate 
reduction (on avg. 24%), self-report timeliness (on avg. 9%), and probing at oppor-
tune moments (on avg. 89%); all of which improve the emotion classification 
performance.

However, a few factors need to be considered before deploying sensing technolo-
gies as TapSense as an emotion assessment tool. First, it is crucial to consider key-
board interaction experience should not be impacted while using the TapSense 
keyboard as most of the participants are conversant with the Google keyboard. 
However, we do not observe a significant effect in the app usage due to this, as we 
record 86% valid emotion labels and, on average, 209 typing sessions per user. 
Second, the model-driven probing strategy at opportune moments may not perform 
well for some users if the number of “No Response” labels are very few (less than 
4% of all sessions). If the number of no response labels is very less, then the model 
may not perform well and may not detect all the inopportune moments.

Another factor to consider is which ESM strategy is to be adopted during self-
report collection. We recommend using the LIHF strategy to reduce survey fatigue 
compared to fixed event-based (EB) schedules, but it may suffer from latency in the 
self-report collection. Time-driven schedules may not be used if long-time-interval 
separates two probes. This may miss capturing the fine-grain event details, which 
are likely to carry emotional signatures. Finally, during self-reporting, if the partici-
pants have skipped the pop-up instead of selecting “No Response,” we could not 
capture those moments in our study. However, this can be easily incorporated by 
logging the skipping events.

The study we have carried out involving TapSense has several limitations that 
may limit the results’ generalization. First of all, the study has been of small size, as 
only 22 users have been engaged in the study for only 3 weeks. On the other hand, 
given the number of self-reports and user typing sessions, we may assume we have 
captured a representative sample of the general population, with 25 minutes a day 
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of interaction being logged and labeled for an emotional expression. As we have 
shown, the representation of emotional states was diverse. The additional limitation 
may stem from the Android OS only study; the iOS participants may have different 
traits and emotional states. The emotional modeling may have led to different 
results. Nevertheless, we present the results as indicative and will follow future 
research in this context, given a larger population sample and longer study duration.

�Conclusive Remarks

In this chapter, we focused on emotions as indicators of quality of life due to the 
association of positive/negative life experiences and positive/negative emotional 
states and other aspects of quality of life, such as health, safety, economic and men-
tal well-being. We highlighted functions and the importance of emotions in a per-
sons’ daily life and the challenge of assessing emotions in traditional vs. novel 
methods of assessing emotions. The advantages and disadvantages of the diverse 
methods are especially rooted in objectivity, required assessment setup, self-report 
bias, privacy, real-time measurement, obtrusiveness, and inclusion of a wide range 
of emotion components.

In more depth, in this chapter, we have leveraged smartphone interactions to 
assess a user’s mental state. As smartphones have become a true companion of our 
daily life, they can passively sense the usage behavior and mental state. With numer-
ous typing-based communication applications on a smartphone, typing characteris-
tics provide a rich source to model user emotion. In the specific case, the users’ 
keyboard interactions predicted four different emotion categories with an average 
accuracy of 78%, confirming and outperforming other approaches of smartphone-
based emotion-sensing technologies. Hence, emotional assessment is feasible to 
conduct via different technologies.

TapSense study shows promising results for minimally obtrusive, smartphone-
based emotional state assessment, which may be leveraged for further studies and, 
if largely improved, in clinical practice for a ‘companion assessment’ of individu-
als’ mental health, accompanying the current gold standard assessment methods 
and approaches. It is in line with the recent research results showing a potential for 
co-calibration of the self-reported, gold-standard approaches with the technology-
reported ones [238, 239]. The aspects of minimal obtrusiveness may be of interest, 
especially for the leaders in the self-assessment space—the co-called 
QuantifiedSelfers [190, 240] who leverage diverse self-assessment technologies 
for better self-knowledge and optimization of daily life activities for better well-
being, health, and other outcomes in the long term. Overall, the TapSense may be 
seen as an example of the emerging Quality of Life Technologies [241, 242] to 
assess the individual’s behavioral patterns for better life quality. Once proven 
accurate and timely, and highly reliable in the context of daily life assessment, 
TapSense, and similar technologies may pave the way for technologies for a better 
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understanding of the physical, mental, and emotional well-being of populations 
at large.

�Appendices

�Appendix 1: Parameter Threshold Value

We use three parameters L, W, T as defined in details in sect. 5.1 (Phase 1: Balancing 
ESM Probing Frequency and Timeliness) to balance between probing frequency 
and timeliness in label collection. L is defined as the minimum amount of typing 
performed in a typing session. W is defined as the minimum time elapsed since last 
ESM trigger, and T is defined as the polling interval (i.e. how frequently the typing 
session will be checked for sufficient amount of typing). Based on our initial data-
set, we observe the CDF of session length (L) in Fig. 10.19a, which reveals that 
frequency distribution of session length is highly skewed. So, we select 66th percen-
tile value as the threshold so that two-third values are less than this value. We 
observe similar CDF and frequency distribution (Fig. 10.19b) for inter-session gap 
(W) and use the 66th percentile value as the threshold.

However, polling interval (T) is to be chosen in such a way that for most of the 
sessions, the event of interest is captured within this interval. In this case, the event 
is change of application after typing in a session. For this purpose, we measure the 
elapsed time between two successive key pressing events (ITD) in a session. We 
note the CDF of all ITD values from all sessions in Fig. 10.20. We observe that 99% 
of the inter-tap duration (ITDs) are less than 15 seconds i.e. for most of the sessions 
the application change happens after 15 seconds. So, we decide to use 15 seconds 
as the threshold for T.
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�Appendix 2: The ESM Trace Generation

In this section, we discuss in detail the steps followed to generate trace for Time-
based (TB) ESM and Event-based (EB) ESM schedule from the data collected using 
LIHF ESM schedule. In Fig.  10.21, a schematic is given to depict the same. Ei 
denotes the application switching event after sufficient typing. In case of LIHF 
ESM, there are 6 such events, however only 5 probes were issued (Fig. 10.21a). No 
probe is issued after E3 because it occurs within time-window (W = 30 minutes) 
since last probe (Probe 2). In order to generate the corresponding Time-based trace, 
probes are considered at 3 hour interval. As a result, there will be only one probe 
Probe 1 and all events E1 to E6 will be labeled with the single emotion response 
collected via it (Fig. 10.21b). But in case of conversion to Event-based ESM, all 
events are treated separately, as a result there will be in total 6 probes and the emo-
tion labels will be assigned accordingly to the respective events (Fig. 10.21c). Next, 
we define the formal procedure for trace generation.

Generation of Time-based Trace
We take the trace collected from LIHF schedule »C.lihf p_5 as p _ 5 matrix where 
p denotes the total number of key press events. We generate the respective Time 
based trace »C.time p_5 following the Algorithm 1.We consider the sampling inter-
val of Time-based ESM as 3 hours. We parse through (line 5–12) the LIHF trace 
»C. Lihf p_5 and all key press events. As in case of LIHF, two responses may be 
recorded less than 3  hour interval, we may need to down-sample, which is per-
formed in following way. If two emotion responses for key press events are col-
lected within 3 hours, both are considered as a part of single session and the later is 
labeled with the previous emotion. Otherwise, they belong to different session and 
the new emotion response is considered (line 7–9).

Generation of Event-based Trace
We design Algorithm 2 to generate the corresponding event-based trace »C.event 
p_5 from the collected LIHF trace »C. lihf p_5 .We consider changing application 
after typing as an event. We parse through (line 5–12) the trace obtained from LIHF 
schedule and all key press events. If two consecutive key press events are associated 
with different application, they belong to separate session (line 6–7). Otherwise, 
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they are considered as part of the same session. In both these cases, no emotion 
response is dropped (unlike time-based), they are associated with different sessions. 
In case of LIHF, multiple sessions are grouped and tagged with single emotion, but 
in case of event-based schedule, this grouping is not done and every session is 
labeled with the same response. This is how the over-sampling is done in case of 
event-based schedule.
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