
11Lagrangian Models

ABSTRACT

Lagrangian models use calculus to solve multi-variable non-linear constrained
optimization models of problems and for identifying the marginal changes
(‘shadow prices’) of optimal solutions to changes in constraint bounds. This
is especially useful when the constraints represent resource limitations.

11.1 Introduction

Joseph-Louis Lagrange is usually considered to be a French mathematician, but
the Italian Encyclopedia refers to him as an Italian mathematician who lived from
1736–1813. Among numerous other honors, a street, Rue Lagrange, in Paris, is
named after him (Fig. 11.1).

Joseph-Louis Lagrange is famous for lots of things he did in his life, but for us,
he showed how differential calculus could be used to find solutions to constrained
non-linear models. But, since it is calculus-based, all the limitations of calculus
apply. It is limited to continuous functions. It produces a maximum for objective
functions that are concave and a minimum for objectives that are convex. It ignores
constants. But it gives us an opportunity to better understand the concept and find
the values of shadow prices.

11.2 Constructing Lagrangian Optimization Models

Lagrange’s approach for finding the maximum or minimum value of some objec-
tive function F(X) and associated values of all the decision variables X = {x1,
x2, x3,.., xj, … xn} also determines what economists call ‘shadow prices,’ and
operations researchers call ‘dual variables’ or ‘dual prices,’ associated with each
constraint, gi(X) = bi. Each constraint’s shadow price is the change in the value of
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Fig. 11.1 Joseph-Louis Lagrange and a street in Paris having his name. https://en.wikipedia.org/
wiki/Joseph-Louis_LagrangeCreativeCommonsAttribution-ShareAlikeLicense

the objective function F(X) given a unit change in the constraint’s bi value. These
shadow prices are also called Lagrangian multipliers, typically denoted as λi.

λi = dF(X )/dbi for each constraint i.

The modeling approach involves combining the objective function F(X) and all
the constraints expressed as equalities, gi(X) = bi, into a single function L(X, λ).
The unknown variables are the original ones contained in the vector X and all the
Lagrange multiplier variables, λi, one for each constraint i.

Each constraint gi(X) = bi in L(X, λ) is multiplied by its Lagrangian multiplier
λi. Their sum is subtracted from F(X). The result is

L(X,λ) = F(X) −
∑

i

λi
(
gi(X) − bi

)
.

Setting inequality constraints originally of the form gi(X)≤bi or gi(X)≥bi to
equalities when one is not sure if they are equalities or not, may involve the addi-
tion, or subtraction as appropriate, of the square of an additional unknown slack or
surplus variable. For this discussion, assume such variables if needed are included
in the vector X. These so-called slack or surplus variables are squared to insure
each is non-negative.

Equating to 0 each of the partial derivatives of L(X, λ) with respect to each
of the unknown variables, in X and λ results in a set of equations that when
simultaneously solved will identify the values of each of the unknown variables
in X and shadow prices in λ that maximize or minimize F(X). The procedure is
the same whether the objective function F(X) is to be maximized or minimized.
Therefore, one should check to see if the solution is a maximum or minimum
value. Again, the λi values are the shadow prices associated with the bi values of
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each constraint i.

L(X, λ) = F(X) −
∑

i

λi
(
gi(X) − bi

)

∂L/∂xj = 0 = ∂F/∂xj −
∑

i

λi∂
(
gi(X)

)
/∂xj for all variables xj

∂L/∂λi = 0 = (
gi(X) − bi

)
for all constraints i.

Before showing some specific examples, consider the constraints where a sur-
plus or slack variable, xi2, had to be added or subtracted from the left-hand side
of a constraint to form an equality. When the partial derivative of L(X, λ) with
respect to that variable is set to 0 the result is

∂L/∂xi = 0 = −2 xi λi.

Note that either xi or λi or both will equal 0. If the constraint is binding there
will be no inequality, and the value of the slack or surplus variable xi will be 0. If
the constraint is not binding (does not affect the values of the other variables xj)
then λi will equal 0. There will be no change in F(X) given a small change in bi.

11.3 Example Lagrangian Models

Consider finding the minimum length of fence needed to enclose a rectangular
area of at least A or of finding the maximum rectangular area that can be enclosed
by a fence of length P. The area’s perimeter = 2(length) + 2(width). Clearly, the
solution is length = width = √

A. Solving a Lagrangian model will also identify
the Lagrangian multipliers, i.e., the shadow prices, associated with the available
resource, i.e., area or length of fencing. Letting l and w be the unknown length
and width of the rectangular area A

L = 2(1 + w) − λ(lw − A)

∂L/∂l = 0 = 2 − λw

∂L/∂w = 0 = 2 − λl

∂L/∂λ = 0 = lw − A.

One can see from the first two partial differential equations that l = w, thus
from the third partial differential equation, l and w = √

A. Hence, the shadow
price associated with the area, λ, is 2/

√
A. This is how much more fencing is

required for a unit increase in A.



138 11 Lagrangian Models

Alternatively, if the total length of fencing is P, we can find the maximum area
A (lw) enclosed by P

L = lw − λ(2(l + w) − P)

∂L/∂l = 0 = w − 2λ

∂L/∂w = 0 = l − 2λ

∂L/∂λ = 0 = 2(l + w) − P.

Again, from the first two partial differential equations, l = w, and from the
third, l or w equals P/4. Hence the shadow price associated with the perimeter P,
λ, equals P/8. This is how much more area is obtained for a unit increase in P.

This model can be extended to one of finding the least-cost dimensions of a
storage tank containing a volume of V. Let the average cost per unit of the base
area = Cb. Similarly, let the average cost per unit side area = Cs and the average
cost per unit top area = Ct. Before we can model this tank, we need to decide
on its shape. Here we can consider two different tank shapes, a rectangular and
a cylindrical one. Of course, it is possible to pick anything in between these two
shapes. The stated objective is to

MinimizeTotalcost

Subject to: Totalcost = basecost + sidecost + topcost

Volume of tank ≥ required volume

Assuming a rectangular tank having dimensions ofL, W , andH :
Basecost = Cb LW

Sidecost = Cs 2H (L + W )

Topcost = Ct LW

LW H ≥ V.

Assuming a cylindrical tank having dimensionsR andH :
Basecost = Cb

(
πR2)

Sidecost = Cs(2πRH )

topcost = Ct
(
πR2)

π R2 H ≥ V.

Clearly, for each of the two-volume capacity constraints, the least-cost solution
will result in; an equality. Constructing a bigger tank than required just costs more.
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Using Lagrangian models. For a rectangular tank with dimensions l, w, and h:

L = 2Cs h(l + w) + (Cb + Ct) l w − λ(l w h − V)

∂L/∂l = 0 = 2Cs h + (Cb + Ct)w − λw h

∂L/∂w = 0 = 2Cs h + (Cb + Ct)l − λ l h

∂L/∂h = 0 = 2Cs (l + w) − λ l w

∂L/∂λ = 0 = l w h − V

From these first three partial differential equations, one can prove that the width
w equals the length l, and that both = 2 Cs h/(Cb + Ct). Since from the last
equation, h = V/ww, substituting that into {w = l = 2 Cs h/(Cb+Ct)} yields

w = l = [2 CsV/(Cb + Ct)]1/3

and

h = Vol/[2 CsV/(Cb + Ct)]2/3 or h = V1/3 [(Cb + Ct)/2Cs]2/3

The shadow price associated with volume V will denote the change in the total
cost per unit change in volume V. The total cost increases if V is increased. What
is interesting about all such tank or container problems is that the ratio of base
and top cost to total cost will equal 1/3 no matter what the tank shape and unit
costs and volumes are. The total side cost will always be 2/3rds of the total cost
of a minimum-cost tank or container.

For a circular tank with dimensions’ r and h :
L = Cs 2πr h + (Cb + Ct) πr2− λ πr2h− V]
∂L/∂r = 0 = 2Cs hπ + 2(Cb + Ct)πr − 2λπrh

∂L/∂r = 0 = 2Cs r π − λ πr2

∂L/∂λ = 0 = π r2h − V.

Use first two partial differential equations to find that r/h = Cs/(Cb+Ct)
Using the third equation

r = [VCs/π(Cb + Ct)]1/3

h = [
V (Cb + Ct)2/π Cs2

]1/3
.

Now look at cost ratios:

Side cost/total cost = Cs 2πrh/
[
Cs 2πrh + (Cb + Ct) πr2

]

= 2Cs h/[2 Cs h + (Cb + Ct)r]

= 2Cs h/[2 Cs h + (Cb + Ct)hCs/(Cb + Ct)] = 2/3.
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This is true regardless of unit costs Cs, Ct, Cb or V!
Finally, consider the resource allocation problem.
Assume the goal is to maximize the total benefits derived from the allocation of

resources to three users. Denote the allocations as X, Y, and Z to users 1, 2, and 3,
respectively. The benefits obtained from each allocation are 6 X – X2, 7Y – 1.5Y2,
and 8Z – 0.5Z2. Assuming that only 6 resources are available, the problem is to
find the allocations that

Maximize F(X , Y ,Z) = (
6X − X 2) + (

7Y − 1.5Y 2) + (
8Z − 0.5Z2)

Subjected to : X + Y + Z = 6.

The resource constraint is an equality since more resources are desired, and
therefore, all 6 resources will be allocated.

The marginal benefits (slopes of the benefit functions) associated with each
respective user are 6 – 2X, 7 – 3Y, and 8 – Z. When these slopes equal each other,
the corresponding allocations will maximize the total benefits. This can be shown
by just constructing a Lagrangian model.

The Lagrangian equation can be written as

L = 6X − X 2 + 7Y − 1.5Y 2 + 8Z − 0.5Z2 − λ(X + Y + Z − 6).

Differentiating with respect to each unknown (X, Y, Z, λ) and setting the result
to 0

∂L/∂X = 0 = 6 − 2X − λ

∂L/∂Y = 0 = 7 − 3Y − λ

∂L/∂Z = 0 = 8 − Z − λ

∂L/∂λ = 0 = X + Y + Z − 6

The first three partial differential equations show that the slopes of each benefit
function, the marginal benefits, at the optimal solution, are all the same, and equal
to λ. Using this information in the last equation, X = 1, Y = 1, Z = 4, and thus
the shadow price, dF/d6 = λ = 4 and the total benefits are 34.5. If the available
resources were 6.1, the total benefits would be 34.9.
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Exercises

1. Benefit Cost analysis

Assume a benefit function B = 60*xˆ0.8 and a cost function C = 4 + 7*xˆ1.5.
The maximum difference between B and C, the maximum net benefits, occurs at
x = 8.7686.
(a) Would an increase in the fixed cost of 4 affect the value of x?
(b) Use a Lagrangian model to find the value of the shadow price, or Lagrangian

multiplier, if x cannot exceed 5. What does the multiplier signify?
2. Allocating resources

(a) Consider the problem of allocating resources to three users. The allocations
are X, Y, and Z. User 1’s total revenue is 6X/(1+X). User 2’s total revenue is
7Y/(1 + Y). User 3’s total revenue is 8Z/(1 + Z). Assume 10 resources are
available.

Show how to find the allocations that maximize the total revenue from all
three users, and the associated shadow price of the resource constraint, using
Lagrange multipliers. Compare that solution with one obtained from solving
the model itself, say using Solver in Excel.

(b) There are two users of resources, A and B, whose income depends on the
resources they are allocated. Let those allocations be A and B, respectively.
The income to user A equals 10 A − 0.5 A2. The income to user B is 5B
– 0.25 B2. You wish to know what allocations result in the maximum total
income. You only have 14 resources to allocate and are curious what marginal
increase in total income could result if you had more resources.
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