Chapter 13 )
Data Ecosystems: A New Dimension S
of Value Creation Using Al and Machine
Learning

Dirk Hecker, Angelika Voss, and Stefan Wrobel

Abstract Machine learning and artificial intelligence have become crucial factors
for the competitiveness of individual companies and entire economies. Yet their
successful deployment requires access to a large volume of training data often not
even available to the largest corporations. The rise of trustworthy federated digital
ecosystems will significantly improve data availability for all participants and thus
will allow a quantum leap for the widespread adoption of artificial intelligence at all
scales of companies and in all sectors of the economy. In this chapter, we will
explain how Al systems are built with data science and machine learning principles
and describe how this leads to AI platforms. We will detail the principles of
distributed learning which represents a perfect match with the principles of distrib-
uted data ecosystems and discuss how trust, as a central value proposition of modern
ecosystems, carries over to creating trustworthy Al systems.
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13.1 Introduction

In recent years, the effective use of machine learning and artificial intelligence
(AI) has become a decisive factor for the competitiveness of individual companies
and entire economies. Due to fundamental advances in available algorithms and
computing power, given enough data, tasks that previously would have required
human intelligence can now be automated, dramatically increasing efficiency and
enabling completely new products and services. The availability of data, however,
has proven to be a major roadblock for all but the largest and most digitally affine
corporations. Typically, Al applications have used within-company data resources
only, severely limiting the quality and feasibility of Al deployment in many cases.

The availability of a digitally sovereign, technically secure, and economically
viable architecture for shared data spaces and digital ecosystems across different
partners therefore is a fundamental game changer for the use of machine learning and
artificial intelligence almost everywhere. Using a data space along the value chain or
with complementary partners, new data sources can be brought into the construction
of machine learning applications in a well-organized and, most importantly of all,
self-determined fashion. Since availability and accessibility of data are always
governed by the participants in the ecosystem, companies remain in control, thus
enabling significantly more data to be made available to others.

Secondly, due to the semantic interoperability and unified data modeling of the
data space, a sensible integration of different data sources, which is especially crucial
for machine learning, can be performed with orders of magnitude less effort than in
traditional project-wise approaches. With more and more complementary data
sources becoming available, the quality and scope of machine learning results
increase dramatically.

Furthermore, due to the inherently distributed nature of a data space, companies
can now leverage the full potential of novel, distributed machine learning
approaches. With these approaches it is no longer even necessary to combine all
data at a central place; instead, they can be processed locally, at the edge of the data
space nodes. This not only guarantees confidentiality of data but also affords
considerable savings and potential for scalability.

Embedding machine learning and Al applications into data ecosystems using data
space architectures thus not only makes Al applications accessible to organizations
outside of the classical data-intensive digital sector, but also brings about significant
benefits for those who have already deployed Al by allowing them to naturally move
towards a distributed perspective on Al systems [1].

In the following sections, we will first (Sect. 13.2) give a brief overview of how
artificial intelligence and machine learning applications are built today in the devel-
opment cycle that centers on the use of the right data combined in the right way. We
will then widen our perspective in Sect. 13.3, moving away from the technical
development cycle and focusing instead on the platforms that are used to put these
applications into deployment. In Sect. 13.4, we will then take a deep dive into one
particular machine learning technology, distributed machine learning, that is
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especially suited for Al systems and federated ecosystems and promises to deliver all
the advantages of powerful machine learning modeling without centralized data
storage. From thereon, in Sect. 13.5, we will generalize and discuss a more general
architecture for machine learning in (distributed) digital ecosystems. Since trust is a
core value proposition of these ecosystems, in Sect. 13.6 we will conclude the
chapter with a brief discussion of the aspects of trustworthiness and Al applications.

13.2 Big Data, Machine Learning, and Artificial
Intelligence

Big data became a hot topic in Europe around 2013 and was soon followed by data
science, machine learning, deep learning, and artificial intelligences as trending
topics. Artificial intelligence (Al) is a subfield of computer science, and machine
learning and deep learning are now its most successful areas. Machine learning
produces knowledge in the form of statistical models. There are different types of
models, each equipped with a learning algorithm that optimizes the model automat-
ically from training data. The most popular models are decision trees for classifica-
tion tasks, regression curves for quantitative prediction tasks, clusters of similar data
for pattern recognition, and artificial neural networks from deep learning [2, 3].

The recent success of machine learning is due to the volumes of data, and
especially unstructured data, that can be stored in big data architectures: text, speech
and audio, images and video, and streams of sensor data. Deep learning takes such
data and trains artificial neural networks. They can make predictions and give
recommendations. They can develop strategies for actions in games or to control a
robot. They can generate images, texts, and language [4].

Data science combines methods from mathematics, statistics, and computer
science for the discovery of knowledge in data. Knowledge discovery is also called
data mining. Already in 1999 a process model, called CRISP-DM, was published as
a step-by-step data mining guide. CRISP-DM stands for “Cross-Industry Standard
Process for Data-Mining” and became an industry standard. The six phases of the
process, shown in Fig. 13.1, are interlaced because data mining is an explorative
process. Problem statements and the hypotheses initially formulated during business
and data understanding may have to be adjusted when it turns out that the available
data do not yield good enough models. Therefore it is important to identify many
sources of high-quality data. Apart from data catalogs, data understanding can be
supported by tools for descriptive statistics and visual analytics to find outliers, gaps,
missing data, or underrepresented cases.

Data preparation involves data cleaning and transformations: generation of
missing or derived data and removal of outliers, possibly also annotations and
semantic enrichments. The latter transform the data into a standard vocabulary and
guarantee seamless and ambiguous exchange between companies [5]. Data
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Fig. 13.1 The CRISP-DM process

preparation is still the most time-consuming phase and may take up to 70 % of the
entire process [6].

Modeling and evaluation are supported by dedicated machine learning tools. For
training, many learning algorithms require data which is labelled with the correct
results or with other semantic annotations. This often drives the cost of data
preparation. Machine learning is a statistical approach, and its models only return
approximate results. Therefore evaluating a model is mandatory. It is done by
running the model on extra data, which has not been used for training, and compar-
ing predicted and correct results. Data which is not representative and contain errors
or prejudices lead to deficient models.

Not for all learning tasks there is enough data to train good machine learning
models. Therefore, researchers are now investigating algorithms that can learn causal
relations and supplementary models that can represent facts and symbolic knowl-
edge [7, 8].

A trained and evaluated model is not yet an Al application or intelligent solution.
Usually, the model is placed into a workflow and linked to components for data
fetching, data preprocessing, and model invocation, and the workflow is embedded
in coded components that act upon the model’s results. For instance, in an email
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filter, a model may classify an email as junk or no-junk, but ordinary code must be
written to move the email into the corresponding folder. A trained model embedded
in traditional code constitutes the deployable application or solution.

13.3 An Open Platform for Developing AI Applications

In the preceding section, we have been focusing on the abstract data science process.
When developing and deploying applications, this process is typically carried out
with the help of software toolkits with the view towards deployment platforms which
we will have a look at in the following paragraphs.

In the marketplace, there are several toolkits and platforms for machine learning
and data mining, both open source and free to use as well as commercial. They
provide the discussed means to analyze and preprocess data, to generate and test
models, and to wrap them with workflows for deployment in smart applications. But
to industrialize machine learning, such platforms need to be combined with data
sharing platforms like the IDS on the one hand and digital business platforms with
Al services on the other hand. All big ICT enterprises provide such integrated
environments. But each of them supports a particular language and a set of compat-
ible libraries, such as SciKit Learn, TensorFlow, H20, and RCloud. This imposes
specific standards and interfaces which lock the users into the provider’s particular
ecosystem.

In this section, we want to focus on ACUMOS Al [9], a platform that avoids the
lock-in effect. It is an open-source development by the Linux foundation, was
adopted by the European flagship project AI4EU [10], and thus will set a standard
in the way Al applications are governed in Europe. The key idea of the AI4EU
ACUMOS platform is that many models are reusable. Models pre-trained with big
data sets often can be transferred to specific tasks by post-training with additional,
task-specific data. In artificial neural networks, for instance, this can be achieved by
retraining an emptied last layer, which is responsible for the final results.

To maximize the reusability of machine learning models, ACUMOS Al separates
the work of the machine learning specialists from that of the application developers
as shown in Fig. 13.2.

Machine learning specialists who have explored, trained, and evaluated a model
in their preferred machine learning toolkit can onboard it to ACUMOS Al (1 in
Fig. 13.2). That means, the model is packaged into combinable micro-services and
described in a catalog. The catalog also contains components for data access, data
transformation, and complementary software. ACUMOS provides a design studio,
where application developers can graphically connect components from the catalog
without any coding and without knowledge of the components’ interna. Thus, they
can build training workflows to retrain models into so-called predictors and put them
into application workflows (2). Workflows can also be published in the catalog
where others can rate them or give more specific feedback (3). Application
workflows, packaged into a docker image, can be deployed in an execution
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Fig. 13.2 Application building in ACUMOS Al

environment such as Azure, AWS, other popular cloud services, or any corporate
data center or any real-time environment (4).

Within AI4EU, ACUMOS AI was fed with various Al models. Application
developers can find them in the catalog and combine them into hybrid models
[11]. ACUMOS AI is a federated platform, which means that users can access
catalogs from different ACUMOS instances. The German node of the AI4EU-
platform will be hosted by KILNRW at Fraunhofer IAIS. KLNRW acts as an
umbrella for the transfer of AI from science into companies in North Rhine
Westphalia [12].

In summary, ACUMOS Al facilitates collaboration of data scientists with differ-
ent competences and roles: Experts who experimentally develop Al models with
dedicated toolkits and application developers who possibly retrain them and graph-
ically compose them into deployable Al applications. The data needed for machine
learning models is identified, selected, and preprocessed by data managers. The IDS
with its data connectors, data transformation apps, and semantic vocabularies pro-
vides an environment where this can be done in a controlled way.
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13.4 Machine Learning at the Edge

Having discussed that today, machine learning algorithms will typically operate on
data residing in distributed and federated platforms, a natural question is whether
then the classical way of using machine learning by first centralizing all data can be
improved by using the distributed data for machine learning where they are. Indeed
this is possible and has been proven to work extremely well even for complex
models [13], so let us have a brief look at how this works and what the benefits are.

Deep artificial neural networks can cope with complex learning tasks because
they have many parameters, namely, a weight at every link (or synapsis) between
two nodes at connected layers. Optimizing many weights requires lots of data [14].
Therefore, learning complex models usually takes place on a central server in the
cloud, meaning that all data have to be transferred to this server. Usually, even the
trained model remains in the cloud so that all application-specific data is moved to a
central server. A popular example are speech assistants and translators.

However, there is a range of applications where such an approach is infeasible for
legal reasons, to protect business secrets, or due to technical restrictions. An example
for legal restrictions is the protection of personal data, specifically in the health
sector. An example for business secrets are production data from machines, which
the producing company does not want to disclose to a central service that is operated
by the machine manufacturer for predictive maintenance or quality control. An
example for technical restrictions are autonomous vehicles or driving assistants,
which cannot transfer all data from the various cameras and sensors into a cloud in
order to obtain piloting and navigation instructions.

Distributed machine learning solves this problem. A key idea is to learn at each
of the distributed local data sources, which means at the edge of the cloud. Of course,
a local node does not see much data; therefore, the second idea is to transmit the local
model, rather than the local data, to the central server. Here the models are aggre-
gated and redistributed to the local nodes. Thus all nodes indirectly profit from all
data without ever exchanging it. For artificial neural networks, model aggregation
means calculating the average of every parameter, which is a simple matrix opera-
tion. Figure 13.3 illustrates the communication between the central and local nodes.

All nodes continue training their model with new local data. For all nodes to
continuously profit from their respective improvements, the local nodes need to
exchange their updated models repeatedly. This can be done at fixed intervals or
dynamically. The dynamic approach is more ambitious because here the nodes must
somehow signal their progress. Distributed learning terminates when there is no
more significant progress.

In 2016 researchers at Google were the first to successfully train a deep network
with fixed synchronization intervals [15]. A team at Fraunhofer IAIS and
Volkswagen elaborated this for dynamic synchronization and could show that the
quality of the models suffered marginally while the communication effort could be
reduced considerably [13].
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13.5 Machine Learning in Digital Ecosystems

Having powerful algorithms for distributed and non-distributed machine learning
and the right platforms for deploying their applications as discussed in the preceding
sections, let us now zoom out again and look at the overall structure of digital
ecosystem that results when these technologies are used and explain the different
“spaces” in which digital value is then created.

Digital business ecosystems, in practically all domains such as mobility,
healthcare, industrial production, logistics, and finance, will evolve around a shared
data space and profit from Al to create value from the data by improving processes or
products and by generating new business models.

In digital business ecosystems, there will be many data owners with similar kinds
of data, like different hospitals with medical data records or different manufacturers
of intelligent cars with data from the cars’ cameras and other sensors. Probably, the
data will come in more or less different formats. To benefit from the ecosystem
means to pass one’s data to the same applications. Therefore, the IDS provides
vocabularies and data transformation apps so that data with the same semantics also
ends up in the same format [16].

This is an ideal situation for machine learning, because data in standardized form
will dramatically reduce the data preparation effort, which may take most of the
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effort in first-of-a-kind projects. In a shared data space, machine learning can be
industrialized. Not only are there input data in a standardized format; a model, which
was originally trained on shared data, can also be reused and transferred. Data
providers, who in principle are competitors, may collaborate in training a shared
basic model and tune it with their individual data to their individual context and
deploy it in their distinguished smart application. Such an industrialized way of
machine learning calls for a good separation of work between the different kinds of
data scientists: the machine learning and other Al experts who deliver models,
experts for model adaptation and application building who deliver smart applica-
tions, and data managers and data engineers who find and transform the data into a
ready-to-use form.

In Fig. 13.4, the realm of the data engineers is the data space. Data engineers use
the data broker to find suitable data and the app store to find data transformation apps
for the target vocabularies. The data transformation apps can be applied in connec-
tors that expose data in a preprocessed standard format.

Al development environments are the realm of machine learning experts and
application builders work. In Fig. 13.4 they operate in the development space. It sits
on top of the data space layer because it can receive training data via connectors from
the data space. The smart applications developed in the Al development space can be
deployed in domain-specific digital business ecosystems. They reside at the top of
Fig. 13.4 in the solution space. Smart applications can also be published as smart
apps in the app store of underlying shared data space.

Machine learning at the edge is a special case, treated on the right-hand side of
Fig. 13.4. Since here, learning is a continuous activity, smart applications must be
“smart learning applications” which can learn in the execution environment by
aggregating local models and redistributing them. The “edge space” in Fig. 13.4 is
a specialized data space that extends down to special sensors, like IoT sensors for the
internet of things, and energy-efficient hardware. Data must not leave the edge space.
The edge space provides smart local learning apps and connectors to exchange
models between the local learning apps and the smart learning application in the
solution space.

13.6 Trustworthy Al Solutions

With descriptions of the basic machine learning technologies, the data science
process, the platforms, and digital ecosystems in place in the preceding sections,
let us now return to one of the core value propositions of modern federated data
ecosystems, and in particular of the industrial data space (IDS) architecture [5] and
GAIA-X [16]: Trust. While the ecosystem architecture focuses on trust in the data
providers, the data consumers, brokers, and transport, here we want to focus on what
it takes to make the Al applications built on top of these ecosystems trustworthy.
Modern machine learning methods are extremely powerful, but due to their data-
driven nature and the extremely high dimensionality of their models, establishing
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trust in their results presents particular challenges. Artificial neural networks are a
particularly good example of this. These networks are “black boxes” because they do
not contain any code nor rules that humans could easily inspect. Moreover, all
machine learning models return results that are not perfectly true or completely
false, but more or less correct. Therefore, many models can also be made to output a
confidence value which reflects their uncertainty. Finally, Al applications can be
built to learn continuously, where the model is updated from new data or feedback
during operation—with possibly unforeseen effects. Edge machine learning is only
one type of continuous learning.

So it is difficult to argue that an application with machine learning inside will
behave as intended. Figure 13.5 gives an overview of important principles that a
trustworthy application of Al should incorporate [17].

By choosing and configuring the type of model, the data scientist tries to achieve
accurate predictions. If the model is not robust against small changes, it can be
improved by adding noise and other systematic transformations of the input data.
Correcter and more robust models are more reliable. A black-box model can be
supplemented with more explicatory models to facilitate its interpretation or defend
individual results. Both increase the model’s transparency. Other methods prevent a
model from exposing any private data which may be encoded in the millions or even
billions of weights.

Quality and quantity of the training data have a huge impact on the reliability,
privacy, and fairness of the model because training data may be unrepresentative in
general and contain wrong features or examples of low quality. This must be
investigated in particular with respect to gender, religion, ethnicity, disability, and
age to improve the fairness of the model. Of course, all data must comply with the
data protection regulations and laws.

A model cannot sense, behave, or communicate. It is conventionally coded
software wrapped around and controlling the model’s invocation that determines
the functionality and appeal of the application at the user interface. This software
must be designed according to the desired level of control. The user’s agency and
oversight is high in smart assistant tools, can be decreased while keeping the user in
the loop or on the loop, and is minimized in a fully autonomous system. Applications

LNELL R AL |s autonomous, effective usage of the Al possible?

Fairness Does the Al treat all persons concerned fairly?

Data Protection Does the Al protect privacy and other sensitive information?

Is the Al protected against attacks, accidents and errors?

Transparency Are the Al functions and the decisions made by the Al comprehensible?

Reliability Does the Al work reliable and robust?

iiﬁiii

Fig. 13.5 Values to be respected by trustworthy Al applications
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can be designed so convenient that users over-rely on them and unlearn important
competences. Intelligent devices and robots, in particular, can be made to look and
feel so human-like that users get overly attached and dependent. The embedding
software also contributes to reliability. It must invoke the model only when the
application context fits to the training data, and it must override the model’s output
when its confidence is low. For the worst cases, fail-safe procedures must be
invoked. A final job of the embedding code is data logging so that failures of the
application are documented and can be investigated, thus contributing to
transparency.

Unfortunately, the requirements on trustworthy Al may be conflicting. Especially
reliability may suffer when transparency, privacy, and fairness are improved. More-
over, creating a trustworthy Al application will be costly. Therefore, for each
principle of trustworthiness, the risks of ignoring it must be assessed. The effective-
ness of improvement measures should correlate to the risk, with low risks requiring
no measures at all.

A European standard for auditing trustworthy Al applications could be a com-
petitive advantage for European providers of Al software. The standard would have
to balance costs against risks so that an Al certificate would be a competitive
advantage and promote innovative trustworthy solutions, without raising to high
barriers for market entry [18]. North Rhine Westphalia is supporting such an
endeavor by Fraunhofer and partners. The so-called Bonner Katalog [19] will
provide framework for certification based on the principles from Fig. 13.5 that
elaborates the recommendations of the European High Level Expert Group on
Al [20].

13.7 Summary

In this chapter, we have described how the arrival of modern federated data ecosys-
tems acts as a driver that pushes forwards the use of artificial intelligence and
machine learning technologies across all application areas. By making larger vol-
umes of data from multiple partners available to all participants in such ecosystems
in a trustworthy fashion, more and more companies will be capable of developing
and/or deploying successful artificial intelligence systems. Moreover, as we have
described in this chapter, recent developments in particular in distributed machine
learning are a particularly good match for the environment that is provided by
federated data ecosystems. Thus, we can expect that in the future, Al and machine
learning will be a core part of any digital ecosystem in the manner that we have
discussed above. This opens up the exciting prospect that federated data ecosystems
will be the basis for a thriving economy that is characterized by fairness, competi-
tion, market orientation, and, thus, best possible value creation for enterprises and
citizens alike.
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