Skip to main content

Analytics

  • Chapter
  • First Online:
Clinical Informatics Study Guide

Abstract

Increasing accessibility and availability of heterogeneous data sources, growing data science competencies across the clinical workforce, and a preponderance of evidence on the value and benefits of Artificial Intelligence (AI) present a rosy future for analytics in healthcare. However, navigating the complex, computer science-heavy analytics domain and translating these concepts for application in clinical care is no easy task. This chapter introduces basic concepts of data and analytics for the clinical informatics domain and practical considerations, challenges, and solutions that may influence clinical informaticians in applying these methods in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasthurirathne SN, Ho YA, Dixon BE. Public health analytics and big data. In Public Health Informatics and Information Systems. 2020. (pp. 203–219). Springer, Cham.

    Google Scholar 

  2. Van der Aalst WM. Data scientist: the engineer of the future. Enterprise interoperability VI. Cham: Springer; 2014. p. 13–26.

    Book  Google Scholar 

  3. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  4. Nam JG, Park S, Hwang EJ, Lee JH, Jin K-N, Lim KY, et al. Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019;290(1):218–28.

    Article  PubMed  Google Scholar 

  5. Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2019;290(2):456–64.

    Article  PubMed  Google Scholar 

  6. Kasthurirathne SN, Vest JR, Menachemi N, Halverson PK, Grannis SJ. Assessing the capacity of social determinants of health data to augment predictive models identifying patients in need of wraparound social services. J Am Med Inform Assoc. 2018;25(1):47–53.

    Article  PubMed  Google Scholar 

  7. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53.

    Article  CAS  PubMed  Google Scholar 

  8. Rolka H, Walker DW, English R, Katzoff MJ, Scogin G, Neuhaus E. Analytical challenges for emerging public health surveillance. CDC’s vision for Public Health Surveillance in the 21st Century. MMWR Suppl. 2012;61:35.

    PubMed  Google Scholar 

  9. Nambiar R, Bhardwaj R, Sethi A, Vargheese R, editors. A look at challenges and opportunities of big data analytics in healthcare. In: 2013 IEEE international conference on Big Data. Piscataway: IEEE; 2013.

    Google Scholar 

  10. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):1–9.

    Article  CAS  Google Scholar 

  11. Gartner Inc. Gartner says advanced analytics is a top business priority 2014. Available from: https://www.gartner.com/en/newsroom/press-releases/2014-10-21-gartner-says-advanced-analytics-is-a-top-business-priority.

  12. Davenport TH, Prusak L. Working knowledge: how organizations manage what they know. Boston: Harvard Business Press; 1998.

    Google Scholar 

  13. Fisher MJ, Marshall AP. Understanding descriptive statistics. Aust Crit Care. 2009;22(2):93–7.

    Article  PubMed  Google Scholar 

  14. Byrne G. A statistical primer: understanding descriptive and inferential statistics. Evid Based Libr Inf Pract. 2007;2(1):32–47.

    Article  Google Scholar 

  15. Centers for disease control and prevention. About the national health and nutrition examination survey 2017. Available from: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm.

  16. Centers for disease control and prevention. About BRFSS 2014. Available from: https://www.cdc.gov/brfss/about/index.htm.

  17. Gliklich RE, Dreyer NA, Leavy MB, Quality/AHRQ AHR. Registries for evaluating patient outcomes: a user’s guide. Washington, DC: U.S. Department of Health and Human Services; 2014.

    Google Scholar 

  18. World Health Organization. International statistical classification of diseases and related health problems. Geneva: World Health Organization; 2004.

    Google Scholar 

  19. SNOMED International. SNOMED CT 2019. Available from: http://www.snomed.org/.

  20. American Medical Association. CPT® (Current Procedural Terminology) 2019. Available from: https://www.ama-assn.org/amaone/cpt-current-procedural-terminology.

  21. Regenstrief Institute. About LOINC 2019. Available from: https://loinc.org/about/.

  22. Sagiroglu S, Sinanc D, editors. Big data: a review. In: 2013 International Conference on Collaboration Technologies and Systems (CTS). Piscataway: IEEE; 2013

    Google Scholar 

  23. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351–2.

    Article  CAS  PubMed  Google Scholar 

  24. Chapman WW, Chu D, Dowling JN, editors. ConText: An algorithm for identifying contextual features from clinical text. In: Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing. Stroudsburg: Association for Computational Linguistics; 2007

    Google Scholar 

  25. Kasthurirathne SN, Dixon BE, Gichoya J, Xu H, Xia Y, Mamlin B, et al. Toward better public health reporting using existing off the shelf approaches: a comparison of alternative cancer detection approaches using plaintext medical data and non-dictionary based feature selection. J Biomed Inform. 2016;60:145–52.

    Article  PubMed  Google Scholar 

  26. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  27. Chen T, Guestrin C, editors. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM; 2016.

    Google Scholar 

  28. Évora L, Seixas J, Kritski AL. Neural network models for supporting drug and multidrug resistant tuberculosis screening diagnosis. Neurocomputing. 2017;265:116–26.

    Article  Google Scholar 

  29. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology. 2017;2(4):230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature biomedical engineering. 2018;2(10):719–31.

    Article  PubMed  Google Scholar 

  31. Martin S, Wagner J, Lupulescu-Mann N, Ramsey K, Cohen AA, Graven P, et al. Comparison of EHR-based diagnosis documentation locations to a gold standard for risk stratification in patients with multiple chronic conditions. Appl Clin Inform. 2017;8(3):794.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kasthurirathne SN, Biondich PG, Grannis SJ, Purkayastha S, Vest JR, Jones JF. Identification of patients in need of advanced care for depression using data extracted from a statewide health information exchange: a machine learning approach. J Med Internet Res. 2019;21(7):e13809.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murray DD, Itenov TS, Sivapalan P, Eklöf JV, Holm FS, Schuetz P, et al. Biomarkers of acute lung injury the individualized approach: for phenotyping, risk stratification and treatment surveillance. J Clin Med. 2019;8(8):1163.

    Article  CAS  PubMed Central  Google Scholar 

  34. Fareed N, Swoboda CM, Jonnalagadda P, Griesenbrock T, Gureddygari HR, Aldrich A. Visualizing opportunity index data using a dashboard application: a tool to communicate infant mortality-based area deprivation index information. Appl Clin Inform. 2020;11(04):515–27.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dixon BE, Grannis SJ, McAndrews C, Broyles AA, Mikels-Carrasco W, Wiensch A, et al. Leveraging data visualization and a statewide health information exchange to support COVID-19 surveillance and response: application of public health informatics. J Am Med Inform Assoc JAMIA. 2021;28(7):1363–73.

    Article  PubMed  Google Scholar 

  36. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud Health Technol Inform. 2015;216:574.

    PubMed  PubMed Central  Google Scholar 

  38. Hripcsak G, Schuemie MJ, Madigan D, Ryan PB, Suchard MA. Drawing reproducible conclusions from observational clinical data with OHDSI. Yearb Med Inform. 2021;30(1):283–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Haendel MA, Chute CG, Bennett TD, Eichmann DA, Guinney J, Kibbe WA, et al. The national COVID cohort collaborative (N3C): rationale, design, infrastructure, and deployment. J Am Med Inform Assoc. 2021;28(3):427–43.

    Article  PubMed  Google Scholar 

  40. Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating multi-label discrete patient records using generative adversarial networks. In: Machine Learning for Healthcare Conference. Boston: PMLR; 2017.

    Google Scholar 

  41. Sorin V, Barash Y, Konen E, Klang E. Creating artificial images for radiology applications using generative adversarial networks (GANs)–a systematic review. Acad Radiol. 2020;27(8):1175–85.

    Article  PubMed  Google Scholar 

  42. Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson BN, et al. A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data. eGEMs. 2016;4(1):1–21.

    Article  Google Scholar 

  43. Botsis T, Hartvigsen G, Chen F, Weng C. Secondary use of EHR: data quality issues and informatics opportunities. Summit on Translational Bioinformatics. 2010;2010:1.

    PubMed  PubMed Central  Google Scholar 

  44. Ferryman K, Pitcan M. Fairness in precision medicine. Data & Society. 26 Feb 2018; Available from: https://datasociety.net/library/fairness-in-precision-medicine/. Accessed 8 Feb 2022.

  45. Roebuck K. Data quality: high-impact strategies-what you need to know: definitions, adoptions, impact, benefits, maturity, vendors. London: Emereo Publishing; 2012.

    Google Scholar 

  46. Kim Y, Huang J, Emery S. Garbage in, garbage out: data collection, quality assessment and reporting standards for social media data use in health research, infodemiology and digital disease detection. J Med Internet Res. 2016;18(2):e41.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shankar S, Halpern Y, Breck E, Atwood J, Wilson J, Sculley D. No classification without representation: Assessing geodiversity issues in open data sets for the developing world. arXiv preprint arXiv:171108536. 2017.

    Google Scholar 

  48. Tommasi T, Patricia N, Caputo B, Tuytelaars T. A deeper look at dataset bias. Domain adaptation in computer vision applications. Cham: Springer; 2017. p. 37–55.

    Book  Google Scholar 

  49. Buolamwini J, Gebru T, editors. Gender shades: intersectional accuracy disparities in commercial gender classification. Conference on fairness, accountability and transparency. Boston: PMLR; 2018.

    Google Scholar 

  50. World Health Organization. About social determinants of health 2020. Available from: https://www.who.int/social_determinants/sdh_definition/en/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suranga N. Kasthurirathne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasthurirathne, S.N., Grannis, S.J. (2022). Analytics. In: Finnell, J.T., Dixon, B.E. (eds) Clinical Informatics Study Guide. Springer, Cham. https://doi.org/10.1007/978-3-030-93765-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93765-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93764-5

  • Online ISBN: 978-3-030-93765-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics