Skip to main content

Atomistic Tight-Binding Study of Core/Shell Nanocrystals

  • Chapter
  • First Online:
Progress in Nanoscale and Low-Dimensional Materials and Devices

Part of the book series: Topics in Applied Physics ((TAP,volume 144))

  • 672 Accesses

Abstract

Progressive technologies in the synthetic chemistry of semiconductor nanostructures have made it possible to access high quality semiconductor nanostructures with precise size, shape and composition. Colloidal core/shell nanocrystals are composed of a core made from one material terminated by a shell of another material. Because of the improved photoluminescence quantum yields, high photostability and size-tunable emission properties, core/shell nanocrystals are tremendously attractive for the active applications. The purpose of this chapter is to present the atomistic tight-binding theory to study the electronic structures and optical properties of core/shell nanocrystals with the purpose to evidently understand the significance of core and growth shell. Owing to the heterostructure of core/shell nanocrystal, the valence force field method is utilized to optimize the structural geometry. To analyze the electronic structures and optical properties of the core/shell nanocrystals with the corresponding structural parameters, some of the calculations are demonstrated. Finally, all-inclusive information based on atomistic tight-binding theory successfully conveys the natural behaviors of core/shell nanocrystals and carries a guideline for the design of their electronic and optical properties before applying to the novel electronic nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.J. Bowers, J.R. McBride, S.J. Rosenthal, J. AM. Chem. Soc. 127, 15378 (2005)

    Article  CAS  Google Scholar 

  2. P.O. Anikeeva, C.F. Madigan, S.A. Coe-Sullivan, J.S. Steckel, M.G. Bawnendi, V. Bulovic, Chem. Phys. Lett. 424, 120 (2006)

    Article  CAS  Google Scholar 

  3. A.J. Nozik, Phys. E 14, 115 (2002)

    Article  CAS  Google Scholar 

  4. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)

    Article  CAS  Google Scholar 

  5. M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100, 074510 (2006)

    Google Scholar 

  6. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008)

    Article  CAS  Google Scholar 

  7. V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, H.J. Eisler, M.G. Bawendi, Science 290, 314 (2000)

    Article  CAS  Google Scholar 

  8. S. Achilefu, Technol. Cancer Res. Treat 3, 393 (2004)

    Article  CAS  Google Scholar 

  9. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  CAS  Google Scholar 

  10. A. Mukherjee, S. Ghosh, J. Phys. D Appl. Phys. 45, 195103 (2012)

    Google Scholar 

  11. M. Dahan, S. Levi, C. Luccardini et al., Science 302, 442 (2003)

    Article  CAS  Google Scholar 

  12. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  CAS  Google Scholar 

  13. C. Filgueiras, O. Rojas, M. Rojas, Annalen Der Physik, 2000207 (2020)

    Google Scholar 

  14. N.W. Hendrickx, W.I.L. Lawrie, L. Petit, A. Sammak, G. Scappucci, M. Veldhorst, Nat. Commun. 11, 3478 (2020)

    Article  CAS  Google Scholar 

  15. H. Qiao, Y.P. Kandel, K. Deng, S. Fallahi, G.C. Gardner, M.J. Manfra, E. Barnes, J.M. Nichol, Phys. Rev. X 10, 031006 (2020)

    Google Scholar 

  16. B. Lassen, M. Willatzen, R. Melnik, L.C.L.Y. Voon, J. Mater. Res. 21, 2927 (2006)

    Article  CAS  Google Scholar 

  17. W. Kohn, J. Luttinger, Phys. Rev. 98, 915 (1955)

    Article  CAS  Google Scholar 

  18. J. Luttinger, Phys. Rev. 102, 1030 (1956)

    Article  CAS  Google Scholar 

  19. D.S. Citrin, Y.-C. Chang, Phys. Rev. B 40, 5507 (1989)

    Article  CAS  Google Scholar 

  20. J.-B. Xia, Phys. Rev. B 43, 9856 (1991)

    Article  CAS  Google Scholar 

  21. V.V.R. Kishore, B. Partoens, F.M. Peeters, Phys. Rev. B 86, 165439 (2012)

    Google Scholar 

  22. V.R. Kishore, N. Čukarić, B. Partoens, M. Tadić, F. Peeters, J. Phys. Condens. Matt. 24, 135302 (2012)

    Google Scholar 

  23. B. Lassen, L. Lew Yan Voon, M. Willatzen, R. Melnik, Solid State Comm. 132, 141 (2004)

    Google Scholar 

  24. P. Redliński, F. Peeters, Phys. Rev. B 77, 075329 (2008)

    Google Scholar 

  25. V.R. Kishore, B. Partoens, F. Peeters, Phys. Rev. B 82, 235425 (2010)

    Google Scholar 

  26. M. Persson, A. Di Carlo, J. Appl. Phys. 104, 073718 (2008)

    Google Scholar 

  27. M. Persson, H.Q. Xu, Nano Lett. 4, 2409 (2004)

    Article  CAS  Google Scholar 

  28. M. Persson, H.Q. Xu, Phys. Rev. B 73, 125346 (2006)

    Google Scholar 

  29. M. Persson, H.Q. Xu, Phys. Rev. B 73, 035328 (2006)

    Google Scholar 

  30. Y. Niquet, Nano Lett. 7, 1105 (2007)

    Article  CAS  Google Scholar 

  31. Y. Niquet, Phys. Rev. B 74 (2006) 155304.

    Google Scholar 

  32. M. Luisier, A. Schenk, W. Fichtner, G. Klimeck, Phys. Rev. B 74, 205323 (2006)

    Google Scholar 

  33. G. Liao, N. Luo, Z. Yang, K. Chen, H.Q. Xu, J. Appl. Phys. 118, 094308 (2015)

    Google Scholar 

  34. G. Liao, N. Luo, K.-Q. Chen, H.Q. Xu, J. Phys. Condens. Matter 28, 135303 (2016)

    Google Scholar 

  35. G. Liao, N. Luo, K.-Q. Chen, H.Q. Xu, Sci. Rep. 6, 28240 (2016)

    Article  CAS  Google Scholar 

  36. P.Y. Yu, M. Cordona, Fundamentals of Semiconductors (2001)

    Google Scholar 

  37. A. Di Carlo, Semicond. Sci. Technol. 18, R1 (2003)

    Article  Google Scholar 

  38. P. Harrison, Quantum Wells, Wires and Dots. Wiley (2006)

    Google Scholar 

  39. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific (2005)

    Google Scholar 

  40. J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 14(2), 556 (1976)

    Article  CAS  Google Scholar 

  41. M.L. Cohen, V. Heine, The Fitting of Pseudopotentials to Experimental Data and Their Subsequent Application, volume 24 of Solid State Physics. Academic Press, New York (1970)

    Google Scholar 

  42. M.L. Cohen, T.K. Bergstresser, Phys. Rev. 141(2), 789 (1966)

    Article  CAS  Google Scholar 

  43. F. Ning, L.-M. Tang, Y. Zhang, K.-Q. Chen, J. Appl. Phys. 114, 224304 (2013)

    Google Scholar 

  44. S. Cahangirov, S. Ciraci, Phys. Rev. B 79, 165118 (2009)

    Google Scholar 

  45. A. Srivastava, N. Tyagi, R. Ahuja, Solid State Sci. 23, 35 (2013)

    Article  CAS  Google Scholar 

  46. C.L. Dos Santos, P. Piquini, Phys. Rev. B 81, 075408 (2010)

    Google Scholar 

  47. S. Schulz, Electronic and Optical Properties of Quantum Dots: A Tight-Binding Approach (2007)

    Google Scholar 

  48. W. Trzeciakowski, Phys. Rev. B 38, 12493 (1988)

    Article  CAS  Google Scholar 

  49. M.G. Burt, J. Phys. Condens. Matter 4, 6651 (1992)

    Article  Google Scholar 

  50. C. Pryor, J. Kim, L.W. Wang, A.J. Williamson, A. Zunger, J. Appl. Phys. 83, 2548 (1998)

    Article  CAS  Google Scholar 

  51. V.G. Malyshkin, I.P. Ipatova, V.A. Shchukin, J. Appl. Phys. 74, 7198 (1993)

    Article  Google Scholar 

  52. B. Jogai, J. Appl. Phys. 88, 5050 (2000)

    Article  CAS  Google Scholar 

  53. B. Jogai, J. Appl. Phys. 90, 699 (2001)

    Article  CAS  Google Scholar 

  54. O. Stier, Electronic and Optical Properties of Quantum Dots and Wires (2000)

    Google Scholar 

  55. R. Maranganti, P. Sharma, A Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers (2005)

    Google Scholar 

  56. T.S. Marshall, T.M. Wilson, Phys. Rev. B 50, 15034 (1994)

    Article  CAS  Google Scholar 

  57. H. Jiang, J. Singh, Phys. Rev. B 56, 4696 (1997)

    Article  CAS  Google Scholar 

  58. P.N. Keating, Phys. Rev. 145, 637645 (1966)

    Google Scholar 

  59. R.B. Capaz, P. Kratzer, Q.K.K. Liu, R. Santoprete, B. Koiller, M. Scheffler, Phys. Rev. B 68, 235311 (2003)

    Google Scholar 

  60. J.H. Seok, J.Y. Kim, Appl. Phys. Lett. 78, 3124 (2001)

    Article  CAS  Google Scholar 

  61. L.-W. Kim, A. Zunger, Phys. Rev. B 57, R9408 (1997)

    Article  Google Scholar 

  62. D.S. Yadav, C. Kumar, Int. J. Phys. Sci. 8, 1174 (2013)

    Google Scholar 

  63. W.W. Hager, H. Zhang, SIAM J. Optim. 16, 170 (2005)

    Article  Google Scholar 

  64. W.W. Hager, H. Zhang, ACM Trans. Math. Softw. 32, 113 (2006)

    Article  Google Scholar 

  65. W.W. Hager, H. Zhang, Pac. J. Optim. 2, 35 (2006)

    Google Scholar 

  66. Y. Luo, L.-W. Wang, ACS Nano 4, 91 (2010)

    Article  CAS  Google Scholar 

  67. W. Sukkabot, Comput. Mater. Sci. 96, 336 (2015)

    Article  CAS  Google Scholar 

  68. J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  CAS  Google Scholar 

  69. D.J. Chadi, Phys. Rev. B 16, 790 (1977)

    Article  CAS  Google Scholar 

  70. D.J. Chadi, M.L. Cohen, Phys. Stat. Sol. (b) 68, 405 (1975)

    Google Scholar 

  71. Y.M. Niquet et al., Phys. Rev. B 62, 5109 (2000)

    Article  CAS  Google Scholar 

  72. P. Vogl, H.P. Hjalmarson, J.D. Dow, J. Phys. Chem. Solids 44, 365 (1983)

    Google Scholar 

  73. J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani, Phys. Rev. B 57, 6493 (1998)

    Article  CAS  Google Scholar 

  74. J.-M. Jancu, F. Bassani, F. Della Sala, R. Scholz, Appl. Phys. Lett. 81(25), 4838 (2003)

    Google Scholar 

  75. G. Klimeck, R.C. Bowen, T.B. Boykin, C. Salazar-Lazaro, T.A. Cwik, A. Stoica, Superlattices Microstruct. 27, 77 (2000)

    Article  Google Scholar 

  76. C. Tserbak, H.M. Polatoglou, G. Theodorou, Phys. Rev. B 47, 7104 (1993)

    Article  CAS  Google Scholar 

  77. Q.M. Ma, K.L. Wang, J.N. Schulman, Phys. Rev. B 47, 1936 (1993)

    Article  CAS  Google Scholar 

  78. G. Grosso, C. Piermarocchi, Phys. Rev. B 51, 16772 (1995)

    Article  CAS  Google Scholar 

  79. D.N. Talwar, Z.C. Feng, Phys. Rev. B 44, 3191 (1991)

    Article  CAS  Google Scholar 

  80. J.N. Schulman, Y.-C. Chang, Phys. Rev. B 31, 2056 (1985)

    Article  CAS  Google Scholar 

  81. T.B. Boykin, J.P.A. van der Wagt, J.S.Jr. Harris, Phys. Rev. B 43, 4777 (1991)

    Google Scholar 

  82. A. Di Carlo, P. Lugli, Semicond. Sci. Technol. 10, 1673 (1995)

    Article  Google Scholar 

  83. A. Di Carlo, A. Reale, L. Tocca, P. Lugli, IEEE J. Quantum Electron. 34, 1730 (1998)

    Article  Google Scholar 

  84. H. Dierks, G.Z. Czycholl, Phys. Rev. B 99, 207 (1996)

    CAS  Google Scholar 

  85. K. Shim, H. Rabitz, Phys. Rev. B 57, 12874 (1998)

    Article  CAS  Google Scholar 

  86. T.B. Boykin, Phys. Rev. B 51, 4289 (1995)

    Article  CAS  Google Scholar 

  87. G. Theodorou, G. Tsegas, Phys. Rev. B 61, 10782 (2000)

    Article  CAS  Google Scholar 

  88. D. Olguin, R. Baquero, R. de Coss, Rev. Mex. Fis. 47(1), 43 (2001)

    CAS  Google Scholar 

  89. D. Bertho, D. Boiron, A. Simon, C. Jouanin, C. Proester, Phys. Rev. B 44, 6118 (1991)

    Article  CAS  Google Scholar 

  90. Z.Q. Li, Q. Pötz, Phys. Rev. B 46, 2109 (1992)

    Google Scholar 

  91. D. Bertho, J.M. Jancu, C. Jouanin, Phys. Rev. B 48, 2452 (1993)

    Article  CAS  Google Scholar 

  92. E.G. Wang, C.-F. Chen, C.S. Ting, J. Appl. Phys. 78, 1832 (1995)

    Article  CAS  Google Scholar 

  93. A. Kobayashi, O.F. Sankey, S.M. Volz, J.D. Down, Phys. Rev. B 28, 935 (1983)

    Article  CAS  Google Scholar 

  94. P.E. Lippens, M. Lannoo, Phys. Rev. B 41, 6079 (1990)

    Article  CAS  Google Scholar 

  95. J. Perez-Conde, A.K. Bhattacharjee, Phys. Rev. B 63, 245318 (2001)

    Google Scholar 

  96. M. Fornari, H. H. Chen, L. Fu, R. D. Graft, D. J. Lohrmann, S. Moroni, G. Pastori Parravicini, L. Resca, M.A. Stroscio, Phys. Rev. B 55, 16339 (1997)

    Google Scholar 

  97. J. Perez-Conde, A.K. Bhattacharjee, M. Chamarro, P. Lavallard, V.D. Petrikov, A.A. Lipovskii, Phys. Rev. B 64, 113303 (2001)

    Google Scholar 

  98. A. Kobayashi, O.F. Sankey, J.D. Down, Phys. Rev. B 25, 6367 (1983)

    Article  Google Scholar 

  99. K.C. Hass, H. Eherenreich, B. Velicky, Phys. Rev. B 27, 1088 (1983)

    Article  CAS  Google Scholar 

  100. M. Dib, M. Chamarro, V. Voliotis, J.L. Fave, C. Guenaud, P. Roussignol, T. Gacoin, J.P. Boilot, C. Delerue, G. Allan, M. Lannoo, Phys. Status Solidi B 212, 293 (1999)

    Article  CAS  Google Scholar 

  101. J.P. LaFemina, C.B. Duke, J. Vac. Sci. Technol. A 9, 1847 (1991)

    Article  CAS  Google Scholar 

  102. W.A. Harrison, Elementary Electronic Structure. World Scientific Publishing Company (1999)

    Google Scholar 

  103. M. Zielinski, M. Korkusinski, P. Hawrylak, Phys. Rev. B 81, 085301 (2010)

    Google Scholar 

  104. M. Korkusinski, M.E. Reimer, R.L. Williams, and P. Hawrylak, Phys. Rev. B 79, 035309 (2009)

    Google Scholar 

  105. K. Leung, K.B. Whaley, Phys. Rev. B 56, 7455 (1997)

    Google Scholar 

  106. W. Sukkabot, Mater. Sci. Semicond. Process. 27, 51 (2014)

    Article  CAS  Google Scholar 

  107. W. Sukkabot, Mater. Sci. Semicond. Process. 38, 142 (2015)

    Article  CAS  Google Scholar 

  108. P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2(7), 781 (2002)

    Article  CAS  Google Scholar 

  109. W. Sukkabot, Comput. Mater. Sci. 161, 46 (2019)

    Article  CAS  Google Scholar 

  110. N. Scott Bobbitt, J.R. Chelikowsky, J. Chem. Phys. 144(12), 124110 (2016)

    Google Scholar 

  111. E.L. de Oliveira, E.L. Albuquerque, J.S. de Sousa, G.A. Farias, F.M. Peeters, J. Phys. Chem. C 116, 7 (2012)

    Google Scholar 

  112. M.O. Nestoklon, A.N. Poddubny, P. Voisin, K. Dohnalova, J. Phys. Chem. C 120, 33 (2016)

    Article  Google Scholar 

  113. I.D. Avdeev, A.V. Belolipetsky, N.N. Ha, M.O. Nestoklon, I.N. Yassievich, J. Appl. Phys. 127, 114301 (2020)

    Google Scholar 

  114. W. Sukkabot, Phys. E Low-Dimens. Syst. Nanostruct. 63, 235 (2014)

    Google Scholar 

  115. H.Y.S. Al-Zahrani, J. Pal, M.A. Migliorato, G. Tse, D. Yu, Nano Energy 14, 382 (2015)

    Google Scholar 

  116. Y.M. Niquet, Phys. Rev. B 74, 155304 (2006)

    Google Scholar 

  117. Y.M. Niquet, Nano Lett. 7(4), 1105 (2007)

    Article  CAS  Google Scholar 

  118. V. Kocevski, J. Rusz, O. Eriksson, D.D. Sarma, Sci. Rep. 5, 10865 (2015)

    Article  CAS  Google Scholar 

  119. L. Zhu, et al., IOP Conf. Ser. Mater. Sci. Eng. 490, 022021 (2019)

    Google Scholar 

  120. H. Eshet, M. Grünwald, E. Rabani, Nano Lett. 13(12), 5880 (2013)

    Article  CAS  Google Scholar 

  121. W. Sukkabot, Mater. Sci. Semicond. Process. 34, 14 (2015)

    Article  CAS  Google Scholar 

  122. A. Jain, O. Voznyy, S. Hoogland, M. Korkusinski, P. Hawrylak, E.H. Sargent, Nano Lett. 16(10), 6491 (2016)

    Article  Google Scholar 

  123. X. Zhai, R. Zhang, J. Lin, Y. Gong, Y. Tian, W. Yang, X. Zhang, Cryst. Growth Des. 15(3), 1344 (2015)

    Article  CAS  Google Scholar 

  124. W. Sukkabot, Mater. Sci. Semicond. Process. 27, 1020 (2014)

    Article  CAS  Google Scholar 

  125. L. Zhang, Z. Lin, J.-W. Luo, A. Franceschetti, ACS Nano 6(9), 8325 (2012)

    Article  CAS  Google Scholar 

  126. W. Sukkabot, Comput. Mater. Sci. 111, 23 (2106)

    Google Scholar 

  127. S.C. Pandey, J. Wang, T.J. Mountziaris, D. Maroudasa, J. Appl. Phys. 111, 113526 (2012)

    Google Scholar 

  128. W. Sukkabot, Superlattices Microstruct. 75, 739 (2014)

    Article  CAS  Google Scholar 

  129. W. Sukkabot, Mater. Sci. Semicond. Process. 41, 252 (2016)

    Article  CAS  Google Scholar 

  130. W. Sukkabot, Comput. Mater. Sci. 101, 275 (2015)

    Article  CAS  Google Scholar 

  131. W. Sukkabot, Physica E 74, 457 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sukkabot, W. (2022). Atomistic Tight-Binding Study of Core/Shell Nanocrystals. In: Ünlü, H., Horing, N.J.M. (eds) Progress in Nanoscale and Low-Dimensional Materials and Devices. Topics in Applied Physics, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-93460-6_23

Download citation

Publish with us

Policies and ethics