Skip to main content

PAPR Reduction Scheme for Localized SC-FDMA Based on Deep Learning

  • Conference paper
  • First Online:
Wireless and Satellite Systems (WiSATS 2021)

Abstract

Large peak-to-average power ratio (PAPR) hinders the development of the localized single carrier frequency division multiple access (SC-LFDMA). In this paper, autoencoder (AE) is introduced in SC-LFDMA to reduce PAPR, known as AE-SC-LFDMA. In AE-SC-LFDMA, the Encoder and Decoder of AE are used to encode and decode the modulated symbols of conventional SC-LFDMA based on deep neural network (DNN). This process aims to make AE-SC-LFDMA achieve lower PAPR as well as be more robust to the nonlinear distortion (NLD) of high power amplifier (HPA). Simulation results show that the proposed scheme outperforms conventional schemes both in bit error rate (BER) and PAPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myung, H.G., Goodman, D.J.: Single Carrier FDMA: A New Air Interface for Long Term Evolution, vol. 8. Wiley, Hoboken (2008)

    Book  Google Scholar 

  2. Chen, G., Song, S., Letaief, K.B.: A low-complexity precoding scheme for PAPR reduction in SC-FDMA systems. In: 2011 IEEE Wireless Communications and Networking Conference, pp. 1358–1362. IEEE (2011)

    Google Scholar 

  3. Ji, J., Ren, G., Zhang, H.: PAPR reduction of SC-FDMA signals via probabilistic pulse shaping. IEEE Trans. Veh. Technol. 64(9), 3999–4008 (2014)

    Article  Google Scholar 

  4. Mohammad, A., Zekry, A., Newagy, F.: A time domain SLM for PAPR reduction in SC-FDMA systems. In: 2012 IEEE Global High Tech Congress on Electronics, pp. 143–147. IEEE (2012)

    Google Scholar 

  5. Meza, C.A., Lee, K., Lee, K.: PAPR reduction in single carrier FDMA uplink system using parametric linear pulses. In: ICTC 2011, pp. 424–429. IEEE (2011)

    Google Scholar 

  6. Kamal, S., Meza, C.A.A., Tran, N.H., Lee, K.: Low-PAPR hybrid filter for SC-FDMA. IEEE Commun. Lett. 21(4), 905–908 (2016)

    Article  Google Scholar 

  7. Ye, H., Liang, L., Li, G.Y., Juang, B.: Deep learning-based end-to-end wireless communication systems with conditional GANs as unknown channels. IEEE Trans. Wirel. Commun. 19(5), 3133–3143 (2020)

    Article  Google Scholar 

  8. Dörner, S., Cammerer, S., Hoydis, J., Ten Brink, S.: Deep learning based communication over the air. IEEE J. Sel. Top. Sig. Process. 12(1), 132–143 (2017)

    Article  Google Scholar 

  9. O’shea, T., Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Networking 3(4), 563–575 (2017)

    Article  Google Scholar 

  10. Kim, M., Lee, W., Cho, D.H.: A novel PAPR reduction scheme for OFDM system based on deep learning. IEEE Commun. Lett. 22(3), 510–513 (2017)

    Article  Google Scholar 

  11. Huleihel, Y., Ben-Dror, E., Permuter, H.H.: Low PAPR waveform design for OFDM system based on convolutional auto-encoder. arXiv preprint arXiv:2011.06349 (2020)

  12. Sohn, I.: A low complexity PAPR reduction scheme for OFDM systems via neural networks. IEEE Commun. Lett. 18(2), 225–228 (2014)

    Article  Google Scholar 

  13. Felix, A., Cammerer, S., Dörner, S., Hoydis, J., Ten Brink, S.: OFDM-autoencoder for end-to-end learning of communications systems. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2018)

    Google Scholar 

  14. Xue, S., Ma, Y., Yi, N., Tafazolli, R.: Unsupervised deep learning for MU-SIMO joint transmitter and noncoherent receiver design. IEEE Wirel. Commun. Lett. 8(1), 177–180 (2018)

    Article  Google Scholar 

  15. Wang, B., Si, Q., Jin, M.: A novel tone reservation scheme based on deep learning for PAPR reduction in OFDM systems. IEEE Commun. Lett. 24(6), 1271–1274 (2020)

    Article  Google Scholar 

  16. Balti, E., Guizani, M.: Impact of non-linear high-power amplifiers on cooperative relaying systems. IEEE Trans. Commun. 65(10), 4163–4175 (2017)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Candreva, E.A., Tarchi, D., Vanelli-Coralli, A., Corazza, G.E.: Robust SC-FDMA subcarrier mapping for non-linear channels. In: 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), pp. 360–365. IEEE (2014)

    Google Scholar 

  19. Saleh, A.A.: Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Trans. Commun. 29(11), 1715–1720 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research on Performance Evaluation and Optimization Technology of Local IOT for Client-side Metering Equipment under grant No. 5700-202118203A-0-0-00.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, H., Zhou, Y., Liu, Y., Li, R., Cao, N. (2022). PAPR Reduction Scheme for Localized SC-FDMA Based on Deep Learning. In: Guo, Q., Meng, W., Jia, M., Wang, X. (eds) Wireless and Satellite Systems. WiSATS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 410. Springer, Cham. https://doi.org/10.1007/978-3-030-93398-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93398-2_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93397-5

  • Online ISBN: 978-3-030-93398-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics