Skip to main content

Digital Technologies for Clinical, Public and Global Health Surveillance

  • Chapter
  • First Online:
AI for Disease Surveillance and Pandemic Intelligence (W3PHAI 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1013))

Included in the following conference series:

  • 551 Accesses

Abstract

Digital intelligent technologies are widely used to support the monitoring, detection, and prevention of diseases among individuals or communities. Artificial Intelligence offers a wide range of tools, methodologies, and techniques to collect, integrate, process, analyze and generate insights for improving care and conducting further exploratory and explanatory research. This introductory chapter first sets out the purpose of the book, which is to investigate the role of AI and digital technologies to improve personalized and population health, and then summarizes some of the recent developments in the field and sets up the stage for the rest of chapters in the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization.: Public Health Surveillance. Retrieved on 5 Oct 2022. http://www.emro.who.int/health-topics/public-health-surveillance/index.html

  2. Nsubuga, P., White, M.E., Thacker, S.B., et al.: Public health surveillance: A tool for targeting and monitoring interventions. In: Jamison, D.T., Breman, J.G., Measham, A.R., et al. (eds.) Disease Control Priorities in Developing Countries. 2nd edn. The International Bank for Reconstruction and Development/The World Bank, Washington (DC). Chapter 53. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11770/ Co-published by Oxford University Press, New York

  3. Shaban-Nejad, A., Michalowski, M., Buckeridge, D.L.: Health intelligence: How artificial intelligence transforms population and personalized health. npj Digit. Med. 1, 53

    Google Scholar 

  4. Lovis, C.: Unlocking the power of artificial intelligence and big data in medicine. J. Med. Int. Res. 21(11), e16607

    Google Scholar 

  5. Shaban-Nejad, A., Lavigne, M., Okhmatovskaia, A., Buckeridge, D.L.: PopHR: a knowledge-based platform to support integration, analysis, and visualization of population health data. Ann. N Y Acad. Sci. 1387(1), 44–53 (2017)

    Article  Google Scholar 

  6. Brakefield, W.S., Ammar, N., Olusanya, O.A., Shaban-Nejad, A.: An urban population health observatory system to support COVID-19 pandemic preparedness, response, and management: Design and development study. JMIR Pub. Health Surveill. 7(6), e28269. https://doi.org/10.2196/28269

  7. Brenas, J.H., Al Manir, M.S., Baker, C.J.O., Shaban-Nejad, A.: A Malaria analytics framework to support evolution and interoperability of global health surveillance systems. IEEE Access 5, 21605–21619 (2017)

    Google Scholar 

  8. Al Manir, M.S, Brenas, J.H., Baker, C.J., Shaban-Nejad, A. (2018) A surveillance Infrastructure for malaria analytics: Provisioning data access and preservation of interoperability MIR Pub. Health Surveill. 4(2), e10218, 15 Jun 2018. https://doi.org/10.2196/10218

  9. Brenas, J.H., Shaban-Nejad, A.: Health intervention evaluation using semantic explainability and causal reasoning. IEEE Access 8, 9942–9952 (2020)

    Article  Google Scholar 

  10. Shaban-Nejad, A., Okhmatovskaia, A., Shin, E.K., Davis, R.L., Franklin, B.E., Buckeridge, D.L.: A semantic framework for logical cross-validation, evaluation and impact analyses of population health interventions. Stud. Health Technol. Inform. 235, 481–485 (2017)

    Google Scholar 

  11. Shaban-Nejad, A., Michalowski, M., Brownstein, J.S., Buckeridge, D.L.: Guest editorial explainable AI: Towards fairness, accountability, transparency and trust in healthcare. IEEE J. Biomed. Health Inform. 25(7), 2374–2375 (2021)

    Article  Google Scholar 

  12. Shaban-Nejad, A., Michalowski, M., Buckeridge, D.L.: Explainability and interpretability: Keys to deep medicine. In: Shaban-Nejad, A., Michalowski, M., Buckeridge, D.L. (eds.) Explainable AI in Healthcare and Medicine. Studies in Computational Intelligence, vol 914. Springer, Cham. https://doi.org/10.1007/978-3-030-53352-6_1

  13. Shaban-Nejad, A., Michalowski, M.: Precision health and medicine—A digital revolution in healthcare. In: Studies in Computational Intelligence 843. Springer, Berlin (2020), ISBN 978-3-030-24408-8

    Google Scholar 

  14. Shaban-Nejad, A., Michalowski, M., Peek, N., Brownstein, J.S., Buckeridge, D.L.: Seven pillars of precision digital health and medicine. Artif. Intell. Medicine 103, 101793 (2020)

    Google Scholar 

  15. Shaban-Nejad, A., Mamiya, H., Riazanov, A., Forster, A.J., Baker, C.J., Tamblyn, R., Buckeridge, D.L.: From cues to nudge: A knowledge-based framework for surveillance of healthcare-associated infections. J. Med. Syst. 40(1), 23 (2016). PMID: 26537131

    Article  Google Scholar 

  16. Alghatani, K., Ammar, N., Rezgui, A., Shaban-Nejad, A.: Predicting intensive care unit length of stay and mortality using patient vital signs: Machine learning model development and validation. JMIR Med. Inform. 9(5), e21347 (2021). https://doi.org/10.2196/21347

  17. Brenas, J.H., Shin, E.K., Shaban-Nejad, A.: Adverse childhood experiences ontology for mental health surveillance, research, and evaluation: Advanced knowledge representation and semantic web techniques. JMIR Ment Health 6(5), e13498 (2019)

    Google Scholar 

  18. Ammar, N., Shaban-Nejad, A.: Explainable artificial intelligence recommendation system by leveraging the semantics of adverse childhood experiences: proof-of-concept prototype development. JMIR Med. Inform. 8(11), e18752 (2020)

    Google Scholar 

  19. Shin, E.K., Kwon, Y., Shaban-Nejad, A.: Geo-clustered chronic affinity: pathways from socio-economic disadvantages to health disparities. JAMIA Open. 2(3), 317–322 (2019)

    Google Scholar 

  20. Shin, E.K., Mahajan, R., Akbilgic, O., Shaban-Nejad, A.: Sociomarkers and biomarkers: predictive modeling in identifying pediatric asthma patients at risk of hospital revisits. NPJ Digit. Med. 2(1), 50 (2018)

    Google Scholar 

  21. Chen, I.Y., Joshi, S., Ghassemi, M.: Treating health disparities with artificial intelligence. Nat. Med. 26, 16–17 (2020). https://doi.org/10.1038/s41591-019-0649-2

    Article  Google Scholar 

  22. Ammar, N., Bailey, J.E., Davis, R.L., Shaban-Nejad, A.: Using a personal health library-enabled mhealth recommender system for self-management of diabetes among underserved populations: Use case for knowledge graphs and linked data. JMIR Form Res. 5(3):e24738, (2021). https://doi.org/10.2196/24738

  23. Ammar, N., Bailey, J.E., Davis, R.L., Shaban-Nejad, A.: The personal health library: A single point of secure access to patient digital health information. Stud. Health Technol. Inform. 16(270), 448–452. (2020). https://doi.org/10.3233/SHTI200200

  24. Olusanya, O.A., Ammar, N., Davis, R.L., Bednarczyk, R.A., Shaban-Nejad, A.: A digital personal health library for enabling precision health promotion to prevent human papilloma virus-associated cancers. Front. Digit. Health, 21 July 2021. https://doi.org/10.3389/fdgth.2021.683161

  25. Hamine, S., Gerth-Guyette, E., Faulx, D., Green, B.B., Ginsburg, A.S.: Impact of MHealth chronic disease management on treatment adherence and patient outcomes: A systematic review. J. Med. Internet Res. 17, e52. https://doi.org/10.2196/jmir.3951

  26. Strandbygaard, U., Thomsen, S.F., Backer, V.: A daily SMS reminder increases adherence to asthma treatment: A three-month follow-up study. Respir. Med. 104, 166–171 (2010). https://doi.org/10.1016/J.RMED.2009.10.003

    Article  Google Scholar 

  27. Quinn, C.C., Shardell, M.D., Terrin, M.L., Barr, E.A., Ballew, S.H., Gruber-Baldini, A.L.: Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care 34, 1934–1942 (2011). https://doi.org/10.2337/dc11-0366

    Article  Google Scholar 

  28. Khonsari, S., Subramanian, P., Chinna, K., Latif, L.A., Ling, L.W., Gholami, O.: Effect of a reminder system using an automated short message service on medication adherence following acute coronary syndrome. Eur. J. Cardiovasc. Nurs. 14, 170–179 (2015). https://doi.org/10.1177/1474515114521910

    Article  Google Scholar 

  29. Hawkins, R.P., Kreuter, M., Resnicow, K., Fishbein, M., Dijkstra, A.: Understanding tailoring in communicating about health. Health Educ. Res. 23, 454–466 (2008). https://doi.org/10.1093/her/cyn004

    Article  Google Scholar 

  30. Peleg, M., Michalowski, W., Wilk, S., Parimbelli, E., Bonaccio, S., O’Sullivan, D., Michalowski, M., Quaglini, S., Carrier, M.: Ideating mobile health behavioral support for compliance to therapy for patients with chronic disease: A case study of atrial fibrillation management. J. Med. Syst. 42 (2018). https://doi.org/10.1007/s10916-018-1077-4

  31. Norcross, J.C., Krebs, P.M., Prochaska, J.O.: Stages of change. J. Clin. Psychol. 67, 143–154 (2011). https://doi.org/10.1002/jclp.20758

    Article  Google Scholar 

  32. Abraham, C., Michie, S.: A taxonomy of behavior change techniques used in interventions. Heal. Psychol. 27, 379–387 (2008). https://doi.org/10.1037/0278-6133.27.3.379

    Article  Google Scholar 

  33. Michalowski, M., Wilk, S., Michalowski, W., O’Sullivan, D., Bonaccio, S., Parimbelli, E., Carrier, M., Le Gal, G., Kingwell, S., Peleg, M.: A health eLearning ontology and procedural reasoning approach for developing personalized courses to teach patients about their medical condition and treatment. Int. J. Environ. Res. Pub. Health. 18(14), 7355 (2021). https://doi.org/10.3390/ijerph18147355

    Article  Google Scholar 

  34. Sedlmeier, P.: Intelligent tutoring systems. Int. Encycl. Soc. Behav. Sci. 7674–7678 (2001). https://doi.org/10.1016/B0-08-043076-7/01618-1

  35. Fleming, N.D., Mills, C.: Not another inventory, rather a catalyst for reflection. To Improv. Acad. 11, 137–155 (1992). https://doi.org/10.1002/j.2334-4822.1992.tb00213.x

    Article  Google Scholar 

  36. Bloom, B.S., Benjamin S.: Taxonomy of educational objectives; the classification of educational goals. Longmans, Green (1956) ISBN 0679302093

    Google Scholar 

  37. Schapira, M.M., Swartz, S., Ganschow, P.S., Jacobs, E.A., Neuner, J.M., Walker, C.M., Fletcher, K.E.: Tailoring educational and behavioral interventions to level of health literacy: A systematic review. MDM Policy Pract. 2, 238146831771447 (2017). https://doi.org/10.1177/2381468317714474

    Article  Google Scholar 

  38. Jack, E., Kruger, E., Tennant, M.: Imputing fine-grain patterns of mental health with statistical modelling of online data. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  39. Krell, R., Tang, W., Hänsel, K., Sobolev, M., Cho, S., Berretta, S., Tang, S.X.: Lexical and acoustic correlates of clinical speech disturbance in schizophrenia. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  40. Lavin, A.: Neuro-symbolic neurodegenerative disease modeling as probabilistic programmed deep kernels. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  41. Ahn, G., Kim, B., Kim, K.K., Kim, H., Lee, E., Ahn, W.Y., Kim, J.W., Cha, J.: Identifying prepubertal children with risk for suicide using deep neural network trained on multimodal brain imaging. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  42. Sylvestre, M.P., de Montigny, S., Boulanger, L., Goulet, D., Doré, I., O’Loughlin, J., Haddad, S., Bélanger, R.S., Leatherdale, S.: A prognostic tool to identify youth at risk of at least weekly cannabis use. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  43. Andy, A.: Self-Disclosure in opioid use recovery forums. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  44. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. 14(4), 337–339 (2020)

    Article  Google Scholar 

  45. Portelli, B., Passabì, D., Lenzi, E., Serra, G., Santus, E., Chersoni, E.: Improving adverse drug event extraction with SpanBERT on different text typologies. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  46. Gilbert, J.P., de Montigny, S., Niu, J., Ng, V., Rees, E.: Machine learning identification of self-reported COVID-19 symptoms from Tweets in Canada. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  47. Sundaresan, S., Rahman, F., Khan, S., Huang, C.: RRISK: Analyzing COVID-19 risk in food establishments. In: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  48. Bhatia, P., Liu, L., Arumae, K., Pourdamghani, N., Deshpande, S., Snively, B., Mona, M., Wise, C., Price, G. Ramaswamy, S., Ma, X., Nallapati, R., Huang, Z., Xiang, B., Kass-Hout, T.: AWS CORD-19 search: A neural search engine for COVID-19 literature. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  49. Karisani, N., Platt, D.E., Basu, S., Parida, L.: Inferring COVID-19 biological pathways from clinical phenotypes via topological analysis. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  50. Srivastava, A., Xu, T., Prasanna, V.K.: The EpiBench platform to propel AI/ML-based epidemic forecasting: A prototype demonstration reaching human expert-level performance. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  51. The New York Times COVID-19 Tracker: https://www.nytimes.com/interactive/2021/us/covid-cases-deaths-tracker.html

  52. The John’s Hopkins University COVID-19 map: https://coronavirus.jhu.edu/map.html

  53. USA FACT, COVID-19: https://usafacts.org/visualizations/coronavirus-covid-19-spread-map

  54. CDC, August 7, 2020. COVID-19 Mathematical Modeling: https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/mathematical-modeling.html

  55. Bullock, J., Luccioni, A., Pham, K.H., Lam, C.S.N., Luengo-Oroz, M.: Mapping the landscape of artificial intelligence applications against COVID-19. J. Artif. Intell. Res. 69, 807–845 (2020)

    Article  MathSciNet  Google Scholar 

  56. Balcan, D., Gonçalves, B., Hu, H., Ramasco, J.J., Colizza, V., Vespignani, A.: Modeling the spatial spread of infectious diseases: The GLobal epidemic and Mobility computational model. J. Comput. Sci. 1(3), 132–145 (2010)

    Article  Google Scholar 

  57. Douglas, J.V., Bianco, S., Edlund, S., Engelhardt, T., Filter, M., Günther, T., Hu, M.H., Nixon, E.J., Sevilla, N., Swaid, A., Kaufman, J.H.: STEM: An open source tool for disease modeling. Health Secur. 17(4), 291–306 (2019)

    Article  Google Scholar 

  58. Kraemer, M.U., Yang, C.H., Gutierrez, B., Wu, C.H., Klein, B., Pigott, D.M., Open COVID-19 Data Working Group, du Plessis, L., Faria, N.R., Li, R., Hanage, W.P., Brownstein, J.S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O.G., Scarpino, S.V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368(6490), 493–497

    Google Scholar 

  59. Gopalakrishnan, V., Pethe, S., Kefayati, S., Srinivasan, R., Hake, P., Deshpande, A., Liu, X., Hoang, E., Davila, M., Bianco, S., Kaufman, J. H. (2021). Globally local: Hyper-local modeling for accurate forecast of COVID-19. Epidemics 100510

    Google Scholar 

  60. Singh, A., Le, B.T., Nguyen, T.L., Whelan, D., O’Reilly, M., Caulfield, B., Ifrim, G.: Interpretable Classification of Human Exercise Videos through Pose Estimation and Multivariate Time Series Analysis AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  61. Kori, A., Natekar, N., Krishnamurthi, G., Srinivasan, B.: Interpreting deep neural networks for medical imaging using concept graphs. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  62. Prajod, P., Schiller, D., Huber, T., André, E.: Do deep neural networks forget facial action units?—Exploring the Effects of Transfer Learning in Health Related Facial Expression Recognition

    Google Scholar 

  63. Sahoo, P.K., Malhotra, N., Kokane, S.S., Srivastava, Tiwari, B.H.N., Sawant S.: Utilizing predictive analysis to aid emergency medical services. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  64. Datar, S., Ferland, L., Foo, E., Kotlyar, M., Holschuh, B., Gini, M., Michalowski, M., Pakhomov, S.: Measuring physiological markers of stress during conversational agent interactions. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  65. Nguyen, D., Nguyen, P., Tran, T.: EvSys: A relational dynamic system for sparse irregular clinical events. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  66. Tong, C., Rocheteau, E., Velickovic, P., Lane, N., Lio, P.: Predicting patient outcomes with graph representation learning. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  67. Bin Tariq, Z., Iyengar, A., Marcuse, L., Su, H., Yener, B.: Patient-specific seizure prediction using single seizure electroencephalography recording. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  68. Boursalie, O., Samavi, R., Doyle, T.E.: Evaluation metrics for deep learning imputation models. In: AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

  69. Butler, L., Gunturkun, F., Karabayir, I., Akbilgic, O.: Logistic regression is also a black box. In: Machine Learning Can Help. AI for Disease Surveillance and Pandemic Intelligence: Intelligent Disease Detection in Action. Studies in Computational Intelligence. Springer, Berlin (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Shaban-Nejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaban-Nejad, A., Michalowski, M., Bianco, S. (2022). Digital Technologies for Clinical, Public and Global Health Surveillance. In: Shaban-Nejad, A., Michalowski, M., Bianco, S. (eds) AI for Disease Surveillance and Pandemic Intelligence. W3PHAI 2021. Studies in Computational Intelligence, vol 1013. Springer, Cham. https://doi.org/10.1007/978-3-030-93080-6_1

Download citation

Publish with us

Policies and ethics