Skip to main content

Hybrid Imaging Detectors in X-Ray Phase-Contrast Applications

  • Chapter
  • First Online:
Advanced X-Ray Radiation Detection:
  • 629 Accesses

Abstract

X-Ray Phase-Contrast Imaging (XPCI) techniques are gaining increasing interest not only within the synchrotron radiation community, where most of them were first developed and implemented, but also among X-ray imaging experts who make use of standard laboratory sources. While conventional X-ray imaging typically depicts the attenuation of an investigated sample, XPCI allows access to complementary information such as refraction and ultra-small-angle-scattering (USAXS). These additional contrast sources lead to a major enhancement in the visibility of structures featuring poor attenuation contrast such as in biological soft tissues and plastic-based samples. Additionally, the USAXS signal reveals inhomogeneities on a scale smaller than the system’s spatial resolution, being suited for the investigation of a wide range of microparticulate samples, spanning, e.g., from lung tissues to composite materials. Independently from XPCI, recent years have witnessed unprecedented development in the field of hybrid X-ray imaging detectors. Novel devices have both led to major advantages over conventional indirect conversion detectors, such as higher efficiency and/or higher spatial resolution, and opened up entirely new possibilities, such as pixel-based energy discrimination of photons, spectral performances, and super-resolution imaging. In this framework, the aim of the chapter is to provide a link between XPCI and novel detector technologies, focusing on the specific role of detectors in the phase signal formation process for the most common XPCI techniques. Adding to the theoretical background, several successful examples of state-of-the-art detectors’ integration with XPCI are provided, as well as a number of foreseeable applications strongly leveraging on novel detectors’ performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bravin, A., Coan, P., and Suortti, P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Physics in Medicine & Biology 58.1 (2012): R1.

    Article  Google Scholar 

  2. Endrizzi, M. “X-ray phase contrast imaging” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 878 (2018) 88–98.

    Google Scholar 

  3. Rigon, L. X-ray imaging with coherent sources. Comprehensive Biomedical Physics, Elsevier, 2014. vol. 2, 193-220.

    Google Scholar 

  4. Hertz, H. M., et al. Electron-impact liquid-metal-jet hard x-ray sources. Comprehensive Biomedical Physics, Elsevier, 2014, vol. 8, 91-109.

    Google Scholar 

  5. Murrie, Rhiannon P., et al. Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory X-ray source. Scientific reports 10.1 (2020): 1-8.

    Article  Google Scholar 

  6. Carroll, F. E. et al. Pulsed tunable monochromatic X-ray beams from a compact source: new opportunities. American journal of roentgenology 181 (2003): 1197-1202.

    Article  Google Scholar 

  7. Günther, B., et al. The versatile X-ray beamline of the Munich Compact Light Source: design, instrumentation and applications. Journal of Synchrotron Radiation 27.5 (2020).

    Google Scholar 

  8. Pelliccia, D., Kitchen, M. J., and Morgan, K. S.. Theory of X-ray Phase Contrast Imaging. Handbook of X-ray Imaging: Physics and Technology. CRC Press, 2018. 971-997.

    Google Scholar 

  9. Wilkins, S. W., et al. Phase-contrast imaging using polychromatic hard X-rays. Nature 384.6607 (1996): 335-338.

    Article  Google Scholar 

  10. Bonse, U., and Hart, M. An X-ray interferometer. Applied Physics Letters 6.8 (1965): 155-156.

    Article  Google Scholar 

  11. Momose, A. Phase-contrast X-ray imaging based on interferometry. Journal of synchrotron radiation 9.3 (2002): 136-142.

    Article  Google Scholar 

  12. Weitkamp, T. et al. (2005). X-ray phase imaging with a grating interferometer. Opt. Express 13, 6296–6304.

    Article  Google Scholar 

  13. Graetz, J., et al. Review and experimental verification of x-ray dark-field signal interpretations with respect to quantitative isotropic and anisotropic darkfield computed tomography. Physics in Medicine & Biology 65.23 (2020): 235017.

    Article  Google Scholar 

  14. Pfeiffer, F., et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature physics 2.4 (2006): 258-261.

    Article  Google Scholar 

  15. Takeda, Y., et al. X-ray phase imaging with single phase grating. Japanese journal of applied physics 46.1L (2007): L89.

    Google Scholar 

  16. Diemoz, P. C., et al. Non-Interferometric Techniques for X-ray Phase-Contrast Biomedical Imaging. Handbook of X-ray Imaging. CRC Press, 2017. 999-1024.

    Google Scholar 

  17. Chapman, D., et al. Diffraction enhanced x-ray imaging. Physics in Medicine & Biology 42.11 (1997): 2015.

    Article  Google Scholar 

  18. Olivo, A., et al. An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Medical physics 28.8 (2001): 1610-1619.

    Article  Google Scholar 

  19. Kallon, G. K., et al. Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups. Journal of Physics D: Applied Physics 50.41 (2017): 415401.

    Article  Google Scholar 

  20. Vittoria, F. A., et al. Beam tracking approach for single-shot retrieval of absorption, refraction, and dark–field signals with laboratory x–ray sources. Applied Physics Letters 106.22 (2015): 224102.

    Article  Google Scholar 

  21. Zdora, Marie-Christine. State of the art of x-ray speckle-based phase-contrast and dark-field imaging. Journal of Imaging 4.5 (2018): 60.

    Article  Google Scholar 

  22. Massimi, L., et al. Fast, non-iterative algorithm for quantitative integration of X-ray differential phase-contrast images. Optics Express 28.26 (2020): 39677-39687.

    Article  Google Scholar 

  23. Thüring, T., et al. Non-linear regularized phase retrieval for unidirectional X-ray differential phase contrast radiography. Optics express 19.25 (2011): 25545-25558.

    Article  Google Scholar 

  24. Cloetens, P., et al. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Applied physics letters 75.19 (1999): 2912-2914.

    Article  Google Scholar 

  25. Paganin, D., et al. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. Journal of microscopy 206.1 (2002): 33-40.

    Article  MathSciNet  Google Scholar 

  26. Beltran, M. A., et al. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance. Optics Express 18.7 (2010): 6423-6436.

    Article  Google Scholar 

  27. Briedis, D., et al. Analyser-based mammography using single-image reconstruction. Physics in Medicine & Biology 50.15 (2005): 3599.

    Article  Google Scholar 

  28. Diemoz, P. C., et al. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup. Journal of synchrotron radiation 22.4 (2015): 1072-1077.

    Article  Google Scholar 

  29. Wang, X., et al. Single-shot phase retrieval method for synchrotron-based high-energy x-ray grating interferometry. Medical physics 46.3 (2019): 1317-1322.

    Article  Google Scholar 

  30. Gureyev, T. E., et al. On the “unreasonable” effectiveness of transport of intensity imaging and optical deconvolution. JOSA A 34.12 (2017): 2251-2260.

    Article  Google Scholar 

  31. Burvall, A., et al. Phase retrieval in X-ray phase-contrast imaging suitable for tomography. Optics express 19.11 (2011): 10359-10376.

    Article  Google Scholar 

  32. Chen, R. C., Rigon, L. and Longo, R. Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise. Optics express 21 (2013): 7384–7399.

    Article  Google Scholar 

  33. Ballabriga, R., et al. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. Journal of Instrumentation 11.01 (2016): P01007.

    Article  Google Scholar 

  34. Jakůbek, J. Semiconductor pixel detectors and their applications in life sciences. Journal of Instrumentation 4.03 (2009): P03013.

    Article  Google Scholar 

  35. Kalender, W. A., et al. Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast. European radiology 27.3 (2017): 1081-1086.

    Article  Google Scholar 

  36. Symons, R., et al. Feasibility of dose-reduced chest CT with photon-counting detectors: initial results in humans. Radiology 285.3 (2017): 980-989.

    Article  Google Scholar 

  37. Willemink, M. J., et al. Photon-counting CT: technical principles and clinical prospects. Radiology 289.2 (2018): 293-312.

    Article  Google Scholar 

  38. Llopart, X., et al. Medipix2, a 64k pixel read out chip with 55/spl mu/m square elements working in single photon counting mode. 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No. 01CH37310). Vol. 3. IEEE, 2001.

    Google Scholar 

  39. Bellazzini, R., et al. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. Journal of Instrumentation 8.02 (2013): C02028.

    Article  Google Scholar 

  40. Frojdh, E., et al. Count rate linearity and spectral response of the Medipix3RX chip coupled to a 300μm silicon sensor under high flux conditions. Journal of Instrumentation 9.04 (2014): C04028.

    Article  Google Scholar 

  41. Khalil, M., et al. Subpixel resolution in CdTe Timepix3 pixel detectors. Journal of synchrotron radiation 25.6 (2018): 1650-1657.

    Article  Google Scholar 

  42. Schubert, A., et al. Micrometre resolution of a charge integrating microstrip detector with single photon sensitivity. Journal of synchrotron radiation 19.3 (2012): 359-365.

    Article  Google Scholar 

  43. Ballabriga, R., et al. The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. Journal of Instrumentation 8.02 (2013): C02016.

    Article  Google Scholar 

  44. Brombal, L., et al. Large-area single-photon-counting CdTe detector for synchrotron radiation computed tomography: a dedicated pre-processing procedure. Journal of synchrotron radiation 25.4 (2018a): 1068-1077.

    Article  Google Scholar 

  45. Delogu, P., et al. Optimization of the equalization procedure for a single-photon counting CdTe detector used for CT. Journal of Instrumentation 12.11 (2017): C11014.

    Article  Google Scholar 

  46. Di Trapani, V., et al. Characterization of the acquisition modes implemented in Pixirad-1/Pixie-III X-ray Detector: Effects of charge sharing correction on spectral resolution and image quality. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 955 (2020): 163220.

    Google Scholar 

  47. Zhao, Y., et al. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. Proceedings of the National Academy of Sciences 109.45 (2012): 18290-18294.

    Article  Google Scholar 

  48. Gureyev, T. E., et al. Propagation-based x-ray phase-contrast tomography of mastectomy samples using synchrotron radiation. Medical physics 46.12 (2019): 5478-5487.

    Article  Google Scholar 

  49. Longo, R., et al. Towards breast tomography with synchrotron radiation at Elettra: first images. Physics in Medicine & Biology 61.4 (2016): 1634.

    Article  Google Scholar 

  50. Castelli, E., et al. Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259.3 (2011): 684-694.

    Article  Google Scholar 

  51. Longo, R., et al. Advancements towards the implementation of clinical phase-contrast breast computed tomography at Elettra. Journal of synchrotron radiation 26.4 (2019): 1343-1353.

    Article  Google Scholar 

  52. Brombal, L., et al. Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study. Scientific reports 9.1 (2019): 1-12.

    Article  Google Scholar 

  53. Taba, S. T., et al. Toward improving breast cancer imaging: radiological assessment of propagation-based phase-contrast CT technology. Academic radiology 26.6 (2019): e79-e89.

    Article  Google Scholar 

  54. Brombal, L. Effectiveness of X-ray phase-contrast tomography: effects of pixel size and magnification on image noise. Journal of Instrumentation 15.01 (2020): C01005.

    Article  Google Scholar 

  55. Nesterets, Yakov I., Timur E. Gureyev, and Matthew R. Dimmock. Optimisation of a propagation-based x-ray phase-contrast micro-CT system. Journal of Physics D: Applied Physics 51.11 (2018): 115402.

    Article  Google Scholar 

  56. Brombal, L., et al. Phase-contrast breast CT: the effect of propagation distance. Physics in Medicine & Biology 63(24) (2018b): 24NT03.

    Article  Google Scholar 

  57. Kitchen, M. J., et al. CT dose reduction factors in the thousands using X-ray phase contrast. Scientific reports 7.1 (2017): 1-9.

    Article  Google Scholar 

  58. Scholz, J., et al. Biomedical x-ray imaging with a GaAs photon-counting detector: A comparative study. APL Photonics 5.10 (2020): 106108.

    Article  Google Scholar 

  59. Vila-Comamala, J., et al. High sensitivity X-ray phase contrast imaging by laboratory grating-based interferometry at high Talbot order geometry. Optics Express 29.2 (2021): 2049-2064.

    Article  Google Scholar 

  60. Hagen, C. K., et al. A preliminary investigation into the use of edge illumination X-ray phase contrast micro-CT for preclinical imaging. Molecular imaging and biology 22.3 (2020): 539-548.

    Article  Google Scholar 

  61. Alvarez, R. E., and Macovski, A. Energy-selective reconstructions in x-ray computerised tomography. Physics in Medicine & Biology 21.5 (1976): 733.

    Article  Google Scholar 

  62. Carnibella, R. P., Fouras, A., and Kitchen, M. J. Single-exposure dual-energy-subtraction X-ray imaging using a synchrotron source. Journal of synchrotron radiation 19.6 (2012): 954-959.

    Article  Google Scholar 

  63. Brooks, R. A. A quantitative theory of the Hounsfield unit and its application to dual energy scanning. Journal of computer assisted tomography 1.4 (1977): 487-493.

    Article  Google Scholar 

  64. Johnson, T. R. C. Dual-energy CT: general principles. American Journal of Roentgenology 199(Suppl. 5) (2012): S3-S8.

    Article  Google Scholar 

  65. Brun, F., et al. Single-shot K-edge subtraction x-ray discrete computed tomography with a polychromatic source and the Pixie-III detector. Physics in Medicine & Biology 65.5 (2020): 055016.

    Article  Google Scholar 

  66. Poikela, T., et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. Journal of instrumentation 9.05 (2014): C05013.

    Article  Google Scholar 

  67. Wong, W. A hybrid pixel detector ASIC with energy binning for real-time, spectroscopic dose measurements. Diss. Mid Sweden University, 2012.

    Google Scholar 

  68. Mechlem, K., et al. A theoretical framework for comparing noise characteristics of spectral, differential phase-contrast and spectral differential phase-contrast x-ray imaging. Physics in Medicine & Biology 65.6 (2020): 065010.

    Article  Google Scholar 

  69. Ji, X., et al. Dual Energy Differential Phase Contrast CT (DE-DPC-CT) Imaging. IEEE transactions on medical imaging 39.11 (2020): 3278-3289.

    Article  Google Scholar 

  70. Braig, E., et al. Direct quantitative material decomposition employing grating-based X-ray phase-contrast CT. Scientific reports 8.1 (2018): 1-10.

    Article  Google Scholar 

  71. Mechlem, K., et al. Spectral differential phase contrast x-ray radiography. IEEE transactions on medical imaging 39.3 (2019): 578-587.

    Article  Google Scholar 

  72. Schaff, F., et al. Material decomposition using spectral propagation-based phase-contrast x-ray imaging. IEEE Transactions on Medical Imaging 39.12 (2020): 3891-3899.

    Article  Google Scholar 

  73. Das, M., and Liang, Z. Spectral x-ray phase contrast imaging for single-shot retrieval of absorption, phase, and differential-phase imagery. Optics letters 39.21 (2014): 6343-6346.

    Article  Google Scholar 

  74. Gureyev, T. E., et al. Quantitative analysis of two-component samples using in-line hard X-ray images. Journal of synchrotron radiation 9.3 (2002): 148-153.

    Article  Google Scholar 

  75. Vazquez, I., et al. Quantitative phase retrieval with low photon counts using an energy resolving quantum detector. JOSA A 38.1 (2021): 71-79.

    Article  MathSciNet  Google Scholar 

  76. Epple, F. M., et al. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector. IEEE transactions on medical imaging 34.3 (2014): 816-823.

    Article  Google Scholar 

  77. Dreier, E. S., et al. Single-shot, omni-directional x-ray scattering imaging with a laboratory source and single-photon localization. Optics letters 45.4 (2020a): 1021-1024.

    Article  Google Scholar 

  78. Dreier, E. S., et al. Virtual subpixel approach for single-mask phase-contrast imaging using Timepix3. Journal of Instrumentation 14.01 (2019): C01011.

    Article  Google Scholar 

  79. Dinapoli, R., et al. MÖNCH, a small pitch, integrating hybrid pixel detector for X-ray applications. Journal of Instrumentation 9.05 (2014): C05015.

    Article  Google Scholar 

  80. Ramilli, M., et al. Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector. Journal of Instrumentation 12.01 (2017): C01071.

    Article  Google Scholar 

  81. Cartier, S., et al. Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry. Journal of synchrotron radiation 23.6 (2016): 1462-1473.

    Article  Google Scholar 

  82. Vittoria, F. A., et al. Multimodal phase-based X-ray microtomography with nonmicrofocal laboratory sources. Physical Review Applied 8.6 (2017): 064009.

    Article  Google Scholar 

  83. Dreier, E. S., et al. Tracking based, high-resolution single-shot multimodal x-ray imaging in the laboratory enabled by the sub-pixel resolution capabilities of the MÖNCH detector. Applied Physics Letters 117.26 (2020b): 264101.

    Article  Google Scholar 

  84. O’Connell, Dylan W., et al. Photon-counting, energy-resolving and super-resolution phase contrast X-ray imaging using an integrating detector. Optics express 28.5 (2020): 7080-7094.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Brombal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brombal, L., Rigon, L. (2023). Hybrid Imaging Detectors in X-Ray Phase-Contrast Applications. In: Iniewski, K.(. (eds) Advanced X-Ray Radiation Detection: . Springer, Cham. https://doi.org/10.1007/978-3-030-92989-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92989-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92988-6

  • Online ISBN: 978-3-030-92989-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics