Skip to main content

Agent-based Modeling in Digital Governance Research: A Review and Future Research Directions

  • Chapter
  • First Online:
Scientific Foundations of Digital Governance and Transformation

Part of the book series: Public Administration and Information Technology ((PAIT,volume 38))

Abstract

Digital governance involves the application of information and communication technology (ICT) for achieving efficiency and effectiveness in government functions for all stakeholders. In addition to the expenditure on ICT, government bodies face key challenges arising from complexity in digital governance due to uncertainty, nonlinearity, and heterogeneity in processes and stakeholders, which need to be further understood and resolved. To that end, agent-based modeling (ABM) offers a powerful technique to represent and research complexities, uncertainties, nonlinearity, and heterogeneity in a digital governance ecosystem. In this chapter, we provide a systematic review of the literature over the last two decades, which has applied ABM for analyzing digital governance phenomena. Based on the review, with 78 relevant studies, we contribute by summarizing the current state of research in this area, identifying the literature gaps, and outlining directions for future research. Specifically, our study highlights issues related to ABM design, implementation, validation, and adoption that remain unexplored. Salient future research directions include theory development with greater involvement of stakeholders, empirical frameworks’ development for ABM implementation with focus on scalability, interlinking of ABM with existing government knowledge bases, and applying ABM to less studied domains of digital governance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Excludes the 78 papers in our review, which are listed in the Appendix.

References

Excludes the 78 papers in our review, which are listed in the Appendix.

  • Acco Tives Leão, H., & Canedo, E. D. (2018). Best practices and methodologies to promote the digitization of public services citizen-driven: A systematic literature review. Information, 9(8), 197.

    Google Scholar 

  • Almqvist, R., Grossi, G., van Helden, G. J., & Reichard, C. (2013). Public sector governance and accountability. In Critical Perspectives on Accounting, 24(7–8), 479–487.

    Google Scholar 

  • Alryalat, M. A. A., Rana, N. P., Sahu, G. P., Dwivedi, Y. K., & Tajvidi, M. (2017). Use of social media in citizen-centric electronic government services: A literature analysis. International Journal of Electronic Government Research (IJEGR), 13(3), 55–79.

    Google Scholar 

  • Arias, M. I., & Maçada, A. C. G. (2018). Digital government for e-government service quality: A literature review. In Proceedings of the 11th International Conference on Theory and Practice of Electronic Governance (pp. 7–17).

    Google Scholar 

  • Asadullah, A., Kankanhalli, A., & Faik, I. (2020) Developing the marketing capabilities of SMEs: What role do multisided platforms play? Pacific Asia Conference on Information Systems.

    Google Scholar 

  • Batubara, F. R., Ubacht, J., & Janssen, M. (2018). Challenges of blockchain technology adoption for e-government: A systematic literature review. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age (pp. 1–9).

    Google Scholar 

  • Benbya, H., Nan, N., Tanriverdi, H., & Yoo, Y. (2020). Complexity and information systems research in the emerging digital world. Management Information Systems Quarterly, 44(1), 1–17.

    Google Scholar 

  • Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl 3), 7280–7287.

    Google Scholar 

  • Carley, K. M. (2002). Computational organization science: A new frontier. Proceedings of the National Academy of Sciences of the United States of America., 99(suppl 3), 7257–7262.

    Google Scholar 

  • Charalabidis, Y., & Lachana, Z. (2020, June). Towards a science base for digital governance. In The 21st Annual International Conference on Digital Government Research (pp. 383–389).

    Google Scholar 

  • CAN. (2020). https://www.channelnewsasia.com/news/singapore/covid-19-support-businesses-3-5-billion-info-comm-govtech-12815258

  • De Sousa, W. G., de Melo, E. R. P., Bermejo, P. H. D. S., Farias, R. A. S., & Gomes, A. O. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 101392.

    Google Scholar 

  • Deloitte Insights 202. https://www2.deloitte.com/content/dam/insights/us/articles/government-trends-2020/DI_Government-Trends-2020.pdf

  • Erkut, B. (2020). From digital government to digital governance: Are we there yet? Sustainability, 12, 860. https://doi.org/10.3390/su12030860

    Article  Google Scholar 

  • Guide2Research. (2020). Top Journals for Information Systems. http://www.guide2research.com/journals/information-systems

  • Hodge, G. A., & Greve, C. (2007). Public–private partnerships: An international performance review. Public Administration Review, 67(3), 545–558.

    Google Scholar 

  • IDC. (2020). Digital Transformation to Fuel Government ICT Spending Growth, Says IDC. https://www.idc.com/getdoc.jsp?containerId=prMETA45975620

  • Irfan, A., Rasli, A., Sulaiman, Z., Sami, A., & Qureshi, M. I. (2019). The influence of social media on public value: A systematic review of past decade. Journal of Public Value and Administration Insights, 2(1), 1–6.

    Google Scholar 

  • Kankanhalli, A., Charalabidis, Y., & Mellouli, S. (2019). IoT and AI for smart government: A research agenda. Government Information Quarterly, 36(2), 304–309.

    Google Scholar 

  • Lempert, R. (2002). Agent-based modeling as organizational and public policy simulators. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7195–7196.

    Google Scholar 

  • Lim, D. Y. M. (2019, August 8). Data is the Heart of Digital Government. https://www.csc.gov.sg/articles/bring-data-in-the-heart-of-digital-government#:~:text=Digital%20Government%20is%20about%20fundamentally,service%20delivery%2C%20or%20citizen%20engagement

  • Macal, C. M., & North, M. J. (2005, December). Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference (p. 14). IEEE.

    Google Scholar 

  • Madsen, C. Ø., & Hofmann, S. (2019). Multichannel management in the public sector: A literature review.

    Google Scholar 

  • Misuraca, G., & Viscusi, G. (2014, October). Digital governance in the public sector: challenging the policy-maker’s innovation dilemma. In Proceedings of the 8th International Conference on Theory and Practice of Electronic Governance (pp. 146–154).

    Google Scholar 

  • Pee, L. G., Kankanhalli, A., & Show, V. O. (2010). Bridging the digital divide: Use of public internet Kiosks in Mauritius. Journal of Global Information Management, 18(1), 15–38.

    Google Scholar 

  • Pereira, G., Parycek, P., Falco, E., & Kleinhans, R. (2018). Smart governance in the context of smart cities: A literature review. Information Polity, 23, 1–20.

    Google Scholar 

  • Rehouma, M. B., & Hofmann, S. (2018, May). Government employees’ adoption of information technology: a literature review. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age (pp. 1–10).

    Google Scholar 

  • Rossel, P, & Finger, M. (2007, December). Conceptualizing e-governance. In Proceedings of the 1st International Conference on Theory and Practice of Electronic Governance (pp. 399–407).

    Google Scholar 

  • Ruhlandt, R. W. S. (2018). The governance of smart cities: A systematic literature review. Cities, 81, 1–23.

    Google Scholar 

  • Sánchez-Torres, J. M., & Miles, I. (2017). The role of future-oriented technology analysis in e-Government: A systematic review. European Journal of Futures Research, 5(1), 15.

    Google Scholar 

  • Simonofski, A., Snoeck, M., Vanderose, B., Crompvoets, J., & Habra, N. (2017). Reexamining e-participation: Systematic literature review on citizen participation in e-government service delivery.

    Google Scholar 

  • Soma, K., Termeer, C. J., & Opdam, P. (2016). Informational governance—A systematic literature review of governance for sustainability in the information age. Environmental Science & Policy, 56, 89–99.

    Google Scholar 

  • Syed, R., Bandara, W., French, E., & Stewart, G. (2018). Getting it right! Critical success factors of BPM in the public sector: A systematic literature review. Australasian Journal of Information Systems, 22.

    Google Scholar 

  • The United Nations. (2003). UN Global E-Government Survey 2003. https://publicadministration.un.org/publications/content/PDFs/E-Library%20Archives/UN%20E-Government%20Survey%20series/UN%20E-Government%20Survey%202003.pdf

  • The World Bank Report. (2020). Digital government 2020: Prospects for Russia (English). http://documents.worldbank.org/curated/en/562371467117654718/pdf/105318-WP-PUBLIC-Digital-Government-2020.pdf

  • Tomor, Z., Meijer, A., Michels, A., & Geertman, S. (2019). Smart governance for sustainable cities: Findings from a systematic literature review. Journal of Urban Technology, 26(4), 3–27.

    Google Scholar 

  • Twizeyimana, J. D., & Andersson, A. (2019). The public value of E-government—A literature review. Government Information Quarterly, 36(2), 167–178.

    Google Scholar 

  • Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, xiii–xxiii.

    Google Scholar 

  • West, D. M. (2004). E-Government and the transformation of service delivery and citizen attitudes. Public Administration Review, 64(1), 15–22.

    Google Scholar 

  • Wimmer, M. A. (2011). Open government in policy development: From collaborative scenario texts to formal policy models. International Conference on Distributed Computing and Internet Technology (pp. 76–91). Springer.

    Google Scholar 

Appendix

  • Arora, H., Raghu, T. S., & Vinze, A. (2012). Decision support for containing pandemic propagation. ACM Transactions on Management Information Systems (TMIS), 2(4), 1–25.

    Google Scholar 

  • Baber, C., Stanton, N. A., Atkinson, J., McMaster, R., & Houghton, R. J. (2013). Using social network analysis and agent-based modelling to explore information flow using common operational pictures for maritime search and rescue operations. Ergonomics, 56(6), 889–905.

    Google Scholar 

  • Babic, J., Carvalho, A., Ketter, W., & Podobnik, V. (2017). Evaluating policies for parking lots handling electric vehicles. IEEE Access, 6, 944–961.

    Google Scholar 

  • Bae, J. W., Lee, S., Hong, J. H., & Moon, I. C. (2014). Simulation-based analyses of an evacuation from a metropolis during a bombardment. Simulation, 90(11), 1244–1267.

    Google Scholar 

  • Berger, T., Birner, R., Mccarthy, N., DíAz, J., & Wittmer, H. (2007). Capturing the complexity of water uses and water users within a multi-agent framework. Water Resources Management, 21(1), 129–148.

    Google Scholar 

  • Bichler, M., Gupta, A., & Ketter, W. (2010). Research commentary—designing smart markets. Information Systems Research, 21(4), 688–699.

    Google Scholar 

  • Bone, C., & Dragićević, S. (2009). Evaluating spatio-temporal complexities of forest management: An integrated agent-based modeling and GIS approach. Environmental Modeling & Assessment, 14(4), 481–496.

    Google Scholar 

  • Brown, D. G., Page, S., Riolo, R., Zellner, M., & Rand, W. (2005). Path dependence and the validation of agent-based spatial models of land use. International Journal of Geographical Information Science, 19(2), 153–174.

    Google Scholar 

  • Busch, J., Roelich, K., Bale, C. S., & Knoeri, C. (2017). Scaling up local energy infrastructure: An agent-based model of the emergence of district heating networks. Energy Policy, 100, 170–180.

    Google Scholar 

  • Carley, K. M., Fridsma, D. B., Casman, E., Yahja, A., Altman, N., Chen, L. C., Kaminsky, B., & Nave, D. (2006). BioWar: Scalable agent-based model of bioattacks. IEEE Transactions on Systems, Man, and Cybernetics-Part a: Systems and Humans, 36(2), 252–265.

    Google Scholar 

  • Chang, S., Ichikawa, M., & Deguchi, H. (2013). Optimized E-Government user support allocation and its influence on citizens’ adoption of e-government: An agent based approach. International Journal of Knowledge and Systems Science (IJKSS), 4(2), 1–15.

    Google Scholar 

  • Cheliotis, K. (2020). An agent-based model of public space use. Computers Environment and Urban Systems, 81, 101476. https://doi.org/10.1016/j.compenvurbsys.2020.101476

    Article  Google Scholar 

  • Chen, B., & Cheng, H. H. (2010). A review of the applications of agent technology in traffic and transportation systems. IEEE Transactions on Intelligent Transportation Systems, 11(2), 485–497.

    Google Scholar 

  • Chen, B., Cheng, H. H., & Palen, J. (2009). Integrating mobile agent technology with multi-agent systems for distributed traffic detection and management systems. Transportation Research Part c: Emerging Technologies, 17(1), 1–10.

    Google Scholar 

  • Choi, T., & Robertson, P. J. (2014). Deliberation and decision in collaborative governance: A simulation of approaches to mitigate power imbalance. Journal of Public Administration Research and Theory, 24(2), 495–518.

    Google Scholar 

  • Cil, I., & Mala, M. (2010). A multi-agent architecture for modelling and simulation of small military unit combat in asymmetric warfare. Expert Systems with Applications, 37(2), 1331–1343.

    Google Scholar 

  • Cioffi-Revilla, C., & Rouleau, M. (2010). MASON RebeLand: An agent-based model of politics, environment, and insurgency. International Studies Review, 12(1), 31–52.

    Google Scholar 

  • Crooks, A. T., & Wise, S. (2013). GIS and agent-based models for humanitarian assistance. Computers, Environment and Urban Systems, 41, 100–111.

    Google Scholar 

  • d’Aquino, P., August, P., Balmann, A., Berger, T., Bousquet, F., Brondízio, E., Brown, D. G., Couclelis, H., Deadman, P., Goodchild, M. F., & Gotts, N. M. (2002). Agent-based models of land-use and land-cover change. In Proceedings of an International Workshop (pp. 4–7).

    Google Scholar 

  • Dawson, R. J., Peppe, R., & Wang, M. (2011). An agent-based model for risk-based flood incident management. Natural Hazards, 59(1), 167–189.

    Google Scholar 

  • De Nijs, F., Walraven, E., De Weerdt, M. M., & Spaan, M. T. (2017, February). Bounding the probability of resource constraint violations in multi-agent MDPs. In Thirty-First AAAI Conference on Artificial Intelligence.

    Google Scholar 

  • Deissenberg, C., Der Hoog, V., & Dawid, H. (2008). EURACE: A massively parallel agent-based model of the European economy. Applied Mathematics and Computation, 204(2), 541–552.

    Google Scholar 

  • Ding, Z., Wang, Y., & Zou, P. X. (2016). An agent based environmental impact assessment of building demolition waste management: Conventional versus green management. Journal of Cleaner Production, 133, 1136–1153.

    Google Scholar 

  • Dutta, D. (2011). An integrated tool for assessment of flood vulnerability of coastal cities to sea-level rise and potential socio-economic impacts: A case study in Bangkok, Thailand. Hydrological Sciences Journal, 56(5), 805–823.

    Google Scholar 

  • Epstein, J. M., Cummings, D. A., Chakravarty, S., Singa, R. M., & Burke, D. S. (2002). Toward a containment strategy for smallpox bioterror: An individual-based computational approach. Brookings Institution, CSED Working Paper, (31).

    Google Scholar 

  • Farjad, B., Pooyandeh, M., Gupta, A., Motamedi, M., & Marceau, D. (2017). Modelling interactions between land use, climate, and hydrology along with stakeholders’ negotiation for water resources management. Sustainability, 9(11), 2022.

    Google Scholar 

  • Frayret, J. M. (2011). Multi-agent system applications in the forest products industry. Journal of Science & Technology for Forest Products and Processes, 1(2), 15–29.

    Google Scholar 

  • Furtado, B. A., Fuentes, M. A., & Tessone, C. J. (2019). Policy modeling and applications: State-of-the-art and perspectives. Complexity.

    Google Scholar 

  • Galán, J. M., López‐Paredes, A., Del Olmo, R. (2009). An agent‐based model for domestic water management in Valladolid metropolitan area. Water Resources Research, 45(5).

    Google Scholar 

  • Gasmelseid, T. M. (2007). A multiagent service-oriented modeling of e-government initiatives. International Journal of Electronic Government Research (IJEGR), 3(3), 87–106.

    Google Scholar 

  • Gaud, N., Galland, S., Gechter, F., Hilaire, V., & Koukam, A. (2008). Holonic multilevel simulation of complex systems: Application to real-time pedestrians simulation in virtual urban environment. Simulation Modelling Practice and Theory, 16(10), 1659–1676.

    Google Scholar 

  • Giabbanelli, P. J., & Crutzen, R. (2017). Using agent-based models to develop public policy about food behaviours: future directions and recommendations. Computational and Mathematical Methods in Medicine.

    Google Scholar 

  • Giesen, E., Ketter, W., & Zuidwijk, R. (2015). Dynamic agent-based scheduling of treatments: Evidence from the Dutch youth health care sector. German Conference on Multiagent System Technologies (pp. 173–199). Springer.

    Google Scholar 

  • Habib, T. J., Heckbert, S., Wilson, J. J., Vandenbroeck, A. J., Cranston, J., & Farr, D. R. (2016). Impacts of land-use management on ecosystem services and biodiversity: An agent-based modelling approach. PeerJ, 4, p.e2814.

    Google Scholar 

  • Hawe, G. I., Coates, G., Wilson, D. T., & Crouch, R. S. (2012). Agent-based simulation for large-scale emergency response: A survey of usage and implementation. ACM Computing Surveys (CSUR), 45(1), 1–51.

    Google Scholar 

  • Hernández, J. Z., Ossowski, S., & Garcıa-Serrano, A. (2002). Multiagent architectures for intelligent traffic management systems. Transportation Research Part c: Emerging Technologies, 10(5–6), 473–506.

    Google Scholar 

  • Hoekstra, A., Steinbuch, M., & Verbong, G. (2017). Creating agent-based energy transition management models that can uncover profitable pathways to climate change mitigation. Complexity.

    Google Scholar 

  • Hogenboom, A., Ketter, W., van Dalen, J., Kaymak, U., Collins, J., & Gupta, A. (2015). Adaptive tactical pricing in multi-agent supply chain markets using economic regimes. Decision Sciences, 46(4), 791–818. https://doi.org/10.1111/deci.12146

    Article  Google Scholar 

  • Hopkinson, K., Wang, X., Giovanini, R., Thorp, J., Birman, K., & Coury, D. (2006). EPOCHS: A platform for agent-based electric power and communication simulation built from commercial off-the-shelf components. IEEE Transactions on Power Systems, 21(2), 548–558.

    Google Scholar 

  • Hopkinson, K. M., Giovanini, R., Wang, X., Birman, K. P., Coury, D. V., & Thorp, J. S. (2003). Epochs: Integrated cots software for agent-based electric power and communication simulation. In Proceedings of the 2003 Winter Simulation Conference.

    Google Scholar 

  • Ilachinski, A. (2000). Irreducible semi-autonomous adaptive combat (ISAAC): An artificial-life approach to land combat. Military Operations Research, 29–46.

    Google Scholar 

  • Inan, D. I., Beydoun, G., & Opper, S. (2018). Agent-based knowledge analysis framework in disaster management. Information Systems Frontiers, 20(4), 783–802.

    Google Scholar 

  • Isern, D., & Moreno, A. (2016). A systematic literature review of agents applied in healthcare. Journal of Medical Systems, 40(2), 43.

    Google Scholar 

  • Jumadi, J., Malleson, N., Carver, S., & Quincey, D. (2020). Estimating spatio-temporal risks from volcanic eruptions using an agent-based model. Journal of Artificial Societies and Social Simulation, 23(2), 1–2.

    Google Scholar 

  • Ketter, W., Collins, J., Saar-Tsechansky, M., & Marom, O. (2018). Information systems for a smart electricity grid: Emerging challenges and opportunities. ACM Transactions on Management Information Systems (TMIS), 9(3), 1–22.

    Google Scholar 

  • Ketter, W., Peters, M., Collins, J., & Gupta, A. (2016). A multiagent competitive gaming platform to address societal challenges. MIS Quarterly, 40(2), 447–460.

    Google Scholar 

  • Kim, Y., & McGraw, C. (2012, October). Use of agent-based modeling for e-governance research. In Proceedings of the 6th International Conference on Theory and Practice of Electronic Governance (pp. 531–534).

    Google Scholar 

  • Lippe, M., Bithell, M., Gotts, N., Natalini, D., Barbrook-Johnson, P., Giupponi, C., Hallier, M., Hofstede, G. J., Le Page, C., Matthews, R. B., & Schlüter, M. (2019). Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica, 23(2), 269–298.

    Google Scholar 

  • Liu, X., & Lim, S. (2018). An agent-based evacuation model for the 2011 Brisbane City-scale riverine flood. Natural Hazards, 94(1), 53–70.

    Google Scholar 

  • Liu, Y., Kong, X., Liu, Y., & Chen, Y. (2013). Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata. PloS One, 8(11).

    Google Scholar 

  • Malleson, N., Evans, A., & Jenkins, T. (2009). An agent-based model of burglary. Environment and Planning b: Planning and Design, 36(6), 1103–1123.

    Google Scholar 

  • Markose, S. M. (2013). Systemic risk analytics: A data-driven multi-agent financial network (MAFN) approach. Journal of Banking Regulation, 14(3–4), 285–305.

    Google Scholar 

  • Nguyen, C. P., & Flueck, A. J. (2012). Agent based restoration with distributed energy storage support in smart grids. IEEE Transactions on Smart Grid, 3(2), 1029–1038.

    Google Scholar 

  • Oughton, E. J., Usher, W., Tyler, P., & Hall, J. W. (2018). Infrastructure as a complex adaptive system. Complexity.

    Google Scholar 

  • Parker, J., & Epstein, J. M. (2011). A distributed platform for global-scale agent-based models of disease transmission. ACM Transactions on Modeling and Computer Simulation (TOMACS), 22(1), 1–25.

    Google Scholar 

  • Peters, M., Ketter, W., & Collins, J. (2013). Design by competitive benchmarking: Tackling the smart grid challenge with innovative IS artifacts. In Conference on Information Systems and Technology 2013.

    Google Scholar 

  • Regner, T., Barria, J. A., Pitt, J. V., & Neville, B. (2010). Governance of digital content in the era of mass participation. Electronic Commerce Research, 10(1), 99–110.

    Google Scholar 

  • Ross, K. J., Hopkinson, K. M., & Pachter, M. (2013). Using a distributed agent-based communication enabled special protection system to enhance smart grid security. IEEE Transactions on Smart Grid, 4(2), 1216–1224.

    Google Scholar 

  • Ruas, T. L., Maria das Graças, B. M., França, R. D. S., & Batista, A. F. D. M. (2009, August). A Model for fire spreading by multi-agent systems: A RoboCup Rescue simulation and Swarm platform approach. In 2009 Second International Conference on the Applications of Digital Information and Web Technologies (pp. 380–385). IEEE.

    Google Scholar 

  • Scherer, S., Wimmer, M. A., & Markisic, S. (2013). Bridging narrative scenario texts and formal policy modeling through conceptual policy modeling. Artificial Intelligence and Law, 21(4), 455–484.

    Google Scholar 

  • Seifu, L., Ruggiero, C., Ferguson, M., Mui, Y., Lee, B. Y., & Gittelsohn, J. (2018). Simulation modeling to assist with childhood obesity control: Perceptions of Baltimore City policymakers. Journal of Public Health Policy, 39(2), 173–188.

    Google Scholar 

  • Sengupta, R. R., & Bennett, D. A. (2003). Agent-based modelling environment for spatial decision support. International Journal of Geographical Information Science, 17(2), 157–180.

    Google Scholar 

  • She, J., Guan, Z., Cai, F., Pu, L., Tan, J., & Chen, T. (2017). Simulation of land use changes in a coastal reclaimed area with dynamic shorelines. Sustainability, 9(3), 431.

    Google Scholar 

  • Smajgl, A., & Bohensky, E. (2013). Behaviour and space in agent-based modelling: Poverty patterns in East Kalimantan, Indonesia. Environmental Modelling & Software, 45, 8–14.

    Google Scholar 

  • Smajgl, A., Brown, D. G., Valbuena, D., & Huigen, M. G. (2011). Empirical characterisation of agent behaviours in socio-ecological systems. Environmental Modelling & Software, 26(7), 837–844.

    Google Scholar 

  • Sridhar, U., & Mandyam, S. (2010). A simulation framework to study policy formulation and evaluation of economic viability and sustainability of small and marginal farmers. Asia Pacific Development Journal, 17(1), 27.

    Google Scholar 

  • Streit, R. E., & Borenstein, D. (2009). An agent-based simulation model for analyzing the governance of the Brazilian Financial System. Expert Systems with Applications, 36(9), 11489–11501.

    Google Scholar 

  • Tian, G., Ouyang, Y., Quan, Q., & Wu, J. (2011). Simulating spatiotemporal dynamics of urbanization with multi-agent systems—A case study of the Phoenix metropolitan region, USA. Ecological Modelling—ECOL MODEL, 222, 1129–1138. https://doi.org/10.1016/j.ecolmodel.2010.12.018

    Article  Google Scholar 

  • Tracy, M., Cerdá, M., & Keyes, K. M. (2018). Agent-based modeling in public health: Current applications and future directions. Annual Review of Public Health, 39, 77–94.

    Google Scholar 

  • Valogianni, K., Ketter, W., Collins, J., & Zhdanov, D. (2020). Sustainable electric vehicle charging using adaptive pricing. Production and Operations Management, 29(6), 1550–1572.

    Google Scholar 

  • Vasirani, M., Kota, R., Cavalcante, R. L., Ossowski, S., & Jennings, N. R. (2013). An agent-based approach to virtual power plants of wind power generators and electric vehicles. IEEE Transactions on Smart Grid, 4(3), 1314–1322.

    Google Scholar 

  • Waddell, P. (2002). UrbanSim: Modeling urban development for land use, transportation, and environmental planning. Journal of the American Planning Association, 68(3), 297–314.

    Google Scholar 

  • Wimmer, M., Scherer, S., Moss, S., & Bicking, M. (2012). Method and tools to support stakeholder engagement in policy development: The OCOPOMO Project. International Journal of Electronic Government Research (IJEGR), 8(3), 98–119.

    Google Scholar 

  • Yu, H., Ni, S. J., Kong, B., He, Z. W., Zhang, C. J., Zhang, S. Q., Pan, X., Xia, C. X., & Li, X. Q. (2013). Application of scenario analysis and multiagent technique in land-use planning: A case study on Sanjiang wetlands. The Scientific World Journal.

    Google Scholar 

  • Yuan, C., Liu, L., Ye, J., Ren, G., Zhuo, D., & Qi, X. (2017). Assessing the effects of rural livelihood transition on non-point source pollution: A coupled ABM–IECM model. Environmental Science and Pollution Research, 24(14), 12899–12917.

    Google Scholar 

  • Zhang, T., & Nuttall, W. J. (2012). An agent-based simulation of smart metering technology adoption. International Journal of Agent Technologies and Systems (IJATS), 4(1), 17–38.

    Google Scholar 

  • Zhou, S., Chen, D., Cai, W., Luo, L., Low, M. Y. H., Tian, F., Tay, V. S. H., Ong, D. W. S., & Hamilton, B. D. (2010). Crowd modeling and simulation technologies. ACM Transactions on Modeling and Computer Simulation (TOMACS), 20(4), 1–35.

    Google Scholar 

  • Zia, K., Saini, D. K., & Muhammad, A. (2019). Agent-based modeling of society resistance against unpopular norms. Informatica (03505596), 43(2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash C. Sukhwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sukhwal, P.C., Kankanhalli, A. (2022). Agent-based Modeling in Digital Governance Research: A Review and Future Research Directions. In: Charalabidis, Y., Flak, L.S., Viale Pereira, G. (eds) Scientific Foundations of Digital Governance and Transformation. Public Administration and Information Technology, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-92945-9_12

Download citation

Publish with us

Policies and ethics