
Towards Software Compliance Specification
and Enforcement Using TOSCA

Mohammed Mubarkoot(B) and Jörn Altmann(B)

Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
mubarkoot@snu.ac.kr, jorn.altmann@acm.org

Abstract. According to the laws of software evolution, the size and complexity
of software systems continue to increase over time and, simultaneously, if not
maintained rigorously, the quality decreases. Quality degradation typically hap-
pens due to changes in policies, regulations, and industry requirements, which, in
turn, complicates compliance management over time. Among the key challenges
in managing the evolution of software are the modelling and the enforcement
of compliance rules. Moreover, the gap between compliance experts and soft-
ware engineers has worsened the problem. The topology and orchestration spec-
ifications for cloud applications (TOSCA), which is an OASIS standard, has the
potential to offer a relief by enabling different levels of abstractions for modeling
and enforcing compliance policies. This work aims at investigating the potential
of using TOSCA service templates for modelling and enforcing non-functional
requirements and policies. Then, it proposes an approach that maximizes involve-
ment of stakeholders in modeling and auditing such requirements and policies.
Findings can help enterprises and policy makers achieve better governance and
compliance on software services.

Keywords: Software compliance · Non-functional requirements · Software
evolution · Stakeholders’ involvement · TOSCA blueprint

1 Introduction

Compliance management is one of the critical challenges in all stages of the software
development life cycle (SDLC). In particular, the E-type software evolves over time
as a response to real world changes. This continuous change increases the complexity
and, as a result, leads to a degradation in quality if not maintained well [1]. In addition
to that, the continuous changes of policies and industry-specific requirements further
complicates governance and compliance management of a software. Lehman’s laws
of software evolution, namely continuing change and growth, increasing complexity,
declining quality and feedback system, still apply and cannot be ignored [1]. Therefore,
such continuous changes make it difficult to track whether the overall changes made
in the software adhere to corporate policies and compliance requirements; and more
importantly, getting insights on the status of policymodeling and enforcement at different
levels of abstraction for different stakeholders.

© The Author(s) 2021
K. Tserpes et al. (Eds.): GECON 2021, LNCS 13072, pp. 168–177, 2021.
https://doi.org/10.1007/978-3-030-92916-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92916-9_14&domain=pdf
http://orcid.org/0000-0001-9265-4375
http://orcid.org/0000-0002-8880-9546
https://doi.org/10.1007/978-3-030-92916-9_14


Towards Software Compliance Specification and Enforcement 169

The recent decades experienced a huge change in the software industry in areas of
distributing development, crowdsourcing, service-oriented approaches, and microser-
vice practices [23]. This change is also powered by a big shift to cloud computing,
which leads to more standardized software services [2]. The laws that govern software
evolution do not seem to have adapted to the new paradigm shifts [1].

In this regard, many cloud modeling languages were introduced to address issues
related to modeling and specification of cloud applications. Bergmayr et al. [1] con-
ducted a systematic review on existing cloud modeling languages. They found that the
majority of the existing modeling languages focus primarily on design-time aspects and
very few consider the provisioning and runtime aspects. The topology and orchestra-
tion specifications for cloud applications (TOSCA) can contribute to the convergence
of different cloud modeling languages, besides its abilities to describe processes for
creating, terminating cloud services and for managing them throughout their whole life-
time [3]. According to the Organization for the Advancement of Structured Information
Standards (OASIS) [3], TOSCA provides strong typing for artifacts in addition to the
ability to extend to new types without extending the language definition [4]. Compared
to other modeling languages, TOSCA supports the decomposition of software and defi-
nition of policies and non-functional behavior of a system [4]. It also implements man-
agement plans using existing workflow languages, namely the business process model
and notation (BPMN) and the business process execution language (BPEL) [5]. This
makes it promising for modeling non-functional requirements and enhancing evolution
management of a software.

The aim of this paper is to explore how TOSCA enhances evolution management
of software as well as address compliance modeling of non-functional requirements.
The paper proposes an approach that maximizes involvement of stakeholders in setting
up and monitoring TOSCA-based blueprints. A key contribution of the paper is that it
brings the focus of a new application of TOSCA in compliance modeling, and how to
utilize that within the entire ecosystem of software development and provisioning.

The subsequent sections are structured as follows: Sect. 2 presents a background on
non-functional requirements and TOSCA as well as related work. Section 3 introduces
the proposed approach and explains with an example on how TOSCA handles model-
ing of non-functional requirements, and how it fits into our approach. Finally, Sect. 4
summarizes and explains validation of the proposed approach.

2 Background and Related Work

2.1 Non-functional Requirements

E-Type software, which automates human or societal activities and involves real world
problem solving [6], must change and continuously adapt to real world requirements
[1]. While this evolution is regulated by a feedback system, it typically results in an
increase in complexity and decline in quality driven by the need to maintain familiarity
[7]. The challenge comes with the objective of controlling the continuous evolution in
a systematic way. One solution is to adopt model-driven engineering (MDE), since it
allows abstraction of unnecessary details, and to focus on more important aspects (e.g.,
domain-specific needs) [8]. Another way is to use modeling languages to standardize



170 M. Mubarkoot and J. Altmann

software design and improve the management of software evolution [4]. In all this, it
is critical to differentiate between functional and non-functional requirements, as they
require different tools and skills for modeling let alone the resources needed.

While there is no formal definition or a complete list of non-functional requirements
[9], Glinz [9] surveyed existing literature on the definition, classification and represen-
tation of non-functional requirements. Their study presents a taxonomy to define non-
functional requirements of three categories: performance requirements, specific quality
requirements, and constraints. Performance requirements include timing, speed, vol-
ume and throughput. Specific quality requirements include reliability, usability, security,
availability, portability, andmaintainability. Constraints include physical, legal, cultural,
environmental, design, implementation, and interface. The international organization for
standardization (ISO) [10] however categorizes software quality requirements into eight
categories. It does not classify them into functional and non-functional due to overlaps
in some requirements. These requirements are functional suitability, reliability, perfor-
mance efficiency, usability, security, compatibility, maintainability, and portability. ISO
also defined sub-characteristics for each of these requirements. As we focus mainly on
non-functional requirements, functional suitability and usability, which are more related
to functional requirements of a system are excluded from our discussion.

Among non-functional aspects, which can be modeled using TOSCA, are: (i)
enhancement of reliability through scalability thresholds that ensure availability and
allow re-instantiating failed components [10, 11]; (ii) improvement of performance and
resource utilization [11]; (iii) support of security-by-design (e.g., enforcement of cer-
tain encryption mechanisms and access policies) [12]; (iv) increase of compatibility and
standardized blueprints [13]; (v) enhancement of maintainability through modularity,
reusability, and analyzability of an application [2, 14]; and (vi) ensuring portability and
provider-agnostic deployment [12, 15].

2.2 Related Work on Modeling Non-functional Requirements with TOSCA

Many studies in the literature discuss applications of TOSCA in modeling of policies
and non-functional requirements. Waizenegger et al. [16] introduced two approaches
to model and enforce policies, and provide different levels of abstraction depending
on the level of details needed. Built on TOSCA policies and management plans, these
approaches focus on providing global knowledge of services as well as enforcement
at a component level. They also highlight the importance of reusability of artifacts to
minimize the efforts of modeling and provide a wider range of options to customers.

Koetter et al. [17] introduced a Generic Compliance Descriptor, to address the gap
between IT and law, linking IT and law to implementation rules that facilitate responses
to changes. To do so, they used different technologies at different application life cycles.
For example, they collect compliance rules during the design time and link them to the
compliance requirements for enforcement during run-time. They used theTOSCAPolicy
template for modeling security aspects, to ensure that their database and its underlying
system is located within the same country. Similarly, and in the context of third-party
deployment models, Zimmermann et al. [18] proposed an approach that uses TOSCA,
to enforce third-party deployment models to be executed within a company’s network.
As enforcement of this kind of security policy is critical, third-party applications have to



Towards Software Compliance Specification and Enforcement 171

be enforced to be executed within a company’s network, ensuring that vital information
does not leave the company [18]. In a slightly wider perspective, Krieger et al. [19]
use TOSCA, to automate compliance checking of deployment models with the aim
of addressing the issues of changing rules and regulations at the corporate level. Their
approach allows separatingmodeling of compliance rules frommodelling of deployment
models, so that modelers do not need to know all constraints and requirements to specify
compliant deployment models.

Motivated by the growing trend of home-based healthcare, which poses challenges
in data collection, transferring, and sharing due to geographical distance between the
patients and their care providers, Li et al. [20] apply TOSCA for heterogeneous home-
edge-core clouds. They intend to bridge the gap between the availability of software
defined infrastructure and meeting regulatory compliance. In the same context, Carrasco
et al. [21] introduced a provider-agnostic TOSCA-based model, to allow specification
of characteristics and requirements of any system for deployment in the cloud. Besides
facilitating the reusability of cloud services, such standardized description of applica-
tions, cloud resources, and service APIs can significantly reduce the issues of portability,
interoperability, and vendor lock-in.

Despite these works on modeling non-functional aspects of software, exploitation
of TOSCA is still under-represented [4]. In addition to that, the extent to which TOSCA
can enhance the evolution management of software, is not fully explored.

3 Proposed Approach

3.1 Background on the Workings of TOSCA

While the main purpose of TOSCA is to enhance automation of deployment and man-
agement of cloud applications, its functionality can be extended to include modeling
and specification of policies, architectural specification of a software service, topology
design, service template design, and other non-functional requirements [14]. A TOSCA
topology template defines the structure of an application and the orchestration artifacts.
While the structure defines application components and the relationships between them,
the orchestration artifacts define the deployment and management plans of the applica-
tion components [16]. Figure 1 shows a topology template for a web application based
on OpenTOSCA1. The topology describes the components of the application and rela-
tionships between them. DjWebApp connects to the DjDB database and depends on
Python APIs. The template states that DjWebApp should be hosted on a NGINX server
running in a Docker container. DjDB is of type MySQL 5.5 and should be hosted on
a separate container. All containers run on a Docker engine hosted on a Linux server
of type Ubuntu 18.04. The numbers on each node specify a minimum and maximum
number of instances to be created. For example, the AppContainer node can scale up to
10 instances, when the load on the application reaches its peak, and can scale down to 1
instance, if resources are no longer needed. While this description of the topology is at a
high level and abstract, detailed specifications of each node and relationship are further
elaborated and modeled at a lower level.

1 https://www.opentosca.org.

https://www.opentosca.org


172 M. Mubarkoot and J. Altmann

A detailed specification of each node and relationship is elaborated using a TOSCA
document definition. Such specifications include policies and constraints to be enforced
at node and relationship levels. While the TOSCA definition document contains type
definitions of Node Types, Relationship Types, Artifact Types, and Policy Types, a
TOSCA topology template contains instances of these definitions with assigned values,
ready for execution by a TOSCA-compliant orchestrator.

Fig. 1. Topology template example of a web application using OpenTOSCA modelling.

According to OASIS [3], TOSCA can be extended to new types, relationships, poli-
cies, and management plans. This allows extensibility of orchestrators’ functionality to
process these new definitions. The snippet in Fig. 2 shows the syntax of nodes and policy
templates in a YAML format. Policy templates define policies and actions to trigger in
case of any violation, which in turn enhances the overall reliability and performance.
In general, the TOSCA template can serve as a reference architecture with different
levels of abstraction. In addition to that, the decomposition of an application into small
units along with clear relationships allows for an enhanced evolution management of a
software.

3.2 Proposed Architecture for Handling Non-functional Requirements

Software related policies and constraints are mostly the concern of more than one stake-
holder [22], who are in charge of different aspects of compliance. The different levels of
abstraction that TOSCA provides [14] makes it possible to engage stakeholders of dif-
ferent levels of expertise in the design of software blueprints. The level of abstractions
depends on stakeholders’ roles and expertise. Preparing a TOSCA blueprint involves
stakeholders like IT managers, compliance experts, and software architects. The app-
roach that is presented in Fig. 3 aims at enhancing the evolution management of a
software, while controlling compliance to the agreed upon blueprint. The first step is the



Towards Software Compliance Specification and Enforcement 173

Fig. 2. Example of TOSCA custom definitions of non-functional requirement on the right; and
policy definition on the left, based on [3].

development of a TOSCA-based blueprint. This step requires the concerned stakeholders
to specify the new policies to model or revise an existing one. The deliverable of this step
is a new TOSCA-based blueprint or an updated version. In the second step, the blueprint
is stored into the Blueprint Repository, making it available for the development and oper-
ations (DevOps) teams to proceed based on that. The DevOps teams are granted only
read access on the blueprint so that any fundamental changes at the topology and policy
levels have to be reviewed by all stakeholders before deploying them onto production.
The third step is to match the active blueprint with the one running in the provision-
ing. This involves enforcing and auditing the blueprint, and reporting to stakeholders
whenever they inquire. Such a task can be performed by extending the functionality
of TOSCA-compatible orchestrators (e.g., Kubernetes, which is one of the promising
technologies for automating deployment, scaling, and management of applications).

Fig. 3. Proposed architecture for handling compliance of non-functional requirements.

TheBlueprintRepository and theComplianceEnforcer/Auditor (Fig. 3) are key com-
ponents in the proposed approach. The Blueprint Repository stores and keeps track of
changes of software blueprints over time through versioning the releases. This enhances
reusability of blueprints and simplifies management of the growing complexity of a soft-
ware. The Compliance Enforcer/Auditor validates and enforces the assigned blueprint



174 M. Mubarkoot and J. Altmann

during provisioning. It matches components deployed against the predefined blueprint. If
anymismatches are found, the orchestrator stops application provisioning and reports the
mismatch right away. As a result, the low-level teams cannot modify the architectural
level of the software during the development and provisioning. Changes that require
modification on the blueprint topology cannot take place unless a consensus is made
among stakeholders on updating the blueprint and, then, pushing it into the repository to
be available for enforcement at the production. To keep stakeholders informed, reporting
is triggered on the following scenarios: (i) once a new release of the software is made
available for production; (ii) upon stakeholders’ inquiry on status of the deployed ser-
vices and how well they align to the blueprint; or (iii) on a regular basis for the purpose
of auditing and monitoring depending on corporate policy.

Practically, to keep up with the ever-growing business requirements, the continuing
changes and the complexity of an E-type software poses a need for a new way of con-
trolling the evolution and non-functional requirements. While most existing modeling
languages focus mainly on functional aspects and the behavior of a software, the pro-
posed approach helps address the non-functional aspects, giving a better visibility of the
architectural topology of a software to stakeholders with different levels of abstraction.
Distributed software development is a potential application of the proposed approach.

4 Conclusion and Future Work

4.1 Future Validation of the Proposed Approach

The approach proposed needs to be evaluated at technical and process levels. At the
technical level, Eclipse Winery2 or any other TOSCA modeling tool can be used to
design a TOSCA-based blueprint and model the non-functional requirements.

Once the blueprint is ready, it has to be validated. TOSCA-Parser3, which is an
OpenStack project, can be extended to parse and validate the blueprint along with newly
defined types and policies.

Once validated, a TOSCA-conform runtime environment is needed to deploy and
provision the application according to the blueprint. OpenTOSCA Container provides a
TOSCA-compliant runtime environment and supports the provisioning of applications.
For monitoring and reporting, the TOSCA runtime can be integrated with TOSCA-
Parser and extended to allow real time monitoring and reporting of the blueprint being
provisioned.

At the process level the approach can be validated through a development of a case
with multiple stakeholders collaborating in the setup of a TOSCA-based blueprint. By
simulating the steps of the proposed approach, a set of metrics can be developed to
evaluate its effectiveness and identify possible improvements.

2 https://winery.readthedocs.io/en/latest.
3 https://wiki.openstack.org/wiki/TOSCA-Parser.

https://winery.readthedocs.io/en/latest
https://wiki.openstack.org/wiki/TOSCA-Parser


Towards Software Compliance Specification and Enforcement 175

4.2 Summary

In this paper, we explored the potential of using the TOSCA standard for modeling non-
functional requirements. In particular, we described its potential for compliance spec-
ification and enforcement. We also proposed an approach that maximizes involvement
of stakeholders in setting up compliance specifications of non-functional requirements
in the form of a TOSCA-based blueprint. This blueprint can then be used by DevOps
teams as a base and a reference architecture through all stages of the software develop-
ment life cycle (SDLC). It can also serve as a compliance checking and reporting while
provisioning. Moreover, keeping track of changes in topologies over time is expected
to give more control over the evolution process of the software. The approach can be
useful for managing software projects, which change and grow at a high rate. Examples
are cloud native applications, whether on-premise cloud or on clouds.

Besides validating the proposed framework at technical and process levels, as
described above, it is planned to extend the application of TOSCA to modeling and
specification of other requirements including regulations and industry-specific ones.

Acknowledgements. This research was supported by the BK21 FOUR (Fostering Outstand-
ing Universities for Research) funded by the Ministry of Education (MOE, Korea). This
work was also supported by the National Research Foundation of Korea (NRF) grant (No.
NRF-2019R1F1A1058487) funded by the Ministry of Science and ICT (MSIT) of Korea.

References

1. Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J.M.: The evolution of the laws
of software evolution: a discussion based on a systematic literature review. ACM Comput.
Surv. 46(2), 28:1–28:28 (2013). https://doi.org/10.1145/2543581.2543595

2. Nieuwenhuis, L.J.M., Ehrenhard, M.L., Prause, L.: The shift to Cloud Computing: the impact
of disruptive technology on the enterprise software business ecosystem. Technol. Forecast.
Soc. Chang. 129, 308–313 (2018). https://doi.org/10.1016/j.techfore.2017.09.037

3. “TOSCA Version 2.0.” OASIS (2020). https://docs.oasis-open.org/tosca/TOSCA/v2.0/
TOSCA-v2.0.pdf. Accessed 07 May 2021

4. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Comput. Surv.
51(1), 22:1–22:38 (2018). https://doi.org/10.1145/3150227

5. Bellendorf, J.,Mann, Z.Á.: Specification of cloud topologies and orchestration using TOSCA:
a survey.Computing102(8), 1793–1815 (2019). https://doi.org/10.1007/s00607-019-00750-3

6. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE 68(9),
1060–1076 (1980)

7. Lehman,M.M., Ramil, J.F.: Software evolution and software evolution processes. Ann. Softw.
Eng. 14(1), 275–309 (2002). https://doi.org/10.1023/A:1020557525901

8. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Model-based engineering in the
embedded systems domain: an industrial survey on the state-of-practice. Softw. Syst. Model.
17(1), 91–113 (2016). https://doi.org/10.1007/s10270-016-0523-3

9. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements Engi-
neering Conference (RE 2007), pp. 21–26, October 2007. https://doi.org/10.1109/RE.200
7.45

https://doi.org/10.1145/2543581.2543595
https://doi.org/10.1016/j.techfore.2017.09.037
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf
https://doi.org/10.1145/3150227
https://doi.org/10.1007/s00607-019-00750-3
https://doi.org/10.1023/A:1020557525901
https://doi.org/10.1007/s10270-016-0523-3
https://doi.org/10.1109/RE.2007.45


176 M. Mubarkoot and J. Altmann

10. ISO/IEC25010:2011(en): Systems and software engineering—Systems and softwareQuality
Requirements andEvaluation (SQuaRE)—Systemand software qualitymodels. https://www.
iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en. Accessed 11 June 2021

11. Kim, D., Muhammad, H., Kim, E., Helal, S., Lee, C.: TOSCA-based and federation-aware
cloud orchestration for Kubernetes container platform. Appl. Sci 9(1), Art. no. 1 (2019).
https://doi.org/10.3390/app9010191

12. Antonacci, M., et al.: Digital repository as a service: automatic deployment of an Invenio-
based repository using TOSCA orchestration and Apache Mesos. EPJ Web Conf. 214, 07023
(2019). https://doi.org/10.1051/epjconf/201921407023

13. Cankar, M., Luzar, A., Tamburri, D.A.: Auto-scaling using TOSCA infrastructure as code. In:
Muccini, H., et al. (eds.) ECSA 2020. CCIS, vol. 1269, pp. 260–268. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59155-7_20

14. Brogi, A., Soldani, J., Wang, P.: TOSCA in a nutshell: promises and perspectives. In: Vil-
lari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS, vol. 8745, pp. 171–186.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44879-3_13

15. Binz, T., Breiter, G., Leyman, F., Spatzier, T.: Portable cloud services using TOSCA. IEEE
Internet Comput. 16(3), 80–85 (2012)

16. Waizenegger, T., et al.: Policy4TOSCA: a policy-aware cloud service provisioning approach
to enable secure cloud computing. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol.
8185, pp. 360–376. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-
7_26

17. Koetter, F., Kochanowski, M., Weisbecker, A., Fehling, C., Leymann, F.: Integrating com-
pliance requirements across business and IT. In: 2014 IEEE 18th International Enterprise
Distributed Object Computing Conference, pp. 218–225, September 2014. https://doi.org/10.
1109/EDOC.2014.37

18. Zimmermann, M., Breitenbucher, U., Krieger, C., Leymann, F.: Deployment enforcement
rules for TOSCA-based applications. In: Proceedings of The Twelfth International Confer-
ence on Emerging Security Information, Systems and Technologies (SECURWARE 2018),
pp. 114–121 (2018)

19. Krieger, C., Breitenbücher, U., Képes, K., Leymann, F.: An approach to automatically check
the compliance of declarative deployment models. In: IBM Research Division, pp. 76–89
(2018)

20. Li, P., Xu, C., Luo, Y., Cao, Y., Mathew, J., Ma, Y.: CareNet: building a secure software-
defined infrastructure for home-based healthcare. In: Proceedings of the ACM International
Workshop on Security in Software Defined Networks & Network Function Virtualization,
New York, NY, USA, pp. 69–72, March 2017. https://doi.org/10.1145/3040992.3041007

21. Carrasco, J., Cubo, J., Durán, F., Pimentel, E.: Bidimensional cross-cloud management with
TOSCA and Brooklyn. In: 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pp. 951–955, June 2016

22. Rashid, Z., Noor, U., Altmann, J.: Economic model for evaluating the value creation through
information sharing within the cybersecurity information sharing ecosystem. Future Gener.
Comput. Syst. 124, 436–466 (2021). https://doi.org/10.1016/j.future.2021.05.033

23. Mohammed, M., Altmann, J.: Software compliance in different industries: a systematic lit-
erature review. In: CIISR 2021, International Workshop on Current Compliance Issues in
Information Systems Research, March 2021

https://www.iso.org/obp/ui/%23iso:std:iso-iec:25010:ed-1:v1:en
https://doi.org/10.3390/app9010191
https://doi.org/10.1051/epjconf/201921407023
https://doi.org/10.1007/978-3-030-59155-7_20
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-642-41030-7_26
https://doi.org/10.1109/EDOC.2014.37
https://doi.org/10.1145/3040992.3041007
https://doi.org/10.1016/j.future.2021.05.033


Towards Software Compliance Specification and Enforcement 177

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Towards Software Compliance Specification and Enforcement Using TOSCA
	1 Introduction
	2 Background and Related Work
	2.1 Non-functional Requirements
	2.2 Related Work on Modeling Non-functional Requirements with TOSCA

	3 Proposed Approach
	3.1 Background on the Workings of TOSCA
	3.2 Proposed Architecture for Handling Non-functional Requirements

	4 Conclusion and Future Work
	4.1 Future Validation of the Proposed Approach
	4.2 Summary

	References




