Chapter 12 ®)
Nitrogen Isotopes in Tree oo
Rings—Challenges and Prospects

Martine M. Savard and Rolf T. W. Siegwolf

Abstract Nutritive, but detrimental if at high levels, several nitrogen (N) forms
involved in air and soil biogeochemical reactions constitute the N load trees assim-
ilate. Although a large body of literature describes series of tree-ring N isotopes
(3'9N) as archival systems for environmental changes, several questions relative to
the isotopic integrity and reproducibility of trends still linger in the dendroisotopist
community. This chapter reviews the fundamentals of forest N cycling and examines
trees as N receptors in their very position, at the interface between the atmosphere
and pedosphere. The related scrutiny of intrinsic and extrinsic mechanisms regu-
lating isotopic changes also underlines flaws and forces of tree-ring 8'°N series as
environmental indicators.

12.1 Introduction

Key nutrient for trees, but forming reactive molecules potentially detrimental to forest
ecosystems (e.g., Etzold et al. 2020), N constitutes a central object of research in
terrestrial biogeochemistry. After several decades, the substantial body of literature
on N in trees reflects the complexity of N cycling through trees, and how some
intrinsic and extrinsic processes remain elusive. With anthropogenic emissions of
reactive N (N;) rising globally and driving atmosphere-pedosphere exchanges that
can perturb the external terrestrial N cycle, tree-ring 3'°N series may record past
changes in forest-N cycling.

Studies of long tree-ring 3'7N series are rare, largely because ring wood includes
very low amounts of N relative to carbon, evidently making tree rings difficult for
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isotopic determination. Additionally, N translocates between trunk rings, dampening
environmental isotopic effects in time series. Nevertheless, several studies report 8 °N
trends interpreted in relations to changes in soil and air conditions.

How does N assimilation in non N,-fixing trees operate? Do trees react to changes
in air and soil N, contents? Can tree-ring 8'3N series help understand environmental
changes? The purpose of this review primarily consists in scrutinizing the current
understanding of mechanisms responsible for determining 8'3N values in tree rings,
appraising the type of information 8' N series can provide, and synthesizing the
knowledge gaps of this research domain.

12.2 Sample Preparation and Analytical Procedures

The habitual mechanical separation of tree rings from stem samples using fine blades
or microtome at the sought time resolution produces wood sub-samples for §'°N
analysis. Treating these sub-samples prior to their isotopic analysis generates a
debate regarding the utility of removing their mobile N (resins) to prevent producing
false trends. But recent investigations suggest this type of pre-treatment does not
modify significantly the final 3'°N values (Elhani et al. 2005; Bukata and Kyser
2007; Couto-Vazquez and Gonzalez-Prieto 2010; Caceres et al. 2011; Doucet et al.
2011; Tomlinson et al. 2014). Another observation arguing against pre-treatment is
that samples from several species, for instance Pinus ponderosa, Fagus grandifolia
and Picea rubens, show no change of concentrations after resin removal (Hart and
Classen 2003; Doucet et al. 2011).

On another note, regardless of pre-treating wood samples or not, several studies
have clearly shown trends of higher N concentrations in rings (and coniferous leaves)
grown during sampling years, relative to concentrations in previous years. The
general pattern forms an increasing trend from the heartwood-sapwood transition
to the most recent ring; a physiological effect typical of N translocation. In addi-
tion, tree-ring N concentrations show poor inter-tree and inter-species coherence.
These observations make N concentrations in tree rings (and dated coniferous leaves)
useless in environmental research (Hart and Classen 2003; Saurer et al. 2004; Savard
etal. 2009; Gerhart and McLauchlan 2014). However, this inter-ring N mobility does
not seem to affect the final tree-ring 5'°N values (Doucet et al. 2011).

For isotopic analysis, wood samples wrapped in tin capsules drop automatically
from a carousel into an elemental analyser (EA) in continuous flow (CF) with an
isotope ratio mass spectrometer (IRMS). The analytical procedure involves combus-
tion in a reaction tube producing N, O, followed by a reduction to N,, which produces
the analyses calibrated relative to air N, (set at 0%o). Tree-ring wood harbors very low
concentrations relative to roots or leaves (Scarascia-Mugnozza et al. 2000), and high
C/N ratios, making its isotopic analysis difficult. For that reason, the EA-CF IRMS
system for 89N analysis needs close monitoring for performing complete combus-
tion to prevent CO™ derived interferences at masses 28 and 29. A CO trap installed
between ovens and GC columns helps for that step. The low N concentrations in wood
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make internal standards a requirement to avoid poor analytical accuracy from low
peak to background ratios (Couto-Vizquez and Gonzilez-Prieto 2010). Inserting
several internal wood standards in sample batches allows monitoring the external
precision and accuracy of the complete laboratory procedure. Whole wood materials
from three species of trees recently proposed as references may also support this
essential task (Qi et al. 2016), although the 3'°N range they cover is narrower (—2.4
to +1.8%o0) than the natural extent in tree rings (generally between —10 and +5%o).

12.3 Assimilation, Storage and Fractionation of Nitrogen
by Trees

Numerous tree-ring studies dealing with natural 3' N values or '"N-labelled N
assume that uptake of soil inorganic N dominates the N assimilated in stems of
non N,-fixing trees. However, other means such as soil organic N assimilation and
foliar uptake of various atmospheric N forms may significantly contribute to the N
loads commonly characterized for 3'°N values (Fig. 12.1). This section discusses
the knowledge gains from controlled experiments, studies under natural conditions,
recent developments in understanding the ultimate source and pathways of N to tree
rings, and the role of N remobilization in determining the tree-ring §!°N values.

12.3.1 Nitrogen through Foliage

Many studies reveal that soil fertilization has direct impacts on foliar N character-
istics, however, leaves also assimilate N (e.g., Gebauer and Schulze 1991; Arain
et al. 2006; Pardo et al. 2007; Vizoso et al. 2008; Balster et al. 2009; Averill and
Finzi 2011). Similarly, articles specifically addressing canopy functions report oper-
ational foliar uptake from air for all atmospheric N forms (Garten and Hanson 1990;
Rennenberg and Gessler 1999; Krupa 2003; Sparks et al. 2003; Vallano and Sparks
2007; Chaparro-Suarez et al. 2011). In other words, it is widely accepted now that the
foliar N loads come from soil as well as from air (e.g., Vallano and Sparks 2013). For
its nutritive functions, leaf N plays a crucial role in enhancing activities of Rubisco,
the proteins of photosynthesis (Warren et al. 2003; Wright et al. 2004). However,
higher atmospheric N availability does not always translate into higher growth rates
of stems. The crucial point for the present chapter lies with estimating the atmo-
spheric foliar N contribution to the loads in stems of deciduous and coniferous trees,
as atmospheric N transferred from leaves to stems may have a direct impact on the
tree-ring 5'°N series.

Atmospheric N;-forms include N in ammonia gases (NH4*, NH3), oxides (NO3 ™,
NO,, NO), nitric acid (HNO3), and organic compounds (amino acids, peroxyacetyl
nitratePAN). These N-forms get to ground through wet scavenging or dry deposition
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Fig. 12.1 Representation of the forest nitrogen cycle. Processes influencing the bioavailability of
N forms taken up by boreal and temperate trees are included; NO, loss is significant mostly in
wetlands and tropical settings; the tropical cycle would include N> fixation by trees (not shown).
EcM stand for ectomycorrhiza (Sect. 12.3.2)

upon contact with surfaces such as leaves. The N forms enter leaves either as wet or
dry (gaseous) phases through stomata, although the liquid phases appear to pass in
the foliar system more readily (Rennenberg and Gessler 1999; Harrison et al. 2000b;
Krupa 2003; Choi et al. 2005; Gerhart and McLauchlan 2014). A series of enzymatic
reactions transform NH4* and NO3~ into amino acids, which generally enriches the
reactants and depletes the products in >N (e.g., Rennenberg and Gessler 1999).
Once incorporated in organic compounds within leaves, N shortly resides in active
and non-active parts (Millard and Grelet 2010). Experiments using '>N-labelled N
show that the remobilized N can reach down to the root systems (Macklon et al.
1996; Rennenberg and Gessler 1999; Bazot et al. 2016).

Studies rarely quantify stem N originating from foliar uptake. In one known
experimental example, the estimated proportions of N from previous-year needles
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exported to support the growth of shoots vary between 10 and 37% in 5 year-old
or younger coniferous trees (Millard and Grelet 2010). Otherwise, in 30-year-old
spruce trees, between 8 and 22% of the annual N demands come from leaves, the
range depending on the N forms selected for experiments (Harrison et al. 2000a,
and references therein). Also, natural abundance of >N has helped estimating foliar
assimilation at 10% in 10- to 20 year-old Norway spruce trees, given that the signal
of car exhaust, the single local source of anthropogenic NO, emissions, was known
to strongly deviate from the natural N sources (Ammann et al. 1999). However, in
general, the precise quantification of anthropogenic N in the canopy constitutes a
complex task because the isotopic signals of N in air can significantly change in
space and time, and an array of emitters show overlapping 8'°N ranges (e.g., Savard
et al. 2017).

In deciduous specimens, the proportion of canopy N uptake used up for annual
wood production appears to vary between <5 to >40% (Harrison et al. 2000b). In
the case of young poplars exposed to NO,-enriched air with low §!°N values, and
grown on high and low N-supplied soils, the calculated foliar contributions were 14
and 18% of the total amount of plant N, respectively, based on §'’N measurements of
plant material and the known isotopic signal of NO; (Siegwolf et al. 2001). In another
example, with labelled fertilizers applied at both the foliage and root levels of oak
trees, soil N and internal storage contributed 60 and 40%, respectively, to the N of
spring leaves (Bazot et al. 2016). Whereas the total autumn root N reserves included
73% from leaves and 27% from soils. At the broad scale, modeling studies reported
the canopy to contribute between 3 and 16% of the total N demands for new growth
in plants (Vallano and Sparks 2007, and references therein). Thus, on one hand, N
in leaves comes partly from soils, and several studies clearly demonstrated partial
remobilization of this N. On the other hand, the estimated contributions from leaves
to the demands of trees may be more variable than the range covered in the literature
because they largely depend on the atmospheric concentrations and the involved
N-forms, the studied tree species, and the methodology selected for quantifying the
foliar uptake/contribution.

Although trees acquire atmospheric N directly through leaves and without inter-
mediate transformation steps as through soils before root uptake, the overall influence
foliar uptake has on the tree-ring N loads is difficult to determine. To our knowledge,
research efforts never estimated its contribution to stem N loads of mature trees.
Accordingly, the remaining key questions regarding foliar uptake does not relate
to its assessment but to the magnitude of its contribution in determining the final
tree-ring 5'°N values.
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12.3.2 From Soils through Roots to the Stems

12.3.2.1 Soil Nitrogen Species and Processes

Dinitrogen-fixing microbes and forest organic matter represent the ultimate sources
of N in soils of non-disturbed forests (Fig. 12.1). Geological N from rocks and
minerals can provide a background influencing the forest N cycling and the overall
85N values of organic soils, particularly if developed over clay-rich mineral hori-
zons or sedimentary rocks, which generally have high §'°N values (Holloway and
Dahlgren 2002; Craine et al. 2015; Houlton et al. 2018). Variability in the distribu-
tion of geological N contributes to the heterogeneity of soil N properties. Several
studies also report evidence for microbial communities (fungi and bacteria) involved
in mineral weathering (e.g., Courty et al. 2010).

Even though the absolute amount of N in soils is large, the dominant proportion
of N is immobilized (carbon bound) in organic matter (Knicker 2004; Nasholm et al.
2009), with a small part of this matter available for nutrition (labile N or dissolved
organic N—DON). The main N-rich constituents of DON, amino acids, derive from
rapid hydrolysis of soil proteins (N4dsholm et al. 2009). Furthermore, the soil inorganic
(NH4* and NO;3 ™) parts, largely derived from organic matter constitute only about
1% of the total soil N (Kendall et al. 2007). Forest N demands generally exceed the
inputs in bioavailable N forms, limiting the net productivity in most of the boreal
and temperate forests. As a consequence, trees compete for soil NH4*, NO;~ and
DON. Anthropogenic N emissions can add to the regional N loads by wet or dry
deposition, and enter the series of transformations leading to the bioavailable N pool
mined by tree roots (Fig. 12.1).

The main transformation processes affecting the concentration and 3'°N values
of inorganic and organic bioavailable N in soils consist in fixation, immobiliza-
tion, ammonification (mineralization), volatilization, nitrification and denitrification
(Hopkins et al. 1998), and the rates of these N transformations vary seasonally and
regionally (Handley et al. 1998). Whereas fixation and ammonification generally
create minor isotopic N fractionation, volatilization of NH,*, nitrification and deni-
trification tend to significantly increase the >N content in the reacting substrates and
decrease it in the products (Hogberg 1997; Pardo and Nadelhoffer 2010; Hobbie and
Hogberg 2012). Consequence to the interplaying N transformation processes, nitrate,
ammonium and DON generally show 8! N values in increasing order. In addition, in
N-limited forests, 8'N values of bulk N tend to increase with sample depth, and its
concentration, to decrease (Fig. 12.2a). The general explanations for this pattern are
that low nitrification rates and leaching from top horizons depletes the components
of the organic horizons in '>N. Shedding of leaves depleted in >N relative to soil
and preferential uptake of >N by fungi associated to roots (see Sect. 12.3.2.2) may
accentuate this pattern (Hobbie and Colpaert 2002; Compton et al. 2007; Hogberg
et al. 2011). However, in less N-limited forests, the top horizons may show high
85N values in soil N-species due to increased rates of nitrification in the N- and
organic-rich horizons (Fig. 12.2b; Hogberg 1997; Mayor et al. 2012; Shi et al. 2014).
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Hence, the overall N status of the forest, the proportions of the various soil N forms
trees use up, and the depth of root N uptake from the soil all have direct influence on
the final 8'°N values of tree tissues. A key point to note here is that isotopic studies
rarely characterize root (or tree-ring) samples along with individual bioavailable soil
N forms, even though this combination would greatly help determining fractionation
steps before N uptake by trees.

12.3.2.2 Direct and Ectomycorrhizal Root Uptake

Trees can use up inorganic N forms and DON directly through their roots (Ndsholm
et al. 2009; Averill and Finzi 2011). This direct uptake by physical transport shows
no evidence of fractionation; N isotopic fractionation occurs during assimilation
processes involving enzymatic functions (Handley et al. 1998; Pardo et al. 2013).
Alternatively, trees can gain N (and other nutrients) while providing C, through
symbiotic associations with fungi (ectomycorrhiza EcM; e.g., Nidsholm et al. 2009;
Courty et al. 2010; Lilleskov et al. 2019). It is well accepted that EcM generally show
higher 315N values relative to N sources in soils, and to roots and stems of trees. In
the process of N uptake, they preferentially incorporate the heavy >N during the
production of their tissues, and provide light N to their hosts (Gebauer and Taylor
1999; Hobbie and Hogberg 2012). The extent of this biogenic fractionation and
thus the isotopic values of fungi vary widely (Trudell et al. 2004; Mayor et al. 2009;
Hobbie and Hogberg 2012), inasmuch as different EcM communities may efficiently
assimilate specific soil N-compounds. Also, it is established that ECM communities
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change in structure and abundance under varying soil chemistry (pH), N deposition,
N transformation rates, and climatic conditions (Chalot et al. 1995; Wallander et al.
1997; Qian et al. 1998; Schulze et al. 2000; Lilleskov et al. 2002; Averill and Finzi
2011; Hogberg et al. 2011; Kjoller et al. 2012; Kluber et al. 2012; van der Linde et al.
2018). The role of EcM in regulating 8'°N values in plants during N assimilation in
field conditions is illustrated by the measured 3'°N patterns in Alaskan trees, EcM
and soils (Hobbie et al. 1999). Modeling of these results indicates a net fractionation
during the N transfer from EcM to trees.

Another example compares the foliar 8'N values of Acer rubrum seedlings from
seven sites distributed along a gradient of atmospheric NO,, with active EcM or
manipulated absence of EcM in native soils of New York state (Vallano and Sparks
2013). The foliar 8'°N results for seedlings devoid of EcM show no influence of
increasing N, but for EcM seedlings, they correlate significantly with ambient NO,
levels, indicating the aid EcM provides to trees for N assimilation. These examples
and the above observations make EcM causative agents for changes in tree-ring
(and foliar) 3'9N series, a key point for understanding the overall 3'°N values of N
transferred from soils to trees. However, the inventory of responses and functionalities
of EcM communities under various environmental conditions, particularly the extent
of their isotopic fractionation and implication during N uptake by roots, is not yet
comprehensive. Research in that domain could help elucidate the causes of shifts in
tree-ring 8'°N series.

12.3.2.3 Preference of Trees for Soil N Species

Most trees absorb NH4* and NO; ™, but experiments conducted using fertilization
with 'S N-labelled N demonstrated that various species of trees show improved perfor-
mances if grown with a specific soil N form (Kronzucker et al. 1997; Zhang et al.
2016; Miller and Hawkins 2007). The relative preferences for specific N forms mostly
derive from the energy requirement for the production of proteins and the needed
level of carboxylates (Arnold and van Diest 1991). Many species of deciduous trees
take up NO3;~ preferentially (e.g., Quercus alba, Fagus grandifolia), whereas it is
well established that most coniferous trees lacking the enzyme nitrate reductase
assimilate NH4* more favorably, up to 20 times more than NO;~ (Kronzucker et al.
1997; Templer and Dawson 2004; Islam and Macdonald 2009). Other studies have
addressed the question of assimilation of DON, and found that coniferous trees such
as Chamaecyparis obtusa do not use this form of N-compound (Takebayashi et al.
2010), while Pinus sylvestris and Picea abies assimilate as much DON as NH, ™ if the
soil contains similar amounts of each N form (Ohlund and Nisholm 2002). To explain
long-term deviations between tree-ring 8'°N series of various deciduous species,
McLauchlan and Craine (2012) linked differences to N-form preferences. Given that
soil N compounds undergo different transformation paths and carry distinct §'°N
signals, diverse N preferences by trees growing at the same site or under similar
conditions ought to generate distinct tree-ring 3'°N trends over time.
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12.3.3 N Remobilization, Inter-ring Translocation
and Fractionation Within Stems

Many studies explain well the fractionation along the length of trees, from root to
stems and leaves (Yoneyama et al. 1998; Gebauer et al. 2000; Evans 2001). Briefly,
after assimilation of N-species by trees, enzymatic functions transform NH4* and
NO; ™ into amino acids (Handley et al. 1998). As mentioned previously, these steps
generally enrich the reactants in >N and deplete the products (Yoneyama et al.
1998; Gebauer et al. 2000). Research efforts also indicated that deciduous trees
store N in their bark and wood, whereas coniferous trees predominantly store N
as photosynthetic proteins in their youngest needles. The remobilization of these
amino acids is seasonal. During spring, deciduous trees transfer non-structural N
compounds (arginine and asparagine) from twigs and coarse roots (and stems) to
forming leaves (Bazot et al. 2013; Brereton et al. 2014). For instance, N proportion
in twigs of oak trees decreases by 55% during that period. During summer, leaves
are the dominant storage of N (>50% in June, compared to only 10% in stems;
see also Sect. 12.3.1). During autumn, while leaves are shedding, storage begins in
stems, coarse roots and twigs. For willow trees, the stems become a major N reserve
(Brereton et al. 2014), a pool that new leaves will solicit later on.

During spring, coniferous trees transfer N stored in their youngest needles to
support new growth of leaves and stems (Millard and Proe 1993; Bauer et al. 2000;
Krupa 2003; Millard and Grelet 2010; Couto-Vazquez and Gonzdlez-Prieto 2014).
Translocation generates fractionation and systematically decreases 8' N values in old
needles relative to young needles (Gebauer and Schulze 1991; Couto-Vazquez and
Gonzélez-Prieto 2010). In contrast, there is no systematic difference between recent
and old tree rings as mentioned in Sect. 12.2. The remobilization steps described
above may largely explain why foliage and tree-ring 8'°N trends in coniferous trees
are different from broad-leave trees (Pardo et al. 2006; Gerhart and McLauchlan
2014; Tomlinson et al. 2015).

For further assessing the impact of N mobility in stems on growth ring 8N
values, various research groups investigated the distribution of "N after fertilization
or misting labelled-N compounds (e.g., Elhani et al. 2005; Tomlinson et al. 2014).
In such studies, labelled N detected in rings predating and postdating the marking
events, clearly indicate that rings include both C-bound and mobile N (not removable
by sample pretreatments). However, in most cases, the >N maximal contents always
peak in rings of the marking years (Schleppi et al. 1999; Elhani et al. 2003, 2005;
Tomlinson et al. 2014). These experiments indicate that the inter-ring translocation
of N does not erase the record (direction and year of changes) of environmental
events, but may minimize the extent of its isotopic impact.
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12.4 Tree-Ring 85N Responses to Changing Conditions

12.4.1 Physiological Changes

Some studies suggested that physiological functions, for instance lignification, may
modify the 8'°N values of rings with age of Spanish Pinus radiata, and proposed
further experimentation in order to assess the validity of the hypothesis (Couto-
Véazquez and Gonzdlez-Prieto 2010). Acer saccharum and Fagus grandifolia trees
investigated for assessing the importance of potentially changing root depth with
age on the evolution of §'°N values in leaves (and tree rings by extension) show no
significant changes with age, but significant 3'°N differences between root, stems
and leaves, and averages between the two species (Pardo et al. 2013). These results
suggest fractionation during transport and assimilation of N, and physiological differ-
ences between species. Such a finding agrees with former studies of temperate trees
reporting a general increasing 8'9N trend along the height of trees (Kolb and Evans
2002; Couto-Vazquez and Gonzalez-Prieto 2010), with differences existing between
species.

12.4.2 Regional and Global Climate

Based on the concepts explored in the former sections, in theory climatic conditions
canimprint the §!°N values transferred to tree rings. Namely, temperature and precipi-
tation variations may modify the soil bioavailable N pools through changes in organic
matter degradation, ammonification and nitrification rates, functions of EcM commu-
nities, and depth of drawing available soil water and N species (Savard et al. 2009;
Courty etal. 2010; Duran et al. 2016). Such changes modify the overall isotopic signal
of bioavailable N, which will reverberate in the 8'°N values of trees. Indeed, several
studies have linked foliar 8'3N results from various species of trees with precipitation,
showing either direct or inverse correlations depending on the amounts of precipita-
tion considered (Pardo et al. 2006; and references therein). Likewise, in rain exclusion
experiments (simulated droughts) deciduous trees clearly increased their foliar 8N
values due to a relative decrease in soil N availability (Ogaya and Pefiuelas 2008).
At large scales, plant foliar 3'°N trends correlate inversely with mean annual precip-
itation, but directly with mean annual temperature (MAT) possibly due to higher soil
N availability under moist and warm conditions (Craine et al. 2009; Dawes et al.
2017). Instead, inverse correlation of temperature with foliar 815N values of Populus
balsamifera may reflect changing dominance in soil N transformation pathways,
from DON leaching (low MAT) to denitrification (high MAT; Elmore et al. 2017). In
general, we must keep in mind that soil N availability derives from microbial activity,
and thus hinges on temperature and soil water content. Depending on the habitat,
microbial activity reaches an optimum at a specific range of soil temperature and
water content: too much or too little water reduces or inhibits microbial activity. The
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same is true for temperature. As such, N availability depends on soil temperature and
water content, which ultimately leave their fingerprints on the §'°N values of soil N
compounds.

If leaf 8'5N values of a given time contain climatic information, tree-ring ' N
series should also record this information. This suggestion is supported by a few
studies reporting significant statistical correlations between precipitation or temper-
ature with 89N series from Fagus grandifolia, Pinus strobus, Pinus massioniama,
Fagus sylvatica and Pinus radiata (Savard et al. 2009; Sun et al. 2010; Hérdtle et al.
2013; Couto-Vazquez and Gonzélez-Prieto 2014). Causes for the climate-induced
85N variations include modified ratios of soil NH4*/NO3 ~, and change in soil depths
of root uptake.

Despite these expressions of climatic triggers for changes in tree-ring 8'°N series,
one has to consider the potential limitations when evaluating potential climatic
effects. High frequency changes in climatic parameters may be impractical to resolve
using 8'°N values of annually sampled tree rings, as remobilization and transloca-
tion of N tend to minimize the isotopic responses (Sect. 12.3.3). Such attempt for
quantitative climatic —isotopic correspondence at this resolution may fail. However,
tree-ring 8'°N series may record low-frequency climate variability. This proposition
is supported by a recent investigation of §!°N series in six and ten Picea glauca trees
from two Canadian sites (Savard et al. 2020). The results indicate that short-term
variations (<7 years) show no inter-tree coherence, whereas middle- (7—15 years) to
long-term (>15 years) isotopic changes show strong coherence, encouraging their use
as an environmental indicator. One option that may deserve further testing is to pass
running averages through long tree-ring 8'°N series, and evaluate their correlations
with similarly treated climatic series (Savard et al. 2009; similarly treated for global
climatic changes, see Sect. 12.4.3—cause number 4). As can be seen, climatic tree-
ring 87N studies require further exploration considering that climatic effects may
interplay with anthropogenic impacts, and that improved knowledge on that front
may help deciphering intricate ' N responses of trees to intrinsic and extrinsic
triggers.

12.4.3 Anthropogenic Impacts

There are four main reasons why anthropogenic N emissions are expected to affect the
85N values in rings of specific species of trees. (1) Shifts in signals in N forms assim-
ilated by trees through addition of large anthropogenic N loads with isotopic ratios
markedly different from natural N isotopic abundance. (2) Change in N availability
of the forest ecosystem due to high anthropogenic N supply relative to demands,
modifying the overall soil N isotopic contents. (3) Modifications of the overall soil
microbial structure and related N dynamics having an impact on the signal of N
assimilated by stems under moderate anthropogenic N deposition. (4) Global change
(climate and pCO,) interplaying with one or a combination of the former causes.
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In the first case, much of the N in trees derives from the inorganic soil N pool
(NH4* and NO3 ™), which forms only a small portion of the total soil N, but that has
85N signals that may vary with changes in environmental conditions, particularly
with enhanced N deposition from anthropogenic emissions. After transition of N
contaminants in the soil compartments, trees assimilate anthropogenic N through
roots, or root N possibly combines in stems with anthropogenic N transiting through
leaves. Key studies have invoked changes in the isotopic signals of assimilated N to
account for shifts in tree-ring 81N values (Saurer et al. 2004; Savard et al. 2009).
However, determining the cause of changes in tree-ring 5'°N series is possible only
when N deposits chronically and in abundance, from a dominant source with §'N
values deviate significantly from soil N, and if the other potential causes for change
do not blur this effect.

In the second case, increased N deposition in temperate and boreal forest ecosys-
tems may cause acidification of soils, and nutrient nitrogen imbalances in trees (Aber
et al. 1998; Hogberg et al. 2007). The soil N status may pass from semi-closed to
open, if a high N supply exceeds demands. Such a forest soil would see a high
rate of ’N-poor nitrate loss through leaching, increasing the overall §'°N values of
the residual pool (Fig. 12.2). The chronic exposure of a forest to such a rate of N
input would generate a long-term §'°N increase in tree rings. In contrast, a decrease
of anthropogenic N supply would generate a decrease in long-term tree-ring 85N
series in the recovering forests. This interpretation explains the declining 8'3N series
over 75 years in Picea rubens trees of the central Appalachians (Mathias and Thomas
2018).

In the third case, a combination of modified biogeochemical processes under
low to moderate long-term exposure to anthropogenic N inputs alters the overall
signal of soil N species prior to their assimilation by trees. On a theoretical basis,
one can conceive that microbial communities in forest soils with very low N avail-
ability (<1 kg/ha/y) will quickly adapt to enhanced input and chronic exposure to
anthropogenic N. As mentioned in Sect. 12.3.2, in such conditions, existing EcM
communities may thrive or shift in terms of diversity, and rates of bacterial N trans-
formation may change. A study of four different deciduous species of trees in Indiana
(USA), found long-term increasing and decreasing §'°N trends explained by species-
specific preferences for inorganic N forms while nitrification increases (McLauchlan
and Craine 2012).

In the fourth potential cause for 8'N changes in plant tissue, climatic conditions
or rising pCO, generate long-term changes in soil N processes and N availability. At
a continental scale, centennial, standardized, 10 year resolution tree-ring 81N series
of temperate forests seem to evolve independently from anthropogenic N deposition
in the USA (McLauchlan et al. 2017). The series instead may reflect changes in N
transformation rates and EcM assimilation, and the declining N availability under
rising pCO,. Further along this line, at the global scale, rising atmospheric CO,
may have generated decreasing foliage and tree-ring 3'°N trends through the last
150 years due to prolonged growing seasons, increased photosynthesis and overall
enhanced plant-N demands, ultimately lowering the terrestrial N availability (Craine
et al. 2019).
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To summarize, tree-ring series may record changes in the forest N cycle or reflect
successive N-cycling patterns, but the potential causes for these changes are complex
and rigorous interpretations require excellent knowledge of the setting in which trees
are growing. Given the attenuated nature of the isotopic changes due to intra-tree
N remobilization and intricate enzymatic fractionations along the assimilation path
within trees, attempts to quantify anthropogenic impacts on the forest N cycle using
tree rings or leaves could be scant. On a more positive note, recognizing and dating
perturbations of the forest N cycle using tree-ring 8'°N series appears achievable.

12.4.4 Other Applications

The literature also documents several applications other than the ones presented in
Sects. 12.4.1, 12.4.2 and 12.4.3. For tropical and N,-fixing trees, the reader can
consult Craine et al. (2015). Boreal wetland and tropical trees emit N,O (Rusch
and Rennenberg 1998; Welch et al. 2019), a process significant for understanding
the global N cycling, for which 83N results in stems and emitted gasses may turn
useful. Moreover, tree-ring 8'3N applications exist on effects of wild fires (Cook
2002; Beghin et al. 2011; Hyodo et al. 2012), clear cutting (Pardo et al. 2002; Bukata
and Kyser 2005), and bird nesting (Mizota 2009; Holdaway et al. 2010; Larry et al.
2010). Understandably, researchers should select sites devoid of these perturbations
in order to achieve meaningful results and refine our understanding of climatic and
anthropogenic influences on tree-ring 8'3N series.

12.5 Knowledge Gaps and Future Directions

Studies dealing with the assimilation of N through either leaves or roots have mostly
operated independently, with root assimilation experiments disregarding the potential
foliar assimilation, and vice versa. As a consequence, the proportions of N in stems
contributed from the foliar and rooting systems still need resolving even if these
proportions are highly pertinent for relating tree-ring 8'°N values to mechanistic
processes and environmental changes.

As with ice cores, lakes sediments and skeletal corals reflecting complex and
irrefutable anthropogenic impacts on the atmospheric, aquatic, and marine N cycling,
tree-ring series likely represent another natural archive offering potential for unrav-
elling impacts on forest N cycling. Although each archival system potentially offers
many applications, in all cases the interplaying mechanisms responsible for changes
through time need to be further constrained. With trees, difficulties arise from the
requirement to have an excellent understanding of soil conditions to interpret tree-
ring trends adequately. Further research should address the knowledge gaps on the
steps of fractionation of individual bioavailable N forms in the soil compartments.
Similarly, the role of EcM should be explored as it might be effective or non-effective



374 M. M. Savard and R. T. W. Siegwolf

during the transfer of N forms to roots under the broad ranges of existing soil condi-
tions. Tree-ring studies seldom involve the investigation of the full spectrum of N
transformations in the air—soil-tree continuum. However, such an interdisciplinary
approach may solve several questions regarding the extrinsic controls on tree-ring
815N changes, perhaps with the combination of running well-adapted models of soil
N budgets.
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