Skip to main content

Maximize the Probability of Union-Influenced in Social Networks

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Abstract

Nowadays, the social network plays an important role in advertisements and propaganda, and it creates the research of social influence. The prior works in social influence mainly consider the influence of individual or just the number of them. However, the union related is usual seen that is always together and each one is indispensable such as the team recruitment, in which a company or some business projections wish to recruit several candidates from different positions all to compose a team through the social networks. In this paper, different from targeted influence model, we consider such scenarios as an union-influence and propose the union-influence probability maximization problem (UIPM) to choose seeds to maximize the probability of the all nodes in an union are influenced. Unlike the most problems in previous social influence, the object function of UIPM is not submodularity or supermodularity. Then we design a data-driven \(\beta (1-\frac{1}{\epsilon })\)-approximation algorithm. At last we evaluate the performance on effectiveness and efficiency of the algorithms we proposed by the experiments in real-world social network datasets.

This work is supported by the National Natural Science Foundation of China (Grant NO. 12071478, 61972404), and partially by NSF 1907472.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We said flipping an edge \(e_{uv}\) is that remove it with the probability \(1-p_{uv}\) from the graph and mark it to be “on” if the edge isn’t removed and otherwise be “off”.

  2. 2.

    http://networkrepository.com.

References

  1. Barbieri, N., Bonchi, F., Manco, G.: Topic-aware social influence propagation models. Knowl. Inf. Syst. 37(3), 555–584 (2013). https://doi.org/10.1007/s10115-013-0646-6

    Article  Google Scholar 

  2. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-0_31

    Chapter  Google Scholar 

  3. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 946–957. SIAM (2014)

    Google Scholar 

  4. Chen, S., Fan, J., Li, G., Feng, J., Tan, K.I., Tang, J.: Online topic-aware influence maximization. Proc. VLDB Endow. 8(6), 666–677 (2015)

    Article  Google Scholar 

  5. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Timed influence: computation and maximization. arXiv preprint arXiv:1410.6976 (2014)

  6. Goyal, A., Lu, W., Lakshmanan, L.V.: CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 47–48. ACM (2011)

    Google Scholar 

  7. Guo, J., Zhang, P., Zhou, C., Cao, Y., Guo, L.: Personalized influence maximization on social networks. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 199–208 (2013)

    Google Scholar 

  8. He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social networks under the competitive linear threshold model. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 463–474. SIAM (2012)

    Google Scholar 

  9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  10. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM (2007)

    Google Scholar 

  11. Li, G., Chen, S., Feng, J., Tan, K.l., Li, W.S.: Efficient location-aware influence maximization. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 87–98. ACM (2014)

    Google Scholar 

  12. Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in social networks. In: 2012 IEEE 12th International Conference on Data Mining, pp. 439–448. IEEE (2012)

    Google Scholar 

  13. Lu, W., Chen, W., Lakshmanan, L.V.: From competition to complementarity: comparative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–71 (2015)

    Article  Google Scholar 

  14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New York (1995)

    Book  Google Scholar 

  15. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  16. Nguyen, H.T., Thai, M.T., Dinh, T.N.: Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the 2016 International Conference on Management of Data, pp. 695–710. ACM (2016)

    Google Scholar 

  17. Ohsaka, N., Akiba, T., Yoshida, Y., Kawarabayashi, K.I.: Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  18. Song, C., Hsu, W., Lee, M.L.: Targeted influence maximization in social networks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1683–1692. ACM (2016)

    Google Scholar 

  19. Sun, L., Huang, W., Yu, P.S., Chen, W.: Multi-round influence maximization. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2249–2258. ACM (2018)

    Google Scholar 

  20. Tang, J., Tang, X., Xiao, X., Yuan, J.: Online processing algorithms for influence maximization. In: Proceedings of the 2018 International Conference on Management of Data, pp. 991–1005 (2018)

    Google Scholar 

  21. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1539–1554. ACM (2015)

    Google Scholar 

  22. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 75–86. ACM (2014)

    Google Scholar 

  23. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04565-7

    Book  Google Scholar 

  24. Yang, D.N., Hung, H.J., Lee, W.C., Chen, W.: Maximizing acceptance probability for active friending in online social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 713–721 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rao, G., Wang, Y., Chen, W., Li, D., Wu, W. (2021). Maximize the Probability of Union-Influenced in Social Networks. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics