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Abstract

Exposure to particulate matter (PM) pollution poses a major risk to the environment and
human health. Monitoring PM pollution is thus crucial to understand particle distribu-
tion and mitigation. There has been rapid development of low-cost PM sensors and
advancement in the field of Internet of Things (IoT) that has led to the deployment of the
sensors by technology-aware people in cities. In this study, we evaluate the stability and
accuracy of PM measurements from low-cost sensors crowd-sourced from a citizen
science project in Stuttgart. Long-term measurements from the sensors show a strong
correlation with measurements from reference stations with most of the selected sensors
achieving Pearson correlation coefficients of r > 0.7. We investigate the stability of the
sensors for reproducibility of measurements using five sensors installed at different
height levels and horizontal distances. They exhibit minor variations with low correla-
tion of variation (CV) values of between 10 and 14%. A CV of �10% is recommended
for low-cost sensors. In a dense network, the sensors enable extraction pollution patterns
and trends. We analyse PM measurements from 2 years using space-time pattern
analysis and generate two clusters of sensors that have similar trends. The clustering
shows the relationship between traffic and pollution with most sensors near major roads
being in the same cluster.
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14.1 Introduction

Ambient air pollution poses a crucial environmental risk to human health globally. This
applies especially to urban centres which are characterized by high population densities,
heavy vehicle traffic and high concentration of industries. Fine dust particles also referred
to as particulate matter (PM) are a major component of air pollution whose sources include
dust; combustion particles from power plants, vehicles and industries; and reactions of
chemicals such as SO2 and NOx. They are categorized as PM10 and PM2.5 for particles with
a diameter of less than or equal to 10 μm and 2.5 μm, respectively. PM2.5 passes through the
respiratory system with ease due to the smaller size, thus presenting a higher risk to human
health. To reduce health impacts, the World Health Organization (WHO) has
recommended PM2.5 concentration thresholds of 10 and 25 μg/m3 for annual and daily
averages, respectively (WHO, 2016).

Two major sources of data are used for air quality monitoring, satellite remote sensing
products and ground-based sensors. Columnar aerosol optical depth (AOD), a by-product
of atmospheric correction of optical satellite images, is retrieved based on the inversion of
radiative transfer (RT) equations which model the scattering and absorption of solar
radiation by aerosols, gas and water molecules in the atmosphere. Readily available
satellite AOD include the Moderate Resolution Imaging Spectroradiometer (MODIS)
product MOD04 providing a high temporal resolution AOD for daily-based monitoring
at 3 km (MOD04_3K) and 10 km (MOD04_L2) spatial resolution suited for global and
regional scales. Under European Space Agency’s (ESA) Copernicus programme, Sentinel-
3 provides AOD at 300 m spatial resolution with a revisit time of 1–2 days.

Besides land monitoring satellites, satellite missions dedicated to air quality monitoring
like ESA’s Sentinel-5P measure gaseous and aerosol pollutants. Sentinel-5P continuously
measures gaseous pollutants and aerosol index at a spatial resolution of 7 km� 3.5 km with
daily global coverage. While satellite remote sensing products have the inherent advantage
of extensive spatial coverage, their spatial-temporal resolutions are not capable of mapping
spatial-temporal air quality variations in detail. Ground-based air quality sensors such as
reference monitoring stations, operated by environmental agencies and institutions, are
highly accurate and reliable. However, due to their high installation costs, only a few
reference stations are in use. Low-cost sensors present an opportunity to create dense air
quality monitoring networks.

Air pollution in urban environments has large spatial and temporal variations which
require a dense network of sensors for adequate monitoring. High-quality and accurate air
quality monitoring stations are costly to install in large numbers. Citizen science initiatives
have embarked on installing low-cost sensors for civic engagement in monitoring and
controlling air pollution. Some of the initiatives in Europe include CITI-SENSE (www.citi-
sense.eu), hackAIR (www.hackair.eu) and OK Lab Stuttgart (www.luftdaten.info). These
sensors create a dense network which can supplement air quality data from the few
reference stations. The sensors provide relative and indicative air quality measurements
but at lower accuracies than required for regulatory purposes. They are prone to erroneous
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measurements due to sensor faults, wrong handling by users and interference from meteo-
rological parameters such as temperature and humidity. The measurements also have
substantial data gaps hindering continuous air quality monitoring. Evaluation of the sensors
is thus necessary before using them for mapping spatial and temporal variations of air
pollution.

European countries are required to comply with EU air quality monitoring directives—
Directive (AQD) 2008/50/EC on Air Quality (EU, 2008). The AQD outlines the criteria
and reference measurement methods by member countries using fixed monitoring stations
for legislative purposes. However, the directive also allows for supplementary indicative
measurements from low-cost sensor platforms provided they meet the defined data quality
objective (DQO). The DQO, a measure of the acceptable uncertainty of measurements,
allows uncertainties of up to 50% for PM10 and PM2.5 measurements.

Most of the low-cost PM sensors in the market detect the number and size of dust
particles in the air based on the light-scattering principle. For these sensors, accumulation
of dust particles in the measuring chamber and extreme weather conditions, especially high
humidity, are some of the factors affecting data quality (Castell et al., 2017; Badura et al.,
2018; Bulot et al., 2020). The sensors are evaluated on several aspects: stability and
accuracy of measurements, and their precision. The operational stability is crucial to
determine sensors’ performance over long-term measurement campaigns. They are
assessed for stability and accuracy by comparing with measurements of co-located refer-
ence stations, while precision is determined by testing the reproducibility of data from
different units of the same sensor model. The precision of sensors is evaluated using the
coefficient of variation (CV) which is a ratio of the standard deviation and mean of
measurements. A CV of zero shows a perfect agreement, and a CV of �10% is acceptable
for PM monitoring using low-cost sensors (Sousan et al., 2016; Bulot et al., 2020).

Different models of commercially available low-cost PM sensors have been subjected to
tests in several studies to ascertain their accuracy and precision. The SDS011 sensor by
Nova Fitness is a popular choice due to its low cost (<20 €), low energy requirement and
relatively stable performance. Badura et al. (2018) compared multiple units of four
low-cost sensor models with a TEOM 1400a reference station for 6 months. Multiple
units of SDS011 sensors were assessed for reproducibility where they scored a CV of 7%
indicating good precision. The sensors also exhibited good agreement with the reference
station with R2 values of between 0.79 and 0.86. In another study, Liu et al. (2019)
evaluated three SDS011 sensors co-located with a reference station over 4 months in
Oslo. PM2.5 measurements from the sensors were highly correlated with the reference
station having correlation values r of>0.97. On accuracy assessment, the sensors achieved
good linearity with the reference station attaining R2 values of between 0.55 and 0.71, and
low RMSE values of <6 μg/m3.

In this study, we evaluate the suitability of PM2.5 measurements from a low-cost sensor
network for spatial-temporal mapping of air quality in Stuttgart city. The sensors are
evaluated on three aspects. Firstly, we perform an inter-sensor comparison by placing the
sensors with different vertical and horizontal distances in the same location to determine
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the influence of sensor’s placement on performance. Secondly, we assess the stability and
correlation of selected SDS011 sensors with the nearest reference station using a long-term
dataset spanning over 1 year. Lastly, the dense network of sensors is analysed to identify
PM distribution and patterns in a spatial-temporal context.

14.2 Methodology

14.2.1 Study Area

The city of Stuttgart suffers from high pollution; PM levels have in the past exceeded the
thresholds set by WHO which attributed to high traffic and industrial activities. Geograph-
ically, the city centre and main industrial areas are in a valley which affects air pollution
transport and dispersion (Fig. 14.1).

14.2.2 Datasets

In the study, we use two PM2.5 datasets. The first dataset is from five traffic and background
air quality monitoring stations operated by the state institute for environment,
Landesanstalt für Umwelt Baden-Württemberg (LUBW). The stations are distributed
within and outside the city boundary and are used as reference stations in this study.
From these reference stations, we obtain three PM measurements: PM10 gravimetry, PM2.5

gravimetry and PM10 photometry. The photometric measurements are available in real time
for public information, while the more accurate gravimetric measurements are available
after 10 days. Hourly averages of PM2.5 g gravimetric measurements are retrieved from
LUBW API and stored in a spatial database. We use a dataset of measurements from June
2019 to June 2020.

The second dataset is from Luftdaten network of low-cost sensors by OK Lab Stuttgart
(www.luftdaten.info) with approximately 200–350 operational sensors in the city at any
given time. The primary sensor used in this network is the Nova PM sensor SDS011 which
uses light scattering to measure the number and diameter of dust particles passing through
the detector. OK Lab Stuttgart provides users with a list of components required to build
the sensor as well as firmware and the configuration needed to set up the sensor and to
upload recorded data to a central portal. The components include a micro-controller unit,
SDS011 module, an optional temperature and humidity module and a pipe casing. The cost
of the setup ranges from 25 € to 30 €. The sensors upload PM measurements every 2.5 min
to the Luftdaten portal that is accessible via an API. We use scheduled scripts to retrieve
and store measurements every 15 min. This dataset is available from August 2018 to
August 2020 for sensors inside and near the city boundary. Table 14.1 shows the sensor
specifications (Nova Fitness, 2015).
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In Stuttgart University of Applied Sciences, we installed five SDS011 sensors for further
investigations on their stability when placed at different heights and horizontal distances.
They were installed on the facet of a building which is approximately 3–10 m adjacent to a
secondary-class road. The placement of the sensors is shown in Fig. 14.2.

Table 14.1 Nova SDS011 PM sensor specifications

Item Specification

Measuring parameters PM2.5, PM10

Measuring range 0.0–999.9 μg/m3

Minimum resolution of dust
particles

0.3 μm

Response time < 10 seconds

Relative error Maximum of�15% and � 10 μg/m3 at 25 �C and 50% RH

Temperature range �20–50 �C
Humidity range 0–70% relative humidity (RH)

Service life 8000 h

Fig. 14.2 Installation of low-cost sensors at different points on the wall of building in University of
Applied Sciences, Stuttgart. The building is adjacent to a secondary-class road
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Since most of the sensors do not have a weather module, we use weather data from the
OpenWeatherMap service. The data includes temperature, relative humidity, atmospheric
pressure, wind direction and speed from 23 locations in the study area. An alternative
weather dataset from Deutscher Wetterdienst (DWD) is available but has only one mea-
surement location in the study area. This data is retrieved from the API at 15-min interval
and is available from June 2019 to June 2020.

14.2.3 Data Preparation

In the first step, PM observations from the low-cost sensors are aggregated to hourly
averages followed by removing measurements that lie outside the measuring range. The
hourly aggregates are calculated to match the reference stations’ sampling rate. We then
create a new dataset by combining hourly PM measurements from the sensors and the
reference stations, and the weather data. This fused dataset is created by spatially joining
the low-cost PM measurements to the nearest weather and LUBW stations. Since the
LUBW stations are few and sparsely distributed, a field containing the spatial distance in
metres is calculated to allow analysis of low-cost sensors that are only within a specific
distance from the high-quality stations. This combined dataset ranges from June 2019 to
June 2020.

14.2.4 Low-Cost Sensors’ Evaluation

Repeatability of PM measurements is crucial when using low-cost sensors for air quality
monitoring. The coefficient of variation (CV) is calculated for hourly average PM2.5

measurements to assess sensors’ precision for the sensors installed in the university
building as shown in Eq. (14.1). Temporary CV is calculated for corresponding hourly
average measurements and a final CV determined as an average of all temporary CVs. Two
sets of sensors were compared: sensors placed at the same height but varying horizontal
distances and sensors placed at different heights on the building.

CVt ¼ σt
μt
:100 ð14:1Þ

where CVt is the coefficient of variation at time t and σt and μt are the standard deviation
and mean at time t, respectively.

The sensors’ performance is further assessed by comparing with the LUBW reference
stations by calculating the Pearson correlation coefficient (r) and the root mean square error
(RMSE). In this assessment, PM2.5 measurements from low-cost sensors that are within
1 km radius of the reference stations and within the operating range of 0–70% RH are
selected for analysis. To further examine the quality of the low-cost sensors’
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measurements, we select one low-cost sensor for each reference station with the highest
correlation and perform multilinear regression. In the linear fitting, reference station PM2.5

is the dependent variable, and low-cost sensors PM2.5, temperature and humidity are the
independent variables as shown in Eq. (14.2). The relationships are evaluated using
coefficients of determination (R2) and RMSE.

y ¼ β0þ βxþ βRH þ βT ð14:2Þ

Multilinear regression fitting where y is the reference station PM2.5, x is the low-cost
sensor PM, RH is the relative humidity and T is the temperature.

A dense network of sensors provides a chance to extract underlying air pollution spatial
patterns using long-term measurements. We use ArcGIS Pro Space-Time Pattern Mining
toolbox to analyse PM2.5 distribution and patterns in space and time. First, we create space-
time bins by aggregating PM2.5 measurements into daily averages per sensor location. Data
gaps due to sensor malfunction and transmission issues are filled by interpolating values
based on the temporal trend of PM2.5 values for each sensor. The space-time cubes are then
used to analyse PM concentrations using the time series clustering technique. In this
technique, similar sensors are grouped based on either similar PM2.5 values, increase and
decrease of values at the same time or having similar repeating patterns. We extract cluster
patterns based on PM2.5 values using the long-term dataset from August 2018 to
August 2020.

14.3 Results and Discussion

Figure 14.3 represents the results of PM2.5 measurements from five sensors placed at
varying horizontal and vertical distances. Three sensors placed at the same height of
10 m and short horizontal distances of 2, 9 and 11 m from each other had stable
measurements throughout the 1-month testing period. There were no significant variations
and the sensors showed good precision with a mean CV of 10%. For the vertical assessment
on sensors placed at different heights of 6, 10 and 14 m, the measurements followed a
similar trend but with minor variations and a mean CV of 14%. Sensor 18,560 at 14 m
generally has slightly lower values compared to the other two, but sensor 18,554 at 10 m
has slightly higher values than the sensor at 6 m.

A trend analysis of PM2.5 measurements by the sensors over 1 year shows a good
correlation with the reference stations. Out of the 52 sensors selected, 23 had a correlation
coefficient r values of >0.7, and only 13 had r values of <0.5. In both urban and suburban
settings, most of the sensors were able to detect peaks recorded by the reference stations
with minor variances. The higher variations are observed in cold months starting from
October to March as seen in Fig. 14.4. In the 1 km radius, distance from the reference
station has little influence on the correlation, but the location of sensors has a greater
impact. In the city centre map shown in Fig. 14.5, sensors in similar settings as the
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reference stations are highly correlated regardless of the distance. In such an urban
environment, the sensors are influenced by the distance to the road network and the type
of roads in the vicinity (Table 14.2).

We select the highest correlated sensors for each reference station and fit the
measurements using multilinear regression shown in Eq. (14.2). We examine the relation-
ship between the sensors in Table 14.3 and reference stations for the period June 2019–
June 2020, summer months June–September 2019 and winter months December 2019–
March 2020. The sensors showed good linear correlation over the whole period (R2 values
0.52–0.64) but lower correlations during winter (R2 values 0.38–0.58) as seen in the
comparison charts in Fig. 14.6. This is due to SDS011 sensors not having a heating
mechanism to eliminate water droplets in the measuring chamber which negatively affects
their performance. The best results are the warmer period with R2 values ranging from 0.62
to 0.71. The scatterplots of the multilinear fittings are shown in Fig. 14.7.

A space-time cube created using ArcGIS pro with data aggregated to daily averages
shows that for the period between August 2018 and August 2020, there were 758 unique
sensors in the study area. However, all the sensors had data gaps, and 47% of the

Fig. 14.5 A map of Stuttgart city centre showing Luftdaten low-cost sensors that are within 1 km
radius of LUBW sensors. The symbol size represents the Pearson correlation coefficient (r) of PM2.5

measurements recorded between June 2019 and June 2020
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observations had to be estimated by interpolating values based on the temporal trend of
each sensor. Out of the 758 sensors, only 452 sensors were transmitting data as of August
2020. This could indicate a high failure rate of the sensors or mishandling by users. A
different number of clusters were evaluated to extract patterns in the dataset with two
clusters giving the optimum results. From the time series clustering results in Fig. 14.8,
sensors that are near major roads, Cluster 2, have similar trends with higher values than
sensors in the background. Leveraging on the large number of sensors shows potential in
mapping pollution trends in space and time. For example, in Fig. 14.9 the sensors in Cluster
2 were able to detect lower PM2.5 concentration levels during the lockdown period (March–
August 2020) due to Covid-19 compared to the same period in 2019.

Table 14.2 Long PM2.5 measurement comparison for low-cost sensors within a 1 km radius of each
LUBW reference station

Reference station Bernhausen Ludwigsburg

Stuttgart
Am
Neckartor

Stuttgart
Arnulf-
Klett-Platz

Stuttgart-
Bad
Cannstatt

Code DEBW042 DEBW024 DEBW118 DEBW099 DEBW013

Type Background Background Traffic Traffic Background

Setting Suburban Suburban Urban Urban Urban

Low-cost sensors
within 1 km radius

3 2 20 15 12

Pearson
r

MIN 0.22 0.69 0.13 �0.15 0.18

MEAN 0.45 0.72 0.57 0.52 0.64

MAX 0.68 0.75 0.77 0.76 0.78

RMSE MIN 6.04 6.09 4.14 5.50 4.55

MEAN 39.25 7.06 16.01 6.77 6.76

MAX 104.76 8.03 121.01 9.46 15.23

Table 14.3 Low-cost sensors with the highest correlation for each reference station

Reference
station Bernhausen Ludwigsburg

Stuttgart Am
Neckartor

Stuttgart
Arnulf-Klett-
Platz

Stuttgart-Bad
Cannstatt

Type Background Background Traffic Traffic Background

Setting Suburban Suburban Urban Urban Urban

Luftdaten
sensor ID

25,267 34,589 227 30,030 6655

Distance
(metres)

204 920 246 506 510

Pearson r 0.68 0.75 0.77 0.76 0.78

RMSE 6.95 6.09 4.14 5.50 6.06

No. of
observations

2994 1245 1746 2507 3206
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14.4 Conclusions

Low-cost sensors have the potential to improve spatial-temporal monitoring of PM pollu-
tion and supplement information from the costlier reference monitoring stations. The
sensors exhibit stability and high correlation to reference measurements with varying
degrees of accuracy. Whereas the sensors have lower accuracies and data gaps, using
them in a dense network provides a wide coverage necessary for analysing pollution
patterns and trends. One major challenge is outlier detection since it is hard to separate
high pollution events from erroneous recordings due to the sensor’s fault. In a crowd-

Fig. 14.6 Seasonal comparison of R2 and RMSE statistics

Fig. 14.7 Multilinear fitting results of hourly average reference and PM2.5 measurements after
correcting for relative humidity and temperature effects
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sourced project like OK Lab Stuttgart, sensor installation and placement by the users is not
standardized leading to measurements that are not representative of the location. For more
accurate data collection, extensive sensor calibration, testing and robust outlier detection
and removal techniques should be applied. Machine learning techniques could also be used
to predict and fill in data gaps.
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Fig. 14.8 A map showing the sensors clustered based on PM2.5 values trends over 2 years from
August 2018 to August 2020
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Fig. 14.9 Time series plot showing the average PM2.5 values for each cluster
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included
in the chapter's Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.
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