Skip to main content

Production of Decellularized Tissue-Derived Materials

  • Living reference work entry
  • First Online:
Handbook of the Extracellular Matrix
  • 25 Accesses

Abstract

Many different decellularization techniques can be used to remove cells and cellular components from tissues and organs. Chemical detergents, acids, and alcohols can all be used to kill cells and destroy cell fragments. Biological reagents such as DNase are useful to remove any residual DNA present in the extracellular matrix that could promote an immune response. Physical methods such as freezing, high hydrostatic pressure, and supercritical carbon dioxide can be used to remove cells with the need for dangerous chemicals. In this chapter, the different types of decellularization methods will be summarized and the advantages and limitations of each technique highlighted. In addition, different methods to characterizing the decellularized tissues are discussed. Techniques to recellularize the decellularized matrices and to use the decellularized tissue to generate hydrogel and scaffolds for tissue engineering are summarized. Finally, several different factors that need to be considered before choosing a decellularization protocol are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc. 2008;40:34–8.

    Article  CAS  PubMed  Google Scholar 

  • Ahearne M, Coyle A. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels. J Mech Behav Biomed Mater. 2016;54:259–67.

    Article  CAS  PubMed  Google Scholar 

  • Ahearne M, Fernandez-Perez J. Fabrication of corneal extracellular matrix-derived hydrogels. Methods Mol Biol. 2020;2145:159–68.

    Article  PubMed  Google Scholar 

  • Ahearne M, Lynch AP. Early observation of extracellular matrix-derived hydrogels for corneal stroma regeneration. Tissue Eng Part C Methods. 2015;21:1059–69.

    Article  CAS  PubMed  Google Scholar 

  • Ahearne M, Fernández-Pérez J, Masterton S, Madden PW, Bhattacharjee P. Designing scaffolds for corneal regeneration. Adv Funct Mater. 2020;30:10.

    Article  Google Scholar 

  • Alizadeh M, Rezakhani L, Soleimannejad M, Sharifi E, Anjomshoa M, Alizadeh A. Evaluation of vacuum washing in the removal of SDS from decellularized bovine pericardium: method and device description. Heliyon. 2019;5:e02253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida HV, Cunniffe GM, Vinardell T, Buckley CT, O’brien FJ, Kelly DJ. Coupling freshly isolated CD44(+) infrapatellar fat pad-derived stromal cells with a TGF-beta3 eluting cartilage ECM-derived scaffold as a single-stage strategy for promoting chondrogenesis. Adv Healthc Mater. 2015;4:1043–53.

    Article  CAS  PubMed  Google Scholar 

  • Amadeo F, Barbuto M, Bernava G, Savini N, Brioschi M, Rizzi S, Banfi C, Polvani G, Pesce M. Culture into perfusion-assisted bioreactor promotes valve-like tissue maturation of recellularized pericardial membrane. Front Cardiovasc Med. 2020;7:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beachley V, Ma G, Papadimitriou C, Gibson M, Corvelli M, Elisseeff J. Extracellular matrix particle-glycosaminoglycan composite hydrogels for regenerative medicine applications. J Biomed Mater Res A. 2018;106:147–59.

    Article  CAS  PubMed  Google Scholar 

  • Bo QT, Yan L, Li H, Jia ZH, Zhan AQ, Chen J, Yuan ZQ, Zhang W, Gao BW, Chen R. Decellularized dermal matrix-based photo-crosslinking hydrogels as a platform for delivery of adipose derived stem cells to accelerate cutaneous wound healing. Mater Des. 2020;196:109152.

    Article  CAS  Google Scholar 

  • Burk J, Erbe I, Berner D, Kacza J, Kasper C, Pfeiffer B, Winter K, Brehm W. Freeze-thaw cycles enhance decellularization of large tendons. Tissue Eng Part C Methods. 2014;20:276–84.

    Article  CAS  PubMed  Google Scholar 

  • Charoensombut N, Kawabata K, KIM J, Chang M, Kimura T, Kishida A, Ushida T, Furukawa KS. Internal radial perfusion bioreactor promotes decellularization and recellularization of rat uterine tissue. J Biosci Bioeng. 2022;133:83–8.

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Chen RN, Jhan HJ, Liu DZ, Ho HO, Mao Y, Kohn J, Sheu MT. Development and characterization of acellular extracellular matrix scaffolds from porcine menisci for use in cartilage tissue engineering. Tissue Eng Part C Methods. 2015;21:971–86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YT, Lee HS, Hsieh DJ, Periasamy S, Yeh YC, Lai YP, Tarng YW. 3D composite engineered using supercritical CO2 decellularized porcine cartilage scaffold, chondrocytes, and PRP: role in articular cartilage regeneration. J Tissue Eng Regen Med. 2021;15:163–75.

    Article  PubMed  Google Scholar 

  • Chen MY, Fang JJ, Lee JN, Periasamy S, Yen KC, Wang HC, Hsieh DJ. Supercritical carbon dioxide decellularized xenograft-3D CAD/CAM carved bone matrix personalized for human bone defect repair. Genes (Basel). 2022;13:755.

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Wang C, Gu Y. Combination of freeze-thaw with detergents: a promising approach to the decellularization of porcine carotid arteries. Biomed Mater Eng. 2019;30:191–205.

    CAS  PubMed  Google Scholar 

  • Chou PR, Lin YN, Wu SH, Lin SD, Srinivasan P, Hsieh DJ, Huang SH. Supercritical carbon dioxide-decellularized porcine acellular dermal matrix combined with autologous adipose-derived stem cells: its role in accelerated diabetic wound healing. Int J Med Sci. 2020;17:354–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl SLM, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 2003;12:659–66.

    Article  PubMed  Google Scholar 

  • de Sousa Iwamoto LA, Duailibi MT, Iwamoto GY, de Oliveira DC, Duailibi SE. Evaluation of ethylene oxide, gamma radiation, dry heat and autoclave sterilization processes on extracellular matrix of biomaterial dental scaffolds. Sci Rep. 2022;12:4299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duisit J, Amiel H, Orlando G, Dedriche A, Behets C, Gianello P, Lengele B. Face graft scaffold production in a rat model. Plast Reconstr Surg. 2018;141:95–103.

    Article  CAS  PubMed  Google Scholar 

  • Eastlund T. Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection. Cell Transplant. 1995;4:455–77.

    Article  CAS  PubMed  Google Scholar 

  • Elder BD, Eleswarapu SV, Athanasiou KA. Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials. 2009;30:3749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emami A, Talaei-Khozani T, Vojdani Z, Zarei Fard N. Comparative assessment of the efficiency of various decellularization agents for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2021;109:19–32.

    Article  CAS  PubMed  Google Scholar 

  • Falcones B, Sanz-Fraile H, Marhuenda E, Mendizabal I, Cabrera-Aguilera I, Malandain N, Uriarte JJ, Almendros I, Navajas D, Weiss DJ, Farre R, Otero J. Bioprintable lung extracellular matrix hydrogel scaffolds for 3D culture of mesenchymal stromal cells. Polymers. 2021;13:2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrokhi A, Pakyari M, Nabai L, Pourghadiri A, Hartwell R, Jalili R, Ghahary A. Evaluation of detergent-free and detergent-based methods for decellularization of murine skin. Tissue Eng Part A. 2018;24:955–67.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Perez J, Ahearne M. Decellularization and recellularization of cornea: progress towards a donor alternative. Methods. 2019a;171:86–96.

    Article  PubMed  Google Scholar 

  • Fernandez-Perez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019b;9:14933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Perez J, Kador KE, Lynch AP, Ahearne M. Characterization of extracellular matrix modified poly(epsilon-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Mater Sci Eng C Mater Biol Appl. 2020a;108:110415.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Perez J, Madden PW, Ahearne M. Engineering a corneal stromal equivalent using a novel multilayered fabrication assembly technique. Tissue Eng Part A. 2020b;26:1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Perez J, Madden PW, Brady RT, Nowlan PF, Ahearne M. The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model. PLoS One. 2021;16:e0245406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitriatul N, Sha’ban M, Azhim A. Evaluation of recellularization on decellularized aorta scaffolds engineered by ultrasonication treatment. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:2072–5.

    CAS  PubMed  Google Scholar 

  • Fuchs S, Shariati K, Ma M. Specialty tough hydrogels and their biomedical applications. Adv Healthc Mater. 2020;9:e1901396.

    Article  PubMed  Google Scholar 

  • Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, Kitamura S, Fujisato T, Kishida A. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials. 2010;31:3590–5.

    Article  CAS  PubMed  Google Scholar 

  • Gafarova ER, Grebenik EA, Lazhko AE, Frolova AA, Kuryanova AS, Kurkov AV, Bazhanov IA, Kapomba BS, Kosheleva NV, Novikov IA, Shekhter AB, Golubeva EN, Soloviova AB, Timashev PS. Evaluation of supercritical CO2-assisted protocols in a model of ovine aortic root decellularization. Molecules. 2020;25:3923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials. 2008;29:4775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Ramirez A, Rosmark O, Spegel P, Sward K, Westergren-Thorsson G, Larsson-Callerfelt AK, Rodriguez-Meizoso I. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Rep. 2020;10:4031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldo-Gomez DM, Leon-Mancilla B, del Prado-Audelo ML, Sotres-Vega A, Villalba-Caloca J, Garciadiego-Cazares D, Pina-Barba MC. Trypsin as enhancement in cyclical tracheal decellularization: morphological and biophysical characterization. Mater Sci Eng C Mater Biol Appl. 2016;59:930–7.

    Article  CAS  PubMed  Google Scholar 

  • Gong YY, Xue JX, Zhang WJ, Zhou GD, Liu W, Cao Y. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials. 2011;32:2265–73.

    Article  CAS  PubMed  Google Scholar 

  • Guler S, Aslan B, Hosseinian P, Aydin HM. Supercritical carbon dioxide-assisted decellularization of aorta and cornea. Tissue Eng Part C Methods. 2017;23:540–7.

    Article  CAS  PubMed  Google Scholar 

  • Harrell CR, Djonov V, Fellabaum C, Volarevic V. Risks of using sterilization by gamma radiation: the other side of the coin. Int J Med Sci. 2018;15:274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H, Kishida A. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials. 2010;31:3941–8.

    Article  CAS  PubMed  Google Scholar 

  • Helder MRK, Stoyles NJ, Tefft BJ, Hennessy RS, Hennessy RRC, Dyer R, Witt T, Simari RD, Lerman A. Xenoantigenicity of porcine decellularized valves. J Cardiothorac Surg. 2017;12:56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillebrandt K, Polenz D, Butter A, Tang P, Reutzel-Selke A, Andreou A, Napierala H, Raschzok N, Pratschke J, Sauer IM, Struecker B. Procedure for decellularization of rat livers in an oscillating-pressure perfusion device. J Vis Exp. 2015;(102):e53029.

    Google Scholar 

  • Hu M, Bi H, Moffat D, Blystone M, Decostanza P, Alayi T, Ye K, Hathout Y, Jin S. Proteomic and bioinformatic analysis of decellularized pancreatic extracellular matrices. Molecules. 2021;26:6740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YH, Tseng FW, Chang WH, Peng IC, Hsieh DJ, Wu SW, Yeh ML. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater. 2017;58:238–43.

    Article  CAS  PubMed  Google Scholar 

  • Huang CH, Hsieh DJ, Wu YC, Yen KC, Srinivasan P, Lee HC, Chen YC, Lee SS. Reconstruction of the orbital floor using supercritical CO2 decellularized porcine bone graft. Int J Med Sci. 2021;18:3684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingram JH, Korossis S, Howling G, Fisher J, Ingham E. The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng. 2007;13:1561–72.

    Article  CAS  PubMed  Google Scholar 

  • Isidan A, Liu S, Li P, Lashmet M, Smith LJ, Hara H, Cooper DKC, Ekser B. Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation. 2019;26:e12564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jank BJ, Goverman J, Guyette JP, Charest JM, Randolph M, Gaudette GR, Gershlak JR, Purschke M, Javorsky E, Nazarian RM, Leonard DA, Cetrulo CL, Austen WG, Ott HC. Creation of a bioengineered skin flap scaffold with a perfusable vascular pedicle. Tissue Eng Part A. 2017;23:696–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshvari MA, Afshar A, Daneshi S, Khoradmehr A, Baghban M, Muhaddesi M, Behrouzi P, Miri MR, Azari H, Nabipour I, Shirazi R, Mahmudpour M, Tamadon A. Decellularization of kidney tissue: comparison of sodium lauryl ether sulfate and sodium dodecyl sulfate for allotransplantation in rat. Cell Tissue Res. 2021;386:365–78.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kang B, Cui XL, Lee SH, Lee K, Cho DW, Hwang W, Woodfield TBF, Lim KS, Jang J. Light-activated decellularized extracellular matrix-based bioinks for volumetric tissue analogs at the centimeter scale. Adv Funct Mater. 2021;31:2011252.

    Google Scholar 

  • Kort-Mascort J, Bao G, Elkashty O, Flores-Torres S, Munguia-Lopez JG, Jiang T, Ehrlicher AJ, Mongeau L, Tran SD, Kinsella JM. Decellularized extracellular matrix composite hydrogel bioinks for the development of 3D bioprinted head and neck in vitro tumor models. ACS Biomater Sci Eng. 2021;7:5288–300.

    Article  CAS  PubMed  Google Scholar 

  • Le TM, Morimoto N, Ly NTM, Mitsui T, Notodihardjo SC, Munisso MC, Kakudo N, Moriyama H, Yamaoka T, Kusumoto K. Hydrostatic pressure can induce apoptosis of the skin. Sci Rep. 2020;10:17594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W, Miyagawa Y, Long C, Cooper DK, Hara H. A comparison of three methods of decellularization of pig corneas to reduce immunogenicity. Int J Ophthalmol. 2014;7:587–93.

    PubMed  PubMed Central  Google Scholar 

  • Li N, Li Y, Gong D, Xia C, Liu X, Xu Z. Efficient decellularization for bovine pericardium with extracellular matrix preservation and good biocompatibility. Interact Cardiovasc Thorac Surg. 2018;26:768–76.

    Article  PubMed  Google Scholar 

  • Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29:1065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melchels FP, Khademhosseini A, Hutmacher DW. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc. 2016;11:727–46.

    Article  CAS  PubMed  Google Scholar 

  • Lumpkins SB, Pierre N, Mcfetridge PS. A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater. 2008;4:808–16.

    Article  PubMed  Google Scholar 

  • Luo Z, Bian Y, Su W, Shi L, Li S, Song Y, Zheng G, Xie A, Xue J. Comparison of various reagents for preparing a decellularized porcine cartilage scaffold. Am J Transl Res. 2019;11:1417–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch AP, Ahearne M. Strategies for developing decellularized corneal scaffolds. Exp Eye Res. 2013;108:42–7.

    Article  CAS  PubMed  Google Scholar 

  • Lynch AP, Wilson SL, Ahearne M. Dextran preserves native corneal structure during decellularization. Tissue Eng Part C Methods. 2016;22:561–72.

    Article  CAS  PubMed  Google Scholar 

  • Malchesky PS. Peracetic acid and its application to medical instrument sterilization. Artif Organs. 1993;17:147–52.

    Article  CAS  PubMed  Google Scholar 

  • Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel). 2019;12:3323.

    Article  CAS  PubMed  Google Scholar 

  • Matuska AM, Mcfetridge PS. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J Biomed Mater Res B Appl Biomater. 2015;103:397–406.

    Article  PubMed  Google Scholar 

  • Maurice DM. The structure and transparency of the cornea. J Physiol. 1957;136:263–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020;21:5447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng. 2022;13:20417314221101151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Negishi J, Funamoto S, Kimura T, Nam K, Higami T, Kishida A. Porcine radial artery decellularization by high hydrostatic pressure. J Tissue Eng Regen Med. 2015;9:E144–51.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen DT, O’hara M, Graneli C, Hicks R, Miliotis T, Nystrom AC, Hansson S, Davidsson P, Gan LM, Magnone MC, Althage M, Heydarkhan-Hagvall S. Humanizing miniature hearts through 4-flow cannulation perfusion decellularization and recellularization. Sci Rep. 2018;8:7458.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonaka PN, Campillo N, Uriarte JJ, Garreta E, Melo E, de Oliveira LV, Navajas D, Farre R. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res A. 2014;102:413–9.

    Article  PubMed  Google Scholar 

  • Pang K, Du L, Wu X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials. 2010;31:7257–65.

    Article  CAS  PubMed  Google Scholar 

  • Polisetti N, Schmid A, Schlotzer-Schrehardt U, Maier P, Lang SJ, Steinberg T, Schlunck G, Reinhard T. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Sci Rep. 2021;11:2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poornejad N, Schaumann LB, Buckmiller EM, Momtahan N, Gassman JR, Ma HH, Roeder BL, Reynolds PR, Cook AD. The impact of decellularization agents on renal tissue extracellular matrix. J Biomater Appl. 2016;31:521–33.

    Article  CAS  PubMed  Google Scholar 

  • Poornejad N, Buckmiller E, Schaumann L, Wang H, Wisco J, Roeder B, Reynolds P, Cook A. Re-epithelialization of whole porcine kidneys with renal epithelial cells. J Tissue Eng. 2017;8:2041731417718809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulver SA, Leybovich B, Artyuhov I, Maleev Y, Peregudov A. Production of organ extracellular matrix using a freeze-thaw cycle employing extracellular cryoprotectants. Cryo Letters. 2014;35:400–6.

    CAS  PubMed  Google Scholar 

  • Rahman S, Griffin M, Naik A, Szarko M, Butler PEM. Optimising the decellularization of human elastic cartilage with trypsin for future use in ear reconstruction. Sci Rep. 2018;8:3097.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg. 2004;127:399–405.

    Article  PubMed  Google Scholar 

  • Roth SP, Erbe I, Burk J. Decellularization of large tendon specimens: combination of manually performed freeze-thaw cycles and detergent treatment. Methods Mol Biol. 2018;1577:227–37.

    Article  CAS  PubMed  Google Scholar 

  • Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Funamoto S, Hashimoto Y, Kimura T, Honda T, Hattori S, Kobayashi H, Kishida A, Mochizuki M. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis. 2009;15:2022–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol. 2015;3:43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ, Wahlers T, Stock UA. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol. 2003;143:201–8.

    Article  CAS  PubMed  Google Scholar 

  • Shahraki S, Bideskan AE, Aslzare M, Tavakkoli M, Bahrami AR, Hosseinian S, Matin MM, Rad AK. Decellularization with triton X-100 provides a suitable model for human kidney bioengineering using human mesenchymal stem cells. Life Sci. 2022;295:120167.

    Article  CAS  PubMed  Google Scholar 

  • Sheridan WS, Duffy GP, Murphy BP. Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering. J Mech Behav Biomed Mater. 2012;8:58–70.

    Article  CAS  PubMed  Google Scholar 

  • Simsa R, Padma AM, Heher P, Hellstrom M, Teuschl A, Jenndahl L, Bergh N, Fogelstrand P. Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One. 2018;13:e0209269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smoak MM, Han A, Watson E, Kishan A, Grande-Allen KJ, Cosgriff-Hernandez E, Mikos AG. Fabrication and characterization of electrospun decellularized muscle-derived scaffolds. Tissue Eng Part C Methods. 2019;25:276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spang MT, Christman KL. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 2018;68:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan DC, Mirmalek-SANI SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–64.

    Article  CAS  PubMed  Google Scholar 

  • Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater. 2014;10:5043–54.

    Article  CAS  PubMed  Google Scholar 

  • Topuz B, Gunal G, Guler S, Aydin HM. Use of supercritical CO2 in soft tissue decellularization. Methods Cell Biol. 2020;157:49–79.

    Article  CAS  PubMed  Google Scholar 

  • Townsend JM, Dennis SC, Whitlow J, Feng Y, Wang J, Andrews B, Nudo RJ, Detamore MS, Berkland CJ. Colloidal gels with extracellular matrix particles and growth factors for bone regeneration in critical size rat calvarial defects. AAPS J. 2017;19:703–11.

    Article  CAS  PubMed  Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavken P, Joshi S, Murray MM. Triton-X is most effective among three decellularization agents for ACL tissue engineering. J Orthop Res. 2009;27:1612–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura RD, Padalhin AR, PARK CM, Lee BT. Enhanced decellularization technique of porcine dermal ECM for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2019;104:109841.

    Article  CAS  PubMed  Google Scholar 

  • Vincent MJ, Kozal JS, Thompson WJ, Maier A, Dotson GS, Best EA, Mundt KA. Ethylene oxide: cancer evidence integration and dose-response implications. Dose Response. 2019;17:1559325819888317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Bao J, Wu Q, Zhou Y, Li Y, Wu X, Shi Y, Li L, Bu H. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation. 2015;22:48–61.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yu H, Zhou X, Zhang J, Zhou H, Hao H, Ding L, Li H, Gu Y, Ma J, Qiu J, Ma D. An overview of extracellular matrix-based bioinks for 3D bioprinting. Front Bioeng Biotechnol. 2022;10:905438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Mizuno M, Matsuda J, Nakamura N, Otabe K, Katano H, Ozeki N, Kohno Y, Kimura T, Tsuji K, Koga H, Kishida A, Sekiya I. Comparison of high-hydrostatic-pressure decellularized versus freeze-thawed porcine menisci. J Orthop Res. 2019;37:2466–75.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Xu B, Yang Q, Li X, Ma X, Xia Q, Zhang Y, Zhang C, Wu Y, Zhang Y. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS One. 2014;9:e86723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue JX, Gong YY, Zhou GD, Liu W, Cao Y, Zhang WJ. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials. 2012;33:5832–40.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka H, Morimoto N, Yamaoka T. Decellularization of submillimeter-diameter vascular scaffolds using peracetic acid. J Artif Organs. 2020;23:156–62.

    Article  CAS  PubMed  Google Scholar 

  • Young BM, Shankar K, Allen BP, Pouliot RA, Schneck MB, Mikhaiel NS, Heise RL. Electrospun decellularized lung matrix scaffold for airway smooth muscle culture. ACS Biomater Sci Eng. 2017;3:3480–92.

    Article  CAS  PubMed  Google Scholar 

  • Youngstrom DW, Barrett JG, Jose RR, Kaplan DL. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS One. 2013;8:e64151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemmyo D, Yamamoto M, Miyata S. Fundamental study of decellularization method using cyclic application of high hydrostatic pressure. Micromachines. 2020;11:1008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Johnson JA, Dunne LW, Chen Y, Iyyanki T, Wu Y, Chang EI, Branch-Brooks CD, Robb GL, Butler CE. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps. Acta Biomater. 2016;35:166–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chang C, Qian C, Xiao W, Zhu H, Guo J, Meng Z, Cui W, Ge Z. Photo-crosslinkable amniotic membrane hydrogel for skin defect healing. Acta Biomater. 2021;125:197–207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Ahearne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahearne, M. (2023). Production of Decellularized Tissue-Derived Materials. In: Maia, F.R.A., Oliveira, J.M., Reis, R.L. (eds) Handbook of the Extracellular Matrix. Springer, Cham. https://doi.org/10.1007/978-3-030-92090-6_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92090-6_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92090-6

  • Online ISBN: 978-3-030-92090-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics