Skip to main content

Complex Natural Products Derived from Pyrogallols

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 118

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 118))

Abstract

Pyrogallols (1,2,3-trihydroxybenzenes) are abundant in Nature, easily oxidized, and are central precursors to important natural products. The rich chemistry of their oxidized derivatives, the hydroxy-o-quinones, has been studied for over a century and still attracts the interest of the scientific community. Only in the last ten years have critical insights of pyrogallol chemistry from the mid-twentieth century been applied to modern natural product synthesis. Historical studies of pyrogallol chemistry, including [5+2], [4+2], and formal [5+5] cycloadditions are discussed here and reactivity guidelines established. The application and remarkable selectivity of these cycloadditions is then showcased in the recent syntheses of several fungal natural products, including dibefurin, epicolactone, the merocytochalasans, and preuisolactone A. The authors hope that this contribution will spark further interest in the fascinating chemistry of pyrogallols and natural products derived from them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dastan A, Kilic H, Saracoglu N (2018) One hundred years of benzotropone chemistry. Beilstein J Org Chem 14:1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Novak AJE, Grigglestone CE, Trauner D (2019) A biomimetic synthesis elucidates the origin of preuisolactone A. J Am Chem Soc 141:15515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ellerbrock P (2015) Biomimetic synthesis of polyketides: dibefurin and epicolactone and synthetic studies toward gracilin terpenoids. PhD thesis, Ludwig-Maximilians-Universität München, Munich, Germany

    Google Scholar 

  4. Li W, Wang C (2015) Biodegradation of gallic acid to prepare pyrogallol by Enterobacter aerogenes through substrate induction. BioResources 10:3027

    CAS  Google Scholar 

  5. Novak AJE, Trauner D (2020) Reflections on racemic natural products. Trends Chem 2:1052

    Article  CAS  Google Scholar 

  6. Zhang H, Novak AJE, Jamieson CS, Xue X-S, Chen S, Trauner D, Houk KN (2021) Computational exploration of the mechanism of critical steps in the biomimetic synthesis of preuisolactone A, and discovery of new ambimodal (5 + 2)/(4 + 2) cycloadditions. J Am Chem Soc 143:6601

    Article  CAS  PubMed  Google Scholar 

  7. Girard A (1869) Ch. Friedel, aus Paris den 23. October 1869. Ber Dtsch Chem Ges 2:562

    Google Scholar 

  8. Perkin AG, Steven AB (1903) XX.—Purpurogallin. I. J Chem Soc Trans 83:192

    Google Scholar 

  9. Dean HF, Nierenstein M (1913) Über Purpurogallin II. Ber Dtsch Chem Ges 46:3868

    Article  Google Scholar 

  10. Willstätter R, Heiss H (1923) Über die Konstitution des Purpurogallins. Justus Liebigs Ann Chem 433:17

    Article  Google Scholar 

  11. Dewar MJS (1945) Structure of stipitatic acid. Nature 155:50

    Article  CAS  Google Scholar 

  12. Dewar MJS (1945) Structure of colchicine. Nature 155:141

    Article  CAS  Google Scholar 

  13. King MV, Vries JLD, Pepinsky R (1952) An X-ray diffraction determination of the chemical structure of colchicine. Acta Crystallogr 5:437

    Article  CAS  Google Scholar 

  14. Barltrop JA, Nicholson JS (1948) 30. The oxidation products of phenols. Part I. The structure of purpurogallin. J Chem Soc:116

    Google Scholar 

  15. Haworth RD, Moore BP, Pauson PL (1948) 207. Purpurogallin. Part I. J Chem Soc 1045

    Google Scholar 

  16. Haworth RD, Moore BP, Pauson PL (1949) 685. Purpurogallin. Part II. Synthesis of purpurogallone. J Chem Soc:3271

    Google Scholar 

  17. Caunt D, Crow WD, Haworth RD, Vodoz CA (1950) 338. Purpurogallin. Part III. Synthesis of purpurogallin and some analogues. J Chem Soc 1631

    Google Scholar 

  18. Critchlow A, Haworth RD, Pauson PL (1951) 292. Purpurogallin. Part VI. Mechanism of the oxidation of pyrogallol. J Chem Soc:1318

    Google Scholar 

  19. Dunitz JD (1952) Purpurogallin: by X-ray Fourier synthesis. Nature 169:1087

    Article  Google Scholar 

  20. Salfeld JC (1957) Zum Reaktionsmechanismus der Purpurogallin-Bildung. Angew Chem 69:723

    Google Scholar 

  21. Horner L, Dürckheimer W (1959) Zur Kenntnis der o-Chinone XV1. Zum Mechanismus der Purpurogallin-Bildung. Z Naturforsch B: Anorg Chem Org Chem Biochem Biophys Biol 14:744

    Google Scholar 

  22. Horner L, Dürckheimer W (1959) Zur Kenntnis der o-Chinone XIII. Dimerisierungs-Prinzipien von o-Benzochinonen. Z Naturforsch B: Anorg Chem Org Chem Biochem Biophys Biol 14:742

    Article  Google Scholar 

  23. Horner L, Dürckheimer W (1959) Zur Kenntnis der o-Chinone XIV Benzotropolone aus o-Chinonen. Z Naturforsch B: Anorg Chem Org Chem Biochem Biophys Biol 14:743

    Article  Google Scholar 

  24. Horner L, Walter KH, Dürckheimer W (1961) Zur Kenntnis der o-Chinone, XIX. Hydrolysestudien an 2-substituierten 1.3-Dicarbonylverbindungen als Beitrag zum Mechanismus der Purpurogallinbildung. Chem Ber 94:2881

    Google Scholar 

  25. Horner L, Dürckheimer W, Weber K-H, Dölling K (1964) Zur Kenntnis der o-Chinone, XXIV. Synthese, Struktur und Eigenschaften von 1′.2′-Dihydroxy-6.7-benzotropolonen. Chem Ber 97:312

    Google Scholar 

  26. Horner L, Dölling K, Geyer E (1967) Studien zur Benzotropolonbildung aus 3-Hydroxy-o-benzochinon. Monatsh Chem 98:852

    Article  CAS  Google Scholar 

  27. Salfeld J-C, Baume E (1964) Über die Oxydation von Pyrogallol und Pyrogalloderivaten, IV. Die Konstitution der Purpurogallin-carbonsäure-(9). Chem Ber 97:307

    Google Scholar 

  28. Dürckheimer W, Paulus EF (1985) Mechanism of purpurogallin formation: an adduct from 3-hydroxy-o-benzoquinone and 4,5-dimethyl-o-benzoquinone. Angew Chem Int Ed 24:224

    Article  Google Scholar 

  29. Yanase E, Sawaki K, Nakatsuka S (2005) The isolation of a bicyclo[3.2.1] intermediate during formation of benzo­tropolones, a common nucleus found in black tea pigments: theaflavins. Synlett 2005:2661

    Google Scholar 

  30. Bentley R (2008) A fresh look at natural tropolonoids. Nat Prod Rep 25:118

    Article  CAS  PubMed  Google Scholar 

  31. Pauson PL (1955) Tropones and tropolones. Chem Rev 55:9

    Article  CAS  Google Scholar 

  32. Takino Y, Ferretti A, Flanagan V, Gianturco M, Vogel M (1965) The structure of theaflavin, a polyphenol of black tea. Tetrahedron Lett 6:4019

    Article  Google Scholar 

  33. Matsuo Y, Tanaka T, Kouno I (2009) Production mechanism of proepitheaflagallin, a precursor of benzotropolone-type black tea pigment, derived from epigallocatechin via a bicyclo[3.2.1]octane-type intermediate. Tetrahedron Lett 50:1348

    Google Scholar 

  34. Matsuo Y, Yamada Y, Tanaka T, Kouno I (2008) Enzymatic oxidation of gallocatechin and epigallocatechin: effects of C-ring configuration on the reaction products. Phytochemistry 69:3054

    Article  CAS  PubMed  Google Scholar 

  35. Kawabe Y, Aihara Y, Hirose Y, Sakurada A, Yoshida A, Inai M, Asakawa T, Hamashima Y, Kan T (2013) Synthesis of theaflavins via biomimetic oxidative coupling reactions. Synlett 24:479

    Article  CAS  Google Scholar 

  36. Klostermeyer D, Knops L, Sindlinger T, Polborn K, Steglich W (2000) Novel benzotropolone and 2H-furo[3,2-b]benzopyran-2-one pigments from Tricholoma aurantium (Agaricales). Eur J Org Chem 2000:603

    Article  Google Scholar 

  37. Kerschensteiner L, Löbermann F, Steglich W, Trauner D (2011) Crocipodin, a benzotropolone pigment from the mushroom Leccinum crocipodium (Boletales). Tetrahedron 67:1536

    Article  CAS  Google Scholar 

  38. Perkin AG, Steven AB (1906) LXXXII—a product of the action of isoamyl nitrite on pyrogallol. J Chem Soc Trans 89:802

    Google Scholar 

  39. Horner L, Dürckheimer W (1959) Notizen: Zur Kenntnis der o-Chinone XII. 1 o-Chinone aus Brenzcatechin-Derivaten. Z Naturforsch B: Anorg Chem Org Chem Biochem Biophys Biol 14:741

    Article  Google Scholar 

  40. Salfeld J-C (1960) Über die Oxydation von Pyrogallol und Pyrogallolderivaten, II. Die Konstitution dimerer 3-Hydroxy-o-benzochinone. Chem Ber 93:737

    Google Scholar 

  41. Teuber H-J, Heinrich P, Dietrich M (1966) Zur Konstitution der farblosen, dimeren 3-Hydroxy-benzochinone-(1.2). Justus Liebigs Ann Chem 696:64

    Google Scholar 

  42. Teuber H-J, Dietrich M (1967) Das Perkinsche dimere 3-Hydroxy-benzochinon-(1.2), ein Tricyclo[5.3.1.12.6]dodecan-Derivat. Chem Ber 100:2908

    Google Scholar 

  43. Teuber H-J, Steinmetz G (1965) Reaktionen mit Nitrosodisulfonat, XXVI. 3-Hydroxy-naphthochinone-(1.2) und ihre farblosen Dimeren. Chem Ber 98:666

    Google Scholar 

  44. Čečelsky J (1901) Über ein Condensationsproduct des Trimethylphloroglucins. Monatsh Chem 20:779

    Article  Google Scholar 

  45. Erdtman H, Moussa G, Nilsson M (1969) Phenol dehydrogenations. 13. Structure of “cedrone”—spectral evidence. Acta Chem Scand 23:2515

    Google Scholar 

  46. Fales HM, Beisler JA, Silverton JV, Penttila A, Horn DHS (1971) Structure of the “symmetrical cedrone.” J Am Chem Soc 93:4850

    Article  CAS  Google Scholar 

  47. Flaig W, Ploetz T, Biergans H (1955) Zur Kenntnis der Huminsäuren, XIV. Mitteilung Bildung und Reaktionen einiger Hydroxy-chinone. Justus Liebigs Ann Chem 597:196

    Google Scholar 

  48. Critchlow A, Haslam E, Haworth RD, Tinker PB, Waldron NM (1967) The oxidation of some pyrogallol and purpurogallin derivatives. Tetrahedron 23:2829

    Article  CAS  PubMed  Google Scholar 

  49. Tkachev VV, Aldoshin SM, Shilov GV, Komissarov VN, Sayapin YA, Korobov MS, Borodkin GS, Minkin VI (2007) Structure of the oxidative dimerization product of 4,6-di(tert-butyl)pyrogallol. Russ Chem Bull 56:276

    Article  CAS  Google Scholar 

  50. Brill GM, Premachandran U, Karwowski JP, Henry R, Cwik DK, Traphagen LM, Humphrey PE, Jackson M, Clement JJ, Burres NS, Kadam S, Chen RH, McAlpine JB (1996) Dibefurin, a novel fungal metabolite inhibiting calcineurin phosphatase activity. J Antibiot 49:124

    Article  CAS  Google Scholar 

  51. Ellerbrock P, Armanino N, Trauner D (2014) Biomimetic synthesis of the calcineurin phosphatase inhibitor dibefurin. Angew Chem Int Ed 53:13414

    Article  CAS  Google Scholar 

  52. Ellerbrock P, Armanino N, Ilg MK, Webster R, Trauner D (2015) An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nat Chem 7:879

    Article  CAS  PubMed  Google Scholar 

  53. Bao R, Tian C, Zhang H, Wang Z, Dong Z, Li Y, Gao M, Zhang H, Liu G, Tang Y (2018) Total syntheses of asperchalasines A–E. Angew Chem Int Ed 57:14216

    Article  CAS  Google Scholar 

  54. Long X, Wu H, Ding Y, Qu C, Deng J (2021) Biosynthetically inspired divergent syntheses of merocytochalasans. Chem 7:212

    Article  CAS  Google Scholar 

  55. da Silva Araújo FD, de Lima Fávaro LC, Araújo WL, de Oliveira FL, Aparicio R, Marsaioli AJ (2012) Epicolactone—natural product isolated from the sugarcane endophytic fungus Epicoccum nigrum. Eur J Org Chem 2012:5225

    Article  CAS  Google Scholar 

  56. Talontsi FM, Dittrich B, Schüffler A, Sun H, Laatsch H (2013) Epicoccolides: antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. associated with Theobroma cacao. Eur J Org Chem 2013:3174

    Google Scholar 

  57. Yan Z, Li J, Ye G, Chen T, Li M, Liang Y, Long Y (2020) Fused multicyclic polyketides with a two-spiro-carbon skeleton from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002. RSC Adv 10:28560

    Article  CAS  Google Scholar 

  58. Yan Z, Huang C, Guo H, Zheng S, He J, Lin J, Long Y (2020) Isobenzofuranone monomer and dimer derivatives from the mangrove endophytic fungus Epicoccum nigrum SCNU-F0002 possess α-glucosidase inhibitory and antioxidant activity. Bioorg Chem 94:103407

    Google Scholar 

  59. Long X, Ding Y, Deng J (2018) Total synthesis of asperchalasines A, D, E, and H. Angew Chem Int Ed 57:14221

    Article  CAS  Google Scholar 

  60. Cao P-R, Zheng Y-L, Zhao Y-Q, Wang X-B, Zhang H, Zhang M-H, Yang T, Gu Y-C, Yang M-H, Kong L-Y (2021) Beetleane A and epicoane A: two carbon skeletons produced by Epicoccum nigrum. Org Lett 23:3274

    Article  CAS  PubMed  Google Scholar 

  61. Zhu H, Chen C, Tong Q, Zhou Y, Ye Y, Gu L, Zhang Y (2021) Progress in the chemistry of cytochalasans. Prog Chem Org Nat Prod 114:1

    PubMed  Google Scholar 

  62. Zhu H, Chen C, Xue Y, Tong Q, Li X-N, Chen X, Wang J, Yao G, Luo Z, Zhang Y (2015) Asperchalasine A, a cytochalasan dimer with an unprecedented decacyclic ring system, from Aspergillus flavipes. Angew Chem Int Ed 54:13374

    Article  CAS  Google Scholar 

  63. Zhu H, Chen C, Tong Q, Li X-N, Yang J, Xue Y, Luo Z, Wang J, Yao G, Zhang Y (2016) Epicochalasines A and B: two bioactive merocytochalasans bearing caged epicoccine dimer units from Aspergillus flavipes. Angew Chem Int Ed 55:3486

    Article  CAS  Google Scholar 

  64. Zhu H, Chen C, Tong Q, Yang J, Wei G, Xue Y, Wang J, Luo Z, Zhang Y (2017) Asperflavipine A: a cytochalasan heterotetramer uniquely defined by a highly complex tetradecacyclic ring system from Aspergillus flavipes QCS12. Angew Chem Int Ed 56:5242

    Article  CAS  Google Scholar 

  65. Wei G, Chen C, Tong Q, Huang J, Wang W, Wu Z, Yang J, Liu J, Xue Y, Luo Z, Wang J, Zhu H, Zhang Y (2017) Aspergilasines A–D: four merocytochalasans with new carbon skeletons from Aspergillus flavipes QCS12. Org Lett 19:4399

    Article  CAS  PubMed  Google Scholar 

  66. Wu Z, Tong Q, Zhang X, Zhou P, Dai C, Wang J, Chen C, Zhu H, Zhang Y (2019) Amichalasines A-C: three cytochalasan heterotrimers from Aspergillus micronesiensis PG-1. Org Lett 21:1026

    Article  CAS  PubMed  Google Scholar 

  67. Reyes JR, Winter N, Spessert L, Trauner D (2018) Biomimetic synthesis of (+)-aspergillin PZ. Angew Chem Int Ed 57:15587

    Article  CAS  Google Scholar 

  68. Trost BM, Ohmori M, Boyd SA, Okawara H, Brickner SJ (1989) Palladium-catalyzed synthesis of macrocycles. A total synthesis of (–)-aspochalasin B. J Am Chem Soc 111:8281

    Google Scholar 

  69. Vedejs E, Rodgers JD, Wittenberger SJ (1988) A sulfur-mediated total synthesis of zygosporin E. J Am Chem Soc 110:4822

    Article  CAS  Google Scholar 

  70. Xu L-L, Chen H-L, Hai P, Gao Y, Xie C-D, Yang X-L, Abe I (2019) (+)- and (–)-Preuisolactone A: a pair of caged norsesquiterpenoidal enantiomers with a tricyclo[4.4.01,6.02,8]decane carbon skeleton from the endophytic fungus Preussia isomera. Org Lett 21:1078

    Google Scholar 

  71. Wu Z, Wang Y, Liu D, Proksch P, Yu S, Lin W (2016) Antioxidative phenolic compounds from a marine-derived fungus Aspergillus versicolor. Tetrahedron 72:50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Alexander J.E. Novak thanks New York University for a MacCracken and a Ted Keusseff fellowship. Dirk Trauner would like to thank the U.S. National Institutes of Health for financial support (grant R01GM126228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Trauner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Novak, A.J.E., Trauner, D. (2022). Complex Natural Products Derived from Pyrogallols. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Progress in the Chemistry of Organic Natural Products 118. Progress in the Chemistry of Organic Natural Products, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-92030-2_1

Download citation

Publish with us

Policies and ethics