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Abstract. We stochastically model two bacterial populations which can
produce toxins. We propose to analyse this biological system by follow-
ing the dynamics of a single bacterium during its lifetime, as well as its
progeny. We study the lifespan of a single bacterium, the number of divi-
sions that this bacterium undergoes, and the number of toxin molecules
that it produces during its lifetime. We also compute the mean number
of bacteria in the genealogy of the original bacterium and the number of
toxin molecules produced by its genealogy. We illustrate the applicability
of our methods by considering the bacteria Bacillus anthracis and antibi-
otic treatment, making use of in vitro experimental data. We quantify,
for the first time, bacterial toxin production by exploiting an in vitro
assay for the A16R strain, and make use of the resulting parameterised
model to illustrate our techniques.
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1 Introduction

Mathematical modelling has proven to be a robust approach to analyse biological
systems of relevance in infection and immunity at different scales, such as the
molecular [24], intra-cellular [6], within-host [7] and population (or epidemic)
levels [4]. While deterministic models are usually more amenable for mathemati-
cal analysis [1], stochastic methods are generally better suited for characterising
biological systems involving few individuals [23] or cells [7], or when extinction
events play a crucial role [5]. Markov processes, either in discrete or continuous
time, have been used in such instances given their mathematical convenience [2].
While non-Markovian dynamics are typically more difficult to analyse [8,14], the
Markovian or memoryless property usually allows for mathematical tractability
and efficient numerical implementation [12].
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When considering a population of cells in an immune response, or bacteria
during an infection, competition for resources is usually represented in terms of
logistic growth models [1]. On the other hand, when individuals behave indepen-
dently (e.g., they do not compete for common resources), the theory of branching
processes [18] has been widely applied to follow these populations (of cells or bac-
teria) over time. Multi-type branching processes [20] allow one to consider differ-
ent types of bacteria, which might represent different phenotypes [9] or different
spatial locations (e.g., tissues or organs) within the body during an infection [7].
The complexity of these processes, and their mathematical tractability, typically
depends on the number of compartments considered, and the number of poten-
tial events that can occur in the system (e.g., division or death of bacteria, or
bacterial movement across compartments) [26].

Novel technological developments have recently allowed for single cells to be
precisely followed, together with their progeny [15,17,19,27]. This motivates the
idea of mathematically tracking single individuals in these stochastic systems,
and to quantify summary statistics related to the lifetime of a single individual
(or bacterium in our case), and its progeny or genealogy. Analysing the dynamics
of the system by tracking a single individual has already been proposed in related
areas such as population dynamics [13] and, more recently, when analysing the
stochastic journey of T lymphocytes in lymph nodes and blood [16].

Bacterial systems have been widely studied with stochastic methods in the
past [6,7], yet less attention has been paid to the study of toxin-producing bac-
teria. The production of toxins over time can be especially relevant for certain
kinds of bacteria for which the secreted toxins can cause suppression of the
host’s immune system, and are a key component of pathogenesis in vivo [3].
In this work, we illustrate our single cell approach in a stochastic model of
two types of toxin-producing bacteria. In particular, we focus on computing the
expected lifespan of a single bacterium in this system, as well as the number
of toxin molecules secreted and the number of divisions undergone during its
lifetime. We also compute two summary statistics that are directly related to
the progeny of a single bacterium: the number of bacteria within its genealogy
and the number of toxin molecules produced by its genealogy. We illustrate our
results by focusing on the bacterium Bacillus anthracis and its anthrax toxins.
For the A16R B. anthracis strain we quantify for the first time the rate of pro-
tective antigen (PA) production making use of published data from an in vitro
experimental assay [28]. The resulting parametrized mathematical model serves
to illustrate our techniques and allows us to consider antibiotic treatment.

The structure of the manuscript is as follows: in Sect. 2 we introduce the
mathematical model. The single bacterium model is discussed in Sect. 3. A num-
ber of summary statistics of interest related to a single bacterium and its progeny
are analytically studied in Sect. 3. Model calibration for the A16R B. anthracis
strain is carried out in Sect. 4 using data from an in vitro experimental assay,
and the parameterised model is used in this section to illustrate our methods.
Concluding remarks are provided in Sect. 5.
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2 The Mathematical Model

Our interest is in modelling a system with two toxin-producing bacterial popu-
lations (see Fig. 1). Type-i bacteria, i ∈ {1, 2}, can divide with rate λi, produce
toxins with rate γi, die with rate μi, or become type-j bacteria, j ∈ {1, 2} j �= i,
with rate νij . We propose a stochastic model of these events as a continuous time
Markov chain (CTMC) X = {(B1(t), B2(t), T (t)) : t ≥ 0}, where Bi(t) denotes
the number of type-i bacteria at time t ≥ 0, i ∈ {1, 2}, and T (t) represents the
number of toxin molecules at time t ≥ 0. We assume that bacteria and toxins
behave independently of each other, and that toxins are degraded at rate ξ. The
space of states of X is given by S = N

3
0, where we denote N0 = N∪ {0}, and the

possible one-step transitions between states in X are depicted in Fig. 1.

Fig. 1. Left. Diagram showing the dynamics of the two toxin-producing bacterial
populations. Right. Allowed transitions between states in X and their rates.

Since each bacterium behaves independently, one can analyse the dynamics
of a single bacterium without explicitly modelling the dynamics of the rest of
the population. In Sect. 3, we propose a method which allows us to analyse the
dynamics of a single bacterium and its progeny. In particular, and by means of
first step arguments, we compute the lifespan of a single bacterium, the number
of divisions that this bacterium undergoes, and the number of toxin molecules
that it produces during its lifetime. We also compute the mean number of cells
within the genealogy of the original bacterium and the number of toxin molecules
produced by this progeny. We note that a particular advantage of this single
bacterium approach is that it can be implemented regardless of the complexity
of the model, i.e., regardless of the number of compartments in the model, two
compartments in our model (see Fig. 1), or the number of events governing the
toxin and bacterial dynamics across compartments, as long as the dynamics of
each bacterium is independent of the rest of the population.

3 Dynamics of a Single Bacterium and Its Progeny

Our interest in this section is in following a single bacterium of type i during
its lifespan, instead of focusing on the population CTMC X . In particular, we
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consider a single bacterium (either of type-1 or type-2) at time t = 0, and follow
its dynamics during its lifetime by studying the continuous time Markov chain
Y = {Y (t) : t > 0}, where Y (t) represents the “state” of the bacterium at time
t ≥ 0. By state, we mean that the bacterium can be of type-1, type-2 or dead
at any given time. Thus, Y is defined on the state space S = {B1, B2, ∅}, where
Bi here represents the bacterium being of type-i at any given instant, and ∅
indicates the bacterium is dead. If the bacterium is of type-i at a given instant,
meaning that Y is in state Bi, production of a toxin molecule does not change
its state, and Y remains in Bi. If a division occurs, we randomly choose one of
the daughter cells and consider it to be our bacterium of interest, which remains
in state Bi.

∅
∅

∅

∅

∅
∅

apoptosis∅

B1 bacterium

B2 bacterium

Fig. 2. Example of a stochastic realisation of the population process, starting with one
type-1 bacterium. Solid arrows indicate the single bacterium being tracked in process
Y. In this realisation, the stochastic process Y visits states B1 → B1 → B1 → B2 →
B1 → B1 → ∅. Consecutive visits to the same state are due to bacterial division. Toxin
production is not explicitly depicted here but can occur during the process.

Figure 2 shows one realisation of the population dynamics for our biological
system. The state of the stochastic process Y only depends on tracking the orig-
inal bacterium throughout its lifetime, which is depicted via solid arrows. When
a division occurs, a daughter is randomly chosen to represent the tracked bac-
terium of interest. In the following sections we investigate a number of stochastic
descriptors or summary statistics that relate to the single bacterium, as well as
its genealogy.

3.1 Lifespan of a Bacterium

For an initial bacterium of type i, i ∈ {1, 2}, we define its lifespan as the random
variable, Ti = inf{t ≥ 0 : Y (t) = ∅|Y (0) = Bi}. We consider the Laplace-Stieltjes
transform of Ti given by

φi(s) = E[e−sTi ], Re(s) ≥ 0,
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which one can compute with first step arguments. This leads to the following
equations

φ1(s) =
λ1

Δ1 + s
φ1(s) +

μ1

Δ1 + s
+

γ1
Δ1 + s

φ1(s) +
ν12

Δ1 + s
φ2(s),

φ2(s) =
λ2

Δ2 + s
φ2(s) +

μ2

Δ2 + s
+

γ2
Δ2 + s

φ2(s) +
ν21

Δ2 + s
φ1(s),

with Δi = λi + μi + γi + νij , j ∈ {1, 2}, j �= i. These equations simplify to

(μ1 + ν12 + s) φ1(s) = ν12φ2(s) + μ1,

(μ2 + ν21 + s) φ2(s) = ν21φ1(s) + μ2.

Interestingly, we can see that these equations do not depend on the parameters
λi (division rate) or γi (toxin production rate). This is consistent with our expec-
tations, since division and toxin production events do not affect the lifespan of a
bacterium, as can be noticed from inspecting the dynamics in Fig. 1 and Fig. 2.
We can find solutions for these equations as follows

φ1(s) = a−1(s)
1

μ1 + ν12 + s

(
ν12μ2

μ2 + ν21 + s
+ μ1

)
,

φ2(s) = a−1(s)
1

μ2 + ν21 + s

(
ν21μ1

μ1 + ν12 + s
+ μ2

)
,

with a(s) = 1 − ν12ν21
(μ1+ν12+s)(μ2+ν21+s) . We also note that these expressions would

simplify for particular scenarios of the bacterial system. For instance, if the
change from type-1 to type-2 bacterium was irreversible so that ν21 = 0, one
obtains

φ1(s) =
1

μ1 + ν12 + s

(
ν12μ2

μ2 + s
+ μ1

)
,

φ2(s) =
μ2

μ2 + s
,

where we note that in this case T2 ∼ Exp(μ2). This is an interesting and impor-
tant case to consider since the bacterial conversion with rate ν12 and reversion
rate ν21 = 0 represents the irreversible antibiotic treatment we study and analyse
in Sect. 4

One can use the Laplace-Stieltjes transform to compute any order moment
of Ti by direct differentiation. For example, the average lifetime of a type-i
bacterium is given by

E[T1] = a−1(0)
1

μ1 + ν12

(
ν12

μ2 + ν21
+ 1

)
,

E[T2] = a−1(0)
1

μ2 + ν21

(
ν21

μ1 + ν12
+ 1

)
.
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The Laplace-Stieltjes transform allows one to find higher order moments. One
such example is the second order moment of the lifespan of a bacterium starting
in state 1 when ν21 = 0, which is given by

E[T 2
1 ] =

2
μ1 + ν12

(
1

μ1 + ν12
+

ν12
μ2(μ1 + ν12)

+
ν12
μ2
2

)
.

3.2 Number of Toxin Molecules Produced by a Bacterium in Its
Lifetime

We denote by ωi the random variable that describes the number of toxin
molecules produced by the tracked bacterium during its lifetime, if this bac-
terium is initially of type i, i ∈ {1, 2}. We consider its probability generating
function defined as follows

ψi(z) = E[zωi ],

for |z| ≤ 1. By means of a first step argument, one can show that

(μ1 + γ1(1 − z) + ν12)ψ1(z) = ν12ψ2(z) + μ1,

(μ2 + γ2(1 − z) + ν21)ψ2(z) = ν21ψ1(z) + μ2.

The equations above have the following solutions

ψ1(z) = b−1(z)
1

μ1 + γ1(1 − z) + ν12

(
ν12μ2

μ2 + ν21 + γ2(1 − z)
+ μ1

)
,

ψ2(z) = b−1(z)
1

μ2 + γ2(1 − z) + ν21

(
ν21μ1

μ1 + ν12 + γ1(1 − z)
+ μ2

)
,

with b(z) = 1 − ν12ν21
(μ1+γ1(1−z)+ν12)(μ2+γ2(1−z)+ν21)

. Once again, the particular case
where ν21 = 0 leads to simplified solutions, given by

ψ1(z) =
1

μ1 + γ1(1 − z) + ν12

(
μ2

μ2 + γ2(1 − z)
ν12 + μ1

)
,

ψ2(z) =
μ2

μ2 + γ2(1 − z)
.

We note that in this case ω2 ∼ Geo( μ2
μ2+γ2

). If ν21 = 0, it is also possible to
obtain the probability mass function of ω1, which for n = 0, 1, 2, . . ., it can be
written as follows

P(ω1 = n) = γn
1

(
μ2

γ2 + μ2
ν12 + μ1

)
(γ1 + ν12 + μ1)−(n+1)

+ ν12
μ2

γ2 + μ2

n−1∑
k=0

γk
1

(
γ2

γ2 + μ2

)n−k

(γ1 + ν12 + μ1)−(k+1),
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where the sum above is equal to 0 when n = 0. The mean number of toxin
molecules produced by a single bacterium can be computed from direct differ-
entiation of ψi(z) with respect to z. One can show that

E[ω1] = b−1(1)
1

μ1 + ν12

(
γ2ν12

μ2 + ν21
+ γ1

)
,

E[ω2] = b−1(1)
1

μ2 + ν21

(
γ1ν21

μ1 + ν12
+ γ2

)
.

3.3 Number of Division Events in the Lifespan of a Bacterium

Let us consider now the number of times that the tracked bacterium divides
during its lifetime, Di, if this bacterium is originally of type i, i ∈ {1, 2}. We can
define its probability generating function as Φi(z) = E[zDi ] for |z| ≤ 1. Φi(z)
satisfies the following equations:

Δ1Φ1(z) = λ1zΦ1(z) + μ1 + γ1Φ1(z) + ν12Φ2(z),
Δ2Φ2(z) = λ2zΦ2(z) + μ2 + γ2Φ2(z) + ν21Φ1(z).

These equations have solutions

Φ1(z) = c−1(z)
1

μ1 + ν12 + λ1(1 − z)

(
μ2ν12

μ2 + ν21 + λ2(1 − z)
+ μ1

)
,

Φ2(z) = c−1(z)
1

μ2 + ν21 + λ2(1 − z)

(
μ1ν21

μ1 + ν12 + λ1(1 − z)
+ μ2

)
,

with c(z) = 1− ν12ν21
(μ1+ν12+λ1(1−z))(μ2+ν21+λ2(1−z)) . We note that these expressions,

as one would expect, do not depend on the toxin production rate, γi. The desired
average number of divisions is then given by

E[D1] = c−1(1)
1

μ1 + ν12

(
λ2ν12

μ2 + ν21
+ λ1

)
,

E[D2] = c−1(1)
1

μ2 + ν21

(
λ1ν21

μ1 + ν12
+ λ2

)
.

Once again, particular scenarios might lead to simplified expressions. If one sets
ν21 = 0, this yields

E[D1] =
1

μ1 + ν12

(
λ2ν12
μ2

+ λ1

)
,

E[D2] =
λ2

μ2
.

This choice implies D2 ∼ Geo( μ2
μ2+λ2

).
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3.4 Number of Bacteria in the Genealogy of a Bacterium

We focus now on the random variable describing the number of bacteria in
the genealogy of the original bacterium (see Fig. 2). We denote this number
as Gi, with i indicating the original bacterium type. We restrict ourselves in
what follows to computing the expectation value, Ĝi = E[Gi]. If Gi denotes the
number of bacteria in the progeny (not including the original bacterium itself, so
that G1 = 15 in the particular realization depicted in Fig. 2), then its expectation
satisfies

Ĝ1(μ1 + ν12 − λ1) = 2λ1 + ν12(Ĝ2 + 1),
Ĝ2(μ2 + ν21 − λ2) = 2λ2 + ν21(Ĝ1 + 1).

These quantities will be positive and finite only if μ1+ν12 > λ1 and μ2+ν21 > λ2,
which become conditions for the number of cells in the genealogy to be finite.
Solutions are given by

Ĝ1 = g−1 1
μ1 + ν12 − λ1

(
2λ1 + ν12

λ2 + 2ν21 + μ2

μ2 + ν21 − λ2

)
,

Ĝ2 = g−1 1
μ2 + ν21 − λ2

(
2λ2 + ν21

λ1 + 2ν12 + μ1

μ1 + ν12 − λ1

)
,

with g = 1− ν12ν21
(μ1+ν12−λ1)(μ2+ν21−λ2)

. In order for these averages to be positive, we

also require g > 0. This leads to a third condition; namely, we have: ν21+μ2−λ2
ν21

>
ν12

ν12+μ1−λ1
. For the specific case when ν21 = 0, one obtains

Ĝ1 =
1

μ1 + ν12 − λ1

(
2λ1 + ν12

λ2 + μ2

μ2 − λ2

)
,

Ĝ2 =
2λ2

μ2 − λ2
.

3.5 Number of Toxin Molecules Produced by the Genealogy
of a Bacterium

Our interest is to mathematically describe a system of toxin-producing bacteria,
thus, we now compute the number of toxin molecules produced by the progeny
of the original bacterium. We then introduce, Ωi, the number of toxin molecules
produced by the genealogy of an initial type-i bacterium, including any toxins
produced by this bacterium. We denote its expectation value by Ω̂i = E[Ωi], for
i ∈ {1, 2}. We note that the number of toxin molecules produced by the genealogy
of the single bacterium will be finite if and only if the number of bacteria within
the genealogy is finite, so that the conditions on the model parameters described
in the previous section are needed in what follows. The expected values, Ω̂1 and
Ω̂2, satisfy

(μ1 + ν12 − λ1)Ω̂1 = γ1 + ν12Ω̂2,

(μ2 + ν21 − λ2)Ω̂2 = γ2 + ν21Ω̂1,
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with solutions

Ω̂1 = g−1 1
μ1 + ν12 − λ1

(
γ1 + ν12

γ2
μ2 + ν21 − λ2

)
,

Ω̂2 = g−1 1
μ2 + ν21 − λ2

(
γ2 + ν21

γ1
μ1 + ν12 − λ1

)
.

When ν21 = 0 the equations simplify to

Ω̂1 =
1

μ1 + ν12 − λ1

(
γ1 + ν12

γ2
μ2 − λ2

)
,

Ω̂2 =
γ2

μ2 − λ2
.

We note that there exist links between the expected number of toxin molecules
produced by the genealogy and the expected number of bacteria in this geneal-
ogy. For instance, when ν21 = 0 the average number of bacteria in the genealogy
of an original type-2 bacterium, including this original bacterium, is Ĝ2 + 1 =
2λ2

μ2−λ2
+ 1 = μ2+λ2

μ2−λ2
(see Sect. 3.4). It is clear that, in this case, the genealogy is

formed by type-2 bacteria only since ν21 = 0. Each of these type-2 bacteria will
produce, on average, γ2

λ2+μ2
toxins (from a geometric distribution) before they

decide their fate (division or death). Thus, the mean number of toxin molecules
produced by the genealogy is μ2+λ2

μ2−λ2
× γ2

λ2+μ2
= γ2

μ2−λ2
= Ω̂2, as computed above.

4 Results

We now make use of the previous results to analyse the behaviour of Bacillus
anthracis bacteria, which causes anthrax infection, in the presence of antibi-
otic treatment. We consider that non-treated fully vegetative Bacillus anthracis
bacteria form the B1 compartment in Fig. 1, while the second compartment,
B2, represents bacteria affected by the antibiotic. B. anthracis produces three
anthrax exotoxin components [22]: protective antigen (PA), lethal factor (LF)
and edema factor (EF). The effectiveness of the anthrax toxins in infecting cells
and causing symptoms is mainly due to the protective antigen (PA) capsule [21],
with which the other toxin components can form complexes [22]. Therefore, we
focus here on the production of PA when implementing our methods. We con-
sider an antibiotic treatment, such as Ciprofloxacin, that inhibits bacterial divi-
sion and triggers cellular death, so that we shall assume μ2 ≥ μ1 and λ2 = 0.
It is to be expected that the production rate of toxin molecules by antibiotic-
treated cells would be at most equal to non-treated cells, and thus, we consider
γ2 ≤ γ1. Bacteria become treated at some rate ν12, and we set ν21 = 0 to indi-
cate that the process is irreversible. In Sect. 4.1 we leverage data from an in vitro
assay for the A16R strain of B. anthracis [28] to inform our choice of parameters
(λ1, μ1, γ1). On the other hand, a global sensitivity analysis of model parameters
(ν12, μ2, γ2) allows us in Sect. 4.2 to study the impact of treatment on the sum-
mary statistics introduced and analysed in Sect. 3, illustrating the applicability
of our techniques.
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4.1 Parameter Calibration

In Ref. [28] the authors examine the growth of the A16R B. anthracis strain by
measuring the viable count of colony forming units (CFU) per mL in the assay
for the following time points: t ∈ {4 h, 8 h, 12 h, 16 h, 20 h}. They also develop a
sandwich ELISA and cytotoxicity-based method to quantify the concentration
of PA every two hours during the experiment, from t = 4 h to t = 26 h. In order
to exploit this data set, and to estimate representative values for λ1, μ1 and γ1,
we consider its corresponding deterministic model (for the first compartment of
non-treated bacteria)

dB

dt
= (λ1 − μ1)B,

dT

dt
= γ1B − ξT,

where B(t) is the concentration (in units [CFU/mL]) of bacteria at time t,
and T (t) the concentration of PA (in units of [ng/mL]). Results from Ref. [28,
Figure 1] support bacterial exponential growth during the first 12 h of the exper-
iment. The bacterial population reaches a carrying capacity after this point,
indicating that there exists competition for resources. Thus, since our interest
(see Fig. 1) is the analysis of non-competing bacteria, we focus here on the first
period of the experiment: t ∈ [4 h, 12 h]. In particular, we set λ1 = 0.8 h−1 from
Ref. [10], and use bacterial counts from Ref. [28, Figure 1] and toxin concentra-
tion measurements from Ref. [28, Figure 4] to estimate the bacterial death rate,
μ1, and the toxin production rate, γ1. Since the dynamics of the toxin popula-
tion is likely to be dominated by the production of toxins from an exponentially
growing bacterial population, we neglect toxin degradation and set ξ = 0 in
what follows. We acknowledge that this might lead to underestimating the rate
γ1. Yet, the rate ξ has no effect on any of the summary statistics analysed in
Sect. 3.

Parameters μ1 and γ1 are estimated making use of the curve fit function
from the scipy.optimize package in Python, which is based on a non-linear least
squares method. This leads to point estimates μ1 = 0.43 h−1 and γ1 = 4.63 ×
10−6 ng CFU−1h−1. A comparison between model predictions and observed
measurements is provided in Fig. 3. Finally, in order to use our estimate for γ1
in the stochastic model from Fig. 1, one needs to convert units (from mass in ng to
number of molecules). To do this, we note that PA has a relative molecular mass
of 83 kD [11,25]. This means that 7.2 × 109 PA molecules have an approximate
weight of 1ng, so that γ1 = 3.34 × 104 molecules CFU−1h−1.

4.2 Summary Statistics

We now perform a global sensitivity analysis on a subset of the model parameters
for the summary statistics of interest introduced in Sect. 3. We consider the
stochastic model of Fig. 1 with baseline parameter values: μ1 = 0.43 h−1, λ1 =
0.8 h−1 and γ1 = 3.34 × 104 molecules CFU−1 h−1, according to the calibration
carried out in the previous section. To analyse the role of antibiotic treatment (B1
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Fig. 3. Mathematical model predictions compared to experimental observations from
Ref. [28].

represents non-treated bacteria and B2 antibiotic-treated bacteria, respectively),
we explore parameter regimes with ν12 > 0, ν21 = λ2 = 0, μ2 ≥ μ1 and γ2 ≤ γ1.

In Fig. 4 we look at summary statistics directly related to the lifetime of
a single bacterium. We assume at time t = 0 we start with one non-treated
bacterium. We first carry out a sensitivity analysis for parameters μ2, ν12 and
γ2. This allows one to analyse the impact of treatment on the tracked bacterium
during its lifespan. On the other hand, even when we have a baseline value for
μ1, we vary this parameter when considering the number of divisions undergone
by the tracked bacterium, for illustrative purposes. The top-left plot in Fig. 4
shows the impact of treatment on the mean lifespan of the bacterium, E[T1],
which varies between 1 and 3 h for the parameter values considered. Increasing
antibiotic efficiency (in terms of larger values of μ2 and ν12) leads to shorter
lifespans. We note that if one assumes μ2 = μ1 = 0.43 h−1, no effect of treatment
on the lifespan is expected, and the value of ν12 (which is directly related to
the rate at which antibiotic can affect bacteria, as well as the concentration of
antibiotic present in the system) becomes irrelevant. Finally, increasing values
of μ2 make the value of ν12 increasingly relevant, as one would expect.

The top-right plot of Fig. 4 shows the expected number of divisions undergone
by the bacterium, E[D1], for a range of μ1 and ν12 values. We note here that
since λ2 = 0, μ2 has no effect on D1. Thus, we vary μ1 instead. As one would
expect, increasing values of ν12 and μ1 lead to fewer bacterial divisions. We
indicate that in order for the bacterial population to grow as a function of time,
each bacterium (on average) needs to undergo more than one division events. We
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Fig. 4. Top-left. Expected lifespan [hours] of a bacterium. Top-right. Expected
number of divisions during the lifetime of a bacterium. Bottom. Expected number
of toxin molecules produced by a bacterium during its lifetime for different values of
ν12 ∈ {1, 5, 10} (left to right). Units for γ2 are molecules CFU−1 h−1.

highlight the value E[D1] = 1 by a green line in Fig. 4, which is achieved when
ν12 + μ1 = λ1. The bottom row in Fig. 4 shows the effect of varying ν12, μ2 and
γ2 on the expected number of toxin molecules produced by a bacterium during
its lifetime, E[ω1]. Increasing values of μ2 and ν12 can have a significant effect
on the number of toxin molecules produced. The values γ2 = γ1 = 3.34 × 104

molecules CFU−1 h−1 and μ2 = μ1 = 0.43 h−1 represent no treatment effect for
the tracked bacterium, and for these choices the value of ν12 has no effect on
E[ω1]. On the other hand, decreasing values of γ2 have a significant effect on the
predicted number of PA molecules produced, especially for increasing values of
ν12.

In Fig. 5 we present summary statistics of relevance to the genealogy of a
B1 bacterium. The top plot of Fig. 5 shows the effect that parameters ν12 and
μ1 have on the mean number of cells in the genealogy of a single bacterium,
1 + Ĝ1. We note that, in this plot, the white area corresponds to parameter
combinations for which the mean number of cells in the genealogy is not finite.
This happens when λ1 ≥ μ1 + ν12. Values of μ1 + ν12 larger but close to λ1 lead
to increasing the mean number of cells in the genealogy, as one would expect.
On the other hand, the bottom row of Fig. 5 shows the effect on the number
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Fig. 5. Top. Mean number of bacteria in the genealogy of a single bacterium. Bottom.
Mean number of toxin molecules secreted by the genealogy of a single bacterium for
different values of ν12 ∈ {1, 5, 10} (from left to right). Units for γ2 are molecules
CFU−1 h−1.

of toxin molecules secreted by the genealogy of a single bacterium for varying
values of μ2 and γ2. We investigate these parameter values for three different
choices of ν12 ∈ {1, 5, 10}. It is clear that γ2 has a large impact on the expected
value, Ω̂1, which mimics the similar effect that γ2 has on its single bacterium
counterpart, E[ω1] (see Fig. 4). Figure 4 and Fig. 5 show the significance of ν12 on
the expected number of toxin molecules produced. Interestingly, as ν12 becomes
much larger than λ1, we observe that E[ω1] approaches Ω̂1, since in this case
1 + Ĝ1 ≈ 1 represents the single bacterium of interest.

5 Conclusions

We have defined and analysed a two-compartment stochastic model for toxin-
producing bacteria. Our focus has been a number of summary statistics that
relate to the lifetime of a single bacterium (tracked over time) and its progeny. In
particular, we have studied the lifespan of the bacterium, the number of divisions
undergone and the number of toxin molecules produced during its lifetime, as



Analysis of Stochastic Single-Bacterium Dynamics 223

well as the number of cells in its genealogy, and the number of toxin molecules
produced by this progeny. We illustrated in Sect. 4 our methods by focusing on
the growth of B. anthracis bacteria in the presence of antibiotic treatment. To the
best of our knowledge, this is the first approach to quantify the PA production
rate in this system. We acknowledge that our estimate for this rate might be an
underestimate, given that we neglected PA degradation.

We point out that, although the model considered in Fig. 1 is relatively sim-
ple, consisting only of two bacterial compartments, our single bacterium app-
roach can be applied to any network topology of compartments, as long as the
bacteria behave independently, so that the dynamics of a single bacterium can
be effectively followed. Implementing our techniques in more complex systems,
such as those representing in vivo infection and bacterial dissemination between
different organs, remains the aim of future work. We also indicate that, while we
have analysed probability generating functions and Laplace-Stieltjes transforms
in Sect. 3, we have focused in practice, for simplicity and brevity, on computing
the first order moments for the summary statistics of interest. However, this app-
roach can be easily generalised to compute higher order moments or probability
mass functions.
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source, provide a link to the Creative Commons license and indicate if changes were
made.
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chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
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