Skip to main content

A Deep Learning Approach Based on Feature Reconstruction and Multi-dimensional Attention Mechanism for Drug-Drug Interaction Prediction

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13064))

Included in the following conference series:

Abstract

Drug-drug interactions occur when two or more drugs are taken simultaneously or successively. Early discovery of drug-drug interactions can effectively prevent medical accidents and reduce medical costs. There are already many methods to discover drug-drug interactions. However, the current methods still have much space for performance improvement. We propose a new deep learning approach named FM-DDI based on feature reconstruction and multi-dimensional attention mechanism for drug-drug interactions prediction. The feature reconstruction extracts low-dimensional but informative vector representations of features for the drug from heterogeneous data sources, which can prevent information loss. The deep neural network model based on multi-dimensional attention mechanism gives high weight to critical feature dimensions, which can effectively learn critical information. FM-DDI achieves substantial performance improvement over several state-of-the-art methods for drug-drug interaction prediction. The results indicate that FM-DDI can provide a valuable tool for extracting and learning drug features to predict new drug-drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu, Y., et al.: DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method. Briefings Bioinf. 22(3), bbaa205 (2021)

    Google Scholar 

  2. Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W., Liu, S.: A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics 36(15), 4316–4322 (2020)

    Article  CAS  Google Scholar 

  3. Edwards, I.R., Aronson, J.K.: Adverse drug reactions: definitions, diagnosis, and management. Lancet 356(9237), 1255–1259 (2000)

    Article  CAS  Google Scholar 

  4. Foucquier, J., Guedj, M.: Analysis of drug combinations: current methodological landscape. Pharmacol. Res. Perspect. 3(3), e00149 (2015)

    Google Scholar 

  5. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  6. Kastrin, A., Ferk, P., Leskošek, B.: Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning. PLOS ONE 13(5), e0196865 (2018)

    Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Law, V., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42(D1), D1091–D1097 (2014)

    Google Scholar 

  9. Lv, Z., Wang, P., Zou, Q., Jiang, Q.: Identification of sub-Golgi protein localization by use of deep representation learning features. Bioinformatics 36(24), 5600–5609 (2020)

    Article  CAS  Google Scholar 

  10. Percha, B., Garten, Y., Altman, R.B.: Discovery and explanation of drug-drug interactions via text mining. Pac. Symp. Biocomput. 2012, 410–421 (2012)

    Google Scholar 

  11. Prechelt, L.: Early stopping—but when? In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_5

    Chapter  Google Scholar 

  12. Ryu, J.Y., Kim, H.U., Lee, S.Y.: Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Nat. Acad. Sci. 115(18), E4304–E4311 (2018)

    Article  CAS  Google Scholar 

  13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  14. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The chemistry development kit (CDK): an open-source java library for chemo-and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003)

    Article  CAS  Google Scholar 

  15. Vilar, S., Harpaz, R., Uriarte, E., Santana, L., Rabadan, R., Friedman, C.: Drug-drug interaction through molecular structure similarity analysis. J. Am. Med. Inform. Assoc. 19(6), 1066–1074 (2012)

    Article  Google Scholar 

  16. Wan, E.A.: Neural network classification: a Bayesian interpretation. IEEE Trans. Neural Netw. 1(4), 303–305 (1990)

    Article  CAS  Google Scholar 

  17. Xu, H., Sang, S., Lu, H.: Tri-graph information propagation for polypharmacy side effect prediction. arXiv preprint arXiv:2001.10516 (2020)

  18. Zeng, M., Zhang, F., Wu, F.X., Li, Y., Wang, J., Li, M.: Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36(4), 1114–1120 (2020)

    CAS  PubMed  Google Scholar 

  19. Zhang, P., Wang, F., Hu, J., Sorrentino, R.: Label propagation prediction of drug-drug interactions based on clinical side effects. Sci. Rep. 5(1), 1–10 (2015)

    Google Scholar 

  20. Zhang, W., Chen, Y., Liu, F., Luo, F., Tian, G., Li, X.: Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform. 18(1), 1–12 (2017)

    Article  Google Scholar 

  21. Zheng, Y., Peng, H., Zhang, X., Zhao, Z., Yin, J., Li, J.: Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases. BMC Bioinform. 19(19), 49–59 (2018)

    Google Scholar 

  22. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, J., Ouyang, J., Zhao, C., He, H., Dong, X. (2021). A Deep Learning Approach Based on Feature Reconstruction and Multi-dimensional Attention Mechanism for Drug-Drug Interaction Prediction. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics