Skip to main content

The Stress State of the Workpiece at the Radius of Matrix Rounding During Drawing, Considering the Bending Moment

  • Conference paper
  • First Online:
Advanced Manufacturing Processes III (InterPartner 2021)

Abstract

Most of the research aims to find and introduce production methods of drawing that make it possible to manufacture parts with given mechanical characteristics in local areas, using various technological methods. However, the variety of ways to increase the deformation and wall thickness of the final product is based on a deep theoretical analysis of the process and knowledge of the laws governing the development of plastic flow in the deformation zone. Mathematical modeling of cold plastic metal working processes is an essential and helpful tool for studying the laws governing the transition of workpieces to a plastic state. Such analytical expression is obtained in the paper for calculating the increment of meridional stresses on the drawing edge of the matrix when drawing cylindrical parts. Considering the bending moment acting in the meridional direction in the equilibrium equations is an essential aspect of the formula An increase in tensile stresses is facilitated by a decrease in the matrix rounding radius and an increase in the thickness of the workpiece. The obtained conclusions allow us to recommend the formula for use in production when designing die tooling, especially when drawing thin-walled parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, C., Li, P., Fan, L.: Blank shape design for sheet metal forming based on geometrical resemblance. Procedia Eng. 81, 1487–1492 (2014)

    Article  Google Scholar 

  2. Kurpe, O., Kukhar, V., Puzyr, R., Burko, V., Balalayeva, E., Klimov, E.: Electric motors power modes at synchronization of roughing rolling stands of hot strip mill. In: Chenchevoy, V. et al. (eds.) CONFERENCE 2020, PAEP, Kremenchuk, Ukraine, pp. 404–412. IEEE (2020). https://doi.org/10.1109/PAEP49887.2020.9240818

  3. Hattalli, V., Srivatsa, S.: Sheet metal forming processes–recent technological advances. Mater. Today Proc. 5(1), 2564–2574 (2018)

    Article  Google Scholar 

  4. Wang, X., Cao, J.: An analytical prediction of flange wrinkling in sheet metal forming. J. Manuf. Process. 2(2), 100–107 (2000)

    Article  Google Scholar 

  5. Kukhar, V., Grushko, A., Vishtak, I.: Shape indexes for dieless forming of elongated forgings with sharpened end by tensile drawing with rupture. Solid State Phenom. 284, 408–415 (2018)

    Article  Google Scholar 

  6. Weiping, D., Qichao, W., Xiaoming, W., Bin, W.: Stress analysis of cylindrical parts during deep drawing based on Dynaform. In: IOP Conference Series: Materials Science and Engineering, CONFERENCE 2018, ICAMMT, vol. 423, p. 012166 (2018)

    Google Scholar 

  7. Haikova, T., Puzyr, R., Savelov, D., Dragobetsky, V., Argat, R., Sivak, R.: The research of the morphology and mechanical characteristics of electric bimetallic contacts. In: Chenchevoy, V., et al. (eds.) CONFERENCE 2020, PAEP, Kremenchuk, Ukraine, pp. 579–582. IEEE (2020). https://doi.org/10.1109/PAEP49887.2020.9240847

  8. Dewang, Y., Panthi, S., Hora, M.: Some aspects of blank holding force in stretch flanging process. Mater. Today Proc. 5(2), 6789–6798 (2018)

    Article  Google Scholar 

  9. Sivak, R.: Evaluation of metal plasticity and research of the mechanics of pressure treatment processes under complex loading. Eastern-Eur. J. Enterp. Technol. 6/7(90), 34–41 (2017)

    Google Scholar 

  10. Lal, R., Choubey, V., Dwivedi, J., Kumar, S.: Study of factors affecting Springback in sheet metal forming and deep drawing process. Mater. Today Proc. 5(2), 4353–4358 (2018)

    Article  Google Scholar 

  11. Chiorescu, D., Chiorescu, E., Olaru, S.: The analysis of the parameters for deep drawing of cylindrical parts. In: MATEC Web of Conferences, CONFERENCE 2018, IManE and E, Chisinau, Moldova, vol. 178, p. 02011 (2018)

    Google Scholar 

  12. Holloman, J.: Tensile deformation. Trans. Am. Inst. Min. Metall. Eng. 162, 269–290 (1945)

    Google Scholar 

  13. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London 193, 281–297 (1948)

    MathSciNet  MATH  Google Scholar 

  14. Kukhar, V., Kurpe, O., Klimov, E., Balalayeva, E., Dragobetskii, V.: Improvement of the Improvement of the method for calculating the metal temperature loss on a Coilbox unit at the rolling on hot strip mills. Int. J. Eng. Technol. (UAE) 7(4), 35–39 (2018)

    Article  Google Scholar 

  15. Ogorodnikov, V.А, Dereven’ko, I.А, Sivak, R.I.: On the influence of curvature of the trajectories of deformation of a volume of the material by pressing on its plasticity under the conditions of complex loading. Mater. Sci. 54(3), 326–332 (2018). https://doi.org/10.1007/s11003-018-0188-x

    Article  Google Scholar 

  16. Malinov, L., Malysheva, I., Klimov, E., Kukhar, V., Balalayeva, E.: Effect of particular combinations of quenching, tempering and carburization on abrasive wear of low-carbon manganese steels with metastable austenite. Mater. Sci. Forum 945, 574–578 (2019)

    Article  Google Scholar 

  17. Puzyr, R., Shchetynin, V., Arhat, R., Sira, Yu., Muravlov, V., Kravchenko, S.: Numerical modeling of pipe parts of agricultural machinery expansion by stepped punches. In: Dijmărescu, M.-R., et al. (eds.) IOP Conference Series, CONFERENCE 2020, ICAMaT, Bucharest, Romania, vol. 1018, p. 012013 (2021). https://doi.org/10.1088/1757-899X/1018/1/012013

  18. Felder, C., Levrau, M., Mantel, N.G., Dinh, T.: Identification of the work of plastic deformation and the friction shear stress in wire drawing. Wear 286–287, 27–34 (2012). https://doi.org/10.1016/j.wear.2011.05.029

    Article  Google Scholar 

  19. Wang, X., Jin, J., Deng, L.: Review: state-of-the-art of stamping-forging process with sheet metal blank. J. Harbin Inst. Technol. (New Ser.) 24(3), 1–16 (2017)

    Google Scholar 

  20. Zhang, R., Shao, Z., Lin, J.: A review on modelling techniques for formability prediction of sheet metal forming. Int. J. Lightweight Mater. Manuf. 1(3), 115–125 (2018)

    Google Scholar 

  21. Leminen, V., Matthews, S., Pesonen, A., Tanninen, P., Varis, J.: Combined effect of blank holding force and forming force on the quality of press-formed paperboard trays. Procedia Manuf. 17, 1120–1127 (2018)

    Article  Google Scholar 

  22. Neto, D., Oliveira, M., Alves, J., Menezes, L.: Influence of the plastic anisotropy modelling in the reverse deep drawing process simulation. Mater. Des. 60, 368–379 (2014)

    Article  Google Scholar 

  23. Yoon, J., Dick, R., Barlat, F.: A new analytical theory for earing generated from anisotropic plasticity. Int. J. Plast. 27(8), 1165–1184 (2011)

    Article  Google Scholar 

  24. Ozsoy, M., Esener, E., Ercan, S., Firat, M.: Springback predictions of a dual-phase steel considering elasticity evolution in stamping process. Arab. J. Sci. Eng. 39(4), 3199–3207 (2014)

    Article  Google Scholar 

  25. Slater, R.: Engineering and Plasticity: Theory and Application to Metal Forming Processes. Macmillan International Higher Education, London (1977)

    Book  Google Scholar 

  26. Puzyr, R., Markov, O., Savielov, D., Chernysh, A., Sira, Y.: Finite-element simulation of the process of the tubular workpiece expansion in the manufacture of automotive parts. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 433–442. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_43

    Chapter  Google Scholar 

  27. Cao, T.-S., Vachey, C., Montmitonnet, P., Bouchard, P.-O.: Comparison of reduction ability between multi-stage cold drawing and rolling of stainless steel wire – experimental and numerical investigations of damage. J. Mater. Process. Technol. 217, 30–47 (2015)

    Article  Google Scholar 

  28. Sosenushkin, E.N., Yanovskaya, E.A., Sosenushkin, A.E., Emel’yanov, V.V.: Mechanics of nonmonotonic plastic deformation. Russ. Eng. Res. 35(12), 902–906 (2015). https://doi.org/10.3103/S1068798X15120199

    Article  Google Scholar 

  29. Arhat, R., Puzyr, R., Shchetynin, V., Moroz, M.: The manufacture of cylindrical parts by drawing using a telescopic punch. In: Tonkonogyi, V., et al. (eds.) InterPartner 2020. LNME, pp. 363–372. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_36

    Chapter  Google Scholar 

  30. Wu, T.-Y.: A study of slider motion with servo press. M.Sc. thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu (2014)

    Google Scholar 

  31. Singh, C.P., Agnihotri, G.: Formability analysis at different friction conditions in axis-symmetric deep drawing process. Mater Today Proc. 4, 2411–2418 (2017)

    Article  Google Scholar 

  32. Tang, B., Lu, X., Wang, Z., Zhao, Z.: Springback investigation of anisotropic aluminum alloy sheet with a mixed hardening rule and Barlat yield criteria in sheet metal forming. Mater. Des. 31(4), 2043–2050 (2010)

    Article  Google Scholar 

  33. Pipard, J., Balan, T., Abed-Meraim, F., Lemoine, X.: Elasto-visco-plastic modeling of mild steels for sheet forming applications over a large range of strain rates. Int. J. Solids Struct. 50, 2691–2700 (2013)

    Article  Google Scholar 

  34. Singh, S., Gupta, A., Mahesh, K.: A study on the extent of ironing of EDD steel at elevated temperature. CIRP J. Manuf. Sci. Technol. 3(1), 73–79 (2010)

    Article  Google Scholar 

  35. Hrudkina, N., Aliieva, L., Abhari, P., Markov, O., Sukhovirska, L.: Investigating the process of shrinkage depression formation at the combined radialbackward extrusion of parts with a flange. Eastern-Eur. J. Enterp. Technol. 5(1–101), 49–57 (2019)

    Google Scholar 

  36. Markov, O., Gerasimenko, O., Kukhar, V., Abdulov, O., Ragulina, N.: Computational and experimental modeling of new forging ingots with a directional solidification: the relative heights of 1.1. J. Braz. Soc. Mech. Sci. Eng. 41(8), 310 (2019)

    Google Scholar 

  37. Kapustová, M., Sobota, R.: The design of drawing process of cylindrical cup with oval bottom using computer simulation. In: MATEC Web of Conferences, CONFERENCE 017, ICMME, Shanghai, China, vol. 95, p. 10008 (2018)

    Google Scholar 

  38. Liu, Y., Li, F., Li, C., Xu, J.: Enhancing formability of spherical bottom cylindrical parts with magnetic medium on deep drawing process. Int. J. Adv. Manuf. Technol. 103(5–8), 1669–1679 (2019). https://doi.org/10.1007/s00170-019-03505-8

    Article  Google Scholar 

  39. Xu, W., Wu, S., Balamurugan, G.-P.: Evaluating shape memory behavior of polymer under deep-drawing conditions. Polym. Test 62, 295–301 (2017)

    Article  Google Scholar 

  40. Taber, L.: On a theory for large elastic deformation of shells of revolution including torsion and thick-shell effects. Int. J. Solids Struct. 24(9), 973–985 (1988)

    Article  Google Scholar 

  41. Volmir, A.: Stability of Deformable Systems. The Science, Moskow (1967)

    Google Scholar 

  42. Ilyushin, A.: Plastic. Gostekhizdat, Moskow (1948)

    Google Scholar 

  43. Lubliner, J.: Plasticity Theory. Dover Publications, New York (2008)

    MATH  Google Scholar 

  44. Popov, Y.: Fundamentals of sheet metal stamping theory. Mechanical engineering, Moskow (1977)

    Google Scholar 

  45. Van der Put, M., Singer, M.: Galois Theory of Linear Differential Equations. Part of the Grundlehren der mathematischen Wissenschaften. Book series GL, vol. 328. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-55750-7

  46. Barrett, J.: Oscillation theory of ordinary linear differential equations. Adv. Math. 3(4), 415–509 (1969)

    Article  MathSciNet  Google Scholar 

  47. Džurina, J., Baculíková, B., Jadlovská, I.: Kneser solutions of fourth-order trinomial delay differential equations. Appl. Math. Lett. 49, 67–72 (2015)

    Article  MathSciNet  Google Scholar 

  48. Krasnov, M., Kiselev, O., Makarenko, H.: Common differential equations: Tasks and exercises with detailed solutions: Textbook 4th ed., corrected. Mechanical engineering, Editorial USSR (2002)

    Google Scholar 

  49. Yu, H., Chen, S.: Metal Plastic Processing. Chuan Hwa Publishing Ltd, Taipei (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arhat, R., Puzyr, R., Shchetynin, V., Levchenko, R., Pedun, O. (2022). The Stress State of the Workpiece at the Radius of Matrix Rounding During Drawing, Considering the Bending Moment. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes III. InterPartner 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-91327-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91327-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91326-7

  • Online ISBN: 978-3-030-91327-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics