Skip to main content

Learning Health Systems: Concepts, Principles and Practice for Data-Driven Health

  • Chapter
  • First Online:
Nursing Informatics

Part of the book series: Health Informatics ((HI))

  • 1721 Accesses

Abstract

This chapter gives an introduction to the underlying concept, the guiding principles, and the practice of learning health systems (LHSs). They are understood as socio-technical systems that can be implemented at a local, regional, national, or supranational level. LHSs are meant to improve the quality of care by realizing fast feedback cycles of data-driven practice. Knowledge from data is applied in daily practice, which again leads to more data for new knowledge. In order to establish sustainable LHSs, a culture with core values of cooperation and an appropriate governance structure has to be put into place. The IT infrastructure is composed of operational and analytical information systems ensuring interoperability, data privacy, and rigorous analytical methods that function as the engine of the LHS. Through informatics methods, observational data from daily routines are consolidated and made ready through extraction, transformation, and loading processes into a data warehouse for further analysis. Single time points and longitudinal patient and process data can be used for making predictions and forecasts. Classical statistical methods, for example, descriptive statistics, cluster analysis, time series analyses, as well as artificial intelligence approaches, for example, neural networks, can be applied to yield results for decision support at the bedside or the point of care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman CP, Rubin JC, Sullivan KJ. Toward an Information infrastructure for global health improvement. Yearb Med Inform. 2017;26:16–23.

    Google Scholar 

  2. Olsen L, Aisner D, McGinnis JM. The learning healthcare system: workshop summary. 2007. https://doi.org/10.17226/11903.

  3. Weng C, Kahn MG. Clinical research informatics for big data and precision medicine. Yearb Med Inform. 2016:211–8.

    Google Scholar 

  4. Devine EB, Capurro D, van Eaton E, Alfonso-Cristancho R, Devlin A, Yanez ND, Yetisgen-Yildiz M, Flum DR, Tarczy-Hornoch P. Preparing electronic clinical data for quality improvement and comparative effectiveness research: the SCOAP CERTAIN automation and validation project. EGEMS Wash DC. 2013;1:1025.

    PubMed  PubMed Central  Google Scholar 

  5. Nwaru BI, Friedman C, Halamka J, Sheikh A. Can learning health systems help organisations deliver personalised care? BMC Med. 2017;15:177.

    Article  Google Scholar 

  6. Ethier J-F, McGilchrist M, Barton A, Cloutier A-M, Curcin V, Delaney BC, Burgun A. The TRANSFoRm project: experience and lessons learned regarding functional and interoperability requirements to support primary care. Learn Health Syst. 2018;2:e10037.

    Google Scholar 

  7. Abernethy AP, Ahmad A, Zafar SY, Wheeler JL, Reese JB, Lyerly HK. Electronic patient-reported data capture as a foundation of rapid learning cancer care. Med Care. 2010;48:S32–8.

    Article  Google Scholar 

  8. Greene SM, Reid RJ, Larson EB. Implementing the learning health system: from concept to action. Ann Intern Med. 2012;157:207–10.

    Article  Google Scholar 

  9. Rouse WB, Johns MME, Pepe KM. Learning in the health care enterprise. Learn Health Syst. 2017;1:e10024.

    Article  Google Scholar 

  10. McLachlan S, Potts HW, Dube K, Buchanan D, Lean S, Gallagher T, Johnson O, Daley B, Marsh W, Fenton N. The Heimdall framework for supporting characterisation of learning health systems. J Innov Health Inf. 2018;

    Google Scholar 

  11. Rauch J, Hübner U, Denter M, Babitsch B. Improving the prediction of emergency department crowding: a time series analysis including road traffic flow. Stud Health Technol Inform. 2019;260:57–64.

    PubMed  Google Scholar 

  12. Foley TJ, Vale L. What role for learning health systems in quality improvement within healthcare providers? Learn Health Syst. 2017;1:e10025.

    Article  Google Scholar 

  13. Bengtsson L, Lu X, Thorson A, Garfield R, von Schreeb J. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: a post-earthquake geospatial study in Haiti. PLoS Med. 2011;8:e1001083.

    Article  Google Scholar 

  14. Friedman C, Rubin J, Brown J, et al. Toward a science of learning systems: a research agenda for the high-functioning learning health system. J Am Med Inform Assoc JAMIA. 2015;22:43–50.

    Article  Google Scholar 

  15. Owen J. General system theory and the use of process mining to improve care pathways. Stud Health Technol Inform. 2019:11–22.

    Google Scholar 

  16. Smoyer WE, Embi PJ, Moffatt-Bruce S. Creating local learning health systems: think globally, act locally. JAMA. 2016;316:2481–2.

    Article  Google Scholar 

  17. Budrionis A, Bellika JG. The learning healthcare system: where are we now? A systematic review. J Biomed Inform. 2016;64:87–92.

    Google Scholar 

  18. Lessard L, Michalowski W, Fung-Kee-Fung M, Jones L, Grudniewicz A. Architectural frameworks: defining the structures for implementing learning health systems. Implement Sci. 2017 Jun 23;12(1):78. https://doi.org/10.1186/s13012-017-0607-7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Allen C, Colemann K, Mettert K, Lewis C, Westbrook E, Lozano P. A roadmap to operationalize and evaluate impact in a learning health system. Learn Health Sys. 2021:e10258. https://doi.org/10.1002/lrh2.10258.

  20. Hultman GM, Rajamani S, Wilcox A, Melton GB. Expert perspectives on definitions, drivers and informatics contributions to learning health systems. AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:251–8.

    PubMed  PubMed Central  Google Scholar 

  21. Enticott J, Braaf S, Johnson A, Jones A, Teede HJ. Leaders’ perspectives on learning health systems: a qualitative study. BMC Health Serv Res. 2020 Nov 26;20(1):1087. https://doi.org/10.1186/s12913-020-05924-w.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Veterans Affairs. https://www.va.gov/health/

  23. Rattray NA, Damush TM, Miech EJ, Homoya B, Myers LJ, Penney LS, Ferguson J, Giacherio B, Kumar M, Bravata DM. Empowering implementation teams with a learning health system approach: leveraging data to improve quality of care for transient ischemic attack. J Gen Intern Med. 2020 Nov;35(Suppl 2):823–31. https://doi.org/10.1007/s11606-020-06160-y.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krapohl GL, Hemmila MR, Hendren S, Bishop K, Rogers R, Rocker C, Fasbinder L, Englesbe MJ, Vu JV, Campbell DA Jr. Building, scaling, and sustaining a learning health system for surgical quality improvement: a toolkit. Learn Health Syst. 2020 Jan 30;4(3):e10215. https://doi.org/10.1002/lrh2.10215.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Palin V, Tempest E, Mistry C, van Staa TP. Developing the infrastructure to support the optimisation of antibiotic prescribing using the learning healthcare system to improve healthcare services in the provision of primary care in England. BMJ Health Care Inform. 2020 Jun;27(1):e100147. https://doi.org/10.1136/bmjhci-2020-100147.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Observational Health Data Sciences and Informatics (OHDSI). Common data model. https://ohdsi.github.io/TheBookOfOhdsi/CommonDataModel.html

  27. Ryu B, Yoon E, Kim S, Lee S, Baek H, Yi S, Na HY, Kim JW, Baek RM, Hwang H, Yoo S. Transformation of Pathology Reports Into the Common Data Model With Oncology Module: Use Case for Colon Cancer. J Med Internet Res. 2020 Dec 9;22(12):e18526. https://doi.org/10.2196/18526.

    Article  PubMed  PubMed Central  Google Scholar 

  28. van der Aalst WM, Stahl C. Modeling business processes: a petri net-oriented approach. MIT press; 2011.

    Book  Google Scholar 

  29. Wager KA, Lee FW, Glaser JP. Health care information systems: a practical approach for health care management. Wiley; 2017.

    Google Scholar 

  30. Gluchowski P, Chamoni P. Analytische Informationssysteme; 2016. https://doi.org/10.1007/978-3-662-47763-2.

    Book  Google Scholar 

  31. Lenz R, Beyer M, Kuhn KA. Semantic integration in healthcare networks. Int J Med Inf. 2007;76:201–7.

    Article  Google Scholar 

  32. Corbellini A, Mateos C, Zunino A, Godoy D, Schiaffino S. Persisting big-data: the NoSQL landscape. Inf Syst. 2017;63:1–23.

    Article  Google Scholar 

  33. Ziegler P, Dittrich KR. Data integration–problems, approaches, and perspectives. In: Krogstie J, Opdahl AL, Brinkkemper S, editors. Concept. Model. Inf. Syst. Eng. Berlin, Heidelberg: Springer; 2007. p. 39–58.

    Google Scholar 

  34. Bender D, Sartipi K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. In: Proc. 26th IEEE Int. Symp. Comput.-Based Med. Syst. IEEE; 2013. p. 326–31.

    Google Scholar 

  35. Maier C, Lang L, Storf H, Vormstein P, Bieber R, Bernarding J, Herrmann T, Haverkamp C, Horki P, Laufer J. Towards implementation of OMOP in a German university hospital consortium. Appl Clin Inform. 2018;9:054–61.

    Article  CAS  Google Scholar 

  36. Ulriksen G-H, Pedersen R, Ellingsen G. Infrastructuring in healthcare through the open EHR architecture. Comput Support Coop Work CSCW. 2017;26:33–69.

    Article  Google Scholar 

  37. Khnaisser C, Lavoie L, Diab H, Ethier J-F. Data warehouse design methods review: trends, challenges and future directions for the healthcare domain. In: East Eur Conf Adv Databases Inf Syst Springer. 2015:76–87.

    Google Scholar 

  38. Meystre SM, Lovis C, Bürkle T, Tognola G, Budrionis A, Lehmann CU. Clinical data reuse or secondary use: current status and potential future progress. Yearb Med Inform. 2017;26:38–52.

    Article  CAS  Google Scholar 

  39. Turley CB. Leveraging a statewide clinical data warehouse to expand boundaries of the learning health system. Methods Improve Patient Outcomes: EGEMs Gener. Evid; 2016. p. 4.

    Google Scholar 

  40. Zhao C-M, Luan J. Data mining: going beyond traditional statistics. New Dir Institutional Res. 2006; https://doi.org/10.1002/ir.184.

  41. Cummins MR. Nonhypothesis-driven research: data mining and knowledge discovery. In: Richesson RL, Andrews JE, editors. Clin. Res. Inform. Cham: Springer International Publishing; 2019. p. 341–56.

    Chapter  Google Scholar 

  42. Lawless JF. Statistical models and methods for lifetime data. John Wiley & Sons; 2011.

    Google Scholar 

  43. Therneau TM, Lumley T. Package ‘survival’. R Top Doc. 2015;128(10):28–33.

    Google Scholar 

  44. Loprinzi CL, Laurie JA, Wieand HS, Krook JE, Novotny PJ, Kugler JW, Bartel J, Law M, Bateman M, Klatt NE, et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North central cancer treatment group. J Clin Oncol. 1994;12(3):601–7.

    Article  CAS  Google Scholar 

  45. Royston P, Parmar MK. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Med Res Methodol. 2013;13:152.

    Article  Google Scholar 

  46. Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice. OTexts.

    Google Scholar 

  47. Granger CW, Newbold P, Econom J. Spurious regressions in econometrics. Baltagi Badi H Companion Theor. Econom. 1974:557–61.

    Google Scholar 

  48. Schelter B, Winterhalder M, Timmer J. Handbook of time series analysis: recent theoretical developments and applications. John Wiley & Sons; 2006.

    Book  Google Scholar 

  49. Rauch J, Hüsers J, Babitsch B, Hübner U. Understanding the characteristics of frequent users of emergency departments: what role do medical conditions play? Stud Health Technol Inform. 2018;253:175–9.

    PubMed  Google Scholar 

  50. Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One. 2013;8:e66341.

    Article  CAS  Google Scholar 

  51. Wei W-Q, Teixeira PL, Mo H, Cronin RM, Warner JL, Denny JC. Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance. J Am Med Inform Assoc. 2016;23:e20–7.

    Article  Google Scholar 

  52. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang G-Z. Deep learning for health informatics. IEEE J Biomed Health Inform. 2016;21:4–21.

    Article  Google Scholar 

  53. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  Google Scholar 

  54. Strickland E. IBM Watson, heal thyself: how IBM overpromised and underdelivered on AI health care. IEEE Spectr. 2019;56:24–31.

    Article  Google Scholar 

  55. Steels S, Ainsworth J, van Staa TP. Implementation of a “real-world” learning health system: Results from the evaluation of the Connected Health Cities programme. Learn Health Syst. 2020 Feb 26;5(2):e10224. https://doi.org/10.1002/lrh2.10224.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Street A, Maynou L, Gilbert T, Stone T, Mason S, Conroy S. The use of linked routine data to optimise calculation of the Hospital Frailty Risk Score on the basis of previous hospital admissions: a retrospective observational cohort study. Lancet Healthy Longev. 2021 Mar;2(3):e154–62. https://doi.org/10.1016/S2666-7568(21)00004-0.

    Article  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Wager KA, Lee FW, Glaser JP. Health care information systems: a practical approach for health care management. Wiley; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula H. Hübner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rauch, J., Hübner, U.H. (2022). Learning Health Systems: Concepts, Principles and Practice for Data-Driven Health. In: Hübner, U.H., Mustata Wilson, G., Morawski, T.S., Ball, M.J. (eds) Nursing Informatics . Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-91237-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91237-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91236-9

  • Online ISBN: 978-3-030-91237-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics