Skip to main content

Abstract

Emotion recognition has great significance in human-computer interaction, affective computing and clinical medicine, etc. Electroencephalography (EEG) is the most important one for emotion recognition due to its high temporal resolution. The progress in geometric deep learning provide powerful tool to explore the spatial features between EEG channels. There have been some studies using Graph-based methods, but neither do they reveal the latent structure of brain regions nor they contain uncertainty information. In this paper, we proposed a Bayesian Graph Neural Networks framework combined with a Sparse Graph Variational Auto-encoder. Our model can detect the latent communities between EEG channels in a non-parametric Bayesian way and provide uncertainty information of model prediction. Extensive experiments have been conducted to justify the effectiveness of our model and the results show that uncertainty information can help a lot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Harper Perennial, New York (1995)

    Google Scholar 

  2. Khosla, A., Khandnor, P., Chand, T.: A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 40, 649–690 (2020)

    Article  Google Scholar 

  3. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)

    Article  Google Scholar 

  4. Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  5. Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7(3), 162–175 (2015)

    Article  Google Scholar 

  6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  7. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Methods and applications. In: Proceedings of NIPS, pp. 1024–1034 (2017)

    Google Scholar 

  8. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of NIPS, pp. 3844–3852 (2016)

    Google Scholar 

  9. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: Proceedings of ICLR (2017)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NIPS Workshop on Bayesian Deep Learning (2016)

    Google Scholar 

  11. Song, T., Zheng, W., Song, P., Cui, Z.: EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 11(3), 532–541 (2020)

    Article  Google Scholar 

  12. Zhong, P.X., Wang, D., Miao, C.Y.: EEG-based emotion recognition using regularized graph neural networks. IEEE Transactions on Affective Computing (in press)

    Google Scholar 

  13. Ding, Y., Robinson, N., Zeng, Q.H., Guan, C.T.: LGGNet: learning from Local-global-graph representations for brain-computer interface. arXiv preprint arXiv:2105.02786 (2021)

  14. Wang, Z.M., Tong, Y., Heng, X.: Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access 7, 93711–93722 (2019)

    Article  Google Scholar 

  15. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of International Conference Machine Learning (2016)

    Google Scholar 

  16. Zhang, Y.X., Pal, S., Coates, M., Ustebay, D.: Bayesian graph convolutional neural networks for semi-supervised classification. In: Proceedings of Conference of AAAI (2019)

    Google Scholar 

  17. Hasanzadeh, A., Hajiramezanali, E., et al.: Bayesian graph neural networks with adaptive connection sampling. In: Proceedings of International Conference Machine Learning, PMLR, vol. 119 (2020)

    Google Scholar 

  18. Mehta, N., Duke, L.C., Rai, P.: Stochastic blockmodels meet graph neural networks. In: Proceedings International Conference Machine Learning, PMLR, vol. 97, pp. 4466–4474 (2019)

    Google Scholar 

  19. Achard, S., Bullmore, E.: Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3(2), e17 (2007)

    Article  Google Scholar 

  20. Mukhoti, J., Gal, Y.: Evaluating Bayesian deep learning methods for semantic segmentation. arXiv preprint arXiv:1811.12709 (2019)

  21. Gal, Y., Hron, J., Kendall, A.: Concrete dropout. arXiv preprint arXiv:1705.07832 (2017)

  22. Paszke, A., Gross, S., et al.: PyTorch: an imperative style, high-performance deep learning library. In Conference NeurIPS (2019)

    Google Scholar 

  23. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR (2019)

    Google Scholar 

  24. Zhang, T., Zheng, W., Cui, Z., Zong, Y., Li, Y.: Spatial-temporal recurrent neural network for emotion recognition. IEEE Trans. Cybern. 99, 1–9 (2018)

    Google Scholar 

  25. Li, Y., Zheng, W., Zong, Y., Cui, Z., Zhang, T., Zhou, X.: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition. IEEE Transactions on Affective Computing (2018, in press)

    Google Scholar 

  26. Li, Y., et al.: A novel bi-hemispheric discrepancy model for EEG emotion recognition. arXiv preprint arXiv:1906.01704 (2019)

  27. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Large scale transductive SVM. J. Mach. Learn. Res. 7, 1687–1712 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Li, H., Jin, Y.-M., Zheng, W.-L., Bao-Liang, L.: Cross-subject emotion recognition using deep adaptation networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11305, pp. 403–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04221-9_36

    Chapter  Google Scholar 

  29. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  30. Griffiths, T.L., Ghahramani, Z.: The Indian buffet process: an introduction and review. J. Mach. Learn. Res. 12, 1185–1224 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Qian, H., Gong, X. (2021). Bayesian Graph Neural Networks for EEG-Based Emotion Recognition. In: Oyarzun Laura, C., et al. Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning. DCL PPML LL-COVID19 CLIP 2021 2021 2021 2021. Lecture Notes in Computer Science(), vol 12969. Springer, Cham. https://doi.org/10.1007/978-3-030-90874-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90874-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90873-7

  • Online ISBN: 978-3-030-90874-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics