Skip to main content

Numerical Analysis of Unsteady Compressor Performance Under Boundary Conditions Caused by Pulsed Detonation Combustion

  • Conference paper
  • First Online:
Active Flow and Combustion Control 2021 (AFCC 2021)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 152 ))

Included in the following conference series:

  • 801 Accesses

Abstract

Pressure gain combustion is a revolutionary concept to increase gas turbine efficiency and thus potentially reduces the environmental footprint of power generation and aviation. Pressure gain combustion can be realized through pulsed detonation combustion. However, this unsteady combustion process has detrimental effects on adjacent turbomachines. This paper identifies realistic time-variant compressor outlet conditions, which could potentially stem from pulsed detonation combustion. Furthermore, a low fidelity approach based on the 1D-Euler method is applied to investigate the performance of a compressor exposed to these outlet boundary conditions. The simulation results indicate that the efficiency penalty due to unsteady compressor operation remains below 1% point. Furthermore, between 80% and 95% of the fluctuations’ amplitudes are damped till the inlet of the 4-stage compressor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\mathrm {E^3}\) :

Energy efficient engine

PDC:

Pulsed detonation combustion

PGC:

Pressure gain combustion

A :

Cross sectional area

c :

Absolute velocity

E :

Internal energy

\(F_{x,Outlet}\) :

Outlet surface force

\(F_{x,Inlet}\) :

Inlet surface force

\(F_{x,Endwall}\) :

Surface force caused by a change in area

\(F_{x,Blade}\) :

Blade force

h :

Specific enthalpy

\(\dot{m}\) :

Mass flow

p :

Pressure

t :

Time

\(t_{close}\) :

Time during which the combustor is closed

T :

Temperature

\(V_p\) :

Volume of the plenum

W :

Work input

\(\varDelta \varPhi \) :

Relative amplitude of static pressure

\(\epsilon \) :

Unsteady damping

\(\eta \) :

Isentropic efficiency

\(\rho \) :

Density

\(\gamma \) :

Ratio of specific heats

\(_{ax}\) :

Quantity in axial direction

\(_{in}\) :

Inlet of component

\(_{out}\) :

Outlet of component

\(_{p}\) :

Quantity in plenum

\(^{ma}\) :

Mass-averaged

\(^{wa}\) :

Work-averaged

References

  1. International Civil Aviation Organization - ICAO: Annual report of the council, May 2018

    Google Scholar 

  2. International Air Transport Association - IATA: 20 year passenger forecast, 2020

    Google Scholar 

  3. Krein, A., Williams, G.: Flightpath 2050: Europe’s vision for aeronautics. In: Innovation for Sustainable Aviation in a Global Environment: Proceedings of the Sixth European Aeronautics Days, p. 63 (2012). https://doi.org/10.2777/50266

  4. Fuel Cell and Hydrogen Joint Undertaking: Hydrogen powered aviation: a fact-based study of hydrogen technology, economics, and climate impact by 2050 (2020)

    Google Scholar 

  5. Heiser, W.H., Pratt, D.T.: Thermodynamic cycle analysis of pulse detonation engines. J. Propul. Power 18(1), 68–76 (2002). https://doi.org/10.2514/2.5899

    Article  Google Scholar 

  6. Neumann, N., Woelki, D., Peitsch, D.: A comparison of steady-state models for pressure gain combustion in gas turbine performance simulation. In: Proceedings of GPPS Beijing 2019, Beijing, China, 16–18 September 2019 (2019)

    Google Scholar 

  7. Stathopoulos, P.: Comprehensive thermodynamic analysis of the humphrey cycle for gas turbines with pressure gain combustion. Energies 11(12), 3521 (2018). https://doi.org/10.3390/en11123521

    Article  Google Scholar 

  8. Glaser, A.J., Caldwell, N., Gutmark, E.: Performance measurements of a pulse detonation combustor array integrated with an axial flow turbine. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, pp. 1–12, January 2006. https://doi.org/10.2514/6.2006-1232

  9. Schliwka, T., Tiedemann, C., Peitsch, D.: Interaction of main flow and sealing air across a turbine cavity under unsteady conditions. In: ISABE - 22th International Symposium on Air Breathing Engines, Phoenix, Arizona, USA, October 2015. ISABE-2015-21288

    Google Scholar 

  10. Xisto, C., Petit, O., Grönstedt, T., Rolt, A., Lundbladh, A., Paniagua, G.: The efficiency of a pulsed detonation combustor-axial turbine integration. Aerosp. Sci. Technol. 82–83, 80–91 (2018). https://doi.org/10.1016/j.ast.2018.08.038. ISSN: 1270-9638

    Article  Google Scholar 

  11. Heinrich, A., Herbig, M., Peitsch, D., Topalovic, D., King, R.: A testrig to evaluate turbine performance and operational strategies under pulsating inflow conditions. In: AIAA - Propulsion and Energy 2019 Forum, Indianapolis, Indiana, USA. American Institute of Aeronautics and Astronautics, August 2019. Ch. AIAA 2019-4039, ISBN: 978-1-62410-590-6. https://doi.org/10.2514/6.2019-4039

  12. Liu, Z., Braun, J., Paniagua, G.: Integration of a transonic highpressure turbine with a rotating detonation combustor and a diffuser. Int. J. Turbo Jet-Engines (2020). ISSN: 0020-7403. https://doi.org/10.1515/tjeng-2020-0016

  13. Hoke, J., Bradley, R., Stutrud, J., Schauer, F.: Integration of a pulsed detonation engine with an ejector pump and with a turbo-charger as methods to self-aspirate. In: 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, USA, p. 615 (2002). https://doi.org/10.2514/6.2002-615

  14. Sakurai, T., Nakamura, S.: Performance and operating characteristics of micro gas turbine driven by pulse, pressure gain combustor. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 21–25 September 2020 (2020). https://doi.org/10.1115/GT2020-15000

  15. Lu, J., Zheng, L., Wang, Z., Wang, L., Yan, C.: Experimental investigation on interactions between a two-phase multi-tube pulse detonation combustor and a centrifugal compressor. Appl. Therm. Eng. 113, 426–434 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.188

    Article  Google Scholar 

  16. Staats, M., Nitsche, W.: Experimental investigations on the efficiency of active flow control in a compressor cascade with periodic non-steady outow conditions In: Volume 2A: Turbomachinery. American Society of Mechanical Engineers, June 2017. https://doi.org/10.1115/gt2017-63246

  17. Brück, C., Mihalyovics, J., Peitsch, D.: Experimental investigations on highly loaded compressor airfoils with different active ow control parameters under unsteady ow conditions. In: Proceedings of GPPS Montreal, Montreal, Canada, May 2018. GPPS-2018-0054. https://doi.org/10.5281/zenodo.1343489

  18. Werder, T., Liebich, R., Neuhäuser, K., Behnsen, C., King, R.: Active flow control utilizing an adaptive blade geometry and an extremum seeking algorithm at periodically transient boundary conditions. J. Turbomach. 143(2) (2020). ISSN: 0889-504X. https://doi.org/10.1115/1.4049787

  19. Fietzke, B., Mihalyovics, J., King, R., Peitsch, D.: Binary repetitive model predictive active flow control applied to an annular compressor stator cascade with periodic disturbances. In: Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, 07–11 June 2021. American Society of Mechanical Engineers (2021). GT2021-58 744

    Google Scholar 

  20. de Almeida, V.B.C., Peitsch, D.: Aeroelastic assessment of a highly loaded high pressure compressor exposed to pressure gain combustion disturbances. J. Glob. Power Propul. Soc. 2, 477–492 (2018). https://doi.org/10.22261/jgpps.f72ouu

    Article  Google Scholar 

  21. de Almeida, V.B.C., Peitsch, D.: Multirow performance and aeroelastic analyses of a compressor subjected to disturbances from pressure gain combustion. In: Proceedings of the 15th ISUAAAT, Oxford, UK, September 2018. ISUAAAT15-031

    Google Scholar 

  22. de Almeida, V.B.C., Motta, V., Peitsch, D.: Unsteady aerodynamics of a high pressure compressor working under pressure gain combustion disturbances. In: IGTC - International Gas Turbine Congress, Tokyo, Japan, November 2019. IGTC2019-0070. http://igtc2019.org/IGTC19_ContentListWeb_4.html/#wepm14_01

  23. Neumann, N., Asli, M., Garan, N., Peitsch, D., Stathopoulos, P.: A fast approach for unsteady compressor performance simulation under boundary condition caused by pressure gain combustion. Appl. Therm. Eng. 196, 117223 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117223. ISSN: 1359-4311

    Article  Google Scholar 

  24. Berndt, P., Klein, R., Paschereit, C.O.: A kinetics model for the shockless explosion combustion. In: Turbo Expo: Power for Land, Sea, and Air, vol. 49767. American Society of Mechanical Engineers (2016). V04BT04A034

    Google Scholar 

  25. Dittmar, L., Stathopoulos, P.: Numerical analysis of the stability and operation of an axial compressor connected to an array of pulsed detonation combustors. In: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 21–25 September 2020. American Society of Mechanical Engineers (2020)

    Google Scholar 

  26. Neumann, N., Peitsch, D.: Introduction and validation of a mean line solver for present and future turbomachines. In: Proceedings of ISABE, Canberra, Australia, 22–26 September 2019 (2019). ISABE-2019-24441

    Google Scholar 

  27. Holloway, P., Koch, C., Knight, G., Shaffer, S.: Energy efficient engine - high pressure compressor detail design report (1982). NASA-CR-165558

    Google Scholar 

  28. Cline, S., Fesler, W., Liu, H., Lovell, R., Shaffer, S.: High pressure compressor component performance report (1983). NASA-CR-168245

    Google Scholar 

  29. Wintenberger, E., Shepherd, J.E.: Thermodynamic cycle analysis for propagating detonations. J. Propul. Power 22(3), 694–698 (2006). https://doi.org/10.2514/1.12775

    Article  Google Scholar 

  30. Wintenberger, E.: Application of steady and unsteady detonation waves to propulsion. Ph.D. thesis, California Institute of Technology (2004)

    Google Scholar 

  31. Perkins, H.D., Paxson, D.E.: Summary of pressure gain combustion research at NASA, April 2018. NASA TM-2018-219874

    Google Scholar 

  32. Völzke, F.E., Yücel, F.C., Gray, J.A.T., Hanraths, N., Paschereit, C.O., Moeck, J.P.: The influence of the initial temperature on DDT characteristics in a valveless PDC. In: King, R. (ed.) Active Flow and Combustion Control 2018. NNFMMD, vol. 141, pp. 185–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98177-2_12 ISBN: 978-3-319-98177-2

    Chapter  Google Scholar 

  33. Mitrofanov, V., Zhdan, S.: Thrust performance of an ideal pulse detonation engine. Combust. Explos. Shock Waves 40(4), 380–385 (2004). https://doi.org/10.1023/B:CESW.0000033559.75292.8e

    Article  Google Scholar 

  34. Clark, J.P., Grover, E.A.: Assessing convergence in predictions of periodic-unsteady flowfields. J. Turbomach. 129(4), 740–749 (2006). https://doi.org/10.1115/1.2720504

    Article  Google Scholar 

  35. Suresh, A., Hofer, D.C., Tangirala, V.E.: Turbine efficiency for unsteady, periodic flows. J. Turbomach. 134(3) (2011). https://doi.org/10.1115/1.4003246

Download references

Acknowledgement

Funding: The authors gratefully acknowledge the support by the Deutsche For-schungsgemeinschaft (DFG) as part of the Collaborative Research Center SFB 1029 “Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics” in project D01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann, N., Rähse, T., Stathopoulos, P., Peitsch, D. (2022). Numerical Analysis of Unsteady Compressor Performance Under Boundary Conditions Caused by Pulsed Detonation Combustion. In: King, R., Peitsch, D. (eds) Active Flow and Combustion Control 2021. AFCC 2021. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 152 . Springer, Cham. https://doi.org/10.1007/978-3-030-90727-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90727-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90726-6

  • Online ISBN: 978-3-030-90727-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics