Skip to main content

Rotating Detonation Combustor Downstream Transition Passage Design Considerations

  • Conference paper
  • First Online:
Active Flow and Combustion Control 2021 (AFCC 2021)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 152 ))

Included in the following conference series:

  • 855 Accesses

Abstract

A key enabler to integrate turbines downstream of rotating detonation combustors is the design of an optimal combustor-turbine passage. Precise estimates of fluctuations, losses, and heat loads are required for the turbine design as rotating detonation combustors feature transonic flow with rotating shocks moving at few kilohertz. This paper analyzes fluctuations and heat loads of the Purdue Turbine Integrated high-Pressure RDE through reactive unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. CFD++, a commercial CFD software package from Metacomp, is employed to solve the unsteady RANS equations through a one-step reaction mechanism. The inlet of the combustor is fed with a hydrogen-air mixture at mass flows of ~1 kg/s with two different back pressures to obtain supersonic and subsonic outlet flows. The mesh featured around 36 million grid points to ensure the resolving of the boundary layer. Finally, a methodology to lower computational time tenfold for the supersonic and subsonic passage is presented based on non-reacting unsteady RANS simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy, A., Bedick, C.R., Ferguson, D.H., Sidwell, T., Strakey, P.A.: Investigating instabilities in a rotating detonation combustor operating with natural gas–hydrogen fuel blend—effect of air preheat and annulus width. J. Eng. Gas Turbines Power 141(11) (2019)

    Google Scholar 

  2. Braun, J., Saracoglu, B.H., Paniagua, G.: Unsteady performance of rotating detonation engines with different exhaust nozzles. J. Propuls. Power 33(1), 121–130 (2017)

    Article  Google Scholar 

  3. Anand, V., Gutmark, E.: Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73, 182–234 (2019)

    Article  Google Scholar 

  4. John, Z.M., et al.: Recent progress, development trends, and consideration of continuous detonation engines. AIAA J. 1–59 (2020)

    Google Scholar 

  5. Schwer, D., Kailasanath, K.: Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst. 33(2), 2195–2202 (2011)

    Article  Google Scholar 

  6. Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-dimensional numerical simulation of the operation of a rotating-detonation chamber with separate supply of fuel and oxidizer. Russ. J. Phys. Chem. B 7(1), 35–43 (2013)

    Article  Google Scholar 

  7. Cocks, P.A.T., Holley, A.T.: High Fidelity Simulations of a Non - Premixed Rotating Detonation Engine, pp. 1–18 (2016)

    Google Scholar 

  8. Pal, P., Xu, C., Kumar, G., Drennan, S.A., Rankin, B.A., Som, S.: Large-eddy simulations and mode analysis of ethylene/air combustion in a non-premixed rotating detonation engine. In: AIAA Propulsion and Energy 2020 Forum, pp. 1–12 (2020)

    Google Scholar 

  9. Sato, T., Chacon, F., White, L., Raman, V., Gamba, M.: Mixing and detonation structure in a rotating detonation engine with an axial air inlet. Proc. Combust. Inst. 000, 1–8 (2020)

    Google Scholar 

  10. Bach, E., Stathopoulos, P., Paschereit, C.O., Bohon, M.D.: Performance analysis of a rotating detonation combustor based on stagnation pressure measurements. Combust. Flame 217, 21–36 (2020)

    Article  Google Scholar 

  11. Asli, M., Stathopoulos, P., Paschereit, C.O.: Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor. J. Eng. Gas Turbines Power (2020)

    Google Scholar 

  12. Liu, Z., Braun, J., Paniagua, G.: Characterization of a supersonic turbine downstream of a rotating detonation combustor. J. Eng. Gas Turbines Power 141(3), 031501 (2018)

    Google Scholar 

  13. Braun, J., Paniagua, G., Falempin, F., Le Naour, B.: Design and experimental assessment of bladeless turbines for axial inlet supersonic flows. J. Eng. Gas Turbines Power 142(4) (2020)

    Google Scholar 

  14. Inhestern, L.B., Braun, J., Paniagua, G., Serrano Cruz, J.R.: Design, optimization, and analysis of supersonic radial turbines. J. Eng. Gas Turbines Power 142(3), 1–12 (2020)

    Google Scholar 

  15. Liu, Z., Braun, J., Paniagua, G.: Integration of a transonic high-pressure turbine with a rotating detonation combustor and a diffuser. Int. J. Turbo Jet-Engines (2020)

    Google Scholar 

  16. Liu, Z., Braun, J., Paniagua, G.: Thermal power plant upgrade via a rotating detonation combustor and retrofitted turbine with optimized endwalls. Int. J. Mech. Sci. 188, 105918 (2020)

    Google Scholar 

  17. Chakravarthy, S., Peroomian, O., Goldberg, U., Palaniswamy, S.: The CFD++ computational fluid dynamics software suite. SAE Tech. Pap. Ser. 1 (2010)

    Google Scholar 

  18. Fernández-Galisteo, D., Sánchez, A.L., Liñán, A., Williams, F.A.: One-step reduced kinetics for lean hydrogen-air deflagration. Combust. Flame 156(5), 985–996 (2009)

    Article  Google Scholar 

  19. Saavedra, J., Paniagua, G., Lavagnoli, S.: On the transient response of the turbulent boundary layer inception in compressible flows. J. Fluid Mech. 850, 1117–1141 (2018)

    Article  MathSciNet  Google Scholar 

  20. Braun, J., Sousa, J., Paniagua, G.: Numerical assessment of the convective heat transfer in rotating detonation combustors using a reduced-order model. Appl. Sci. 8(6), 893 (2018)

    Article  Google Scholar 

  21. Athmanathan, V., et al.: “Femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry in the exhaust of a rotating detonation combustor. Combust. Flame 231, 111504 (2021)

    Google Scholar 

  22. Athmanathan, V., et al.: Turbine-integrated high-pressure optical RDE (THOR) for injection and detonation dynamics assessment. In: AIAA Propulsion and Energy 2019 Forum, pp. 1–15 (2019)

    Google Scholar 

  23. Braun, J., Saavedra Garcia, J., Paniagua, G.: Evaluation of the unsteadiness across nozzles downstream of rotating detonation combustors. In: 55th AIAA Aerospace Sciences Meeting, pp. 1–13 (2017)

    Google Scholar 

  24. Kaemming, T.A., Paxson, D.E.: Determining the pressure gain of pressure gain combustion. In: 2018 Joint Propulsion Conference, p. 4567 (2018)

    Google Scholar 

  25. Schwer, D.A., Kaemming, T.A., Kailasanath, K.: Pressure feedback in the diffuser of a ram-RDE propulsive device. In: 55th AIAA Aerospace Sciences Meeting (2017)

    Google Scholar 

  26. Rankin, B.A., Hoke, J., Schauer, F.: Periodic exhaust flow through a converging-diverging nozzle downstream of a rotating detonation engine. In: 52nd Aerospace Sciences Meeting, pp. 1–12 (2014)

    Google Scholar 

  27. Braun, J., et al.: Characterization of an integrated nozzle and supersonic axial turbine with a rotating detonation combustor. In: AIAA Propulsion and Energy 2019 Forum, pp. 1–11 (2019)

    Google Scholar 

  28. Braun, J., Paniagua, G., Ferguson, D.: Aero-thermal characterization of accelerating and diffusing passages downstream of rotating detonation combustors. In: ASME Turbo Expo 2021, GT2021–59111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, J., Paniagua, G., Ferguson, D. (2022). Rotating Detonation Combustor Downstream Transition Passage Design Considerations. In: King, R., Peitsch, D. (eds) Active Flow and Combustion Control 2021. AFCC 2021. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 152 . Springer, Cham. https://doi.org/10.1007/978-3-030-90727-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90727-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90726-6

  • Online ISBN: 978-3-030-90727-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics