Skip to main content

Simulation of Bacterial Motion Under Flow Inside Micro Channel Using CFD and DPM

  • Conference paper
  • First Online:
Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering (GCMM 2021)

Abstract

Discrete Phase Method (DPM) is coupled in this study with Computational Fluid Dynamics (CFD) to simulate motion of rod-shaped motile bacteria under flow conditions inside a microfluidic device where a micro scale chamber is connected to same scale inlet and outlet channels. Here, bacterial cells are represented by spherical solid particles with equivalent volume of a typical bacterial cell, and physio-chemical interactions between cells and solid surface are omitted. Bacterial suspension is assumed as a Newtonian fluid in a laminar flow. Particle injection mass flowrate was selected to emulate OD600 0.1 bacterial cell concentration and lowered up to 10% of initial concentration. Particle diffusion pattern was affected by the fluid velocity (within the range 0.05–0.005 m.s−1), but the pattern remined similar for particle mass flowrates varying from 8–80 × 10–9 kg.s−1. Particle mass concentration long the flow direction was varied with fluid velocity but not affected by the injection concentration. At 0.005 m.s−1 fluid velocity, maximum particle mass concentration varied with a linear relationship with particle injection mass flowrate, and the variation at 0.05 m.s−1 fluid velocity too showed a linear relationship with injection mass flowrate but with higher gradient. This is a new finding on P. aeruginosa cell motion and diffusion inside microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salta, M., Capretto, L., Carugo, D., Wharton, J.A., Stokes, K.R.: Life under flow: a novel microfluidic device for the assessment of anti-biofilm technologies. Biomicrofluidics 7(6), 064118 (2013). https://doi.org/10.1063/1.4850796

    Article  Google Scholar 

  2. Ponmozhi, J., Moreira, J.M.R., Mergulhão, F.J., Campos, J.B.L.M., Miranda, J.M.: Fabrication and hydrodynamic characterization of a microfluidic device for cell adhesion tests in polymeric surfaces. Micromachines 10(5), 303 (2019). https://doi.org/10.3390/mi10050303

    Article  Google Scholar 

  3. Moreira, J.M.R., Araújo, J.D.P., Miranda, J.M., Simões, M., Melo, L.F., Mergulhão, F.J.: The effects of surface properties on Escherichia coli adhesion are modulated by shear stress. Colloids Surf. B Biointerfaces 123, 1–7 (2014). https://doi.org/10.1016/j.colsurfb.2014.08.016

    Article  Google Scholar 

  4. Yao, W., Li, Y., Ding, G.: Interstitial fluid flow: the mechanical environment of cells and foundation of meridians. Evid.-Based Complement. Altern. Med. 2012, 1–9 (2012). https://doi.org/10.1155/2012/853516

    Article  Google Scholar 

  5. Salek, M.M., Martinuzzi, R.J.: Numerical simulation of fluid flow and hydrodynamic analysis in commonly used biomedical devices in biofilm studies. In: Numerical Simulations - Examples and Applications in Computational Fluid Dynamics (2010). https://doi.org/10.5772/13117

  6. Schlegel, C., et al.: Analyzing the influence of microstructured surfaces on the lactic acid production of Lactobacillus delbrueckii lactis in a flow-through cell system. Eng. Life Sci. 17(8), 865–873 (2017). https://doi.org/10.1002/elsc.201700045

    Article  Google Scholar 

  7. Moreira, J.M.R., Ponmozhi, J., Campos, J.B.L.M., Miranda, J.M., Mergulhão, F.J.: Micro- and macro-flow systems to study Escherichia coli adhesion to biomedical materials. Chem. Eng. Sci. 126, 440–445 (2015). https://doi.org/10.1016/j.ces.2014.12.054

    Article  Google Scholar 

  8. Westerwalbesloh, C., et al.: Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab Chip 15(21), 4177–4186 (2015). https://doi.org/10.1039/c5lc00646e

    Article  Google Scholar 

  9. Wiklund, K., Zhang, H., Stangner, T., Singh, B., Bullitt, E., Andersson, M.: A drag force interpolation model for capsule-shaped cells in fluid flows near a surface. Microbiology 164(4), 483–494 (2018). https://doi.org/10.1099/mic.0.000624

    Article  Google Scholar 

  10. Jayathilake, P.G., Li, B., Zuliani, P., Curtis, T., Chen, J.: Modelling bacterial twitching in fluid flows: a CFD-DEM approach. Sci. Rep. 9(1), 2–5 (2019). https://doi.org/10.1038/s41598-019-51101-3

    Article  Google Scholar 

  11. Sjollema, J., Busscher, H.J., Weerkamp, A.H.: Deposition of oral streptococci and polystyrene latices onto glass in a parallel plate flow cell. Biofouling 1(2), 101–112 (1988). https://doi.org/10.1080/08927018809378100

    Article  Google Scholar 

  12. Kong, D., Lin, W., Pan, Y., Zhang, K.: Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment. Front. Microbiol. 5, 1–11 (2014). https://doi.org/10.3389/fmicb.2014.00008

    Article  Google Scholar 

  13. Lyczak, J.B., Cannon, C.L., Pier, G.B.: Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2(9), 1051–1060 (2000). https://doi.org/10.1016/S1286-4579(00)01259-4

    Article  Google Scholar 

  14. Yang, A., Tang, W.S., Si, T., Tang, J.X.: Influence of physical effects on the swarming motility of Pseudomonas aeruginosa. Biophys. J. 112(7), 1462–1471 (2017). https://doi.org/10.1016/j.bpj.2017.02.019

    Article  Google Scholar 

  15. Toutain, C.M., Zegans, M.E., O’Toole, G.A.: Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J. Bacteriol. 187(2), 771–777 (2005). https://doi.org/10.1128/JB.187.2.771-777.2005

    Article  Google Scholar 

  16. Terashima, H., Kojima, S., Homma, M.: Chapter 2 flagellar motility in bacteria, vol. 270, pp. 39–85. Academic Press (2008). https://doi.org/10.1016/S1937-6448(08)01402-0

  17. Vater, S.M., et al.: Swimming behavior of Pseudomonas aeruginosa studied by holographic 3D tracking. PLoS One 9(1) (2014). https://doi.org/10.1371/journal.pone.0087765

  18. Greenberg, E.P., Canale-Parola, E.: Motility of flagellated bacteria in viscous environments. J. Bacteriol. 132(1), 356–358 (1977). https://doi.org/10.1128/jb.132.1.356-358.1977

    Article  Google Scholar 

  19. Shigematsu, M., Meno, Y., Misumi, H., Amako, K.: The measurement of swimming velocity of vibrio cholerae and Pseudomonas aeruginosa using the video tracking method. Microbiol. Immunol. 39(10), 741–744 (1995). https://doi.org/10.1111/j.1348-0421.1995.tb03260.x

    Article  Google Scholar 

  20. Dominick, C.N., Wu, X.L.: Rotating bacteria on solid surfaces without tethering. Biophys. J. 115(3), 588–594 (2018). https://doi.org/10.1016/j.bpj.2018.06.020

    Article  Google Scholar 

  21. Lauga, E.: Bacterial hydrodynamics. Ann. Rev. Fluid Mech. 48(1), 105–130 (2016). https://doi.org/10.1146/annurev-fluid-122414-034606

    Article  MathSciNet  MATH  Google Scholar 

  22. Bratbak, G., Dundas, I.: Bacterial dry matter content and biomass estimations. Appl. Environ. Microbiol. 48(4), 755–757 (1984)

    Article  Google Scholar 

  23. Average density - bacteria - BNID 102239 n.d. https://bionumbers.hms.harvard.edu/bionumber.aspx?id=102239. Accessed 6 Nov 2019

  24. Loferer-Krößbacher, M., Klima, J., Psenner, R.: Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl. Environ. Microbiol. 64(2), 688–694 (1998). https://doi.org/10.1128/aem.64.2.688-694.1998

    Article  Google Scholar 

  25. Hensley, Z.D., Papavassiliou, D.V.: Drag coefficient correction for spherical and nonspherical particles suspended in square microducts. Ind. Eng. Chem. Res. 53(25), 10465–10474 (2014). https://doi.org/10.1021/ie5007646

    Article  Google Scholar 

  26. Kim, D.: Relation of microbial biomass to counting units for Pseudomonas aeruginosa. Afr. J. Microbiol. Res. 6(21), 4620–4622 (2012). https://doi.org/10.5897/ajmr10.902

    Article  Google Scholar 

  27. Adamczyk, Z., Van De Ven, T.G.M.: Deposition of particles under external forces in laminar flow through parallel-plate and cylindrical channels. J. Colloid Interface Sci. 80(2), 340–356 (1981). https://doi.org/10.1016/0021-9797(81)90193-4

    Article  Google Scholar 

  28. Midelet, J., El-Sagheer, A.H., Brown, T., Kanaras, A.G., Werts, M.H.V.: The sedimentation of colloidal nanoparticles in solution and its study using quantitative digital photography. Part. Part. Syst. Charact. 34(10) (2017). https://doi.org/10.1002/ppsc.201700095

  29. Song, C., Li, H., Zhang, Y., Yu, J.: Effects of Pseudomonas aeruginosa and Streptococcus mitis mixed infection on TLR4-mediated immune response in acute pneumonia mouse model. BMC Microbiol. 17(1) (2017). Article number: 82. https://doi.org/10.1186/s12866-017-0999-1

  30. Dennis, S.C.R., Singh, S.N., Ingham, D.B.: The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid Mech. 101(2), 257–279 (1980). https://doi.org/10.1017/S0022112080001656

    Article  MATH  Google Scholar 

  31. Oesterlé, B., Bui Dinh, T.: Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exp. Fluids 25(1), 16–22 (1998). https://doi.org/10.1007/s003480050203

    Article  Google Scholar 

  32. Ghanbari, A., Dehghany, J., Schwebs, T., Müsken, M., Häussler, S., Meyer-Hermann, M.: Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep32097

    Article  Google Scholar 

  33. Li, J., Busscher, H.J., Norde, W., Sjollema, J.: Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber. Colloids Surf. B Biointerfaces 84(1), 76–81 (2011). https://doi.org/10.1016/j.colsurfb.2010.12.018

    Article  Google Scholar 

  34. Rijnaarts, H.H.M., Norde, W., Bouwer, E.J., Lyklema, J., Zehnder, A.J.B.: Bacterial adhesion under static and dynamic conditions. Appl. Environ. Microbiol. 59(10), 3255–3265 (1993)

    Article  Google Scholar 

  35. Foster, T. Staphylococcus. In: Baron, S. (ed.) Medical Microbiology, 4th edn (1996)

    Google Scholar 

  36. Martínez-García, P.M., et al.: Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand. Genomic. Sci. 10, 1–7 (2015). https://doi.org/10.1186/1944-3277-10-10

    Article  Google Scholar 

Download references

Acknowledgements

Authors wishes to acknowledge support from, Institute of Health and Biomedical Innovation (IHBI), Faculty of Engineering, Queensland University of Technology (QUT), Australia, Advance Queensland Industry Research Fellowship, Konica Minolta and Bionics Queensland. The first author is a lecturer from University of Moratuwa, Sri Lanka, currently attached to QUT. Funding was received for this work from AHEAD project (Grant: AHEAD/PhD/R2/ENG/TECH/161), University Grants Commission of Sri Lanka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. D. V. Yarlagadda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senevirathne, S.W.M.A.I., Hasan, J., Mathew, A., Woodruff, M., Yarlagadda, P.K.D.V. (2022). Simulation of Bacterial Motion Under Flow Inside Micro Channel Using CFD and DPM. In: Batako, A., Burduk, A., Karyono, K., Chen, X., Wyczółkowski, R. (eds) Advances in Manufacturing Processes, Intelligent Methods and Systems in Production Engineering. GCMM 2021. Lecture Notes in Networks and Systems, vol 335. Springer, Cham. https://doi.org/10.1007/978-3-030-90532-3_8

Download citation

Publish with us

Policies and ethics