Skip to main content

The Problem of Statistical Instability of Samples of Biosystems Requires New Invariants

  • Conference paper
  • First Online:
Data Science and Intelligent Systems (CoMeSySo 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 231))

Included in the following conference series:

  • 1086 Accesses

Abstract

Traditional statistical methods require statistical stability of samples of any parameters xi(t) of biosystems. However, back in the middle of the 20th century, two scientists (one of the founders of information theory W. Weaver and biomechanist N.A. Bernstein) proposed to abandon statistics in the study of complex biosystems. Currently, the absence of statistical stability of any samples has been proven xi(t) for any biosystems, which means the completion of the further application of statistics (and the theory of dynamical systems) in the study of unstable biosystems. In this regard, serious problems arise in choosing an invariant in a rigorous, mathematical description of stationary regimes of unstable biosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein, N.A.: The Coordination and Regulation of Movements. Pergamon Press, Oxford, New York (1967). p. 196

    Google Scholar 

  2. Weaver, W.: Science and complexity. Am. Sci. 36, 536–544 (1948)

    Google Scholar 

  3. Eskov, V.M., Kulaev, S.V., Popov, Y., Filatova, O.E.: Computer technologies in stability measurements on stationary states in dynamic biological systems. Meas. Tech. 49(1), 59–65 (2006). https://doi.org/10.1007/S11018-006-0063-2

    Article  Google Scholar 

  4. Eskov, V.M., Eskov, V.V., Filatova, O.E.: Characteristic features of measurements and modeling for biosystems in phase spaces of states. Meas. Tech. 53(12), 1404–1410 (2011). https://doi.org/10.1007/S11018-011-9673-4

    Article  Google Scholar 

  5. Eskov, V.M., Gavrilenko, T.V., Vokhmina, Y.V., Zimin, M.I., Filatov, M.A.: Measurement of chaotic dynamics for two types of tapping as voluntary movements. Meas. Tech. 57(6), 720–724 (2014). https://doi.org/10.1007/s11018-014-0525-x

    Article  Google Scholar 

  6. Eskov, V.V., Gavrilenko, T.V., Eskov, V.M., Vokhmina, Y.V.: Phenomenon of statistical instability of the third type systems – complexity. Tech. Phys. 62(11), 1611–1616 (2017). https://doi.org/10.1134/S106378421711007X

    Article  Google Scholar 

  7. Betelin, V.B., Eskov, V.M., Galkin, V.A., Gavrilenko, T.V.: Stochastic volatility in the dynamics of complex homeostatic systems. Dokl. Math. 95(1), 92–94 (2017). https://doi.org/10.1134/S1064562417010240

    Article  MathSciNet  MATH  Google Scholar 

  8. Zilov, V.G., Eskov, V.M., Khadartsev, A.A., Eskov, V.V.: Experimental verification of the Bernstein effect “repetition without repetition.” Bull. Exp. Biol. Med. 163(1), 1–5 (2017). https://doi.org/10.1007/s10517-017-3723-0

    Article  Google Scholar 

  9. Eskov, V.M., Eskov, V.V., Vochmina, J.V., Gavrilenko, T.V.: The evolution of the chaotic dynamics of collective modes as a method for the behavioral description of living systems. Mosc. Univ. Phys. Bull. 71(2), 143–154 (2016). https://doi.org/10.3103/S0027134916020053

    Article  Google Scholar 

  10. Eskov, V.M., Eskov, V.V., Braginskii, M.Ya., Pashnin, A.S.: Determination of the degree of synergism of the human cardiorespiratory system under conditions of physical effort. Meas. Tech. 54(7), 832–837 (2011). https://doi.org/10.1007/S11018-011-9812-Y

  11. Eskov, V.M., Papshev, V.A., Eskov, V.V., Zharkov, D.A.: Measuring biomechanical parameters of human extremity tremor. Meas. Tech. 46(1), 93–99 (2003). https://doi.org/10.1023/A:1023482026679

    Article  Google Scholar 

  12. Eskov, V.M.: Models of hierarchical respiratory neuron networks. Neurocomputing 11(2–4), 203–226 (1996). https://doi.org/10.1016/0925-2312(95)00048-8

    Article  MATH  Google Scholar 

  13. Es’kov, V.M., Filatova, O.E., Ivashenko, V.P.: Computer identification of compartmental neuron circuits. Meas. Tech. 37(8), 967–971 (1994). https://doi.org/10.1007/BF00977157

    Article  Google Scholar 

  14. Zilov, V.G., Khadartsev, A.A., Eskov, V.V., Eskov, V.M.: Experimental study of statistical stability of cardiointerval samples. Bull. Exp. Biol. Med. 164(2), 115–117 (2017). https://doi.org/10.1007/s10517-017-3937-1

    Article  Google Scholar 

  15. Vokhmina, Y.V., Eskov, V.M., Gavrilenko, T.V., Filatova, O.E.: Measuring order parameters based on neural network technologies. Meas. Tech. 58(4), 462–466 (2015). https://doi.org/10.1007/s11018-015-0735-x

    Article  Google Scholar 

  16. Grigorenko, V.V., Eskov, V.M., Nazina, N.B., Egorov, A.A.: Information-analytical system of cardiographic information functional diagnostics. J. Phys. Conf. Ser. 1515, 052027 (2020). https://doi.org/10.1088/1742-6596/1515/5/052027

  17. Eskov, V.V., Filatova, D.Y., Ilyashenko, L.K., Vochmina, Y.V.: Classification of uncertainties in modeling of complex biological systems. Mosc. Univ. Phys. Bull. 74(1), 57–63 (2019). https://doi.org/10.3103/S0027134919010089

    Article  Google Scholar 

  18. Zilov, V.G., Khadartsev, A.A., Ilyashenko, L.K., Eskov, V.V., Minenko, I.A.: Experimental analysis of the chaotic dynamics of muscle biopotentials under various static loads. Bull. Exp. Biol. Med. 165(4), 415–418 (2018). https://doi.org/10.1007/s10517-018-4183-x

    Article  Google Scholar 

  19. Prigogine, I.R.: The End of Certainty: Time, Chaos, and the New Laws of Nature. Free Press (1996)

    Google Scholar 

  20. Gell-Mann, M.: Fundamental sources of unpredictability. Complexity 3(1), 13–19 (1997)

    Article  Google Scholar 

  21. Penrose, R.: The Emperor’s New Mind: Concerning Computers, Mind and Laws of Physics. Oxford University Press, Oxford (1989)

    Google Scholar 

  22. Ginzburg, V.L.: What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century)? Phys. Uspekhi 42, 353–373 (1999). https://doi.org/10.1070/PU1999v042n04ABEH000562

    Article  Google Scholar 

  23. Zilov, V.G., Khadartsev, A.A., Eskov, V.V., Ilyashenko, L.K., Kitanina, K.Y.: Examination of statistical instability of electroencephalograms. Bull. Exp. Biol. Med. 168(1), 5–9 (2019). https://doi.org/10.1007/s10517-019-04633-7

    Article  Google Scholar 

  24. Zilov, V.G., Khadartsev, A.A., Eskov, V.M., Ilyashenko, L.K.: New effect in physiology of human nervous muscle system. Bull. Exp. Biol. Med. 167(4), 419–423 (2019). https://doi.org/10.1007/s10517-019-04540-x

    Article  Google Scholar 

  25. Filatova, O.E., Bashkatova, Yu.V., Shakirova, L.S., Filatov, M.A.: Neural network technologies in system synthesis. IOP Conf. Seri. Mater. Sci. Eng. 1047, 012099 (2021). https://doi.org/10.1088/1757-899X/1047/1/012099

  26. Grigorenko, N.B., Nazina, V.V., Filatov, M.A., Chempalova, L.S., Tretyakov, S.A.: New information technologies in the estimation of the third type systems. J. Phys. Conf. Ser. 1889, 032003 (2021). https://doi.org/10.1088/1742-6596/1889/3/032003

  27. Filatova, D., Bashkatova, Y., Filatov, M.A., Ilyashenko, L.K.: Parameter evaluation of cardiovascular system in schoolchildren under the conditions of latitudinal displacement. Hum. Ecol. 4, 30–35 (2018)

    Article  Google Scholar 

  28. Filatov, M.A., Ilyashenko, L.K., Kolosova, A.I., Makeeva, S.V.: Stochastic and chaotic analysis of students’ attention parameters of different ecological zones. Hum. Ecol. 7, 11–16 (2019)

    Article  Google Scholar 

  29. Khadartseva, K.A., Filatov, M.A., Melnikova, E.G.: The problem of homogenous sampling of cardiovascular system parameters among migrants in the Russian North. Hum. Ecol. 7, 27–31 (2020)

    Article  Google Scholar 

  30. Eskov, V.M., Gudkov, A.B., Filatov, M.A., Eskov, V.V.: Principles of homeostatic regulation of functions in human ecology. Hum. Ecol. 10, 41–49 (2019)

    Article  Google Scholar 

  31. Filatova, O.E., Pyatin, V.F., Filatov, M.A., Shakirova, L.S.: Effect of low temperature on cardiointervals during physical training in men. Hum. Ecol. 1, 17–21 (2021)

    Article  Google Scholar 

  32. Filatov, M.A., Ilyashenko, L.K., Makeeva, S.V.: Psychophysiological parameters of students before and after translatitude travels. Hum. Ecol. 4, 18–24 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eskov, V.V., Galkin, V.A., Filatova, O.E., Filatov, M.A., Eskov, V.M. (2021). The Problem of Statistical Instability of Samples of Biosystems Requires New Invariants. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Data Science and Intelligent Systems. CoMeSySo 2021. Lecture Notes in Networks and Systems, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-030-90321-3_83

Download citation

Publish with us

Policies and ethics