Skip to main content

Different Approaches for the Inclusion of Bioactive Compounds in Packaging Systems

  • Chapter
  • First Online:
Releasing Systems in Active Food Packaging

Part of the book series: Food Bioactive Ingredients ((FBC))

  • 638 Accesses

Abstract

There is a growing need for alternative materials that could enhance the food nutritional value, dominating moisture and solute migration, prolong shelf life, and improve the quality of gas exchange and oxidative reaction rates. Besides, making the polymer-based plastics eco-friendly and biodegradable. Several bioactive compounds are implemented for the preparation of food active packaging including herbal extracts, metallic, and biological compounds. For the inclusion of these bioactive molecules, either synthetic polymers or natural polymers have been used. The encapsulation could be classified as microencapsulation and nanoencapsulation according to the carrier final diameter. Distinct methods were used to encapsulate bioactive substances like spray and freeze-drying, fluidized bed technologies, and molecular inclusion. Moreover, solid lipid nanoparticles and liposomes are lipid-based nanosystems that usually applied as a carrier of bioactive molecules and exhibited oxygen scavenging and antimicrobial properties. Hydrophobic phytochemicals molecules such as essential oils can be loaded in nanoemulsions and polymeric nanoparticles using emulsification–solvent evaporation, and supercritical fluid technologies. As well, Nanofibers are considered one of the promising materials in the inclusion of bioactive molecules in food packaging. This chapter sheds light on the methods used for inclusion, limitations, current trends, and regulatory issues, and biosafety in the encapsulation of bioactive components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A concise guide to active agents for active food packaging | Elsevier Enhanced Reader [Internet]. [cited 2020 Nov 30]. Available from: https://reader.elsevier.com/reader/sd/pii/S0924224418302760?token=022AB9E1FF4BBDFD1F36E75608D69A35F711C9EAD3A6DAD330D36E5DB5D6887A3E7612D769D095AE946C531685EFDA1C

  • Abdul-Fattah AM, Kalonia DS, Pikal MJ. The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci. 2007;96(8):1886–916.

    Article  CAS  PubMed  Google Scholar 

  • Abreu FO, Oliveira EF, Paula HC, de Paula RC. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym. 2012;89(4):1277–82.

    Article  CAS  PubMed  Google Scholar 

  • Aguiar J, Estevinho BN, Santos L. Microencapsulation of natural antioxidants for food application – the specific case of coffee antioxidants – a review. Trends Food Sci Technol. 2016;58:21–39.

    Article  CAS  Google Scholar 

  • Ali MR, Said RME. Assessment of the potential of Arabic gum as an antimicrobial and antioxidant agent in developing vegan “egg-free” mayonnaise. J Food Saf. 2020;40(2):e12771.

    Article  Google Scholar 

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Botelho Moniz F, Brandhoff P, et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol. 2015;73(1):463–76.

    Article  PubMed  Google Scholar 

  • Andreani L, Cercená R, Ramos BGZ, Soldi V. Development and characterization of wheat gluten microspheres for use in a controlled release system. Mater Sci Eng C. 2009;29(2):524–31.

    Article  CAS  Google Scholar 

  • Arroyo-Maya IJ, McClements DJ. Biopolymer nanoparticles as potential delivery systems for anthocyanins: fabrication and properties. Food Res Int. 2015;69:1–8.

    Article  CAS  Google Scholar 

  • Atarés L, Pérez-Masiá R, Chiralt A. The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. J Food Eng. 2011;104(4):649–56.

    Article  Google Scholar 

  • Attallah OA, Shetta A, Elshishiny F, Mamdouh W. Essential oil loaded pectin/chitosan nanoparticles preparation and optimization via Box–Behnken design against MCF-7 breast cancer cell lines. RSC Adv. 2020;10(15):8703–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, et al. Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf. 2016;15(1):143–82.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin EA, Nisperos MO, Chen X, Hagenmaier RD. Improving storage life of cut apple and potato with edible coating. Postharvest Biol Technol. 1996;9(2):151–63.

    Article  CAS  Google Scholar 

  • Ben-Yehoshua. S. Individual seal-packaging of fruit and vegetables in plastic film-a new postharvest technique. HortScience. 1985;20(1):32–7.

    Article  Google Scholar 

  • Bhat M, Sharma A, Rao NN. Carrageenan-based edible biodegradable food packaging: a review. J Food Sci Nutr. 2020;(5):69–75.

    Google Scholar 

  • Brandelli A, Brum LFW, dos Santos JHZ. Nanobiotechnology methods to incorporate bioactive compounds in food packaging. 2016. p. 27–58.

    Google Scholar 

  • Brandelli A, Ritter AC, Veras FF. Antimicrobial activities of metal nanoparticles. In: Mahendra R, Ranjita S, editors. Metal nanoparticles in pharma [Internet]. Cham: Springer; 2017a. p. 337–63. [cited 2020 Dec 1]. Available from: https://doi.org/10.1007/978-3-319-63790-7_15.

    Chapter  Google Scholar 

  • Brandelli A, Brum LFW, dos Santos JHZ. Nanostructured bioactive compounds for ecological food packaging, Environmental Chemistry Letters, vol. 15. Springer; 2017b. p. 193–204.

    Google Scholar 

  • Calderón-Oliver M, Escalona-Buendía HB, Ponce-Alquicira E. Effect of the addition of microcapsules with avocado peel extract and nisin on the quality of ground beef. Food Sci Nutr. 2020;8(3):1325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerqueira MA, Lima ÁM, Souza BWS, Teixeira JA, Moreira RA, Vicente AA. Functional polysaccharides as edible coatings for cheese. J Agric Food Chem. 2009;57(4):1456–62.

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Liu DZ, Lin SY, Liang HJ, Hou WC, Huang WJ, et al. Liposome encapsulation reduces cantharidin toxicity. Food Chem Toxicol. 2008;46(9):3116–21.

    Article  CAS  PubMed  Google Scholar 

  • Chang SK, Alasalvar C, Shahidi F. Superfruits: phytochemicals, antioxidant efficacies, and health effects – a comprehensive review. Crit Rev Food Sci Nutr. 2019;59(10):1580–604.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems, Trends in Food Science and Technology, vol. 17. Elsevier; 2006. p. 272–83.

    Google Scholar 

  • Chen H, Zhang Y, Zhong Q. Physical and antimicrobial properties of spray-dried zein-casein nanocapsules with co-encapsulated eugenol and thymol. J Food Eng. 2014;144:93–102.

    Article  Google Scholar 

  • Chen H, Zhang Y, Zhong Q. Physical and antimicrobial properties of spray-dried zein–casein nanocapsules with co-encapsulated eugenol and thymol. J Food Eng. 2015;144:93–102.

    Article  CAS  Google Scholar 

  • Chen H, Yang M, Shan Z, Mansouri S, May BK, Chen X, et al. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release. Mater Sci Eng C. 2017;74:493–500.

    Article  Google Scholar 

  • Chiu PE, Lai LS. Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. Int J Food Microbiol. 2010;139(1–2):23–30.

    Article  CAS  PubMed  Google Scholar 

  • Crisosto CH, Garner D, Doyle J, Day KR. Relationship between fruit respiration, bruising susceptibility, and temperature in sweet cherries. HortScience. 1993;28(2):132–5.

    Article  Google Scholar 

  • Cruz Z, García-Estrada C, Olabarrieta I, Rainieri S. Lipid nanoparticles: delivery system for bioactive food compounds. In: Microencapsulation and microspheres for food applications. Elsevier Science Ltd.; 2015. p. 313–31.

    Chapter  Google Scholar 

  • da Silva MP, Daroit DJ, Brandelli A. Food applications of liposome-encapsulated antimicrobial peptides, Trends in Food Science and Technology, vol. 21. Elsevier; 2010. p. 284–92.

    Google Scholar 

  • Dai L, Sun C, Li R, Mao L, Liu F, Gao Y. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 2017;237:1163–71.

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A. Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop. 2016;19(3):700–8.

    Article  CAS  Google Scholar 

  • Datta S, Janes ME, Xue QG, Losso J, La Peyre JF. Control of Listeria monocytogenes and Salmonella anatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. J Food Sci. 2008;73(2):M67–71.

    Article  CAS  PubMed  Google Scholar 

  • David S, Livney YD. Potato protein based nanovehicles for health promoting hydrophobic bioactives in clear beverages. Food Hydrocoll. 2016;57:229–35.

    Article  CAS  Google Scholar 

  • de Mello MB, da Silva MP, Brandelli A, da Silveira NP, Jantzen MM, de Souza da Motta A. Characterization and Antilisterial effect of phosphatidylcholine Nanovesicles containing the antimicrobial peptide Pediocin. Probiotics Antimicrob Proteins. 2013;5(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  • de Souza SL, Madalena DA, Pinheiro AC, Teixeira JA, Vicente AA, Ramos ÓL. Micro- and nano bio-based delivery systems for food applications: in vitro behavior, Advances in Colloid and Interface Science, vol. 243. Elsevier B.V; 2017. p. 23–45.

    Google Scholar 

  • Devi N, Sarmah M, Khatun B, Maji TK. Encapsulation of active ingredients in polysaccharide–protein complex coacervates, Advances in Colloid and Interface Science, vol. 239. Elsevier B.V; 2017. p. 136–45.

    Google Scholar 

  • Dey A, Neogi S. Oxygen scavengers for food packaging applications: a review. Trends Food Sci Technol. 2019;90:26–34.

    Article  CAS  Google Scholar 

  • Dias DR, Botrel DA, Fernandes RVDB, Borges SV. Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci. 2017;13:31–7.

    Article  Google Scholar 

  • Donsì F, Voudouris P, Veen SJ, Velikov KP. Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate. Food Hydrocoll. 2017a;63:508–17.

    Article  Google Scholar 

  • Donsì F, Voudouris P, Veen SJ, Velikov KP. Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate. Food Hydrocoll. 2017b;63:508–17.

    Article  Google Scholar 

  • Đorđević V, Paraskevopoulou A, Mantzouridou F, Lalou S, Pantić M, Bugarski B, et al. Encapsulation technologies for food industry, Food Engineering Series. Springer; 2016. p. 329–82.

    Google Scholar 

  • Duan J, Park SI, Daeschel MA, Zhao Y. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of mozzarella cheese. J Food Sci. 2007;72(9):M355–62.

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Cherian G, Zhao Y. Quality enhancement in fresh and frozen lingcod (Ophiodon elongates) fillets by employment of fish oil incorporated chitosan coatings. Food Chem. 2010;119(2):524–32.

    Article  CAS  Google Scholar 

  • Dubey R, Shami TC, Rao B. Microencapsulation technology and applications. Def Sci J. 2009;59(1):82–95.

    CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009;114(4):1173–82.

    Article  CAS  Google Scholar 

  • Duvall MN, Knight K. FDA regulation of nanotechnology. Food Drug Agency FDA USA; 2011.

    Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283–7.

    Article  PubMed  Google Scholar 

  • Elakkiya T, Malarvizhi G, Rajiv S, Natarajan TS. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polym Int. 2014;63(1):100–5.

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: a review, Food and Bioprocess Technology, vol. 6. Springer; 2013. p. 628–47.

    Google Scholar 

  • Fajardo P, Martins JT, Fuciños C, Pastrana L, Teixeira JA, Vicente AA. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. J Food Eng. 2010;101(4):349–56.

    Article  CAS  Google Scholar 

  • Faridi Esfanjani A, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B Biointerfaces. 2016;146:532–43.

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Pan I, Carrión-Granda X, Maté JI. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control. 2014;36(1):69–75.

    Article  Google Scholar 

  • Francisco CRL, Heleno SA, Fernandes IPM, Barreira JCM, Calhelha RC, Barros L, et al. Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chem. 2018;245:845–53.

    Article  CAS  PubMed  Google Scholar 

  • Freiberger EB, Kaufmann KC, Bona E, Hermes de Araújo PH, Sayer C, Leimann FV, et al. Encapsulation of roasted coffee oil in biocompatible nanoparticles. LWT Food Sci Technol. 2015;64(1):381–9.

    Article  CAS  Google Scholar 

  • Frenzel M, Steffen-Heins A. Impact of quercetin and fish oil encapsulation on bilayer membrane and oxidation stability of liposomes. Food Chem. 2015;185:48–57.

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products. Vol. 291, toxicology. Elsevier; 2012. p. 10–7.

    Google Scholar 

  • Fuciños C, Míguez M, Fuciños P, Pastrana LM, Rúa ML, Vicente AA. Creating functional nanostructures: encapsulation of caffeine into α-lactalbumin nanotubes. Innov Food Sci Emerg Technol. 2017a;40:10–7.

    Article  Google Scholar 

  • Fuciños C, Míguez M, Fuciños P, Pastrana LM, Rúa ML, Vicente AA. Creating functional nanostructures: encapsulation of caffeine into α-lactalbumin nanotubes. Innov Food Sci Emerg Technol. 2017b;40:10–7.

    Article  Google Scholar 

  • Gaikwad KK, Singh S, Negi YS. Ethylene scavengers for active packaging of fresh food produce. Environ Chem Lett. 2020;18(2):269–84.

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Casagrande Sipoli C, de La Torre LG, López-Rubio A. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chem. 2017;233:343–50.

    Article  PubMed  Google Scholar 

  • Gulotta A, Saberi AH, Nicoli MC, McClements DJ. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. J Agric Food Chem. 2014;62(7):1720–5.

    Article  CAS  PubMed  Google Scholar 

  • Gülseren I, Guri A, Corredig M. Encapsulation of tea polyphenols in Nanoliposomes prepared with Milk phospholipids and their effect on the viability of HT-29 human carcinoma cells. Food Dig. 2012;3(1–3):36–45.

    Article  Google Scholar 

  • Gumus CE, Decker EA, McClements DJ. Gastrointestinal fate of emulsion-based ω-3 oil delivery systems stabilized by plant proteins: lentil, pea, and faba bean proteins. J Food Eng. 2017;207:90–8.

    Article  CAS  Google Scholar 

  • Gutiérrez L, Escudero A, Batlle R, Nerín C. Effect of mixed antimicrobial agents and flavors in active packaging films. J Agric Food Chem. 2009;57(18):8564–71.

    Article  PubMed  Google Scholar 

  • Han C, Zhao Y, Leonard SW, Traber MG. Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol. 2004;33(1):67–78.

    Article  CAS  Google Scholar 

  • Han J-W, Ruiz-Garcia L, Qian J-P, Yang X-T. Food packaging: a comprehensive review and future trends. Compr Rev Food Sci Food Saf. 2018;17(4):860–77.

    Article  PubMed  Google Scholar 

  • Hargens-Madsen M, Schnepf M, Hamouz F, Weller C, Roy S. Use of edible films and tocopherols in the control of warmed over flavor. J Am Diet Assoc. 1995;95(9 Suppl):A41.

    Article  Google Scholar 

  • He X, Hwang HM. Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal. Elsevier Taiwan LLC. 2016;24:671–81.

    Google Scholar 

  • He Z, Zhang X, Qi W, Huang R, Su R. Alginate-casein microspheres as bioactive vehicles for nutrients. Trans Tianjin Univ. 2015;21(5):383–91.

    Article  CAS  Google Scholar 

  • Hernández-Muñoz P, Almenar E, Ocio MJ, Gavara R. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol Technol. 2006;39(3):247–53.

    Article  Google Scholar 

  • Ho KKHY, Schroën K, San Martín-González MF, Berton-Carabin CC. Physicochemical stability of lycopene-loaded emulsions stabilized by plant or dairy proteins. Food Struct. 2017;12:34–42.

    Article  Google Scholar 

  • Honarvar Z, Hadian Z, Mashayekh M. Nanocomposites in food packaging applications and their risk assessment for health. Electron Physician. 2016;8(6):2531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Fang Y, Yang Y, Ma N, Zhao L. Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res Int. 2011;44(6):1589–96.

    Article  CAS  Google Scholar 

  • Hughes GA. Nanostructure-mediated drug delivery. Nanomed Nanotechnol Biol Med. 2005;1(1):22–30.

    Article  CAS  Google Scholar 

  • Hundre SY, Karthik P, Anandharamakrishnan C. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chem. 2015;174:16–24.

    Article  CAS  PubMed  Google Scholar 

  • Ishwarya SP, Anandharamakrishnan C, Stapley AGF. Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends Food Sci Technol. 2015;41(2):161–81.

    Article  CAS  Google Scholar 

  • Islam MZ, Kitamura Y, Kokawa M, Monalisa K, Tsai F-H, Miyamura S. Effects of micro wet milling and vacuum spray drying on the physicochemical and antioxidant properties of orange (Citrus unshiu) juice with pulp powder. Food Bioprod Process. 2017;101:132–44.

    Article  CAS  Google Scholar 

  • Jafari SM, He Y, Bhandari B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng. 2007;82(4):478–88.

    Article  Google Scholar 

  • Jafari SM, Esfanjani AF, Katouzian I, Assadpour E. Release, characterization, and safety of Nanoencapsulated food ingredients. In: Nanoencapsulation of food bioactive ingredients. Elsevier; 2017. p. 401–53.

    Chapter  Google Scholar 

  • Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Int J Biol Macromol. 2016a;87:101–13.

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Int J Biol Macromol. 2016b;87:101–13.

    Article  CAS  PubMed  Google Scholar 

  • Jarunglumlert T, Nakagawa K, Adachi S. Influence of aggregate structure of casein on the encapsulation efficiency of β-carotene entrapped via hydrophobic interaction. Food Struct. 2015;5:42–50.

    Article  Google Scholar 

  • Jia Z, Dumont M-J, Orsat V. Encapsulation of phenolic compounds present in plants using protein matrices. Food Biosci. 2016a;15:87–104.

    Article  CAS  Google Scholar 

  • Jia Z, Dumont MJ, Orsat V. Encapsulation of phenolic compounds present in plants using protein matrices, Food Bioscience, vol. 15. Elsevier Ltd.; 2016b. p. 87–104.

    Google Scholar 

  • Jiang Z, Neetoo H, Chen H. Efficacy of freezing, frozen storage and edible antimicrobial coatings used in combination for control of listeria monocytogenes on roasted Turkey stored at chiller temperatures. Food Microbiol. 2011a;28(7):1394–401.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Neetoo H, Chen H. Control of listeria monocytogenes on cold-smoked Salmon using chitosan-based antimicrobial coatings and films. J Food Sci. 2011b;76(1):M22–6.

    Article  CAS  PubMed  Google Scholar 

  • Jouki M, Yazdi FT, Mortazavi SA, Koocheki A. Quince seed mucilage films incorporated with oregano essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll. 2014;36:9–19.

    Article  CAS  Google Scholar 

  • Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci. 2014;19(5):417–27.

    Article  CAS  Google Scholar 

  • Katouzian I, Faridi Esfanjani A, Jafari SM, Akhavan S. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients, Trends in Food Science and Technology, vol. 68. Elsevier Ltd.; 2017. p. 14–25.

    Google Scholar 

  • Kegere J, Ouf A, Siam R, Mamdouh W. Fabrication of poly(vinyl alcohol)/chitosan/Bidens pilosa composite electrospun nanofibers with enhanced antibacterial activities. ACS Omega. 2019;4(5):8778–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazić V, Vivod V, Peršin Z, Stoiljković M, Ratnayake IS, Ahrenkiel PS, et al. Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging. Food Packag Shelf Life. 2020;26:100575.

    Article  Google Scholar 

  • Li M, Ioannidis N, Gogos C, Bilgili E. A comparative assessment of nanocomposites vs. amorphous solid dispersions prepared via nanoextrusion for drug dissolution enhancement. Eur J Pharm Biopharm. 2017;119:68–80.

    Article  CAS  PubMed  Google Scholar 

  • Lia C, Wang J, Shi J, Huang X, Peng Q, Xueb F. Encapsulation of tomato oleoresin using soy protein isolate-gum aracia conjugates as emulsifier and coating materials. Food Hydrocoll. 2015;45:301–8.

    Article  Google Scholar 

  • Liao L, Luo Y, Zhao M, Wang Q. Preparation and characterization of succinic acid deamidated wheat gluten microspheres for encapsulation of fish oil. Colloids Surf B Biointerfaces. 2012;92:305–14.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan PV, Rodrigues FAS, Motel A, Leonhard A. Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biol Technol. 2008;48(3):408–14.

    Article  CAS  Google Scholar 

  • Marcos B, Aymerich T, Monfort JM, Garriga M. High-pressure processing and antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Food Microbiol. 2008;25(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  • Marsanasco M, Márquez AL, Wagner JR, Chiaramoni NS, Del V, Alonso S. Bioactive compounds as functional food ingredients: characterization in model system and sensory evaluation in chocolate milk. J Food Eng. 2015;166:55–63.

    Article  CAS  Google Scholar 

  • Mehmood T. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology. Food Chem. 2015;183:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Millette M, Le Tien C, Smoragiewicz W, Lacroix M. Inhibition of Staphylococcus aureus on beef by nisin-containing modified alginate films and beads. Food Control. 2007;18(7):878–84.

    Article  CAS  Google Scholar 

  • Min B, Ahn DU. Mechanism of lipid peroxidation in meat and meat products – a review. Food Sci Biotechnol. 2005;14(1):152–63.

    CAS  Google Scholar 

  • Moeiniafshari AA, Zarrabi A, Bordbar AK. Exploring the interaction of naringenin with bovine beta-casein nanoparticles using spectroscopy. Food Hydrocoll. 2015;51:1–6.

    Article  CAS  Google Scholar 

  • Moore ME, Han I, Acton J, Ogale A, Barmore C, Dawson P. Effects of antioxidants in polyethylene film on fresh beef color. J Food Sci. 2006;68:99–104.

    Article  Google Scholar 

  • Mosquera M, Giménez B, Da Silva IM, Boelter JF, Montero P, Gómez-Guillén MC, et al. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chem. 2014;156:144–50.

    Article  CAS  PubMed  Google Scholar 

  • Nanotechnology: a New Frontier in Food Science [Internet]. [cited 2020 Nov 27]. Available from: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2003/december/features/nanotechnology-a-new-frontier-in-food-science

  • Natrajan N, Sheldon BW. Inhibition of Salmonella on poultry skin using protein- and polysaccharide-based films containing a nisin formulation. J Food Prot. 2000;63(9):1268–72.

    Article  CAS  PubMed  Google Scholar 

  • Neetoo H, Ye M, Chen H. Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int J Food Microbiol. 2010;136(3):326–31.

    Article  CAS  PubMed  Google Scholar 

  • Nesterenko A, Alric I, Silvestre F, Durrieu V. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Ind Crop Prod. 2013a;42:469–79.

    Article  CAS  Google Scholar 

  • Nesterenko A, Alric I, Silvestre F, Durrieu V. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness, Industrial Crops and Products, vol. 42. Elsevier; 2013b. p. 469–79.

    Google Scholar 

  • Nguyen VT, Gidley MJ, Dykes GA. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol. 2008;25(3):471–8.

    Article  CAS  PubMed  Google Scholar 

  • Ni S, Sun R, Zhao G, Xia Q. Quercetin loaded nanostructured lipid carrier for food fortification: preparation, characterization and in vitro study. J Food Process Eng. 2015;38(1):93–106.

    Article  CAS  Google Scholar 

  • Oancea AM, Aprodu I, Ghinea IO, Barbu V, Ioniţă E, Bahrim G, et al. A bottom-up approach for encapsulation of sour cherries anthocyanins by using β-lactoglobulin as matrices. J Food Eng. 2017;210:83–90.

    Article  CAS  Google Scholar 

  • Ogrodowska D, Tańska M, Brandt W. The influence of drying process conditions on the physical properties, bioactive compounds and stability of encapsulated pumpkin seed oil. Food Bioprocess Technol. 2017;10(7):1265–80.

    Article  CAS  Google Scholar 

  • Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010;120(1):193–8.

    Article  CAS  Google Scholar 

  • Olivas GI, Barbosa-Cánovas GV. Edible coatings for fresh-cut fruits. Crit Rev Food Sci Nutr. 2005;45:657–70.

    Google Scholar 

  • Olivas GI, Mattinson DS, Barbosa-Cánovas GV. Alginate coatings for preservation of minimally processed “Gala” apples. Postharvest Biol Technol. 2007;45(1):89–96.

    Article  CAS  Google Scholar 

  • Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O. Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biol Technol. 2008;50(1):87–94.

    Article  CAS  Google Scholar 

  • Ouattara B, Simard RE, Piette G, Bégin A, Holley RA. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol. 2000;62(1–2):139–48.

    Article  CAS  Google Scholar 

  • Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M. Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J Food Prot. 2006;69(10):2364–9.

    Article  CAS  PubMed  Google Scholar 

  • Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M. Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. J Food Prot. 2007;70(4):901–8.

    Article  CAS  PubMed  Google Scholar 

  • Pant A, Sängerlaub S, Müller K. Gallic acid as an oxygen scavenger in bio-based multilayer packaging films. Materials. 2017;10(5):489.

    Article  PubMed Central  Google Scholar 

  • Park SI, Stan SD, Daeschel MA, Zhao Y. Antifungal coatings on fresh strawberries (Fragaria × ananassa) to control mold growth during cold storage. J Food Sci. 2005;70(4):202–7.

    Article  Google Scholar 

  • Parra RR. Microencapsulación de Alimentos. Rev Fac Nac Agron. 2010;63(2):5669–84.

    Google Scholar 

  • Patel ZS, Yamamoto M, Ueda H, Tabata Y, Mikos AG. Biodegradable gelatin microparticles as delivery systems for the controlled release of bone morphogenetic protein-2. Acta Biomater. 2008;4(5):1126–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil YP, Jadhav S. Novel methods for liposome preparation, Chemistry and Physics of Lipids, vol. 177. Elsevier Ireland Ltd.; 2014. p. 8–18.

    Google Scholar 

  • Piorkowski DT, McClements DJ. Beverage emulsions: recent developments in formulation, production, and applications. Food Hydrocoll. 2014;42:5–41.

    Article  CAS  Google Scholar 

  • Qian C, Decker EA, Xiao H, McClements DJ. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: potential limitations of solid lipid nanoparticles. Food Res Int. 2013;52(1):342–9.

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, et al. Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanoparticle Res. Kluwer Academic Publishers. 2014;16:1–23.

    Google Scholar 

  • Raybaudi-Massilia R, Mosqueda-Melgar H. Polysaccharides as carriers and protectors of additives and bioactive compounds in foods. In: The complex world of polysaccharides. InTech; 2012. p. 27.

    Google Scholar 

  • Raybaudi-Massilia RM, Rojas-Graü MA, Mosqueda-Melgar J, Martín-Belloso O. Comparative study on essential oils incorporated into an alginate-based edible coating to assure the safety and quality of fresh-cut Fuji apples. J Food Prot. 2008a;71(6):1150–61.

    Article  CAS  PubMed  Google Scholar 

  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol. 2008b;121(3):313–27.

    Article  CAS  PubMed  Google Scholar 

  • Rayner M, Marku D, Eriksson M, Sjöö M, Dejmek P, Wahlgren M. Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids Surf Physicochem Eng Asp. 2014;458(1):48–62.

    Article  CAS  Google Scholar 

  • Rodea-González DA, Cruz-Olivares J, Román-Guerrero A, Rodríguez-Huezo ME, Vernon-Carter EJ, Pérez-Alonso C. Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J Food Eng. 2012;111(1):102–9.

    Article  Google Scholar 

  • Rodriguez J, Martín MJ, Ruiz MA, Clares B. Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res Int. 2016;83:41–59.

    Article  CAS  Google Scholar 

  • Rojas-Graü MA, Raybaudi-Massilia RM, Soliva-Fortuny RC, Avena-Bustillos RJ, McHugh TH, Martín-Belloso O. Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biol Technol. 2007;45(2):254–64.

    Article  Google Scholar 

  • Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O. Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends Food Sci Technol. 2009;20(10):438–47.

    Article  Google Scholar 

  • Rutz JK, Borges CD, Zambiazi RC, Crizel-Cardozo MM, Kuck LS, Noreña CPZ. Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chem. 2017;220:59–66.

    Article  CAS  PubMed  Google Scholar 

  • Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015;43:547–56.

    Article  CAS  Google Scholar 

  • Sangsuwan J, Rattanapanone N, Rachtanapun P. Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Biol Technol. 2008;49(3):403–10.

    Article  CAS  Google Scholar 

  • Sanguansri L, Augustin M-A. Microencapsulation and delivery of Omega-3 fatty acids. In: Functional food ingredients and nutraceuticals processing technologies. Taylor & Francis; 2007. p. 297–327.

    Google Scholar 

  • Sayanjali S, Ghanbarzadeh B, Ghiassifar S. Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios. LWT Food Sci Technol. 2011;44(4):1133–8.

    Article  CAS  Google Scholar 

  • Seeli DS, Prabaharan M. Guar gum succinate as a carrier for colon-specific drug delivery. Int J Biol Macromol. 2016;84:10–5.

    Article  CAS  PubMed  Google Scholar 

  • Seol KH, Lim DG, Jang A, Jo C, Lee M. Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 °C. Meat Sci. 2009;83(3):479–83.

    Article  CAS  PubMed  Google Scholar 

  • Shetta A, Kegere J, Mamdouh W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol. 2019;126:731–42.

    Article  CAS  PubMed  Google Scholar 

  • Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol. 2018;78:34–60.

    Article  CAS  Google Scholar 

  • Siracusa V, Blanco I. Bio-polyethylene (bio-PE), bio-polypropylene (bio-PP) and bio-poly(ethylene terephthalate) (bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers. 2020;12(8):1641.

    Article  CAS  PubMed Central  Google Scholar 

  • Siripatrawan U, Noipha S. Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocoll. 2012;27(1):102–8.

    Article  CAS  Google Scholar 

  • Song Y, Liu L, Shen H, You J, Luo Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control. 2011;22(3–4):608–15.

    Article  CAS  Google Scholar 

  • Sun S, Song Y, Zheng Q. Rheological behavior of heat-induced wheat gliadin gel. Food Hydrocoll. 2009;23(3):1054–6.

    Article  CAS  Google Scholar 

  • Suppakul P, Miltz J, Sonneveld K, Bigger SW. Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci. 2003;68(2):408–20.

    Article  CAS  Google Scholar 

  • Tan C, Xia S, Xue J, Xie J, Feng B, Zhang X. Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure. J Agric Food Chem. 2013;61(34):8175–84.

    Article  CAS  PubMed  Google Scholar 

  • Tapia M. Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT Food Sci Technol. 2008;41:139–47.

    Article  Google Scholar 

  • Tapia MS, Rojas-Graü MA, Rodríguez FJ, Ramírez J, Carmona A, Martin-Belloso O. Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits. J Food Sci. 2007;72(4):E190–6.

    Article  CAS  PubMed  Google Scholar 

  • Tapia MS, Rojas-Graü MA, Carmona A, Rodríguez FJ, Soliva-Fortuny R, Martin-Belloso O. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocoll. 2008;22(8):1493–503.

    Article  CAS  Google Scholar 

  • Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm Elsevier BV. 2017;522:172–97.

    Google Scholar 

  • Tas CE, Hendessi S, Baysal M, Unal S, Cebeci FC, Menceloglu YZ, et al. Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food Bioprocess Technol. 2017;10(4):789–98.

    Article  CAS  Google Scholar 

  • Tatar Turan F, Cengiz A, Kahyaoglu T. Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry’s bioactive compounds. Innov Food Sci Emerg Technol. 2015;32:136–45.

    Article  CAS  Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J. Ultrasonic spectroscopy and differential scanning calorimetry of liposomal-encapsulated nisin. J Agric Food Chem. 2005;53(22):8722–8.

    Article  CAS  PubMed  Google Scholar 

  • Thompson AK, Hindmarsh JP, Haisman D, Rades T, Singh H. Comparison of the structure and properties of liposomes prepared from milk fat globule membrane and soy phospholipids. J Agric Food Chem. 2006;54(10):3704–11.

    Article  CAS  PubMed  Google Scholar 

  • Thorat AA, Dalvi SV. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J. 2012;181–182:1–34.

    Article  Google Scholar 

  • Timilsena YP, Wang B, Adhikari R, Adhikari B. Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: a review. Food Hydrocoll. 2017;69:369–81.

    Article  CAS  Google Scholar 

  • Tsironi T, Ntzimani A, Gogou E, Tsevdou M, Semenoglou I, Dermesonlouoglou E, et al. Modeling the effect of active modified atmosphere packaging on the microbial stability and shelf life of Gutted Sea Bass. Appl Sci. 2019;9(23):5019.

    Article  CAS  Google Scholar 

  • Uysal Unalan I, Cerri G, Marcuzzo E, Cozzolino CA, Farris S. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv. 2014;4(56):29393–428.

    Article  CAS  Google Scholar 

  • Valencia-Chamorro SA, Pérez-Gago MB, del Río MÁ, Palou L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored “Valencia” oranges. Postharvest Biol Technol. 2009;54(2):72–9.

    Article  CAS  Google Scholar 

  • Varshosaz J, Eskandari S, Tabbakhian M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr Polym. 2012;88(4):1157–63.

    Article  CAS  Google Scholar 

  • Waghmare RB. Encapsulation techniques for delivery of bioactive compounds in Milk and dairy products – a review. J Dairy Res Technol. 2020;3(1):1–9.

    Article  Google Scholar 

  • Waglay A, Karboune S, Alli I. Potato protein isolates: recovery and characterization of their properties. Food Chem. 2014;142:373–82.

    Article  CAS  PubMed  Google Scholar 

  • Wahbi W, Siam R, Kegere J, El-Mehalmey WA, Mamdouh W. Novel inulin electrospun composite nanofibers: prebiotic and antibacterial activities. ACS Omega. 2020;5(6):3006–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winestrand S, Johansson K, Järnström L, Jönsson LJ. Co-immobilization of oxalate oxidase and catalase in films for scavenging of oxygen or oxalic acid. Biochem Eng J. 2013;72:96–101.

    Article  CAS  Google Scholar 

  • Wu Y, Rhim JW, Weller CL, Hamouz F, Cuppett S, Schnepf M. Moisture loss and lipid oxidation for precooked beef patties stored in edible coatings and films. J Food Sci. 2000;65(2):300–4.

    Article  CAS  Google Scholar 

  • Wu Y, Weller CL, Hamouz F, Cuppett S, Schnepf M. Moisture loss and lipid oxidation for precooked ground-beef patties packaged in edible starch-alginate-based composite films. J Food Sci. 2001;66(3):486–93.

    Article  CAS  Google Scholar 

  • Yalavarthi P, Dudala T, Mudumala N, Pasupati V, Thanniru J, Vadlamudi H, et al. A perspective overview on lipospheres as lipid carrier systems. Int J Pharm Investig. 2014;4(4):149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye M, Neetoo H, Chen H. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol. 2008;25(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto M, Sakamoto H, Yoshimoto N, Kuboi R, Nakao K. Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enzym Microb Technol. 2007;41(6–7):849–58.

    Article  CAS  Google Scholar 

  • Youssef Ahmed M, EL-Sayed SM, EL-Sayed HS, Salama HH, Dufresne A. Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym. 2016;151:9–19.

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Kong Z-Y, Sun Y-E, Zeng Q-Z, Yang X-Q. Complex coacervation of soy protein with chitosan: constructing antioxidant microcapsule for algal oil delivery. LWT Food Sci Technol. 2017a;75:171–9.

    Article  CAS  Google Scholar 

  • Yuan Y, Kong ZY, Sun YE, Zeng QZ, Yang XQ. Complex coacervation of soy protein with chitosan: constructing antioxidant microcapsule for algal oil delivery. LWT Food Sci Technol. 2017b;75:171–9.

    Article  CAS  Google Scholar 

  • Zeeb B, Herz E, McClements DJ, Weiss J. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. J Colloid Interface Sci. 2014;433:196–203.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun H, Zhang Z, Niu Q, Chen Y, Crittenden JC. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere. 2007;67(1):160–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hayes DG, Chen G, Zhong Q. Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene. J Agric Food Chem. 2013;61(39):9435–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Mamdouh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shetta, A., Ali, I.H., Elshishiny, F., Mamdouh, W. (2022). Different Approaches for the Inclusion of Bioactive Compounds in Packaging Systems. In: Jafari, S.M., Silva, A.S. (eds) Releasing Systems in Active Food Packaging. Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-90299-5_7

Download citation

Publish with us

Policies and ethics