Skip to main content

The Spliceosome: A Large Catalytic RNA

  • Chapter
  • First Online:
Fundamentals of RNA Structure and Function

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

In eukarya, RNA is transcribed from a DNA template in the nucleus. The heteronuclear RNA (hnRNA) undergoes further processing, often while being transcribed, to be converted into a messenger RNA (mRNA). The spliceosome acts on hnRNA to remove intervening regions (introns) and join expression regions (exons) using two transesterification reactions. The spliceosome is a large RNA–protein complex composed with over 200 different proteins and five small nuclear RNA (snRNA) that assembles anew on each hnRNA. In this chapter, we will discuss U2-dependent spliceosomal assembly and splicing. We will examine the many steps involved in constitutive splicing using the available cryo-EM structures and associated modeling. The spliceosome is a ribozyme as U6 snRNA and magnesium ions participate in the catalysis reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris H, Watts JW. The relationship between nuclear and cytoplasmic ribonucleic acid. Proc R Soc Lond B Biol Sci. 1962; 156:109 –12.

    Article  CAS  Google Scholar 

  2. Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A. 1977; 74:3171 –5.

    Article  CAS  Google Scholar 

  3. Berk AJ, Sharp PA. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977; 12:721 –32.

    Article  CAS  Google Scholar 

  4. Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell. 1977; 12:1 –8.

    Article  CAS  Google Scholar 

  5. Darnell JE Jr. Implications of RNA–RNA splicing in evolution of eukaryotic cells. Science. 1978; 202:1257 –60.

    Article  CAS  Google Scholar 

  6. Early P, Rogers J, Davis M, et al. Two mRNAs can be produced from a single immunoglobulin chain by alternative RNA processing pathways. Cell. 1980; 20:313 –9.

    Article  CAS  Google Scholar 

  7. Berk AJ. Discovery of RNA splicing and genes in pieces. Proc Natl Acad Sci. 2016; 113:801 –5.

    Article  CAS  Google Scholar 

  8. Bass B, Cech T. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature. 1984; 308:820 –6.

    Article  CAS  Google Scholar 

  9. Cate JH, Gooding AR, Podell E, et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996; 273:1678 –85.

    Article  CAS  Google Scholar 

  10. Su Z, Zhang K, Kappel K, et al. Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution. Nature. 2021; 596:603 –7.

    Article  CAS  Google Scholar 

  11. Kashyap L, Sharma RK. Alternative splicing: a paradoxical qudo in eukaryotic genomes. Bioinformation. 2007; 2:155 –6.

    Article  Google Scholar 

  12. Rotival M, Quach H, Quintana-Murci L. Defining the genetic and evolutionary architecture of alternative splicing in response to infection. Nat Commun. 2019; 10:1671 .

    Article  Google Scholar 

  13. Celotto AM, Graveley BR. Alternative splicing of the drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics. 2001; 159:599 –608.

    Article  CAS  Google Scholar 

  14. Savarese M, Jonson PH, Huovinen S, et al. The complexity of titin splicing pattern in human adult skeletal muscles. Skelet Muscle. 2018; 8:11 .

    Article  Google Scholar 

  15. Will CL, LĂĽhrmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3:a003707.

    Article  CAS  Google Scholar 

  16. Guthrie C. Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science. 1991; 253:157 –63.

    Article  CAS  Google Scholar 

  17. Brow DA, Guthrie C. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature. 1988; 334:213 –8.

    Article  CAS  Google Scholar 

  18. Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015; 84:291 –323.

    Article  CAS  Google Scholar 

  19. Bindereif A, Green MR. An ordered pathway of snRNP binding during mammalian pre-mRNA splicing complex assembly. EMBO J. 1987; 6:2415 –24.

    Article  CAS  Google Scholar 

  20. Feltz C, Anthony K, Brilot A, Pomeranz Krummel D. Architecture of the spliceosome. Biochemistry. 2012; 51:3321 –33.

    Article  Google Scholar 

  21. Raghunathan PL, Guthrie C. RNA unwinding in the U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol. 1998; 8:847 –55.

    Article  CAS  Google Scholar 

  22. Schwer B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol Cell. 2008; 30:743 –54.

    Article  CAS  Google Scholar 

  23. Weber S, Aebi M. In vitro splicing of mRNA precursors: 5′ cleavage site can be predicted from the interaction between the 5′ splice region and the 5′ terminus of U1 snRNA. Nucleic Acids Res. 1998; 16:471 –86.

    Article  Google Scholar 

  24. Wu J, Manley JL. Mammalian pre-mRNA branch site selection by U2 snRNP involves base pairing. Genes Dev. 1989; 3:1553 –61.

    Article  CAS  Google Scholar 

  25. Shi Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol. 2017; 18:655 –70.

    Article  CAS  Google Scholar 

  26. Cretu C, Gee P, Liu X, et al. Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Nat Commun. 2021; 12:4491 .

    Article  CAS  Google Scholar 

  27. Nguyen TH, Galej WP, Bai XC, et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature. 2015; 523:47 –52.

    Article  CAS  Google Scholar 

  28. Plaschka C, Lin P, Nagai K. Structure of a pre catalytic spliceosome. Nature. 2017; 546:617 –21.

    Article  CAS  Google Scholar 

  29. Yan C, Wan R, Bai R, et al. Structure of a yeast activated spliceosome at 3.5 Å resolution. Science. 2016; 353:904 –11.

    Article  CAS  Google Scholar 

  30. Galej W, Wilkinson M, Fica S, et al. Cryo-EM structure of the spliceosome immediately after branching. Nature. 2016; 537:197 –201.

    Article  CAS  Google Scholar 

  31. Fica SM, Tuttle N, Novak T, et al. RNA catalyses nuclear pre-mRNA splicing. Nature. 2013; 503:229 –34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Josefchak, C., Grover, N. (2022). The Spliceosome: A Large Catalytic RNA . In: Grover, N. (eds) Fundamentals of RNA Structure and Function. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-90214-8_4

Download citation

Publish with us

Policies and ethics