Skip to main content

Rhombomere 7 r7

  • Chapter
  • First Online:
The Human Brainstem

Abstract

Rhombomere 7 is the origin of another vestibular nucleus—previously the spinal/inferior vestibular nucleus (see Chap. 5)—the medial vestibular nucleus. Among the branchial motor nuclei, the inferior salivatory nucleus shows up. The innervation of the parotid gland will be explained here. Another important cranial nerve is the vagus nerve—the viscerosensory part of which had been dealt with in Chap. 3—with its motor nucleus. The course of this nerve will be shown here to the plethora of inner organs to which it provides the parasympathetic innervation. The last of the caudal raphe nuclei—previously the raphe pallidus and obscurus nuclei (see Chap. 4)—the raphe magnus nucleus, the largest of the caudal raphe nuclei, is described. The pontine reticular nucleus is involved in the generation of horizontal saccades.

Among the reticular nuclei listed here, the human one is the lateral paragigantocellular nucleus, located in a region that regulates homeostatic functions, e.g., blood pressure and cardiovascular reflexes.

The pathological units dealt with here are Huntington’s disease and the wide spectrum of the spinocerebellar ataxias (SCA) which despite their traditional name affect not only the spinal cord and the cerebellum but quite a number of brainstem nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alicart H, Heldmann M et al (2021) Modulation of visual processing of food by transcutaneous vagus nerve stimulation (tVNS). Brain Imaging Behav 15(4):1886–1897. Epub ahead of print

    Article  PubMed  Google Scholar 

  • Ashizawa T, Öz G et al (2018) Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 14:590–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Augustine JR (2017) Human neuroanatomy. 2nd ed. Wiley

    Google Scholar 

  • Bagnall MW, Stevens RJ et al (2007) Transgenic mouse lines subdivide medial vestibular nucleus into discrete neurochemically distinct populations. J Neurosci 27:2318–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banfi S, Servadio A et al (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7:513–520

    Article  CAS  PubMed  Google Scholar 

  • Bang OY, Lee PH et al (2004) Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry 75:1452–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates GP (2005) History of genetic disease: the molecular genetics of Huntington disease—a history. Nat Rev Genet 6:766–773

    Article  CAS  PubMed  Google Scholar 

  • Beckstead RM, Morse JR et al (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190:259–282

    Article  CAS  PubMed  Google Scholar 

  • Blessing WB (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinosm G, Mai G (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 465–478

    Google Scholar 

  • Browning KN, Travagli AT (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4:1339–1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnett BG, Pittman RN (2005) The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc Natl Acad Sci U S A 102(12):4330–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt MF, Albusoda A et al (2020) The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 236:588–611

    Article  PubMed  Google Scholar 

  • Casamento-Moran A, Chen Y-T et al (2015) Force dysmetria in spinocerebellar ataxia type 6 correlates with functional capacity. Front Hum Neurosci 9:184

    Article  PubMed  Google Scholar 

  • Cambiaghi M (2017) Andreas Vesalius (1514-1564). J Neurol 264:1828–1830

    Article  PubMed  Google Scholar 

  • Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1383–1409

    Article  CAS  PubMed  Google Scholar 

  • Colussi-Mas J, Geisle S et al (2007) Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double labeling study. Eur J Neurosci 26:1011–1025

    Article  PubMed  PubMed Central  Google Scholar 

  • Duyckaerts C, Dürr A et al (1999) Nuclear inclusions in spinocerebellar ataxia type 1. Acta Neuropathol 97:201–207

    Article  CAS  PubMed  Google Scholar 

  • Eadie MJ (1975a) Olivo-ponto-cerebellar atrophy (Déjérine-Thomas type). In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, pp 415–431

    Google Scholar 

  • Eadie MJ (1975b) Olivo-ponto-cerebellar atrophy (Menzel type). In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, pp 433–449

    Google Scholar 

  • Eriksson R (1959) Andreas Vesalius first public anatomy at Bologna 1540. An eyewitness report by Baldasar Heseler, Medicinae Scolaris

    Google Scholar 

  • Feehs KR, Thomas RW et al (2020) Laryngeal reinnervation. In: Weissbrod PA, Francis DO (eds) Neurologic and neurodegenerative diseases of the larynx. Springer, pp 355–363

    Google Scholar 

  • Fleischer S (2020) Tipps und Tricks für die Laryngoskopie. HNO Nachrichten 50:30–37

    Article  Google Scholar 

  • Fu Y, Tvrdik P et al (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-Cre genetic labeling. Cerebellum 10:570–584

    Article  PubMed  Google Scholar 

  • Garden GA, La Spada AR (2008) Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 7:138–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garofalo I (1991) Galeno Procedimenti anatomici. vol. I–III. ΑΝΑΤΟΜΙΚΑΙ ΕΓΧΕΙΡΗΣΕΙΣ. Biblioteca Universale Rizzoli, Milano

    Google Scholar 

  • Gerlach DA, Manuel J et al (2019) Novel approach to elucidate human Baroreflex regulation at the brainstem level: pharmacological testing during fMRI. Front Neurosci 13:193

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghannam MG, Singh P (2020) Anatomy, head and neck, salivary glands. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Gil JM, Rgeo AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820

    Article  PubMed  Google Scholar 

  • Gomez CM, Thompson RM et al (1997) Spinocerebellar type: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–950

    Article  CAS  PubMed  Google Scholar 

  • Gouw LG, Digre KB et al (1994) Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 44:1441–1447

    Article  CAS  PubMed  Google Scholar 

  • Harper PS (1992) The epidemiology of Huntington’s disease. Hum Genet 89:365–376

    Article  CAS  PubMed  Google Scholar 

  • Hedreen JC, Roos RAC (2003) Huntington’s disease. In: Dickson DW (ed) Neurodegeneration: The molecular pathology of dementia and movement disorders. vol 5, pp 229–242

    Google Scholar 

  • Herndon ES, Hladik CL et al (2009) Neuroanatomic profile of polyglutamine immunoreactivity in Huntington disease brains. J Neuropathol Exp Neurol 68(3):250–261

    Article  CAS  PubMed  Google Scholar 

  • Holmberg M, Duyckaerts C et al (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7:913–918

    Article  CAS  PubMed  Google Scholar 

  • Hornung J-P (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331–343

    Article  CAS  PubMed  Google Scholar 

  • Hornung J-P (2012) Raphe nuclei. In: Mai JK, Paxinos G (eds). The human nervous system, 3rd edn. Elsevier, pp 401–424

    Google Scholar 

  • Huang X-F, Törk I et al (1993) Dorsal motor nucleus of the vagus nerve: a cyto- und chemoarchtectonic study in the human. J Comp Neurol 8:158–182

    Article  Google Scholar 

  • Inoue M (1984) Structure and innervation of mouse parotid gland. J Juzen Med Soc 93:534–549

    Google Scholar 

  • Ishikawa K, Fujigasaki H et al (1999) Abundant expression and cytoplasmic aggregations of alpha1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum Mol Genet 8:1285–1293

    Article  Google Scholar 

  • Iwabuchi K, Tsuchiya K et al (1999) Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol (Paris) 155:255–270

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Okamoto T et al (1994) CAG expansion in a novel gene for Machado-Joseph disease at chromosome14q32.1. Nat Genet 8:221–228

    Article  CAS  PubMed  Google Scholar 

  • Kaufman MH, Bard JBL (1999) The anatomical basis of mouse development. Academic, San Diego

    Google Scholar 

  • Khakh BS, Beaumont V et al (2017) Unraveliong and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci 40:422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick JJ, Foutz S et al (2021) Anatomy, abdomen and pelvis, kidney nerves. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Kolkman KE, Moghadam SH et al (2011) Intrinsic physiology of identified neurons in the prepositus hypoglossi and the medial vestibular nuclei. J Vestib Res 21:33–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopp UC (2011) Neuroanatomy. Chapter 2 of ‘neural control of renal function’. Morgan & Claypool Life Sciences

    Google Scholar 

  • Lübbers W, Lübbers C (2021) Eine “Selbstbetrachtung” der HNO-Ärzte. HNO Nachrichten 51:138–139

    Article  Google Scholar 

  • Mashimo H, Goyal RK (2006) Physiology of esophageal motility. GI Motility online

    Google Scholar 

  • Manuff P, Tyler P et al (1996) Cognitive decline in Machado-Joseph disease. Ann Neurol 40:421–427

    Article  Google Scholar 

  • Martin J, van Regemorter N et al (1999) Spinocerebellar ataxia type 7 (SCA7)—correlations between phenotype and genotype in one large Belgian family. J Neurol Sci 168:37–46

    Article  CAS  PubMed  Google Scholar 

  • Mascalchi M (2008) Spinocerebellar ataxias. Neurol Sci 29:S311–S313

    Article  Google Scholar 

  • Michalik A, Martin J-J et al (2004) Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 12:2–15

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Jeong S-Y et al (2001) SCA17, a novel autososomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10(14):1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Méndez E et al (2013) Lifelong expression of apolipoprotein D in the human brainstem: correlation with reduced age-related neurodegeneration. PLoS One 8(10):e77852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng ALC, Rosenfeld JV et al (2019) Cranial nerve nomenclature: historical vignette. World Neurosurg 128:299–307

    Article  Google Scholar 

  • Norberg K-A, Hökfelt T et al (1968) The autonomic innervation of human submandibular and parotid glands. J Neurovisc Relat 31:280–290

    Article  Google Scholar 

  • Orr H, Chung M-Y et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    Article  CAS  PubMed  Google Scholar 

  • Pasipoularides A (2014) Galen, father of systematic medicine. An essay on the evolution of modern medicine and cardiology. Int J Cardiol 172:47–58

    Article  PubMed  Google Scholar 

  • Paulson HL, Perez MK et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    Article  CAS  PubMed  Google Scholar 

  • Paulson HL (2000) Toward an understanding of polyglutamine neurodegeneration. Brain Pathol 19:759–782

    Google Scholar 

  • Paulson HL (2007) Dominantly inherited ataxias: lessons learned form Machado-Joseph disease/spinocerebellar ataxia type 3. Semin Neurol 27:133–142

    Article  PubMed  Google Scholar 

  • Paulson H (2009) The spinocerebellar ataxias. J Neuroophthalmol 29:227–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawlins MD, Wexler NS et al (2016) The prevalence of Huntington’s disease. Neuroepidemiology 46:144–153

    Article  PubMed  Google Scholar 

  • Revesz T, Clark HB et al (2015) Extrapyramidal disorders of movement. In: Love S, Perry A, Ironside J, Budka H (eds) Greenfield’s neuropathology, 9th edn., p 740

    Google Scholar 

  • Robitaille Y, Schut L et al (1995) Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol 90:572–581

    Article  CAS  PubMed  Google Scholar 

  • Robitaille Y, Lopes-Cendes I et al (1997) The neuropathology of CAG repeat diseases: review and update of genetic and molecular features. Brain Pathol 7:901–926

    Article  CAS  PubMed  Google Scholar 

  • Rolfs A, Koeppen AH et al (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367–375

    Article  PubMed  Google Scholar 

  • Rüb U, Del Tredici K et al (2000) The evolution of Alzheimer’s disease-related cytoskeletal pathology in the human raphe nuclei. Neuropathol Appl Neurobiol 26:553–567

    Article  PubMed  Google Scholar 

  • Rüb U, Schultz C et al (2003) Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol 29:418–433

    Article  PubMed  Google Scholar 

  • Rüb U, Burk K et al (2004) Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology 63:1258–1263

    Article  PubMed  Google Scholar 

  • Rüb U, Brunt ER et al (2005a) Spinocerebellar ataxia type 7 (SCA7): first report of a systematic neuropathological study of the brain of a patient with a very short expanded CAG-repeat. Brain Pathol 15:287–295

    Article  PubMed  Google Scholar 

  • Rüb U, Gierga K et al (2005b) Spinocerebellar ataxias type 2 and 3: degeneration of the precerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm 112:1523–1545

    Article  PubMed  Google Scholar 

  • Rüb U, Brunt ER et al (2006) Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6, and 7. Neuropathol Appl Neurobiol 32:635–649

    Article  PubMed  Google Scholar 

  • Rüb U, Brunt ER et al (2008a) New insights into pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol 21:111–116

    Article  PubMed  Google Scholar 

  • Rüb U, Brunt ER et al (2008b) Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset without visual impairments. Neuropathol Appl Neurobiol 34:155–168

    Article  PubMed  Google Scholar 

  • Rüb U, Burk K et al (2012) Spinocerebellar ataxia type 1 (SCA1): new pathoanatomical and clinico-pathological insights. Neuropathol Appl Neurobiol 38:665–680

    Article  PubMed  Google Scholar 

  • Rüb U, Seidel K et al (2016) Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 26:726–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders JB, O’Malley CD (1950) The illustrations from the works of Andreas Vesalius of Brussels. Dover Publications, New York

    Google Scholar 

  • Schmidt T, Lindenberg KS et al (2002) Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 51:302–310

    Article  CAS  PubMed  Google Scholar 

  • Schöls L, Krüger R et al (1998) Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry 64:67–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Seidel K, den Dunnen WF et al (2010) Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol 120:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel K, Siswanto S et al (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21

    Article  CAS  PubMed  Google Scholar 

  • Solodkin A, Gomez CM (2012) Spinocerebellar ataxia type 6. Handb Clin Neurol 103:461–473

    Article  PubMed  Google Scholar 

  • Šimić G, Babić Leko M et al (2017) Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol 151:101–138

    Article  PubMed  Google Scholar 

  • Sirieix C, Gervasoni D et al (2012) Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 7(1):e28724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stornetta RL, Macon CJ et al (2013) Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct 218:455–475

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ (2011) Clinical neuroanatomy: brain circuitry and its disorders. Springer

    Google Scholar 

  • VanderHorst VG, Ulfhake B (2006) The organization of the brainstem and spinal cord of the mouse: relationships between monoaminergic, cholinergic, and spinal projection systems. J Chem Neuroanat 31:2–36

    Article  CAS  PubMed  Google Scholar 

  • Vesalius A (1543) De humani corporis fabrica (Andreae Vesalii Bruxellensis, Scholae medicorum Patavinae professoris, de Humani corporis fabrica. Libri septem) Joannes Oporinus Basileae (Basel)

    Google Scholar 

  • Vonsattel JP, Myers RH et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington’s disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Menalled L et al. (2008) Chapter 6. Huntington’s disease. In: McArthur RA, Borsini F (eds.) Animal and translational models for CNS drug discovery. Academic, pp 207–266

    Google Scholar 

  • Wilson-Pauwels L, Akesson EJ et al (1988) Cranial nerves: anatomy and clinical comments. BC Decker, Toronto

    Google Scholar 

  • Yang Q, Hashizume Y et al (2000) Morphological Purkinje cell changes in spinocerebellar ataxia type 6. Acta Neuropathol 100:371–376

    Article  CAS  PubMed  Google Scholar 

  • Zec N, Kinney HC (2003) Anatomic relationships of the human nucleus of the solitary tract in the medulla oblongata. Auton Neurosci 105:131–144

    Article  PubMed  Google Scholar 

  • Zhuchenko O, Bailey J et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, H. et al. (2023). Rhombomere 7 r7. In: The Human Brainstem. Springer, Cham. https://doi.org/10.1007/978-3-030-89980-6_7

Download citation

Publish with us

Policies and ethics