Skip to main content

Genetics of Leprosy

  • Chapter
  • First Online:
Leprosy and Buruli Ulcer

Abstract

The description of host genetic risk factors improves our understanding of the biological mechanisms involved in the pathogenesis of infectious diseases. Typically, exposure to a pathogen is necessary but not sufficient to explain susceptibility to infection. This is particularly clear in leprosy, where Mycobacterium leprae presents low strain diversity, which does not explain the clinical heterogeneity of leprosy endophenotypes. This chapter explores the evidence supporting the contribution of HLA-linked and non-HLA genes in host susceptibility to leprosy as an infection per se, its clinical forms, and the occurrence of leprosy reactions. The chapter also discusses the prospective impact of recently developed methodologies for genetic analysis such as genome-wide sequencing and artificial intelligence-based bioinformatic tools. The chapter advances in the dissection of the genetic component controlling leprosy susceptibility, focusing on the description of the functional variants underlying the genetic associations. Finally, the latest developments on the genetics of Buruli ulcer—a disease for which the impact of host genetics is only beginning to be explored—are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature. 2001;409(6823):1007–11.

    Article  CAS  PubMed  Google Scholar 

  2. Schuenemann VJ, Avanzi C, Krause-Kyora B, Seitz A, Herbig A, Inskip S, et al. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog. 2018;14(5):e1006997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Han XY, Seo YH, Sizer KC, Schoberle T, May GS, Spencer JS, et al. A new Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol. 2008;130(6):856–64.

    Article  CAS  PubMed  Google Scholar 

  4. Singh P, Benjak A, Schuenemann VJ, Herbig A, Avanzi C, Busso P, et al. Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc Natl Acad Sci U S A. 2015;112(14):4459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakravartti M, Vogel F. A twin study on leprosy. Stuttgart: Georg Thieme; 1973.

    Google Scholar 

  6. Lazaro FP, Werneck RI, Mackert CC, Cobat A, Prevedello FC, Pimentel RP, et al. A major gene controls leprosy susceptibility in a hyperendemic isolated population from north of Brazil. J Infect Dis. 2010;201(10):1598–605.

    Article  PubMed  Google Scholar 

  7. Schurr E, Alcais A, de Leseleuc L, Abel L. Genetic predisposition to leprosy: a major gene reveals novel pathways of immunity to Mycobacterium leprae. Semin Immunol. 2006;18(6):404–10.

    Article  CAS  PubMed  Google Scholar 

  8. Mira MT. Genetic host resistance and susceptibility to leprosy. Microbes Infect. 2006;8(4):1124–31.

    Article  CAS  PubMed  Google Scholar 

  9. Vanderborght PR, Pacheco AG, Moraes ME, Antoni G, Romero M, Verville A, et al. HLA-DRB1*04 and DRB1*10 are associated with resistance and susceptibility, respectively, in Brazilian and Vietnamese leprosy patients. Genes Immun. 2007;8(4):320–4.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang F, Liu H, Chen S, Wang C, Zhu C, Zhang L, et al. Evidence for an association of HLA-DRB1*15 and DRB1*09 with leprosy and the impact of DRB1*09 on disease onset in a Chinese Han population. BMC Med Genet. 2009;10:133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361(27):2609–18.

    Article  CAS  PubMed  Google Scholar 

  12. Wong SH, Gochhait S, Malhotra D, Pettersson FH, Teo YY, Khor CC, et al. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog. 2010;6:e1000979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Shankarkumar U. HLA associations in leprosy patients from Mumbai, India. Lepr Rev. 2004;75(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  14. Franceschi DS, Mazini PS, Rudnick CC, Sell AM, Tsuneto LT, de Melo FC, et al. Association between killer-cell immunoglobulin-like receptor genotypes and leprosy in Brazil. Tissue Antigens. 2008;72(5):478–82.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang FR, Liu H, Irwanto A, Fu XA, Li Y, Yu GQ, et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N Engl J Med. 2013;369(17):1620–8.

    Article  CAS  PubMed  Google Scholar 

  16. Mira MT, Alcais A, di Pietrantonio T, Thuc NV, Phuong MC, Abel L, et al. Segregation of HLA/TNF region is linked to leprosy clinical spectrum in families displaying mixed leprosy subtypes. Genes Immun. 2003;4(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  17. Alcais A, Alter A, Antoni G, Orlova M, Nguyen VT, Singh M, et al. Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet. 2007;39(4):517–22.

    Article  CAS  PubMed  Google Scholar 

  18. Jarduli LR, Alves HV, de Souza VH, Sartori PVU, Fava VM, de Souza FC, Marcos EVC, Pereira AC, Dias-Baptista IMF, da Cunha Lopes Virmond M, de Moraes MO, Mira MT, Visentainer JEL. Association of MICA alleles with leprosy: a case control study and its validation on a family-based study in two endemic populations’ areas of Brazil. Int J Immunogenet. 2021;48:25–35, in press.

    Article  CAS  PubMed  Google Scholar 

  19. Alter A, Huong NT, Singh M, Orlova M, Van Thuc N, Katoch K, et al. Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India. J Infect Dis. 2011;203(9):1274–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gzara C, Dallmann-Sauer M, Orlova M, Van Thuc N, Thai VH, Fava VM, et al. Family-based genome-wide association study of leprosy in Vietnam. PLoS Pathog. 2020;16(5):e1008565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dallmann-Sauer M, Fava VM, Gzara C, Orlova M, Van Thuc N, Thai VH, et al. The complex pattern of genetic associations of leprosy with HLA class I and class II alleles can be reduced to four amino acid positions. PLoS Pathog. 2020;16(8):e1008818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sauer ME, Salomao H, Ramos GB, D’Espindula HR, Rodrigues RS, Macedo WC, et al. Genetics of leprosy: expected and unexpected developments and perspectives. Clin Dermatol. 2015;33(1):99–107.

    Article  PubMed  Google Scholar 

  23. Cambri G, Mira MT. Genetic susceptibility to leprosy-from classic immune-related candidate genes to hypothesis-free, whole genome approaches. Front Immunol. 2018;9:1674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Siddiqui MÂR, Maisner S, Tosh K, Hill AV. A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat Genet. 2001;27(4):439–41.

    Article  CAS  PubMed  Google Scholar 

  25. Alter A, de Leseleuc L, Van Thuc N, Thai VH, Huong NT, Ba NN, et al. Genetic and functional analysis of common MRC1 exon 7 polymorphisms in leprosy susceptibility. Hum Genet. 2010;127(3):337–48.

    Article  CAS  PubMed  Google Scholar 

  26. Wang D, Feng JQ, Li YY, Zhang DF, Li XA, Li QW, et al. Genetic variants of the MRC1 gene and the IFNG gene are associated with leprosy in Han Chinese from Southwest China. Hum Genet. 2012;131(7):1251–60.

    Article  CAS  PubMed  Google Scholar 

  27. Grant AV, Cobat A, Van Thuc N, Orlova M, Huong NT, Gaschignard J, et al. CUBN and NEBL common variants in the chromosome 10p13 linkage region are associated with multibacillary leprosy in Vietnam. Hum Genet. 2014;133(7):883–93.

    CAS  PubMed  Google Scholar 

  28. Mira MT, Alcaïs A, Thuc NV, Abel L, Erwin S. Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nat Genet. 2003;33(3):412–5.

    Article  CAS  PubMed  Google Scholar 

  29. Mira MT, Alcaïs A, Nguyen Ngoca B, Erwin S. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature. 2004;427(6975):636–40.

    Article  CAS  PubMed  Google Scholar 

  30. Chopra R, Ali S, Srivastava AK, Aggarwal S, Kumar B, Manvati S, et al. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated Indian population groups. PLoS Genet. 2013;9(7):e1003578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alter A, Fava VM, Huong NT, Singh M, Orlova M, Van Thuc N, et al. Linkage disequilibrium pattern and age-at-diagnosis are critical for replicating genetic associations across ethnic groups in leprosy. Hum Genet. 2013;132(1):107–16.

    Article  PubMed  Google Scholar 

  32. Ramos GB, Salomao H, Francio AS, Fava VM, Werneck RI, Mira MT. Association analysis suggests SOD2 as a newly identified candidate gene associated with leprosy susceptibility. J Infect Dis. 2016;214(3):475–8.

    Article  CAS  PubMed  Google Scholar 

  33. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 2013;501(7468):512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fava VM, Xu YZ, Lettre G, Van Thuc N, Orlova M, Thai VH, et al. Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson’s disease. Proc Natl Acad Sci U S A. 2019;116(31):15616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wong SH, Hill AV, Vannberg FO. Genomewide association study of leprosy. N Engl J Med. 2010;362(15):1446–7.

    Article  CAS  PubMed  Google Scholar 

  36. Grant AV, Alter A, Huong NT, Orlova M, Van Thuc N, Ba NN, et al. Crohn’s disease susceptibility genes are associated with leprosy in the Vietnamese population. J Infect Dis. 2012;206(11):1763–7.

    Article  CAS  PubMed  Google Scholar 

  37. Sales-Marques C, Salomao H, Fava VM, Alvarado-Arnez LE, Amaral EP, Cardoso CC, et al. NOD2 and CCDC122-LACC1 genes are associated with leprosy susceptibility in Brazilians. Hum Genet. 2014;133(12):1525–32.

    Article  CAS  PubMed  Google Scholar 

  38. Xiong JH, Mao C, Sha XW, Jin Z, Wang H, Liu YY, et al. Association between genetic variants in NOD2, C13orf31, and CCDC122 genes and leprosy among the Chinese Yi population. Int J Dermatol. 2016;55(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  39. Berrington WR, Macdonald M, Khadge S, Sapkota BR, Janer M, Hagge DA, et al. Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. J Infect Dis. 2010;201(9):1422–35.

    Article  CAS  PubMed  Google Scholar 

  40. Marcinek P, Jha AN, Shinde V, Sundaramoorthy A, Rajkumar R, Suryadevara NC, et al. LRRK2 and RIPK2 variants in the NOD 2-mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations. PLoS One. 2013;8(8):e73103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang F, Liu H, Chen S, Low H, Sun L, Cui Y, et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat Genet. 2011;43(12):1247–51.

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Bao F, Irwanto A, Fu X, Lu N, Yu G, et al. An association study of TOLL and CARD with leprosy susceptibility in Chinese population. Hum Mol Genet. 2013;22(21):4430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu H, Irwanto A, Fu X, Yu G, Yu Y, Sun Y, et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat Genet. 2015;47(3):267–71.

    Article  PubMed  CAS  Google Scholar 

  44. Wang Z, Sun Y, Fu X, Yu G, Wang C, Bao F, et al. A large-scale genome-wide association and meta-analysis identified four novel susceptibility loci for leprosy. Nat Commun. 2016;7:13760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu H, Wang Z, Li Y, Yu G, Fu X, Wang C, et al. Genome-wide analysis of protein-coding variants in leprosy. J Invest Dermatol. 2017;137(12):2544–51.

    Article  CAS  PubMed  Google Scholar 

  46. Fava VM, Dallmann-Sauer M, Schurr E. Genetics of leprosy: today and beyond. Hum Genet. 2020;139(6–7):835–46.

    Article  PubMed  Google Scholar 

  47. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bochud PY, Hawn TR, Siddiqui MR, Saunderson P, Britton S, Abraham I, et al. Toll like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis. 2008;197(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  49. Misch EA, Macdonald M, Ranjit C, Sapkota BR, Wells RD, Siddiqui MR, et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl Trop Dis. 2008;2(5):e231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Schuring RP, Hamann L, Faber WR, Pahan D, Richardus JH, Schumann RR, et al. Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J Infect Dis. 2009;199(12):1816–9.

    Article  CAS  PubMed  Google Scholar 

  51. Sousa AL, Fava VM, Sampaio LH, Martelli CM, Costa MB, Mira MT, et al. Genetic and immunological evidence implicates interleukin 6 as a susceptibility gene for leprosy type 2 reaction. J Infect Dis. 2012;205(9):1417–24.

    Article  CAS  PubMed  Google Scholar 

  52. Sales-Marques C, Cardoso CC, Alvarado-Arnez LE, Illaramendi X, Sales AM, Hacker MA, et al. Genetic polymorphisms of the IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy. PLoS Negl Trop Dis. 2017;11(7):e0005754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fava VM, Cobat A, Van Thuc N, Latini AC, Stefani MM, Belone AF, et al. Association of TNFSF8 regulatory variants with excessive inflammatory responses but not leprosy per se. J Infect Dis. 2015;211(6):968–77.

    Article  CAS  PubMed  Google Scholar 

  54. Fava VM, Sales-Marques C, Alcais A, Moraes MO, Schurr E. Age-dependent association of TNFSF15/TNFSF8 variants and leprosy type 1 reaction. Front Immunol. 2017;8:155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fava VM, Manry J, Cobat A, Orlova M, Van Thuc N, Ba NN, et al. A missense LRRK2 variant is a risk factor for excessive inflammatory responses in leprosy. PLoS Negl Trop Dis. 2016;10(2):e0004412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang D, Fan Y, Malhi M, Bi R, Wu Y, Xu M, et al. Missense variants in HIF1A and LACC1 contribute to leprosy risk in Han Chinese. Am J Hum Genet. 2018;102(5):794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uaska Sartori PV, Penna GO, Buhrer-Sekula S, Pontes MAA, Goncalves HS, Cruz R, et al. Human genetic susceptibility of leprosy recurrence. Sci Rep. 2020;10(1):1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schurr E, Gros P. A common genetic fingerprint in leprosy and Crohn’s disease? N Engl J Med. 2009;361(27):2666–8.

    Article  CAS  PubMed  Google Scholar 

  60. Orlova M, Di Pietrantonio T, Schurr E. Genetics of infectious diseases: hidden etiologies and common pathways. Clin Chem Lab Med. 2011;49(9):1427–37.

    Article  CAS  PubMed  Google Scholar 

  61. Liu H, Irwanto A, Tian H, Fu X, Yu Y, Yu G, et al. Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases. Am J Hum Genet. 2012;91(5):935–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manry J. Human genetics of Buruli ulcer. Hum Genet. 2020;139(6–7):847–53. https://doi.org/10.1007/s00439-020-02163-1.

    Article  PubMed  Google Scholar 

  63. Nienhuis WA, Stienstra Y, Abass KM, Tuah W, Thompson WA, Awuah PC, et al. Paradoxical responses after start of antimicrobial treatment in Mycobacterium ulcerans infection. Clin Infect Dis. 2012;54(4):519–26. https://doi.org/10.1093/cid/cir856.

    Article  PubMed  Google Scholar 

  64. Stienstra Y, van der Werf TS, Oosterom E, Nolte IM, van der Graaf WT, Etuaful S, et al. Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism. Genes Immun. 2006;7(3):185–9. https://doi.org/10.1038/sj.gene.6364281.

    Article  CAS  PubMed  Google Scholar 

  65. Capela C, Dossou AD, Silva-Gomes R, Sopoh GE, Makoutode M, Menino JF, et al. Genetic variation in autophagy-related genes influences the risk and phenotype of Buruli ulcer. PLoS Negl Trop Dis. 2016;10(4):e0004671. https://doi.org/10.1371/journal.pntd.0004671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bibert S, Bratschi MW, Aboagye SY, Collinet E, Scherr N, Yeboah-Manu D, et al. Susceptibility to Mycobacterium ulcerans disease (Buruli ulcer) is associated with IFNG and iNOS gene polymorphisms. Front Microbiol. 2017;8:1903. https://doi.org/10.3389/fmicb.2017.01903.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Barogui YT, Klis SA, Johnson RC, Phillips RO, van der Veer E, van Diemen C, et al. Genetic susceptibility and predictors of paradoxical reactions in Buruli ulcer. PLoS Negl Trop Dis. 2016;10(4):e0004594. https://doi.org/10.1371/journal.pntd.0004594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Manry J, Vincent QB, Johnson C, Chrabieh M, Lorenzo L, Theodorou I, et al. Genome-wide association study of Buruli ulcer in rural Benin highlights role of two LncRNAs and the autophagy pathway. Commun Biol. 2020;3(1):177. https://doi.org/10.1038/s42003-020-0920-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vincent QB, Belkadi A, Fayard C, Marion E, Adeye A, Ardant MF, et al. Microdeletion on chromosome 8p23.1 in a familial form of severe Buruli ulcer. PLoS Negl Trop Dis. 2018;12(4):e0006429. https://doi.org/10.1371/journal.pntd.0006429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Távora Mira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mira, M.T., Fava, V.M., Sartori, P.V.U. (2022). Genetics of Leprosy. In: Nunzi, E., Massone, C., Portaels, F. (eds) Leprosy and Buruli Ulcer. Springer, Cham. https://doi.org/10.1007/978-3-030-89704-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89704-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89703-1

  • Online ISBN: 978-3-030-89704-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics