
Chapter 11
Exponential Stability of Evolutionary
Equations

In this chapter we study the exponential stability of evolutionary equations. Roughly
speaking, exponential stability of a well-posed evolutionary equation

(
∂t,νM(∂t,ν) + A

)
U = F

means that exponentially decaying right-hand sides F lead to exponentially decay-
ing solutions U . The main problem in defining the notion of exponential decay for
a solution of an evolutionary equation is the lack of continuity with respect to time,
so a pointwise definition would not make sense in this framework. Instead, we will
use our exponentially weighted spaces L2,ν(R; H), but this time for negative ν, and
define the exponential stability by the invariance of these spaces under the solution
operator associated with the evolutionary equation under consideration.

11.1 The Notion of Exponential Stability

Throughout this section, let H be a Hilbert space, M : dom(M) ⊆ C → L(H) a
material law and A : dom(A) ⊆ H → H a skew-selfadjoint operator. Moreover,
we assume that there exist ν0 > sb (M) and c > 0 such that

Re zM(z) � c (z ∈ CRe�ν0).

By Picard’s theorem (Theorem 6.2.1) we know that for ν � ν0 the operator

Sν := (
∂t,νM(∂t,ν) + A

)−1 ∈ L(L2,ν(R; H))

is causal and independent of the particular choice of ν. We now define the notion of
exponential stability.
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Definition We call the solution operators (Sν)ν�ν0 exponentially stable with decay
rate ρ0 > 0 if for all ρ ∈ [0, ρ0) and ν � ν0 we have

SνF ∈ L2,−ρ(R; H) (F ∈ L2,ν(R; H) ∩ L2,−ρ(R; H)).

Remark 11.1.1 We emphasise that the definition of exponential stability does not
mean that the evolutionary equation is just solvable for some negative weights.
Indeed, if we consider H = C, A = 0 and M(z) = 1 for z ∈ C we obtain that
the corresponding evolutionary equation

∂t,νU = F (11.1)

is well-posed for each ν �= 0. However, we also place a demand for causality on our
solution operator. Thus, we only have to consider parameters ν > 0. We obtain the
solution U by

U(t) =
∫ t

−∞
F(s) ds.

As it turns out, the problem (11.1) is not exponentially stable. Indeed, for F :=
1[0,1] ∈ ⋂

ν∈R L2,ν(R) the solution U is given by

U(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t < 0,

t if 0 � t � 1,

1 if t > 1,

which does not belong to the space L2,−ρ(R) for any ρ > 0.

We first show that the aforementioned notion of exponential stability also yields
a pointwise exponential decay of solutions if we assume more regularity for our
source term F .

Proposition 11.1.2 Let (Sν)ν�ν0 be exponentially stable with decay rate ρ0 > 0,
ν � ν0, ρ ∈ [0, ρ0) and F ∈ dom(∂t,ν)∩dom(∂t,−ρ). Then U := SνF is continuous
and satisfies

U(t)eρt → 0 (t → ∞).

Proof We first note that ∂t,νF = ∂t,−ρF by Exercise 11.1. Moreover, since Sν is a
material law operator (i.e., Sν = S(∂t,ν) for some material law S; see Remark 6.3.4)
we have

Sν∂t,ν ⊆ ∂t,νSν.
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Thus, in particular, we have

Sν∂t,νF = ∂t,νSνF = ∂t,νU ;

that is, U ∈ dom(∂t,ν). Moreover, since ∂t,νF = ∂t,−ρF ∈ L2,−ρ(R; H), we infer
also U, ∂t,νU ∈ L2,−ρ(R; H) by exponential stability. By Exercise 11.1 this yields
U ∈ dom(∂t,−ρ) with ∂t,−ρU = ∂t,νU . The assertion now follows from the Sobolev
embedding theorem (Theorem 4.1.2 and Corollary 4.1.3). �	

11.2 A Criterion for Exponential Stability of Parabolic-Type
Equations

In this section we will prove a useful criterion for exponential stability of a certain
class of evolutionary equations. The easiest example we have in mind is the heat
equation with homogeneous Dirichlet boundary conditions, which can be written as
an evolutionary equation of the form (cf. Theorem 6.2.4)

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 a−1

)
+

(
0 div

grad0 0

)) (
θ

q

)
=

(
Q

0

)

in L2,ν(R; H), where H = L2(�) ⊕ L2(�)d with � ⊆ R
d open, and a ∈

L(L2(�)d) with

Re a � c

for some c > 0 which models the heat conductivity, and ν > 0.

Theorem 11.2.1 Let H0,H1 be Hilbert spaces and C : dom(C) ⊆ H0 → H1 a
densely defined closed linear operator which is boundedly invertible. Moreover, let
M0 ∈ L(H0) be selfadjoint with

M0 � c0

for some c0 > 0 and M1 : dom(M1) ⊆ C → L(H1) be a material law satisfying
sb (M1) < −ρ1 for some ρ1 > 0 and

∃ c1 > 0 ∀z ∈ CRe>−ρ1 : ReM1(z) � c1.

Then

Sν :=
(

∂t,ν

(
M0 0
0 0

)
+

(
0 0
0 M1(∂t,ν)

)
+

(
0 −C∗
C 0

))−1

∈ L
(
L2,ν(R; H0 ⊕ H1)

)
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for each ν > 0. Moreover, for all ν0 > 0 the family (Sν)ν�ν0 is exponentially stable

with decay rate ρ0 := min
{
ρ1, c1/

( ‖M1‖2∞,CRe>−ρ1
‖M0‖

∥
∥C−1

∥
∥2 )}

.

In order to prove this theorem we need a preparatory result.

Lemma 11.2.2 Assume the hypotheses of Theorem 11.2.1. Then for each z ∈
CRe>−ρ0 the operator

T (z) :=
(

zM0 0
0 M1(z)

)
+

(
0 −C∗
C 0

)
: dom(C)×dom(C∗) ⊆ H0⊕H1 → H0⊕H1

is boundedly invertible. Moreover,

sup
z∈CRe�−ρ

∥
∥∥T (z)−1

∥
∥∥ < ∞

for each ρ < ρ0.

Proof Let z ∈ CRe�−ρ for some ρ < ρ0. We note that M1(z) is boundedly
invertible with

∥∥M1(z)
−1

∥∥ � 1/c1 (see Proposition 6.2.3(b)) and (C∗)−1 =
(C−1)∗ ∈ L(H0,H1) (see Lemmas 2.2.2 and 2.2.9). The beginning of the proof
deals with a reformulation of T (z). For this, let u, f ∈ H0, v, g ∈ H1. Then, by
definition, (u, v) ∈ dom(T (z)) = dom(C) × dom(C∗) and T (z)(u, v) = (f, g) if
and only if v ∈ dom(C∗) and u ∈ dom(C) together with

zM0u − C∗v = f

Cu + M1(z)v = g.

Since both C∗ and M1(z) are continuously invertible, we obtain equivalently u ∈
dom(C) together with

z(C∗)−1M0u − v = (C∗)−1f

M1(z)
−1Cu + v = M1(z)

−1g.

Adding the latter two equations and retaining the first equation, we obtain the
following equivalent system subject to the condition u ∈ dom(C)

v = z(C∗)−1(zM0u − f ) ∈ dom(C∗),

(z(C∗)−1M0C
−1 + M1(z)

−1)Cu = M1(z)
−1g + (C∗)−1f.
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We now inspect the operator S(z) := z(C−1)∗M0C
−1 + M1(z)

−1 ∈ L(H1). By
Proposition 6.2.3 for x ∈ H1 we estimate

Re 〈x, S(z)x〉 = Re
〈
C−1x, zM0C

−1x
〉
+ Re

〈
x,M1(z)

−1x
〉

� −ρ ‖M0‖
∥
∥
∥C−1

∥
∥
∥
2 ‖x‖2 + c1

‖M1(z)‖2
‖x‖2

�
( c1

‖M1‖2∞,CRe>−ρ1

− ρ ‖M0‖
∥
∥∥C−1

∥
∥∥
2 )

︸ ︷︷ ︸
=:μ

‖x‖2 .

Since ρ < ρ0 and by the definition of ρ0 we infer that μ > 0. Hence, S(z) is
boundedly invertible with

∥
∥∥S(z)−1

∥
∥∥ � 1

μ
.

We now set

u := C−1S(z)−1((C∗)−1f + M1(z)
−1g

) ∈ dom(C),

v := (C∗)−1(zM0u − f ) ∈ dom(C∗).

By the first part of the proof we have that (u, v) is the unique solution of
T (z)(u, v) = (f, g). Moreover, we can estimate

‖u‖ �
∥∥
∥C−1

∥∥
∥
1

μ

( ∥∥
∥(C∗)−1

∥∥
∥ ‖f ‖ + 1

c1
‖g‖

)
, and

‖v‖ � 1

c1
(‖g‖ + ‖Cu‖) � 1

c1

(
‖g‖ + 1

μ

( ∥∥
∥(C∗)−1

∥∥
∥ ‖f ‖ + 1

c1
‖g‖ ))

,

which proves that T (z) is boundedly invertible with

sup
z∈CRe�−ρ

∥∥
∥T (z)−1

∥∥
∥ < ∞.

�	

Proof of Theorem 11.2.1 Let H := H0 ⊕ H1. We set

M(z) :=
(

M0 0
0 z−1M1(z)

)
(z ∈ dom(M1) \ {0}).
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Let ν > 0. Then

∀z ∈ CRe�ν : Re zM(z) � min{νc0, c1}

and hence, the first assertion of the theorem follows from Theorem 6.2.1.
Next, we focus on exponential stability. For ν > 0, we have that

Sν = T (∂t,ν)
−1,

where T is defined in Lemma 11.2.2. Moreover, by Lemma 11.2.2, the mapping
T −1 : CRe>−ρ0 → L(H) with T −1(z) = T (z)−1 defines a material law with
sb

(
T −1

) = −ρ0 (the holomorphy of T is obvious and hence, T −1 is also
holomorphic). Thus, we may apply Theorem 5.3.6 to obtain (note that T −1(∂t,ν) =
T (∂t,ν)

−1)

Sν(f ) = T (∂t,ν)
−1f = T (∂t,ρ)−1f ∈ L2,ρ(R; H)

for each f ∈ L2,ν(R; H) ∩ L2,ρ(R; H) with ρ > −ρ0, which shows exponential
stability. �	

11.3 Three Exponentially Stable Models for Heat Conduction

The Classical Heat Equation
We recall the classical heat equation (cf. Theorem 6.2.4) on an open subset � ⊆ R

d

consisting of two equations, the heat flux balance

∂t θ + div q = f

and Fourier’s law

q = −a grad θ,

where f is a given source term and a ∈ L(L2(�)d) is an operator modelling the
heat conductivity of the underlying medium. We will impose Dirichlet boundary
conditions which will be incorporated in our equation by replacing the operator
grad by grad0 in Fourier’s law (cf. Sect. 6.1).

In order to apply Theorem 11.2.1 we need that grad0 is boundedly invertible in
some sense. This can be shown using Poincaré’s inequality.
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Proposition 11.3.1 (Poincaré Inequality) Let � ⊆ R
d be open and contained in

a slab; that is, there exist e ∈ R
d with ‖e‖ = 1 and a, b ∈ R, a < b such that

� ⊆
{
x ∈ R

d ; a < 〈e, x〉 < b
}

.

Then for each u ∈ dom(grad0) we have

‖u‖L2(�) � (b − a)
∥∥grad0 u

∥∥
L2(�)d

.

Proof Without loss of generality, let e = (1, 0, . . . , 0). Recall that, by definition,
C∞
c (�) is a core for grad0. Thus, it suffices to prove the assertion for functions in

C∞
c (�). Let ϕ ∈ C∞

c (�). We identify ϕ with its extension by 0 to the whole of Rd .
By the fundamental theorem of calculus, we may compute

ϕ(x) =
∫ x1

a

∂1ϕ(s, x2, . . . , xd) ds (x ∈ �).

Hence, by the Cauchy–Schwarz inequality and Tonelli’s theorem

∫

�

|ϕ(x)|2 dx =
∫

�

∣
∣∣∣

∫ x1

a

∂1ϕ(s, x2, . . . , xd) ds

∣
∣∣∣

2

dx

�
∫

�

(b − a)

∫ b

a

|∂1ϕ(s, x2, . . . , xd)|2 ds dx = (b − a)2
∫

�

|∂1ϕ(x)|2 dx

� (b − a)2
∥
∥grad0 ϕ

∥
∥2

L2(�)d
,

which shows the assertion. �	
Corollary 11.3.2 Under the assumptions of Proposition 11.3.1 the operator grad0
is one-to-one and ran(grad0) is closed.

Proof The injectivity follows immediately from Poincaré’s inequality. To prove the
closedness of ran(grad0), let (uk)k∈N in dom(grad0) with grad0 uk → v in L2(�)d

for some v ∈ L2(�)d . By Poincaré’s inequality, we infer that (uk)k∈N is a Cauchy-
sequence in L2(�) and hence convergent to some u ∈ L2(�). By the closedness of
grad0 we obtain u ∈ dom(grad0) and v = grad0 u ∈ ran(grad0). �	
We need another auxiliary result which is interesting in its own right.

Lemma 11.3.3 Let H be a Hilbert space and V ⊆ H a closed subspace. We denote
by

ιV : V → H, x �→ x

the canonical embedding of V into H . Then ιV ι∗V : H → H is the orthogonal
projection on V and ι∗V ιV : V → V is the identity on V .
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Proof The proof is left as Exercise 11.2. �	
We now come to the exponential stability of the heat equation. First, we need to
formulate both the heat flux balance and Fourier’s law as a suitable evolutionary
equation. For doing so, we assume that � ⊆ R

d is open and contained in a slab.
Then ran(grad0) is closed by Corollary 11.3.2. It is clear that we can write Fourier’s
law as

q = −a grad0 θ = −aιran(grad0)ι
∗
ran(grad0)

grad0 θ.

Hence, defining q̃ := ι∗ran(grad0)q and ã := ι∗ran(grad0)aιran(grad0) ∈ L(ran(grad0)), we
arrive at

q̃ = −ãι∗ran(grad0) grad0 θ.

Moreover, since ran(grad0)
⊥ = ker(div), we derive from the heat flux balance

f = ∂tθ + div q = ∂tθ + div ιran(grad0)q̃

and hence, assuming that ã is invertible, we may write both equations with the
unknowns (θ, q̃) as an evolutionary equation in L2,ν(R; H) for ν > 0, where H :=
L2(�) ⊕ ran(grad0). This yields

(

∂t,ν

(
1 0
0 0

)
+

(
0 0
0 ã−1

)
+

(
0 div ιran(grad0)

ι∗ran(grad0) grad0 0

))(
θ

q̃

)
=

(
f

0

)
.

(11.2)

For notational convenience, we set

C := ι∗ran(grad0) grad0 : dom(grad0) ⊆ L2(�) → ran(grad0). (11.3)

Lemma 11.3.4 Let � ⊆ R
d be open and contained in a slab and C as above. Then

C is densely defined, closed and boundedly invertible. Moreover

C∗ = − div ιran(grad0).

Proof The proof is left as Exercise 11.3. �	
Proposition 11.3.5 Let � ⊆ R

d be open and contained in a slab, a ∈ L(L2(�)d),
and c1 > 0 such that

Re a � c1.
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Then ã := ι∗ran(grad0)aιran(grad0) is boundedly invertible and the solution operators
associated with (11.2) are exponentially stable.

Proof For x ∈ ran(grad0) we have

Re 〈x, ãx〉ran(grad0) = Re
〈
ιran(grad0)x, aιran(grad0)x

〉
L2(�)d

� c1
∥∥ιran(grad0)x

∥∥2
L2(�)d

= c1 ‖x‖2ran(grad0) ,

and thus, ã is boundedly invertible. Hence, (11.2) is an evolutionary equation of the
form considered in Theorem 11.2.1 with M0 := 1, M1(z) := ã−1 for z ∈ C and C

given by (11.3). Since Re ã−1 � c1
‖̃a‖2 , Theorem 11.2.1 is applicable and we derive

the exponential stability. �	
The Heat Equation with Additional Delay
Again we consider the heat equation, but now we replace Fourier’s law by

q = −a1 grad0 θ − a2τ−h grad0 θ

for some operators a1, a2 ∈ L(L2(�)d) and h > 0. As above, we assume that
� ⊆ R

d is open and contained in a slab. We may introduce q̃ := ι∗ran(grad0)q and

ãj := ι∗ran(grad0)aj ιran(grad0) ∈ L(L2(�)d) for j ∈ {1, 2}. Moreover, we assume that
there exists c > 0 such that

Re a1 � c.

By Lemma 7.3.1 there exists ν0 > 0 such that the operator ã1 + ã2τ−h is boundedly
invertible inL2,ν(R; ran(grad0)) and its inverse is uniformly strictly positive definite
for each ν � ν0. Hence, we may write the heat equation with additional delay as an
evolutionary equation of the form

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 (̃a1 + ã2τ−h)

−1

)
+

(
0 −C∗
C 0

)) (
θ

q̃

)
=

(
f

0

)
(11.4)

with C given by (11.3).

Proposition 11.3.6 Let � ⊆ R
d be open and contained in a slab, h > 0, a1, a2 ∈

L(L2(�)d), and c > 0 such that

Re a1 � c

and ‖a2‖ < c. Then the solution operators (Sν)ν�ν0 associated with (11.4) are
exponentially stable.
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Proof Note that ‖̃a2‖ � ‖a2‖ < c. We choose

0 < ρ1 <
1

h
log

c

‖̃a2‖ .

Then we estimate for z ∈ CRe>−ρ1

Re
〈
x,

(
ã1 + ã2e

−zh
)
x
〉

ran(grad0)
� (c − ‖̃a2‖ eρ1h) ‖x‖2ran(grad0) .

By the choice of ρ1, we infer c̃ := (c − ‖̃a2‖ eρ1h) > 0. Hence,

M1(z) := (
ã1 + ã2e

−hz
)−1

(z ∈ CRe>−ρ1)

is well-defined and satisfies

ReM1(z) � c1 (z ∈ CRe>−ρ1)

for some c1 > 0 by Proposition 6.2.3. Thus, Theorem 11.2.1 is applicable and yields
the exponential stability of (11.4). �	
A Dual Phase Lag Model
In this last variant of heat conduction, we replace Fourier’s law by

(1 + sq∂t )q = (1 + sθ ∂t ) grad0 θ,

where sq, sθ > 0 are the so-called “phases” (cf. Sect. 7.4, where a different type of
dual phase lag model is studied). The latter equation can be reformulated as

(1 + sq∂t,ν)(1 + sθ ∂t,ν)
−1q = grad0 θ

for ν > 0. Assuming that � ⊆ R
d is open and contained in a slab, and defining

q̃ := ι∗ran(grad0)q , the dual phase lag model may be written as

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 (1 + sq∂t,ν)(1 + sθ ∂t,ν)

−1

)
+

(
0 −C∗
C 0

)) (
θ

q̃

)
=

(
f

0

)

(11.5)

with C given by (11.3).

Proposition 11.3.7 Let � ⊆ R
d be open and contained in a slab, ν0 > 0.

Moreover, let sθ > sq > 0. Then the solution operators (Sν)ν�ν0 associated
with (11.5) are exponentially stable.

Proof Again, we note that (11.5) is of the form considered in Theorem 11.2.1 with
M0 := 1 and
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M1(z) := 1 + sqz

1 + sθ z
(z ∈ C \ {−s−1

θ }).

Setting μ := sq
sθ

< 1 we compute

ReM1(z) = Re

(
μ + (1 − μ)

1 + sθ z

)
= μ+(1−μ)

1 + sθ Re z

|1 + sθ z|2 � μ (z ∈ CRe>−s−1
θ

).

Thus, Theorem 11.2.1 is applicable and hence, the claim follows. �	

11.4 Exponential Stability for Hyperbolic-Type Equations

Important examples of exponentially stable equations do not fit in the class of
parabolic-like equations studied in Sect. 11.2. As a motivating example we consider
the damped wave equation, which can be written as a second-order equation of the
form

∂2t,νM0u + ∂t,νM1u − div grad0 u = f, (11.6)

where M0,M1 ∈ L(L2(�)), M0 is selfadjoint and M0,ReM1 � c > 0, with
� ⊆ R

d modelling the underlying medium. It is well-known that this equation
is exponentially stable if � is bounded. However, if we write this equation as an
evolutionary problem in the canonical way; that is, we introduce v := ∂t,νu and
q := − grad0 u as new unknowns, we end up with an equation of the form

(
∂t,ν

(
M0 0
0 1

)
+

(
M1 0
0 0

)
+

(
0 div

grad0 0

)) (
v

q

)
=

(
f

0

)
, (11.7)

which is not of the form discussed in Sect. 11.2. However, another formulation
of (11.6) as an evolutionary equation allows to show exponential stability in a similar
way as for parabolic-type equations. More precisely, we aim for a formulation, such
that the second block operator matrix in (11.7) has non-vanishing diagonal entries.
This leads to a damping effect for both unknowns.

We start to provide a general reformulation scheme of second-order equations as
suitable evolutionary equations and afterwards discuss the exponential stability of
those.

An Alternative Reformulation for Hyperbolic-Type Equations
Throughout we assume that C : dom(C) ⊆ H0 → H1 is a densely defined
closed linear operator between two Hilbert spaces H0 and H1, which is additionally
assumed to be boundedly invertible. Furthermore, let M : dom(M) ⊆ C → L(H0)

be a material law of the form

M(z) = M0(z) + z−1M1(z) (z ∈ dom(M)),



178 11 Exponential Stability of Evolutionary Equations

whereM0,M1 : dom(M) ⊆ C → L(H) are material laws themselves. We consider
second-order problems of the form

(
∂2t,νM(∂t,ν) + C∗C

)
u = f, (11.8)

for a given right-hand side f ∈ L2,ν(R; H0) and aim for conditions on M to ensure
the exponential stability in a suitable sense.

Example 11.4.1 The wave equation (11.6) on a bounded domain � ⊆ R
n is indeed

of the form (11.8). We set C := ι∗ran(grad0) grad0 : dom(grad0) ⊆ L2(�) →
ran(grad0), which is boundedly invertible by Poincaré’s inequality (see Proposi-
tion 11.3.1 and Lemma 11.3.4) and

M(z) = M0 + z−1M1 (z ∈ C \ {0})

for M0,M1 ∈ L(L2(�)).

We now introduce two new unknowns to rewrite (11.8) as an evolutionary equation.
For this let d > 0 and set vd := ∂t,νu + du and q := −Cu. Then we formally get

∂t,νq = −C∂t,νu = −C(vd − du) = −Cvd + dCu = −Cvd − dq

and

∂t,νM(∂t,ν)vd = ∂2t,νM(∂t,ν)u + d∂t,νM(∂t,ν)u

= f − C∗Cu + d∂t,νM0(∂t,ν)u + dM1(∂t,ν)u

= f + C∗q + dM0(∂t,ν)(vd − du) + dM1(∂t,ν)u

= f + C∗q + dM0(∂t,ν)vd − d
(
M1(∂t,ν) − dM0(∂t,ν)

)
C−1q.

Thus, the new unknowns, vd and q , satisfy an evolutionary equation of the form

(
∂t,ν

(
M(∂t,ν) 0

0 1

)
+ d

(−M0(∂t,ν)
(
M1(∂t,ν) − dM0(∂t,ν)

)
C−1

0 1

)

+
(
0 −C∗
C 0

)) (
vd

q

)
=

(
f

0

)
, (11.9)

with a new material law Md : dom(M) ⊆ C → L(H0 ⊕ H1) given by

Md(z) :=
(

M(z) 0
0 1

)
+ z−1d

(−M0(z) (M1(z) − dM0(z))C−1

0 1

)
.
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Remark 11.4.2 We remark that the above formal computation can be done rigor-
ously (both forward and backwards), so that indeed (11.8) and (11.9) are equivalent
problems in the sense that the solutions u and (vd , q) are linked via

vd = ∂t,νu + du, q = −Cu.

11.5 A Criterion for Exponential Stability
of Hyperbolic-Type Equations

In this section we provide sufficient conditions on the material law M in order to
obtain a well-posed and exponentially stable problem (11.9) for a suitable d > 0.
So, we assume the same assumptions to be in effect as in the previous section.

Remark 11.5.1 Assume that (11.9) is exponentially stable with decay rate ρ0 > 0;
that is, vd ∈ L2,−ρ(R; H0), q ∈ L2,−ρ(R; H1) if f ∈ L2,−ρ(R; H0) ∩ L2,ν(R; H0)

for all ρ ∈ [0, ρ0) and ν > 0 large enough. Then u, ∂t,νu ∈ L2,−ρ(R; H0) as well.
Indeed, since

u = −C−1q ∈ L2,−ρ(R; H0),

we derive

∂t,νu = vd − du ∈ L2,−ρ(R; H0).

Employing Exercise 11.1, we even infer u ∈ dom(∂t,−ρ) and hence, u ∈
C−ρ(R; H0) by Sobolev’s embedding theorem (see Theorem 4.1.2). Thus, we also
obtain the exponential stability of (11.8) in this case.

In order to prove the exponential stability of (11.9), we have to show how a positive
definiteness assumption on M allows for positive definiteness of Md for some
d > 0. We start with the following observation.

Lemma 11.5.2 Let z ∈ dom(M), c > 0. Assume

Re 〈u, zM(z)u〉H0
� c ‖u‖2H0

(u ∈ H0).

Then for d > 0 and (v, q) ∈ H0 ⊕ H1 it follows that

Re 〈(v, q), zMd(z)(v, q)〉H0⊕H1
� min

{
c − dK(d),

3

4
d + Re z

}
‖(v, q)‖2H0⊕H1

,

where K(d) := m0 + (dm0 + m1)
2
∥∥C−1

∥∥2 and mj := ∥∥Mj

∥∥∞ for j ∈ {0, 1}.
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Proof Let v ∈ H0 and q ∈ H1. Then we estimate

Re 〈(v, q), zMd(z)(v, q)〉H0⊕H1

= Re
〈
v, zM(z)v − dM0(z)v + d(M1(z) − dM0(z))C

−1q
〉

H0
+ Re 〈q, zq + dq〉H1

� (c − dm0) ‖v‖2H0
− d (m1 + dm0)

∥
∥
∥C−1

∥
∥
∥ ‖q‖H1

‖v‖H0 + (Re z + d) ‖q‖2H1

�
(

c − dm0 − 1

4ε
d2 (m1 + dm0)

2
∥
∥
∥C−1

∥
∥
∥
2
)

‖v‖2H0
+ (Re z + d − ε) ‖q‖2H1

,

for each ε > 0, where we have used the Peter–Paul inequality. Choosing ε = d
4 , we

obtain the assertion. �	
This estimate allows us to derive the positive definiteness ofMd for a suitable choice
of d > 0.

Proposition 11.5.3 Let c > 0 and assume that

Re 〈u, zM(z)u〉H0
� c ‖u‖2H0

(u ∈ H0, z ∈ dom(M)).

Then there exist c̃, d, ρ0 > 0 such that

Re 〈(v, q), zMd(z)(v, q)〉H0⊕H1
� c̃ ‖(v, q)‖2H0⊕H1

for all z ∈ dom(M) ∩ CRe>−ρ0 and (v, q) ∈ H0 ⊕ H1.

Proof We note that dK(d) → 0 as d → 0, where K(d) is given as in
Lemma 11.5.2. Hence, we find d > 0 such that dK(d) < c. Choosing ρ0 < 3

4d

and using Lemma 11.5.2, we estimate for each z ∈ dom(M) ∩ CRe>−ρ0 and
(v, q) ∈ H0 ⊕ H1

Re 〈(v, q), zMd(z)(v, q)〉H0⊕H1
� c̃ ‖(v, q)‖2H0⊕H1

,

where c̃ := min
{
c − dK(d), 3

4d − ρ0

}
> 0 showing the assertion. �	

We are now in the position to state the main result for exponential stability of
hyperbolic-type equations.

Theorem 11.5.4 Let C : dom(C) ⊆ H0 → H1 be a densely defined closed
linear and boundedly invertible operator between two Hilbert spaces H0 and H1.
Furthermore, let M : dom(M) ⊆ C → L(H0) be a material law of the form

M(z) = M0(z) + z−1M1(z) (z ∈ dom(M)),
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where M0,M1 : dom(M) ⊆ C → L(H) are bounded analytic functions. Assume
that there exist c, ν0 > 0 such that CRe>−ν0 \ dom(M) is discrete and

Re 〈u, zM(z)u〉H0
� c ‖u‖2H0

for each u ∈ H0, z ∈ dom(M). Then there exists some d > 0 such that
problem (11.9) is well-posed and exponentially stable.

Proof We first note that by Proposition 11.5.3 there exist ρ0, d, c̃ > 0 such that

Re 〈(v, q), zMd(z)(v, q)〉H0⊕H1
� c̃ ‖(v, q)‖2H0⊕H1

for all z ∈ dom(M) ∩ CRe>−ρ0 and (v, q) ∈ H0 ⊕ H1. Since M is a material law,
so is Md and thus, well-posedness of (11.9) follows from Picard’s theorem (see
Theorem 6.2.1). Since

(
0 −C∗
C 0

)

is skew-selfadjoint, the above estimate yields that zMd(z) +
(
0 −C∗
C 0

)
is bound-

edly invertible for each z ∈ dom(M) ∩ CRe>−ρ0 with

sup
z∈dom(M)∩CRe>−ρ0

‖Td(z)‖ � 1

c̃
,

where

Td(z) :=
(

zMd(z) +
(
0 −C∗
C 0

))−1

.

Setting μ := min{ν0, ρ0}, we infer that Td is defined on the whole CRe>−μ

despite a discrete set. Since Td is holomorphic and bounded, Riemann’s theorem
on removable singularities implies that Td can be extended to a holomorphic and
bounded function on CRe>−μ. We denote this extension again by Td . In particular,
Td is a material law with sb(Td) � −μ. Let now ρ ∈ [0, μ) and (f, g) ∈
L2,ν(R; H0 ⊕ H1) ∩ L2,−ρ(R; H0 ⊕ H1), where ν > 0 is large enough to ensure
well-posedness. By Theorem 5.3.6 we derive

Td(∂t,ν)(f, g) = Td(∂t,−ρ)(f, g) ∈ L2,−ρ(R; H0 ⊕ H1)

and since Td(∂t,ν)(f, g) is nothing but the solution of (11.9) with the right-hand side
replaced by (f, g), exponential stability follows. �	
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Definition We call the equation

(
∂2t,νM(∂t,ν) + C∗C

)
u = f

exponentially stable if there exists some d > 0 such that the equation

(
∂t,νMd(∂t,ν) +

(
0 −C∗
C 0

))
v = g

is exponentially stable.

11.6 Examples of Exponentially Stable Hyperbolic Problems

We will illustrate our findings by providing two concrete examples. Firstly, we
discuss the damped wave equation in an abstract form and, secondly, we consider
the dual phase lag model, as it was introduced in Sect. 7.4.

The Damped Wave Equation
We start by formulating an immediate corollary of our main stability theorem.

Corollary 11.6.1 Let C : dom(C) ⊆ H0 → H1 be a densely defined closed linear
and boundedly invertible operator between two Hilbert spaces H0 and H1 and let
M0,M1 ∈ L(H0) such that M0 is selfadjoint and M0 � 0, ReM1 � c > 0. Then
the second order problem

(
∂2t,νM0 + ∂t,νM1 + C∗C

)
u = f

is exponentially stable.

Proof We have to prove that the material law

M(z) := M0 + z−1M1 (z ∈ C \ {0})

satisfies the assumptions of Theorem 11.5.4. For Re z � 0 we have

Re 〈u, zM(z)u〉H0
� c ‖u‖2H0

(u ∈ H0),

since Re zM0 � 0. Moreover, for Re z ∈ [−ρ0, 0] with ρ0 < c
‖M0‖ (we set c

0 := ∞)
we have that

Re 〈u, zM(z)u〉H0
� (−ρ0‖M0‖ + c) ‖u‖2H0

(u ∈ H0).

Since CRe>−ρ0 \ dom(M) = {0}, we can apply Theorem 11.5.4. �	
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We now come to a concrete realisation of the operator C. Let � ⊆ R
d be open and

contained in a slab. According to Corollary 11.3.2 the space ran(grad0) is closed
and by Lemma 11.3.4 the operator

C := ι∗ran(grad0) grad0 : dom(grad0) ⊆ L2(�) → ran(grad0)

is densely defined, closed and boundedly invertible, and its adjoint is given by

C∗ = − div ιran(grad0).

Thus, we have that

C∗C = − div ιran(grad0)ι
∗
ran(grad0)

grad0 = − div grad0 .

Let now M0,M1 ∈ L(L2(�)) with M0 selfadjoint and M0 � 0, ReM1 � c > 0.
By Corollary 11.6.1 the equation

(
∂2t,νM0 + ∂t,νM1 − div grad0

)
u = f (11.10)

is exponentially stable.

Remark 11.6.2 We emphasise that this result yields the classical exponential
stability for the damped wave equation; i.e., the situation where M0 = 1. However,
Corollary 11.6.1 is also applicable in the situation where M0 = 1�0 for some
�0 ⊆ � and ReM1 � c. In this case, Eq. (11.10) is a coupled system of the
damped wave equation inside �0 and of the heat equation outside �0.

Dual Phase Lag Heat Conduction
We recall the setting of Sect. 7.4, where we have discussed the equations of dual
phase lag heat conduction on an open and bounded subset � ⊆ R

d within the
framework of evolutionary equations. The equations under consideration consist of
the heat flux balance

∂t,νθ + div q = Q,

and a modified Fourier’s law

(1 + sq∂t,ν + 1

2
s2q∂2t,ν)q = −(1 + sθ ∂t,ν) grad θ, (11.11)

where sq ∈ R, sθ > 0 are given. Note that (1 + sθ ∂t,ν) is boundedly invertible for
ν > − 1

sθ
and hence, (11.11) yields

− grad θ = ∂t,ν(∂
−1
t,ν + sq + 1

2
s2q∂t,ν)(1 + sθ ∂t,ν)

−1q.
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Applying the operator ∂t,ν(∂
−1
t,ν +sq + 1

2s
2
q∂t,ν)(1+sθ ∂t,ν)

−1 to the heat flux balance
equation (and assuming that Q ∈ dom(∂t,ν)) we obtain the following second order
problem

∂2t,ν
(
∂−1
t,ν + sq + 1

2
s2q∂t,ν

)
(1 + sθ ∂t,ν)

−1θ − div grad θ = Q̃, (11.12)

for a suitable source term Q̃. Assuming Dirichlet boundary conditions for θ , the
equation takes the form

(
∂2t,νM(∂t,ν) + C∗C

)
θ = Q̃,

with C := ι∗ran(grad0) grad0 : dom(grad0) ⊆ L2(�) → ran(grad0) and

M(z) = z−1 + sq + 1
2 s

2
qz

1 + sθ z

(
z ∈ C \

{
0,− 1

sθ

})
.

Note that

M(z) = sq + 1
2s

2
qz

1 + sθ z
+ z−1 1

1 + sθ z

and hence, M is indeed of the form considered in Sect. 11.5 with

M0(z) = sq + 1
2 s

2
qz

1 + sθ z
, M1(z) = 1

1 + sθ z
,

which are both bounded if we restrict the domain of M to a right half-plane
CRe>− 1

sθ
+ε

for some ε > 0.

Proposition 11.6.3 If 0 <
sq
sθ

< 2 then the dual phase lag model (11.12) is
exponentially stable.

Proof We apply Theorem 11.5.4. For this we need to show that there exists c > 0
such that

Re 〈u, zM(z)u〉L2(�) � c ‖u‖2L2(�)

for each u ∈ L2(�) and z ∈ CRe>−ν0 ∩dom(M) for some 0 < ν0 < 1
sθ
. Indeed, this

is sufficient for exponential stability, since CRe>−ν0 \dom(M) = {0} is discrete and
C = ι∗ran(grad0) grad0 is boundedly invertible. Similar to the proof of Lemma 7.4.3

we set σ := sq
sθ

and obtain

zM(z) = 1

2
sqzσ + σ

(
1 − 1

2
σ

)
+ 1 − σ(1 − 1

2σ)

1 + sθ z
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for each z ∈ dom(M). Since 0 < σ < 2 we obtain 0 < σ
(
1 − 1

2σ
)
� 1

2 and hence,

Re zM(z) = 1

2
sq Re zσ + σ

(
1 − 1

2
σ

)
+

(
1 − σ(1 − 1

2σ)
)

(1 + sθ Re z)

|1 + sθ z|2

� −1

2
sqν0σ + σ(1 − 1

2
σ) =: cν0

for each z ∈ CRe>−ν0 ∩ dom(M) with 0 < ν0 < 1
sθ

. Choosing now 0 < ν0 <

min{ 1
sθ

, 2−σ
sq

}, we obtain cν0 > 0 and thus, Theorem 11.5.4 is applicable which
yields the assertion. �	

11.7 Comments

The results of this chapter are based on the results obtained in [116, Section
2]. There, Laplace transform techniques are used to characterise the exponential
stability of evolutionary equations in a slightly more general setting. In particular,
further criteria for exponential stability of parabolic- and hyperbolic-type equations
are given, which also allow for the treatment of integro-differential equations.

In general whether or not a given partial differential equation is (exponentially)
stable is both an important and classical question in the area of equations depending
on time. The understanding of this question for instance contributes to the study of
equilibria of non-linear equations. In the linear case, in particular in the framework
of C0-semigroups, stability has been studied intensively resulting in an abundance
of criteria. Due to strong continuity of the semigroup and, thus, of the considered
solutions (exponential) stability is defined via pointwise estimates. As an example
criterion we mention Datko’s theorem [29] (see also [6, Theorem 5.1.2]), which
states that aC0-semigroup is exponentially stable if and only if the solution operator
associated with the equation

(
∂t,ν + A

)
U = F

leaves Lp(R�0; H) invariant for some (or equivalently all) p ∈ [1,∞). As it turns
out, the latter is equivalent to the invariance of L2,−ρ(R; H) for some ρ > 0 and
thus, our notion of exponential stability coincides with the usual one used in the
theory of C0-semigroups. Another important theorem on the exponential stability
of C0-semigroups on Hilbert spaces is the Theorem of Gearhart–Prüß [96] (see also
[38, Chapter 5, Theorem 1.11]), where the exponential stability of a C0-semigroup
is characterised in terms of the resolvent of its generator.
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The wave equation without damping is not exponentially stable. In fact one
can even show that energy is preserved during the evolution. Hence, it is a
natural question whether it is possible to introduce suitable ‘dampers’ (i.e., lower
order coefficients) leading to an exponentially stable equation. The criterion in
Corollary 11.6.1 shows that if the damper M1 is ‘global’ in the sense that it is
induced by a multiplication operator a(m) for a strictly positive function a, the
resulting damped wave equation is exponentially stable.

A less general, more detailed analysis of the actual wave equation shows that it
is possible to obtain an exponentially stable damped wave equation if the damper is
only local or introduced via boundary conditions. Indeed, in [9] the authors proved
exponential stability of the damped equation if the damping area [a > 0] :=
{x ∈ � ; a(x) > 0} satisfies the geometric optics condition. This is, for instance,
the case if [a > 0] contains a neighbourhood of the boundary ∂�.

Besides exponential stability, which is the only type of stability studied so
far within the current framework of evolutionary equations, different kinds of
asymptotic behaviours were addressed and characterised for C0-semigroups. We
just mention the celebrated Arendt–Batty–Lyubich–Vu theorem [4, 61] on strong
stability of C0-semigroups or the Theorem of Borichev–Tomilov [15] on the
polynomial stability of C0-semigroups on Hilbert spaces.

Exercises

Exercise 11.1 Let H be a Hilbert space, ν, ρ ∈ R and u ∈ L1,loc(R; H). Prove the
following statements:

(a) If u ∈ dom(∂t,ν) ∩ dom(∂t,ρ) then ∂t,νu = ∂t,ρu.
(b) If u ∈ dom(∂t,ν) such that u, ∂t,νu ∈ L2,ρ(R; H) then u ∈ dom(∂t,ρ).

Exercise 11.2 Prove Lemma 11.3.3.

Exercise 11.3 Let H0,H1 be Hilbert spaces and A : dom(A) ⊆ H0 → H1 a
densely defined closed linear operator. Moreover, we assume that A has closed
range. Show that the adjoint of the operator ι∗ran(A)A : dom(A) ⊆ H0 → ran(A) is
given by A∗ιran(A). If additionally A is one-to-one, show that ι∗ran(A)A is boundedly
invertible.

Exercise 11.4 Let � ⊆ R
d be open and contained in a slab. We consider the heat

conduction with a memory term given by the equations

∂t,νθ + div q = f,

q = −(1 − k∗) grad0 θ, (11.13)
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where k ∈ L1,−ρ1(R�0;R) for some ρ1 > 0 with

∫ ∞

0
|k(t)| dt < 1.

Write (11.13) as a suitable evolutionary equation and prove that this equation is
exponentially stable.

Exercise 11.5 Let A ∈ C
n×n for some n ∈ N and consider the evolutionary

equation

(∂t,ν + A)U = F.

Prove that the solution operators associated with this problem are exponentially
stable if and only if A has only eigenvalues with strictly positive real part.

Exercise 11.6 Let � ⊆ R
d be open.

(a) Let ϕ ∈ C∞
c (�)d . Prove Korn’s inequality

‖Gradϕ‖2
L2(�)d×d

sym
� 1

2

d∑

j=1

∥
∥gradϕj

∥
∥2

L2(�)d
.

(b) Use Korn’s inequality to prove that for u ∈ L2(�)d we have

u ∈ dom(Grad0) ⇐⇒ ∀j ∈ {1, . . . , d} : uj ∈ dom(grad0).

Moreover, show that in either case

1

2

d∑

j=1

∥
∥grad0 uj

∥
∥2

L2(�)d
� ‖Grad0 u‖2

L2(�)d×d
sym

�
d∑

j=1

∥
∥grad0 uj

∥
∥2

L2(�)d
.

(c) Let now � be contained in a slab. Prove that Grad0 is one-to-one and has closed
range.

Exercise 11.7 Let � ⊆ R
d be open and a ∈ L(L2(�)d) with Re a � c > 0.

(a) Let ν > 0 and f ∈ L2,ν(R; L2(�)). Moreover, assume that � is contained
in a slab and define ã := ι∗ran(grad0)aιran(grad0). Let θ ∈ L2,ν(R; L2(�)), q ∈
L2,ν(R; L2(�)d) satisfy

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 a−1

)
+

(
0 div

grad0 0

)) (
θ

q

)
=

(
f

0

)
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and θ̃ ∈ L2,ν(R; L2(�)), q̃ ∈ L2,ν(R; ran(grad0)) satisfy
(

∂t,ν

(
1 0
0 0

)
+

(
0 0
0 ã−1

)
+

(
0 div ιran(grad0)

ι∗ran(grad0) grad0 0

))(
θ̃

q̃

)
=

(
f

0

)
.

Show that (θ, ι∗ran(grad0)q) = (θ̃ , q̃ ).
(b) Let � be bounded and consider the evolutionary equation

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 a−1

)
+

(
0 div0

grad 0

))(
θ

q

)
=

(
f

0

)
.

Show that the associated solution operators are not exponentially stable.
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