Skip to main content

Fetal Origin of Adult Disease: The Case of GDM

  • Chapter
  • First Online:
Comprehensive Clinical Approach to Diabetes During Pregnancy

Abstract

Gestational diabetes mellitus (GDM) is a common condition affecting many women worldwide. In addition to the well-known complications during pregnancy and at birth, recent studies have linked GDM to risk for long-term disease in offspring, including impaired glucose tolerance and obesity. Investigations of the mechanisms by which GDM may “program” the exposed offspring to a higher risk of cardiometabolic disease later in life have suggested epigenetic mechanisms affecting gene methylation, hormonal alterations, and hypothalamic changes. Identifying such mechanisms will allow targeted intervention in pregnancy and childhood to prevent the development of long-term adult disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monteiro LJ, Norman JE, Rice GE, Illanes SE. Fetal programming and gestational diabetes mellitus. Placenta. 2016;48(1):S54–60.

    Article  CAS  PubMed  Google Scholar 

  2. Plagemann A. Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav. 2005;86:661–8.

    Article  CAS  PubMed  Google Scholar 

  3. Billion C, Mitanchez D, Weill A, et al. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia. 2017;60:636–44.

    Article  Google Scholar 

  4. Correa A, Gilboa SM, Besser LM, et al. Diabetes mellitus and birth defects. Am J Obstet Gynecol. 2008;199:237.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buchanan TA, Kitzmiller JL. Metabolic interactions of diabetes and pregnancy. Annu Rev Med. 1994;45:245–60.

    Article  CAS  PubMed  Google Scholar 

  6. Mitanchez D, Yzydorczyk C, Siddeek B, Boubred F, Benahmed M, Simeoni U. The offspring of the diabetic mother-short- and long-term implications. Best Pract Res Clin Obstet Gynaecol. 2015;29:256–69.

    Article  CAS  PubMed  Google Scholar 

  7. Esakoff TF, Cheng YW, Sparks TN, Caughey AB. The association between birthweight 4000 g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am J Obstet Gynecol. 2009;200:672.

    Article  PubMed  Google Scholar 

  8. Metzger BE, Persson B, Lowe LP, et al. Hyperglycemia and adverse pregnancy outcome study: neonatal glycemia. Pediatrics. 2010;126:1545–52.

    Article  Google Scholar 

  9. Aucott SW, Williams TG, Hertz RH, Kalhan SC. Rigorous management of insulin-dependent diabetes mellitus during pregnancy. Acta Diabetol. 1994;31:126–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kalhan SC, Savin SM, Adam PA. Attenuated glucose production rate in newborn infants of insulin-dependent diabetic mothers. N Engl J Med. 1977;296:375–6.

    Article  CAS  PubMed  Google Scholar 

  11. Philips AF, Dubin JW, Matty PJ, Raye JR. Arterial hypoxemia and hyperinsulinemia in the chronically hyperglycemic fetal lamb. Pediatr Res. 1982;16:653–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gewolb IH. Effect of high glucose on fetal lung maturation at different times in gestation. Exp Lung Res. 1996;22:201–11.

    Article  CAS  PubMed  Google Scholar 

  13. Metzger BE, Coustan DR. Summary and recommendations of the Fourth International workshop-conference on gestational diabetes mellitus. The Organizing Committee. Diabetes Care. 1998;21(Suppl 2):161–7.

    Google Scholar 

  14. Jarrett RJ. Reflections on gestational diabetes mellitus. Lancet. 1981;2:1220–1.

    Article  CAS  PubMed  Google Scholar 

  15. Coustan DR. Management of gestational diabetes mellitus: a self-fulfilling prophecy? JAMA. 1996;275:1199–200.

    Article  CAS  PubMed  Google Scholar 

  16. Weinert LS. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy: comment to the International Association of Diabetes and Pregnancy Study Groups Consensus Panel. Diabetes Care. 2010;33:97.

    Article  Google Scholar 

  17. Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31:340–6.

    Article  PubMed  Google Scholar 

  18. Damm P. Future risk of diabetes in mother and child after gestational diabetes mellitus. Int J Gynaecol Obstet. 2009;104(1):25–6.

    Article  Google Scholar 

  19. Feig DS, Zinman B, Wang X, Hux JE. Risk of development of diabetes mellitus after diagnosis of gestational diabetes. CMAJ. 2008;179:229–34.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care. 1995;18:611–7.

    Article  CAS  PubMed  Google Scholar 

  21. Scholtens DM, Kuang A, Lowe LP, et al. Hyperglycemia and adverse pregnancy outcome follow-up study (HAPO FUS): maternal glycemia and childhood glucose metabolism. Diabetes Care. 2019;42:381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bergmann KE, Bergmann RL, Von Kries R, et al. Early determinants of childhood overweight and adiposity in a birth cohort study: role of breast-feeding. Int J Obes Relat Metab Disord. 2003;27:162–72.

    Article  CAS  PubMed  Google Scholar 

  23. Oken E, Rifas-Shiman SL, Field AE, Frazier AL, Gillman MW. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol. 2008;112:999–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Philipps LH, Santhakumaran S, Gale C, et al. The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia. 2011;54:1957–66.

    Article  CAS  PubMed  Google Scholar 

  25. Kim SY, England JL, Sharma JA, Njoroge T. Gestational diabetes mellitus and risk of childhood overweight and obesity in offspring: a systematic review. Exp Diabetes Res. 2011;2011:541308.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Silverman BL, Rizzo T, Green OC, et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes. 1991;40(Suppl 2):121–5.

    Article  PubMed  Google Scholar 

  27. Crume TL, Ogden L, Daniels S, Hamman RF, Norris JM, Dabelea D. The impact of in utero exposure to diabetes on childhood body mass index growth trajectories: the EPOCH study. J Pediatr. 2011;158:941–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gingras V, Rifas-Shiman SL, Derks IPM, Aris IM, Oken E, Hivert MF. Associations of gestational glucose tolerance with offspring body composition and estimated insulin resistance in early adolescence. Diabetes Care. 2018;41:164–6.

    Article  Google Scholar 

  29. Lowe WL Jr, Lowe LP, Kuang A, et al. Maternal glucose levels during pregnancy and childhood adiposity in the hyperglycemia and adverse pregnancy outcome follow-up study. Diabetologia. 2019;62:598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holemans K, Gerber RT, Meurrens K, De Clerck F, Poston L, Van Assche FA. Streptozotocin diabetes in the pregnant rat induces cardiovascular dysfunction in adult offspring. Diabetologia. 1999;42:81–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bunt JC, Tataranni PA, Salbe AD. Intrauterine exposure to diabetes is a determinant of hemoglobin A(1)c and systolic blood pressure in Pima Indian children. J Clin Endocrinol Metab. 2005;90:3225–9.

    Article  CAS  PubMed  Google Scholar 

  32. Subramanian A, Idkowiak J, Toulis KA, Thangaratinam S, Arlt W, Nirantharakumar K. Pubertal timing in boys and girls born to mothers with gestational diabetes mellitus: a systematic review. Eur J Endocrinol. 2021;184:51–64.

    Article  CAS  PubMed  Google Scholar 

  33. Kubo A, Ferrara A, Laurent CA, et al. Associations between maternal pregravid obesity and gestational diabetes and the timing of pubarche in daughters. Am J Epidemiol. 2016;184:7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lauridsen LLB, Arendt LH, Ernst A, et al. Maternal diabetes mellitus and timing of pubertal development in daughters and sons: a nationwide cohort study. Fertil Steril. 2018;110:35–44.

    Article  PubMed  Google Scholar 

  35. Monteilh C, Kieszak S, Flanders WD, et al. Timing of maturation and predictors of Tanner stage transitions in boys enrolled in a contemporary British cohort. Paediatr Perinat Epidemiol. 2011;25:75–87.

    Article  PubMed  Google Scholar 

  36. Crowther CA, Hiller JE, Moss JR, et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med. 2005;352:2477–86.

    Article  CAS  Google Scholar 

  37. Gillman MW, Oakey H, Baghurst PA, Volkmer RE, Robinson JS, Crowther CA. Effect of treatment of gestational diabetes mellitus on obesity in the next generation. Diabetes Care. 2010;33:964–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Freinkel N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes. 1980;29:1023–35.

    Article  CAS  PubMed  Google Scholar 

  39. Leonce J, Brockton N, Robinson S, et al. Glucose production in the human placenta. Placenta. 2006;27(1):103–8.

    Article  Google Scholar 

  40. Araujo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep. 2015;15:569.

    Article  PubMed  Google Scholar 

  41. Hahn T, Barth S, Weiss U, Mosgoeller W, Desoye G. Sustained hyperglycemia in vitro down-regulates the GLUT1 glucose transport system of cultured human term placental trophoblast: a mechanism to protect fetal development? FASEB J. 1998;12:1221–31.

    Article  CAS  PubMed  Google Scholar 

  42. Hahn T, Hahn D, Blaschitz A, Korgun ET, Desoye G, Dohr G. Hyperglycaemia-induced subcellular redistribution of GLUT1 glucose transporters in cultured human term placental trophoblast cells. Diabetologia. 2000;43:173–80.

    Article  CAS  PubMed  Google Scholar 

  43. Gauster M, Desoye G, Totsch M, Hiden U. The placenta and gestational diabetes mellitus. Curr Diab Rep. 2012;12:16–23.

    Article  CAS  PubMed  Google Scholar 

  44. Schafer-Graf UM, Dupak J, Vogel M, et al. Hyperinsulinism, neonatal obesity and placental immaturity in infants born to women with one abnormal glucose tolerance test value. J Perinat Med. 1998;26:27–36.

    Article  CAS  PubMed  Google Scholar 

  45. Calderon IM, Damasceno DC, Amorin RL, Costa RA, Brasil MA, Rudge MV. Morphometric study of placental villi and vessels in women with mild hyperglycemia or gestational or overt diabetes. Diabetes Res Clin Pract. 2007;78:65–71.

    Article  PubMed  Google Scholar 

  46. Jarmuzek P, Wielgos M, Bomba-Open D. Placental pathologic changes in gestational diabetes mellitus. Neuro Endocrinol Lett. 2015;36:101–5.

    PubMed  Google Scholar 

  47. Madazli R, Tuten A, Clay Z, Uzun H, Uludag S, Ocak V. The incidence of placental abnormalities, maternal and cord plasma malondialdehyde and vascular endothelial growth factor levels in women with gestational diabetes mellitus and non-diabetic controls. Gynecol Obstet Investig. 2008;65:227–32.

    Article  CAS  Google Scholar 

  48. Hill DJ, Tevaarwerk GJ, Caddell C, Arany E, Kilkenny D, Gregory M. Fibroblast growth factor 2 is elevated in term maternal and cord serum and amniotic fluid in pregnancies complicated by diabetes: relationship to fetal and placental size. J Clin Endocrinol Metab. 1995;80:2626–32.

    CAS  PubMed  Google Scholar 

  49. Holdsworth-Carson SJ, Lim R, Mitton A, et al. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and pre-eclampsia. Placenta. 2010;31:222–9.

    Article  CAS  PubMed  Google Scholar 

  50. Estes ML, Mund JA, Mead LE, et al. Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry A. 2010;77:831–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Taricco E, Radaelli T, Rossi G, et al. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. BJOG. 2009;116:1729–35.

    Article  CAS  PubMed  Google Scholar 

  52. Leushner JR, Tevaarwerk GJ, Clarson CL, Harding PG, Chance GW, Haust MD. Analysis of the collagens of diabetic placental villi. Cell Mol Biol. 1986;32:27–35.

    CAS  PubMed  Google Scholar 

  53. Lao TT, Lee CP, Wong WM. Placental weight to birthweight ratio is increased in mild gestational glucose intolerance. Placenta. 1997;18:227–30.

    Article  CAS  PubMed  Google Scholar 

  54. San Martin R, Sobrevia L. Gestational diabetes and the adenosine/L-arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta. 2006;27:1–10.

    Article  CAS  PubMed  Google Scholar 

  55. Schonfelder G, John M, Hopp H, Fuhr N, van der Giet M, Paul M. Expression of inducible nitric oxide synthase in placenta of women with gestational diabetes. FASEB J. 1996;10:777–84.

    Article  CAS  PubMed  Google Scholar 

  56. Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15:3061–100.

    Article  CAS  PubMed  Google Scholar 

  57. Lappas M, Mitton A, Permezel M. In response to oxidative stress, the expression of inflammatory cytokines and antioxidant enzymes are impaired in placenta, but not adipose tissue, of women with gestational diabetes. J Endocrinol. 2010;204:75–84.

    Article  CAS  PubMed  Google Scholar 

  58. Sarikabadayi YU, Aydemir O, Aydemir C, et al. Umbilical cord oxidative stress in infants of diabetic mothers and its relation to maternal hyperglycemia. J Pediatr Endocrinol Metab. 2011;24:671–4.

    Article  CAS  PubMed  Google Scholar 

  59. Lager S, Jansson N, Olsson AL, Wennergren M, Jansson T, Powell TL. Effect of IL-6 and TNF-alpha on fatty acid uptake in cultured human primary trophoblast cells. Placenta. 2011;32:121–7.

    Article  CAS  PubMed  Google Scholar 

  60. Marseille-Tremblay C, Ethier-Chiasson M, Forest JC, et al. Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev. 2008;75:1054–62.

    Article  CAS  PubMed  Google Scholar 

  61. Coughlan MT, Oliva K, Georgiou HM, Permezel JM, Rice GE. Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus. Diabet Med. 2001;18:921–7.

    Article  CAS  PubMed  Google Scholar 

  62. Cardenas A, Gagne-Ouellet V, Allard C, et al. Placental DNA methylation adaptation to maternal glycemic response in pregnancy. Diabetes. 2018;67:1673–83.

    Article  CAS  PubMed  Google Scholar 

  63. Enquobahrie DA, Williams MA, Qiu C, Meller M, Sorensen TK. Global placental gene expression in gestational diabetes mellitus. Am J Obstet Gynecol. 2009;200:206.

    Article  PubMed  Google Scholar 

  64. Sharma RB, Alonso LC. Lipotoxicity in the pancreatic beta-cell: not just survival and function, but proliferation as well? Curr Diab Rep. 2014;14:492.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Prentice KJ, Luu L, Allister EM, et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces beta-cell dysfunction. Cell Metab. 2014;19:653–66.

    Article  CAS  PubMed  Google Scholar 

  66. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365:1333–46.

    Article  CAS  PubMed  Google Scholar 

  67. Meigs JB, Cupples LA, Wilson PW. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes. 2000;49:2201–7.

    Article  CAS  PubMed  Google Scholar 

  68. Dabelea D, Knowler WC, Pettitt DJ. Effect of diabetes in pregnancy on offspring: follow-up research in the Pima Indians. J Matern Fetal Med. 2000;9:83–8.

    Article  CAS  PubMed  Google Scholar 

  69. Dorner G. Perinatal hormone levels and brain organization. Anat Neuroendocrinol. 1975;1:245.

    Google Scholar 

  70. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  CAS  PubMed  Google Scholar 

  71. Bouchard L, Thibault S, Guay SP, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33:2436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D. Placental adiponectin gene DNA methylation levels are associated with mothers’ blood glucose concentration. Diabetes. 2012;61:1272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen D, Zhang A, Fang M, et al. Increased methylation at differentially methylated region of GNAS in infants born to gestational diabetes. BMC Med Genet. 2014;15:108.

    Article  PubMed  PubMed Central  Google Scholar 

  74. El Hajj N, Pliushch G, Schneider E, et al. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes. 2013;62:1320–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang IV, Zhang W, Davidson EJ, Fingerlin TE, Kechris K, Dabelea D. Epigenetic marks of in utero exposure to gestational diabetes and childhood adiposity outcomes: the EPOCH study. Diabet Med. 2018;35:612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Howe CG, Cox B, Fore R, et al. Maternal gestational diabetes mellitus and newborn DNA methylation: findings from the pregnancy and childhood epigenetics consortium. Diabetes Care. 2020;43:98–105.

    Article  CAS  PubMed  Google Scholar 

  77. Quilter CR, Cooper WN, Cliffe KM, et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014;28:4868–79.

    Article  CAS  PubMed  Google Scholar 

  78. Hivert MF, Cardenas A, Allard C, et al. Interplay of placental DNA methylation and maternal insulin sensitivity in pregnancy. Diabetes. 2020;69:484–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Agarwal P, Brar N, Morriseau TS, et al. Gestational diabetes adversely affects pancreatic islet architecture and function in the male rat offspring. Endocrinology. 2019;160:1907–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koistinen HA, Koivisto VA, Andersson S, et al. Leptin concentration in cord blood correlates with intrauterine growth. J Clin Endocrinol Metab. 1997;82:3328–30.

    CAS  PubMed  Google Scholar 

  81. Christou H, Connors JM, Ziotopoulou M, et al. Cord blood leptin and insulin-like growth factor levels are independent predictors of fetal growth. J Clin Endocrinol Metab. 2001;86:935–8.

    Article  CAS  PubMed  Google Scholar 

  82. Jaquet D, Leger J, Levy-Marchal C, Oury JF, Czernichow P. Ontogeny of leptin in human fetuses and newborns: effect of intrauterine growth retardation on serum leptin concentrations. J Clin Endocrinol Metab. 1998;83:1243–6.

    Article  CAS  PubMed  Google Scholar 

  83. Persson B, Westgren M, Celsi G, Nord E, Ortqvist E. Leptin concentrations in cord blood in normal newborn infants and offspring of diabetic mothers. Horm Metab Res. 1999;31:467–71.

    Article  CAS  PubMed  Google Scholar 

  84. Simmons D, Breier BH. Fetal overnutrition in Polynesian pregnancies and in gestational diabetes may lead to dysregulation of the adipoinsular axis in offspring. Diabetes Care. 2002;25:1539–44.

    Article  PubMed  Google Scholar 

  85. Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res. 1994;26:213–21.

    Article  CAS  PubMed  Google Scholar 

  86. Plagemann A, Harder T, Rake A, et al. Hypothalamic insulin and neuropeptide Y in the offspring of gestational diabetic mother rats. Neuroreport. 1998;9:4069–73.

    Article  CAS  PubMed  Google Scholar 

  87. Dorner G, Plagemann A, Ruckert J, et al. Teratogenetic maternofoetal transmission and prevention of diabetes susceptibility. Exp Clin Endocrinol. 1988;91:247–58.

    Article  CAS  PubMed  Google Scholar 

  88. Harder T, Plagemann A, Rohde W, Dorner G. Syndrome X-like alterations in adult female rats due to neonatal insulin treatment. Metabolism. 1998;47:855–62.

    Article  CAS  PubMed  Google Scholar 

  89. Plagemann A, Harder T, Janet U, et al. Malformations of hypothalamic nuclei in hyperinsulinemic offspring of rats with gestational diabetes. Dev Neurosci. 1999;21:58–67.

    Article  CAS  PubMed  Google Scholar 

  90. Plagemann A, Harder T, Rake A, et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res. 1999;836:146–55.

    Article  CAS  PubMed  Google Scholar 

  91. Plagemann A, Harder T, Rake A, et al. Observations on the orexigenic hypothalamic neuropeptide Y-system in neonatally overfed weanling rats. J Neuroendocrinol. 1999;11:541–6.

    Article  CAS  PubMed  Google Scholar 

  92. Davidowa H, Plagemann A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport. 2000;11:2795–8.

    Article  CAS  PubMed  Google Scholar 

  93. Franke K, Harder T, Aerts L, et al. ‘Programming’ of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats. Brain Res. 2005;1031:276–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Stamou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stamou, M.I., Hivert, MF. (2022). Fetal Origin of Adult Disease: The Case of GDM. In: Goulis, D.G. (eds) Comprehensive Clinical Approach to Diabetes During Pregnancy. Springer, Cham. https://doi.org/10.1007/978-3-030-89243-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89243-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89242-5

  • Online ISBN: 978-3-030-89243-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics