
Chapter 9
Support Vector Machines and Support
Vector Regression

9.1 Introduction to Support Vector Machine

The Support Vector Machine (SVM) is one of the most popular and efficient
supervised statistical machine learning algorithms, which was proposed to the
computer science community in the 1990s by Vapnik (1995) and is used mostly
for classification problems. Its versatility is due to the fact that it can learn nonlinear
decision surfaces and perform well in the presence of a large number of predictors,
even with a small number of cases. This makes the SVM very appealing for tackling
a wide range of problems such as speech recognition, text categorization, image
recognition, face detection, faulty card detection, junk mail classification, credit
rating analysis, cancer and diabetes classification, among others (Attewell et al.
2015; Byun and Lee 2002). Most of the groundwork for the SVM was laid by
Vladimir Vapnik while he was working on his Ph.D. thesis in the Soviet Union in the
1960s. Then Vapnik emigrated to U.S. in 1990 to work with AT&T. In 1992,
Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik suggested applying
the kernel trick to maximum-margin hyperplanes to capture nonlinearities in classi-
fication problems. Finally, Cortes and Vapnik (1995) introduced the SVM to the
world in its more efficient mode, and since the mid-1990s, the SVM has been a very
popular topic in statistical machine learning.

The SVM method works by representing the observations (data) as points in
space by mapping the original observations of different classes (categories) in such a
way that they are divided by an evident gap that is as extensive as possible. The
predictions of new observations are done by mapping these observations into the
same space, and they are allocated to one or another category depending on which
side of the gap they fall.

SVM methods are very efficient for classifying nonlinear separable patterns in
part by the use of the kernel trick, explained in the previous chapter, which consists
of transforming the original input information into a high-dimensional feature space
by enlarging the feature space using functions of the predictors; this makes it

© The Author(s) 2022
O. A. Montesinos López et al., Multivariate Statistical Machine Learning Methods
for Genomic Prediction, https://doi.org/10.1007/978-3-030-89010-0_9

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89010-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-89010-0_9#DOI

possible to accommodate a nonlinear boundary between the classes, without signif-
icantly increasing the computational cost.

As mentioned above, the SVM is a type of supervised learning method, which
means that it cannot be implemented when the data do not have a dependent or
output variable (y). Also, it is important to point out that the mathematics behind the
SVM has been around for a long time and is quite complex, but the popularity of this
method is very recent. The popularity of this method can be attributed to three main
reasons: (a) the increase in computational power, (b) ample evidence of the high
prediction performance of this method, and (c) the availability of user-friendly
libraries in many languages that are able to implement the SVM method. For this
reason, the SVM has been implemented in many domains that range from social
science to natural sciences, since it is not only used for tasks relating to the prediction
of categorical variables but also for the prediction of continuous outputs.

The mathematics of the SVM was originally developed for classifying binary
outputs, and for this reason, this type of application is more popular and better
understood. However, there is also evidence that the SVM is doing a good job
predicting continuous outputs and novelty detection. The power of the SVM can be
attributed to the following facts: (a) it is a kernel-based algorithm that has a sparse
solution, since the prediction of new inputs is done by evaluating the kernel function
in a subset of the training data points and (b) the estimation of the model parameters
corresponds to a convex optimization problem, which means that they always
provide a global optimum (Bishop 2006).

First, we will study the SVM for classification and then for the prediction of
continuous outputs. To understand the SVM better, it is important to understand its
ancestors, i.e., the maximum margin classifier and the support vector classifier. The
maximum margin classifier is a simple and elegant method for classifying binary
outputs that assume that the classes are separable by a linear boundary. However, it
is not feasible to apply this method to many data sets since it requires the strong
assumption that classes are separable by a linear boundary. The support vector
classifier is an extension of the maximum margin classifier that allows to misclassify
some of the training data and thus creates a separable linear boundary with a
reasonable width (margin) that is more robust to overfitting. Finally, the support
vector machine is a generalization of the support vector classifier that classifies the
observations using nonlinear boundaries by expanding the feature space with the
help of kernels (James et al. 2013).

9.2 Hyperplane

A hyperplane is a subspace whose dimension (cardinality) is one less than that of its
original space. This means that the hyperplane of a p-dimensional space has a
subspace of dimension p � 1. In Fig. 9.1 (left), we can see a two-dimensional
space whose resulting hyperplane is a line, a flat one-dimensional subspace, while in
Fig. 9.1 (right) there is a three-dimensional space whose hyperplane is a plane, a flat

338 9 Support Vector Machines and Support Vector Regression

https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Ambient_space

two-dimensional subspace. Although it is hard to visualize a hyperplane when the
original space has a dimension of four or more, it still applies for the (p � 1)-
dimensional flat subspace (James et al. 2013). In higher dimensions, it is useful to
think of a hyperplane as a member of an affine family of (p � 1)-dimensional
subspaces (affine spaces look and behave very similarly to linear spaces without the
requirement to contain the origin), such that the whole space is partitioned into these
family subspaces.

From a mathematical point of view, a hyperplane is defined as (James et al. 2013)

β0 þ β1X1 þ β2X2 þ β3X3 ¼ 0 ð9:1Þ

for parameters β0, β1, β2, and β3. (9.1) “defines” a hyperplane, since any X¼ (X1,X2,
X3)

T for which (9.1) holds is a point in the hyperplane. Equation (9.1) is the equation
of a plane, since in three dimensions, as mentioned before, a hyperplane is a plane, as
can be observed in Fig. 9.1 (right).

For the p-dimensional space, the dimension of the hyperplane generated is p � 1,
and it is simply an extension of (9.1) as

β0 þ β1X1 þ β2X2 þ . . .þ βpXp ¼ 0 ð9:2Þ

In the same way, any point X¼ (X1,X2, Xp)
T in the p-dimensional space that

satisfies (9.2) defines a (p � 1)-dimensional hyperplane, which means that the
hyperplane is formed by those points of X that satisfy (9.2) (James et al. 2013).
But those points of X that do not satisfy (9.2) like, for example,

β0 þ β1X1 þ β2X2 þ . . .þ βpXp < 0 ð9:3Þ

There are points that satisfying (9.3) lie on one side of the hyperplane. Similarly,
the X points that correspond to

Fig. 9.1 Hyperplanes in two (left) and three (right) dimensions

9.2 Hyperplane 339

β0 þ β1X1 þ β2X2 þ . . .þ βpXp > 0 ð9:4Þ

will lie on the other side of the hyperplane. This means that we can think of the
hyperplane as a mechanism that can divide the p-dimensional space into two halves.
By simply calculating the sign of the left-hand side of (9.2), one can determine on
which side of the hyperplane a point lies (James et al. 2013). Figure 9.2 shows a
hyperplane in two-dimensional space.

9.3 Maximum Margin Classifier

We assume that we measure a training sample with pairs (yi, x
T
i Þ for i ¼ 1, 2, . . , n,

where yi is the response variable (output) for sample i, and xTi ¼ xi1ð , . . ., xip) is a p-
dimensional vector of predictors (inputs) measured in sample i. We also assume that

Fig. 9.2 The hyperplane 1 + 2X1 + 3X2 ¼ 0 is shown. The blue region is the set of points for which
1 + 2X1 + 3X2 > 0, and the red region is the set of points for which 1 + 2X1 + 3X2 < 0 (James et al.
2013)

340 9 Support Vector Machines and Support Vector Regression

the response variable is binary (two classes) and coded as 1 for representing class
1 and �1 for representing class 2. A fitting function of the form

f xið Þ ¼ β0 þ xTi β ð9:5Þ

can be used for building a classifier based on the training data set, where β0 is an
intercept term, and βT = (β1, . . ., βp) are the beta coefficients (weights) that need to
be estimated to build the required classifier. Once the beta coefficients have been

estimated, bβ0,� bβ), they can be used to predict the output of a test observation that

contains xTi� ¼ xi1�, . . . , xip�
� �

as a predictor. The prediction of this new test obser-

vation is labeled as 1 if bf xi�ð Þ ¼ bβ0 þ xTi�bβ is positive, and labeled as �1 if bf xi�ð Þ is
negative. bf xi�ð Þ is calculated with the estimates of the beta coefficients. Before
estimating the required beta coefficients, we assume for the moment that the training
data set is linearly separable in the predictor space, which means that there is at least
one set of beta coefficient parameters, (β0, β), so that using the function given in
(9.5), we can assume that f(xi) < 0, for observations having yi ¼ � 1 and f(xi) > 0 for
observations having yi ¼ 1, so that yif(xi) > 0 for all training observations (Bishop
2006).

Let us assume that 40 hybrids of maize were evaluated for the presence (1) or
absence (�1) of a certain disease and that in addition to the output of interest, we also
measured in each hybrid two predictors (x1, x2), which could be markers linked to
this disease. Figure 9.3 shows that the 40 observations can be separated by a line into

Fig. 9.3 Synthetic linear separable data set with the hyperplane 1.3467 + 0.9927x1� 1.9779x2¼ 0.
The blue points correspond to the individuals with response �1 and the green points to individuals
with response equal to 1. Note that the black dotted lines are two of many possible linear
hyperplanes that correctly classify both classes. The black continuous line corresponds to the
optimum hyperplane; the dotted red lines correspond to the maximum margin bounds and, relative
to the rest, they play the biggest role in predicting new points

9.3 Maximum Margin Classifier 341

the two classes, that is, it is possible to construct a hyperplane that is able to perfectly
classify both classes of the training data set. As can be seen in Fig. 9.3, the 1s (green
points) and �1s (blue points) are each located in quite different areas of the
two-dimensional space defined by the two predictors. For this reason, it is possible
to perfectly separate the training data with a dividing line between the 1s (green
points) and �1s (blue points). However, in Fig. 9.3, three possible dividing lines
(two dotted lines and one continuous line) were used to separate the two classes
perfectly, but of course the separation can be made with an infinite number of
dividing lines. Therefore, the question of interest is: How to choose the dividing
line in such a way that we can separate the training sample perfectly and, in addition,
classify new samples with a low rate of misclassification? The answer to this
question is not hard, but neither is it straightforward since there are many possible
dividing lines when the pattern of the data is similar to the one shown in Fig. 9.3.

In terms of equations, this hyperplane has the property that

β0 þ xTi β < 0 if yi ¼ �1,

and

β0 þ xTi β > 0 if yi ¼ 1:

In its equivalent formulation, the hyperplane can be expressed as

yi β0 þ xTi β
� �

> 0

for all i¼ 1, 2, . . ., n. When this separating hyperplane is found, a natural classifier is
built and testing observations are classified depending on which side of the hyper-
plane they are located and, as mentioned above, test observation xi� is used to
calculate bf xi�ð Þ ¼ bβ0 þ xTi�bβ; if bf xi�ð Þ is negative, it is classified in class �1, but ifbf xi�ð Þ is positive, it is classified in class 1. Large positive (or negative) values ofbf xi�ð Þ indicate that we can be more confident about our class assignment for xi�,
while values close to zero ofbf xi�ð Þ indicate that we should be less certain of the class
assignment of xi�. For this reason, classifiers based on a separating hyperplane
require defining a linear decision boundary (James et al. 2013).

For data with patterns similar to the pattern in Fig. 9.3, the maximum margin
classifier solves the problem of finding the “best” decision boundary by building two
parallel lines on each side of the decision boundary and at the same distance from the
decision boundary. The two lines should be as far apart as possible, taking care that
any observation is within the space between them. The space between the two lines
is called the margin, and it is a kind of “buffer zone” that is often also called width of
the street. The preferred term is maximum margin or maximum width of the street,
since intuitively it looks like it will improve the chances of correctly classifying even
new observations not used for training. In other words, the strategy is to find the
“street” which separates the data into two groups such that the street is as wide as

342 9 Support Vector Machines and Support Vector Regression

possible, and the equation that would correspond to the “median” of this street. Our
decision is made according to the position of a point relative to this median.

Figure 9.4a, b shows the margin (M), that is, the distance between any point and
the hyperplane, while the whole width of the street is 2M. The points touching this
boundary are the support vectors (in Fig. 9.4a, the circles and triangles shown are the
support vectors, while in Fig. 9.4b, they are green and blue dots) and each class must
have at least one support vector. Here, the solid line maximizes the distance, so it is
the best. It is possible to define the maximum margin hyperplane with only the
support vectors, and for this reason, they provide a very compact way of storing a
classification model, even if the number of predictors is very large.

The algorithm used to find the right support vectors relies on vector geometry and
involves novel math that will be explained next.

9.3.1 Derivation of the Maximum Margin Classifier

We assume that the training sample is linearly separable, that is, that there is a
hyperplane that separates the training sample perfectly into two populations that can
be labeled as 1s and �1s or as white and black or any other two labeling options.
However, as pointed out before, there is an infinite number of such separating
hyperplanes; for this reason, to select one reasonable hyperplane, we will choose

Fig. 9.4 Maximum margin hyperplane when there are two separable classes. The maximum
margin hyperplane is shown as a dashed line. The margin is the distance from the dashed line to
any point on the solid line. The support vectors are the dots from each class that touch to the
maximum margin hyperplane and each class must have a least one support vector. In (a) the two
classes are circles and triangles and in (b) the two classes are dots in green and blue

9.3 Maximum Margin Classifier 343

the hyperplane with the maximum margin (M). The continous line in Fig. 9.4
illustrates the best choice. Therefore, assuming that we have a training set with
input information, xTi ¼ x1, . . . , xp

� �
and with output information, yi 2 (�1, 1) for

i¼ 1, . . ., n. Next, we derive the maximum margin hyperplane, which is the solution
to the following optimization problem (James et al. 2013):

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
β0, β1, β2, ..., βp

M ð9:6Þ

subject to
Xp
j¼1

β2j ¼ 1,

yi β0 þ xTi β
� � � M, i ¼ 1, . . . , n

The term yi β0 þ xTi β
� �

in the restrictions of (9.6) of this optimization problem is the
distance between the ith observation and the decision boundary and is essential for
correctly identifying classified observations on or beyond the margin boundary,
given that M is positive. 2M is the whole margin or width of the street (see
Fig. 9.4b), since M (half-width of the street) is the distance, centered on the decision
boundary, to the margin boundary from the decision boundary. It is important to
point out that the constraints given in (9.4) and (9.5) guarantee that each observation
will fall on the correct side of the hyperplane and at a distance of at leastM from the
hyperplane. The fact that the last restriction of (9.6) applies to all observations (i¼ 1,
. . ., n) means that no observations are inside the street (whole margin) or fences.
Hence, the goal of the maximum margin hyperplane is to find the values of the beta
coefficients, β0, β1, β2, . . ., βp, that maximize the margin (M) avoiding that some
observations are inside the fences (street).

To obtain the distance from a point to the hyperplane, consider point x in Fig. 9.5.
Note that from any two points x1 and x2 lying in hyperplane H, we have that β0 þ
xT1β ¼ 0 and β0 þ xT2β ¼ 0, which implies that (x1 � x2)

Tβ¼ 0. But because x1 � x2
is a vector in H, then β is orthogonal to H, and consequently also to the normalized β
vector, β� ¼ β

βj jj j (see Fig. 9.5). To solve the optimization problem (9.6), it is very

important to determine the distance (margin, M) from point x to hyperplane H,
which is given by the norm of the projection vector of x2 xi on vector β

�, where xi is
the vector formed by the intersection point of vector β� and the hyperplane. Recall

that the projection of a onto b is equal to Pb(a)¼
aTb��� b���

 !
b��� b���

 !
. Therefore,

Pβ� x2 xið Þ ¼ x2 xið ÞTβ�

β�k k2
� �

β� but because kβ�k ¼ 1, then Pβ� x2 xið Þ

¼ x2 xið ÞTβ�
� 	

β� =
xTβþβ0ð Þβ���� β

��� . Therefore, the norm of Pβ� x2 xið Þ is equal to the

margin between the hyperplane and any of the support vectors (M), which is equal to

344 9 Support Vector Machines and Support Vector Regression

M=
β0 þ xTi β

��� β������� β��� =

β0 þ xTi β

1��� β��� = 1= βk k

This distance is equal to the distance (margin, M) from hyperplane
(h0¼β0 þ xTi β ¼ 0) to hyperplane (h1 ¼ β0 þ xTi β= 1). This means that the total
distance is equal to 2M = 2/kβk. This implies that maximizingM = 1/kβk subject to
the constraints of (9.6) is equivalent to minimizing (kβk), subject to the same
constraints.

Due to the fact that kβk is naturally nonnegative and that βk k2
2 is monotone

increasing for kβk � 0, we can now reformulate the optimization problem given in
(9.6) as

Fig. 9.5 Distance from a point (x) to a point (xi) in the hyperplane (β0 + β1x1 + β2x2 ¼ 0)

9.3 Maximum Margin Classifier 345

minimize|fflfflfflfflffl{zfflfflfflfflffl}
β0, β1, β2, ..., βp

1
2

βk k2 ð9:7Þ

yi β0 þ xTi β
� � � 1, i ¼ 1, . . . , n ð9:8Þ

To be able to solve the optimization problem, it is important to understand the Wolfe
dual result, which is explained below. Also, remember that 12 βk k2 ¼ 1

2 β
T β.

9.3.2 Wolfe Dual

Assume we have the following general optimization problem:

minimize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x

f xð Þ x 2 Rn ð9:9Þ

subject to hi xð Þ ¼ 0 i ¼ 1, . . . , n ð9:10Þ
gi xð Þ � 0, i ¼ 1, . . . , p ð9:11Þ

Assume that we are searching for the minimization value of f(x) in an n-dimensional
space withm equality constraints and p inequality constraints. TheWolfe dual of this
optimization problem is

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x, λ, μ

f xð Þ �
Xm

i¼1
λihi xð Þ �

Xp

i¼1
αigi xð Þ ð9:12Þ

subject to ∇f xð Þ �
Xm

i¼1
λi∇hi xð Þ �

Xp

i¼1
αi∇gi xð Þ ¼ 0 ð9:13Þ

αi � 0, i ¼ 1, . . . , p ð9:14Þ

This changes the searching space to an (n + m + p)-dimensional space, x, λ, α, with
p + 1 constraints. The Wolfe dual is a type of Lagrange dual problem. It is important
to point out that the sign of the equality constraint does not matter, and we may
define it as addition or subtraction, as we wish. However, the sign of the inequality
constraint is crucial and should be negative for minimization and positive for
maximization.

Illustrative Example 9.1

minimize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x

x2 ð9:15Þ

subject to x � 1 ð9:16Þ

Its dual version according to Wolfe is equal to

346 9 Support Vector Machines and Support Vector Regression

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x, α

f x, αð Þ ¼ x2 � 2α x� 1ð Þ ð9:17Þ

subject to
∂f x, αð Þ

∂x
¼ 2x� 2α ¼ 0

and α � 0 ð9:18Þ

Then the last version of the Wolfe dual can be simplified as

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L λð Þ ¼ �α2 þ 2α ð9:19Þ

subject to α � 0 ð9:20Þ

With this last version of the Wolfe dual, we obtained the solution to the original
optimization problem with the solution for x ¼ 1 and α ¼ 1.

Illustrative Example 9.2

minimize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x, y

x2 þ y2 ð9:21Þ

subject to xþ y � 2 ð9:22Þ

Its dual version according to Wolfe is equal to

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x, y, α

f x, y, αð Þ ¼ x2 þ y2 � 2α xþ y� 2ð Þ ð9:23Þ

subject to
∂f x, y, αð Þ

∂x
¼ 2x� 2α ¼ 0

∂f x, y, αð Þ
∂y

¼ 2y� 2α ¼ 0 ð9:24Þ

and α � 0

The last version of the Wolfe dual can be simplified by replacing x ¼ y¼ α in the
dual version, and we obtained:

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L αð Þ ¼ �2α2 þ 4α ð9:25Þ

subject to α � 0 ð9:26Þ

With this last version of the Wolfe dual, we obtained the solution to the original
optimization problem with the solution for x ¼ y ¼ 1 and α ¼ 1.

9.3 Maximum Margin Classifier 347

Now that we understand the Wolfe dual result and how to use it to obtain optimal
values from optimization problems, we will solve the optimization problem given in
(9.7) and (9.8). First, we present its Wolfe dual version (maximization problem),
which is equal to

L β, β0,αð Þ= 1
2

βk k2 2
Xn

i¼1
αi yi β0 þ xTi β

� �� 1
� �

, ð9:27Þ

where α = (α1, . . ., αn)
T and the auxiliary nonnegative variables αi for i ¼ 1, 2, . . ,

n are called Lagrange multipliers. Setting the derivatives of L(β, β0,α) with regard to
β and β0 equal to zero, we obtain the following conditions:

∂L β, β0,αð Þ
∂β

¼ β2
Xn

i¼1
αiyixi ¼ 0⇒ β=

Xn

i¼1
αiyixi ð9:28Þ

∂L β, β0,αð Þ
∂β0

¼
Xn

i¼1
αiyi = 0⇒

Xn

i¼1
αiyi = 0 ð9:29Þ

αi yi β0 þ xTi β
� �� 1

� � ¼ 0 for i ¼ 1, . . . , n ⇒ αi

¼ 0 and yi β0 þ xTi β
� � ¼ 1 ð9:30Þ

The conditions that the solution must satisfy are called the Karush–Kuhn–Tucker
conditions. They are required to ensure that the function is convex to guarantee a
local optimum of nonlinear programming problems.

We can see from (9.30) that

(a) If αi > 0, then yi β0 þ xTi β
� � ¼ 1, or in other words, xi is on the boundary of

the slab.
(b) If yi β0 þ xTi β

� �
> 1, xi is not on the boundary of the slab, and αi ¼ 0.

From (9.28), we can see that the beta coefficients (with the exception of the
intercept) of the maximum margin hyperplane problem are a linear combination of
the training vectors x1, , xn. A vector xi belongs to that expansion if, and only if,
αi 6¼ 0 and these vectors are called support vectors. By condition (9.30), if αi 6¼ 0,
then yi β0 þ xTi β

� � ¼ 1 . Thus, support vectors lie on the marginal hyperplane
yi β0 þ xTi β
� � ¼ �1.
The maximum margin hyperplane is fully defined by support vectors. The

definition of these hyperplanes is not affected by vectors that are not lying on the
marginal hyperplanes, since in their absence, the solution for the maximum margin
hyperplane remains unchanged.

By placing solutions (9.28) and (9.29) back into L(β, β0,α), we obtain the Wolfe
dual simplified version (maximization) of the optimization problem:

348 9 Support Vector Machines and Support Vector Regression

L αð Þ= 1
2

Xn

i¼1
αiyixi

��� ���2 2Xn

i¼1
αiα jyiy j xi:x j

� �|ffl{zffl}
�0:5�

Pn

i¼1
αiα jyiy j xi:x jð Þ

2
Xn

i¼1
αiyiβ0 þ

Xn

i¼1
αi

ð9:31Þ

Simplifying (9.31) leads to the dual optimization problem for the maximum
margin classifier

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L αð Þ=
Xn

i¼1
αi 2

1
2

Xn

i¼1
αiα jyiy j xi:x j

� � ð9:32Þ

subject to : αi � 0 and
Xn

i¼1
αiyi ¼ 0 for i ¼ 1, . . . , n ð9:33Þ

The dual problem that needs to be maximized in (9.32) and (9.33) for the
maximum margin classifier is cast entirely in terms of the training data and depends
only on dot (inner) products of data vectors, xi, xj, and not on the vectors themselves.
The operation xi �xj denotes the dot product of vectors xi and xj. This means that we
do not exactly need the exact data points, but only their inner products to compute
our decision boundary. What it implies is that if we want to transform our existing
data into a higher dimensional data, which in many cases helps us classify better (see
the image below for an example), we need not compute the exact transformation of
our data, we just need the inner product of our data in that higher dimensional space.

It is important to point out that the constraints in (9.33) are affine and convex.
Also, (9.32) is infinitely differentiable and its Hessian is positive semi-definite which
implies that the maximization problem in (9.32) and (9.33) is equivalent to a convex
optimization problem. For these reasons, the maximum margin hyperplane provides
a unique solution to the separating hyperplane problem and in general does a good
job of classifying the testing data due to the fact that the maximization of the margin
between the two classes is optimal. Therefore, the dual optimization problem has the
following two advantages: (a) there is no need to access the original data, only the
dot products and (b) the number of free parameters is bound by the number of
support vectors and not by the number of variables (beneficial for high-dimensional
problems).

Since L(α) is a quadratic function of α, this dual optimization problem is a
quadratic problem, and standard quadratic programming solvers can be used to
obtain the optimal solution for the maximum margin classifier. Once the optimiza-
tion problem is solved and the values of α are found, we proceed to obtainbβ=Pn

i¼1αiyixi: Then we obtain the value of the intercept β0 by the fact that any
support vector xi satisfies yi β0 þ xTi β

� � ¼ 1, that is,

yi β0 þ xTi β
� � ¼ yi β0 þ

X
j2S

α jy j xi:x j

� � !
¼ 1,

9.3 Maximum Margin Classifier 349

where the set of indices of the support vectors is denoted as S. Although we can solve
this equation for the intercept β0 using an arbitrarily chosen support sector xi, a
numerically more stable solution is obtained by first multiplying by yi making use of
y2i ¼ 1, and then averaging this equation over all support vectors and solving for β0,
which gives

β0 ¼ 1
NS

X
i2S

yi �
X
j2S

α jy j xi:x j

� � !
,

where NS is the total number of support vectors. The maximum margin classifier
produces a functionbf xið Þ ¼ bβ0 þ xTi bβ that can be used to classify training and testing
observations as

byi ¼ sign bf xið Þ
h i

Due to the construction of this method, none of the training observations falls in
the margin, but for testing observations this is not guaranteed. It is expected that the
larger the margin in the training data, the better the classification for testing obser-
vations. This method is quite robust to misclassification of testing observations
because its construction focuses only on the fraction of points that count (support
points), and those that have αi > 0 for i ¼ 1, . . ., n, but of course, finding those
support points requires using all the training data.

Example 9.1 A Hand Computation of the Maximum Margin Classifier
Let the data points and labels be as follows:

X ¼
0:5 1

�0:5 1

�0:5 �1

264
375, y ¼

�1

�1

1

264
375, Q ¼

�0:5 �1

0:5 �1

�0:5 �1

264
375

The matrix Q on the right incorporates the class labels, i.e., the rows are xiyi. Then

QQT ¼
1:25 0:75 1:25

0:75 1:25 0:75

1:25 0:75 1:25

264
375

The dual optimization problem is thus

350 9 Support Vector Machines and Support Vector Regression

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L αð Þ ¼ α1 þ α2 þ α3

� 1
2

1:25α21 þ 0:75α1α2 þ 1:25α1α3 þ 0:75α2α1
�
þ1:25α22 þ 0:75α2α3 þ 1:25α3α1 þ 0:75α3α2 þ 1:25α23

�
maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}

α

L αð Þ ¼ α1 þ α2 þ α3 � 1
2

� 1:25α21 þ 1:5α1α2 þ 2:5α1α3 þ 1:25α22 þ 1:5α2α3 þ 1:25α23
� �

Subject to a1 � 0, a2 � 0, a3 � 0 and since
P3
i¼1

αiyi ¼ 0, then �α1 � α2 + α3 ¼ 0,

which is equivalent to α3 ¼ α1 + α2. While in practice such problems are solved by
delicate quadratic optimization solvers, here we will show how to solve this toy
problem by hand.

Using the equality constraint, we can eliminate one of the variables, say α3, and
simplify the objective function to

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L αð Þ¼�1
2

1:25α21þ1:5α1α2þ2:5α1 α1þα2ð Þþ1:25α22þ1:5α2 α1þα2ð Þþ1:25 α1þα2ð Þ2
� 	

þ2α1þ2α2

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L αð Þ ¼ � 1
2

5α21 þ 8α1α2 þ 4α22
� �þ 2α1 þ 2α2

By setting partial derivatives to 0, we obtain �5α1 � 4α2 + 2 ¼ 0 and
�4α1 � 4α2 + 2 ¼ 0 (notice that, because the objective function is quadratic,
these equations are guaranteed to be linear). We therefore obtain the solution α1¼
0 and α2 ¼ α3 ¼ 0.5. Recall that bβ=Pn

i¼1αiyixi =XTZ, where
ZT = (α � y)T = [�1,�1, 1][0, 0.5, 0.5] = [0,�0.5,0.5], and

�
represents the cell-

by-cell product between matrices or vectors.
Therefore,

bβ=XTZ=
0:5 �0:5 �0:5

1 1 �1

 � 0

�0:5

0:5

264
375= 0

�1

 �

Next, we will calculate the intercept, β0 ¼ 1
NS

P
i2S

yi �
P
j2S

α jy j xi:x j

� � !
, but first

we calculate

9.3 Maximum Margin Classifier 351

y� 2X�X�TZ� =
�1

1

 �
� �0:5 1

�0:5 �1

 � �0:5 �0:5

1 �1

 � �0:5

0:5

 �
=

�1

1

 �
� 1:25 �0:75

�0:75 1:25

 � �0:5

0:5

 �
=

�1

1

 �
� �1

1

 �
=

0

0

 �
y� is equal to y but without the rows for those Lagrange multipliers (αi) that are

equal to zero. X� is equal to X but without those αi that are equal to zero, and Z� is
equal to Z but without those αi that are equal to zero. NS ¼ 2 since only one αi is
equal to zero, and this was observation 1. Therefore, β0 is

β0 ¼ 1
2

0þ 0ð Þ ¼ 0

Next we calculate the bf xið Þ values

bf x1ð Þbf x2ð Þbf x3ð Þ

264
375= 0:5 1

�0:5 1

�0:5 �1

264
375 0

�1

 �
þ

0

0

0

264
375=

�1

�1

1

264
375

Finally, we proceed to calculate the predicted values using byi ¼ sign df xið Þ½ 	, then

by1by2by3
264

375=

sign bf x1ð Þ
h i

sign bf x2ð Þ
h i

sign bf x3ð Þ
h i

266664
377775=

sign �1ð Þ
sign �1ð Þ
sign 1ð Þ

264
375=

�1

�1

1

264
375:

#####Calculations of the hard margin classifier with library e1071####
rm(list=ls())
library(BMTME)
library(e1071)
library(caret)

#########Input data
X1=data.frame(matrix(c(0.5,-0.5,-0.5,1,1,-1), ncol=2))
y1=c(1,1,-1)
dat=data.frame(y=as.factor(y1),x1=X1[,1],x2=X1[,2])

####### Fitting the SVM model with library e1071 ######################
fm1=svm(y=as.factor(y1), x=X1, kernel="linear", scale =F)
ypred=predict(fm1,X1)
Predicted=ypred

352 9 Support Vector Machines and Support Vector Regression

####Useful information that we can extract###########
head(fm1$fitted) ######predicted values of the training data
head(fm1$index) #######index of support vectors
head(fm1$SV,5) ###design matrix of X of support vectors
head(c(fm1$coefs)) ####Coefs=Support vectors*y_i
fm1$rho ##### Extracting the negative value of b (intercept)
Beta=t(fm1$coefs)%*%fm1$SV ###Option 1 for computation of beta
coefficients (weights)
Beta
#####Option 2 for computing beta coefficients
Beta_Coef=t(fm1$coefs)%*%as.matrix(X1)[fm1$index,]
head(Beta_Coef)
Alphas=c(fm1$coefs)*y1[fm1$index] ### Lagrange multiplier’s
coefficients
Alphas

> ####Output of implementing the svm in library
e1071############################
> head(fm1$fitted) ######predicted values of the training data
1 1 -1
> head(fm1$index)#######index of support vectors
[1] 2 3
> head(c(fm1$coefs)) ####Coefs=Support vectors*y_i
[1] 0.5 -0.5
> fm1$rho #####Extracting the negative value of b (intercept)
[1] 0
> #Find value of Beta coefficients=weights
> Beta=t(fm1$coefs)%*%fm1$SV ## Option 1 for computation of beta
coefficients (weights)
> Beta

X1 X2
[1,] 0 1
> #####Option 2 of beta coefficients calculation
> Beta_Coef=t(fm1$coefs)%*%as.matrix(X1)[fm1$index,]
> head(Beta_Coef)

X1 X2
[1,] 0 1
> ####### Lagrange multiplier alpha coefficients ############
> Alphas=c(fm1$coefs)*y1[fm1$index]
> Alphas
[1] 0.5 0.5

From the output of the svm() function in the e1071 library, we can see that
fm1$fitted produced exactly the same predictions as those we obtained with hand
computation. Also, the hand computation and the index of the output of the svm()
function, as fm1$index, agree that the indices of the support vector are observations
2 and 3 since observation 1 is equal to zero. The coefficients that result from the
product of the Lagrange multipliers with the response variable, αjyj, also agree. Also,
we obtained the same intercept using hand calculation as that extracted from the
fitted model with the svm() function of the e1071 library. We found agreement
between the at hand computation and the results of the e1071 library for the
Lagrange multipliers.

9.3 Maximum Margin Classifier 353

9.4 Derivation of the Support Vector Classifier

The method just studied does a good job when the data are linearly separable, but
what can we do when the data are not linearly separable? The solution is to create a
soft margin classifier that allows some points to fall on the incorrect side of the
margin by using slack variables (ζi). Adding slack variables to the optimization
problem allows some points to be on the wrong side of the margin and, conse-
quently, to be misclassified (James et al. 2013). In Fig. 9.6 there are two points that
fall on the wrong side of the boundary line with the corresponding slack term
denoted as ζi (James et al. 2013).

The ζi called slack variables are used in optimization problems to define relaxed
versions of some constraints. The slack variable, ζi, measures the distance by which
vector xi violates the established inequality, yi β0 þ xTi β

� � � 1 . For a hyperplane
yi β0 þ xTi β
� � ¼ 0, an xi vector with ζi > 0 can be viewed as an outlier. Each xi must

be positioned on the correct side of the appropriate marginal hyperplane so as not to
be considered an outlier. This implies that those vectors that fall between 0 <

yi β0 þ xTi β
� �

< 1 are correctly classified by the hyperplane yi β0 þ xTi β
� � ¼ 0 and

are no longer considered outliers. By omitting the outlier observations, the training
data can be classified correctly by hyperplane yi β0 þ xTi β

� � ¼ 0 with margin
M ¼ kβk�1, which is called the soft margin, as opposed to the separable case that
we call the hard margin classifier. For this reason, the soft margin classifier is more
robust to individual observations and does a better job classifying the training and
testing observations. However, this method does not guarantee that every observa-
tion is on the correct side of the margin and hyperplane since it allows some
observations to be on the incorrect side of the margin or hyperplane. It is from this
property that this method takes its name since the margin is soft in the sense that it
can be violated by some of the training observations. As mentioned above, an
observation can be not only on the wrong side of the hyperplane but also on the
incorrect side of the margin.

Then the question of interest is: how to select the hyperplane in the
non-separable case? One option is to choose the hyperplane with minimum empirical
error. However, this option does not guarantee that a large margin can be found, and
for choosing the right hyperplane, we need to find: (a) a balance between the limit of
the total amount of slack due to outliers, measured as

Pn
i¼1ζi and (b) a hyperplane

with a large margin, but if the margin is larger, more outliers are possible, which
implies a larger amount of slack. The optimization problem now consists of finding a
hyperplane that is able to classify most of the training observations in the two
classes; this can be accomplished by obtaining the solution to the following optimi-
zation problem:

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
β0, β1, β2, ..., βp, ζ1, ..., ζn

M ð9:34Þ

354 9 Support Vector Machines and Support Vector Regression

subject to
Xp
j¼1

β2j ¼ 1, ð9:35Þ

yi β0 þ
Xp
j¼1

β j1xij

 !
� M 1� ζið Þ, ð9:36Þ

ζi � 0,
Xn
i¼1

ζi
 T , ð9:37Þ

where β0, β1, β2, . . ., βp are the coefficients of the maximum margin hyperplane. T is
a nonnegative tuning parameter that determines the number and severity of the
violations to the margin (and to the hyperplane) that we will tolerate, and it is seen
as the total amount of errors allowed since it is the bound of the sum of ζi

’s. T is like a
budget for the amount that the margin can be violated by the n observations. For
T close to zero, the soft-margin SVM allows very little error and is similar to the
hard-margin classifier (James et al. 2013). The larger T is, the more error is allowed,
which in turn allows for wider margins. These parameters play a key role in
controlling the bias-variance trade-off of this statistical learning method. In practice,
T is a hyperparameter that needs to be tuned, for example, by using cross-validation.
M is the width of the margin and we seek to make this quantity as large as possible.
In (9.37), ζ1, . . ., ζn are slack (error) variables that allow individual observations to
be on the wrong side of the margin or the hyperplane. The slack variable ζi tells us
where the ith observation is located, relative to the hyperplane and relative to the
margin. If ζi ¼ 0, then the ith observation is on the correct side of the margin. If

Fig. 9.6 Soft margin
support vector machine in
non-separable data training.
Dots with 0
 ζi
 1 or not
labeled are correctly
classified, while those with
ζi > 1 are on the wrong side
of the decision boundary
and incorrectly classified

9.4 Derivation of the Support Vector Classifier 355

ζi > 0, then the ith observation is on the wrong side of the margin, and this means that
the ith observation has broken the margin. If ζi > 1, then it is on the wrong side of the
hyperplane. If T ¼ 0, this implies that no budget is available for violations to the
margin, and it must be that ζ1 ¼ . . . ¼ ζn ¼ 0, in which case the optimization
problem is equal to that of the maximummargin hyperplane. The larger the budget T,
the wider the margin and the larger the number of support vectors, which means that
we are more tolerant of violations to the margin. In contrast, the lower the T, the
narrower the margin and fewer support vectors are selected, which means less
tolerance of violations to the margin. Similar to the maximum margin classifier,
only the support vectors (observations that lie on the margin) and observations that
violate the margin affect the hyperplane and the resulting classifier. However, all
observations that lie strictly on the correct side of the margin do not affect the
support vector classifier.

Since this method is based only on a small fraction of the training observations
(support vectors), it is quite robust to the classification of new observations that are
far away from the hyperplane. Once we solve (9.34)–(9.37), we classify a test
observation x� by simply determining on which side of the hyperplane it lies. That
is, we classify the test observation in the training/testing sets based on the sign of f
(x�)¼ bβ0 þ bβ1x�1 þ bβ2x�2 þ . . .þ bβpx�p; if f(x�) < 0, then the observation is assigned to
the class corresponding to�1, but if f(x�) > 0, then the observation is assigned to the
class corresponding to 1 (James et al. 2013), which is exactly as in the hard margin
classification method described before.

Next, we present the Wolfe primal version (for minimization) of the support
vector classifier, which is equal to

L β, β0, e,α, δð Þ= 1
2

βk k2 2 T
Xn

i¼1
ζi 2

Xn

i¼1
αi yi β0 þ xTi β

� �� 1þ ζi
� �

þ
Xn

i¼1
δiζi, ð9:38Þ

where ζ= (ζ1, . . ., ζn)
T, α = (α1, . . ., αn)

T, δi > 0 for i ¼ 1, . . ., n associated with the
nonnegativity constraints of the slack variables, δ = (δ1, . . ., δn)

T. By setting the
derivatives of L¼ L(β, β0, ζ,α, δ) with regard to β, β0, and ζ equal to zero, we obtain
the following conditions:

∂L
∂β

¼ β2
Xn

i¼1
αiyixi ¼ 0 ⇒ β=

Xn

i¼1
αiyixi ð9:39Þ

∂L
∂β0

¼ �
Xn

i¼1
αiyi = 0⇒

Xn

i¼1
αiyi = 0 ð9:40Þ

∂L
∂Ei

¼ T � αi 2 δi = 0⇒ αi þ δi = T ð9:41Þ

356 9 Support Vector Machines and Support Vector Regression

αi yi β0 þ xTi β
� �� 1þ ζi

� � ¼ 0 for i ¼ 1, . . . , n⇒ αi

¼ 0 and yi β0 þ xTi β
� � ¼ 1� ζi ð9:42Þ

δiζi ¼ 0 for i ¼ 1, . . . , n⇒ δi ¼ 0 and ζi ¼ 0 ð9:43Þ

By placing solutions (9.39)–(9.43) back into L ¼ L(β, β0, ζ,α, δ), we obtain the
Wolfe dual version (maximization problem) of the optimization problem

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L αð Þ=
Xn

i¼1
αi 2

1
2

Xn

i¼1
αiα jyiy j xi:x j

� � ð9:44Þ

subject to : 0
 αi
 T and
Xn

i¼1
αiyi ¼ 0 for i ¼ 1, . . . , n ð9:45Þ

This problem is very similar to the one in the previous section and, again, it is a
convex quadratic programming problem that can be solved using conventional
quadratic programming software since the objective function is concave and infi-
nitely differentiable.

Again, the solution to α in (9.44) can be used to make the predictions as follows:

byi ¼ sign
XNS

i¼1
bα jy j x j:x

� �þ bβ0� 	
,

where NS is the total number of support vectors lying on a marginal hyperplane, that

is, those vectors xi with 0
 αi
 T and bβ0 ¼ 1
NS

P
i2S

yi �
P
j2S
bα jy j xi:x j

� � !
.

The predicted values depend only on the inner products between vectors and not
directly on the vectors themselves; this fact is the key for expanding this method to
define nonlinear decision boundaries.

9.5 Support Vector Machine

When the data are linearly inseparable in a low-dimensional space, it is possible to
separate them in a higher dimensional space. For example, when all data points
within a circle in a two-dimensional space belong to one class, those outside the
circle belong to another class. In this case, it is not possible to use a straight line to
separate the two classes, but by adding two more features, x21, x

2
2, it is possible to do

so, as can be seen in Fig. 9.7.
Figure 9.8 provides another example of a nonlinear problem that can be mapped

to a linear problem by using a nonlinear transformation, φ, of the input data.

9.5 Support Vector Machine 357

To see better how the transformation is implemented to expand the original input
feature, we assume that we are dealing with two-dimensional data (i.e., in ℝ2) and
we will expand the input data using a polynomial kernel (xi. xj + 1)3. The following
illustration shows how this kernel maps the data.

Fig. 9.7 Transforming a nonlinear problem into a linear one

Fig. 9.8 Transforming a complex nonlinear problem into a linear one

358 9 Support Vector Machines and Support Vector Regression

This means that if such a linear decision surface does exist, the data are mapped
into a much higher dimensional space (“feature space”) where the separating deci-
sion surface is found, and the feature space is constructed via a very smart statistical
projection (“kernel trick”) studied in detail in the previous chapter.

This means that the construction of a higher dimensional space is done in general
terms as

x ! φ xð Þ:

That is, training input samples are transformed into a feature space using a
nonlinear function φ(.).

Kernel functions We define a kernel function as being a real-valued function of
two arguments, K(x, xT) Eℝ, for x, xT Eℝ. The function is typically symmetric (i.e.,
K(x, xT)¼ K(xT, x)) and nonnegative (i.e., K(x, xT)� 0), so it can be interpreted as a
measure of similarity, but this is not required.

By making the following substitution, we can build an optimization problem in
the new space:

xTi x j ! φ xið ÞTφ x j

� �
:

This implies that the nonlinear support vector machine (SVM) is trained with the
inner product φ(xj)

Tφ(xj) as long as this inner product is known, which means that it
does not matter if φ(xj) is known. By using a kernel function, the kernel trick directly
specifies the inner product:

φ xið ÞTφ x j

� �! K xi, x j

� �
Thanks to the kernel trick, the computational cost of training the SVM is

independent of the dimensionality of the feature space. Some of the most popular
kernels were described in the previous chapter and are: linear, polynomial, sigmoid,

9.5 Support Vector Machine 359

Gaussian (radial), exponential, and arc-cosine (AK) with different numbers of
hidden layers.

As pointed out above, the SVM kernel only needs the information of the kernel
value K(xi, xj), assuming that this has been defined as was exemplified in the
previous chapter. For this reason, nonvectorial patterns x such as sequences, trees,
and graphs can be handled. It is important to point out that the kernel trick can be
applied in unsupervised methods like cluster analysis and dimensionality reduction
methods like principal component analysis, independent component analysis, etc.

The SVM is an extension of the support vector classifier when enlarging the
feature space using kernels (James et al. 2013). This is possible thanks to the fact that
the solution of the dual optimization problem for the support vector classifier does
not directly depend on the input vectors but only on the inner products. Since
positive definite symmetric (PDS) kernels implicitly define an inner product, we
can extend the support vector classifier and combine it with an arbitrary PDS kernel
K, by replacing each instance of an inner product xi. xj, with K(xi, xj). This leads to a
general form of the support vector classifier that is called SVM, which is the solution
to the following optimization problem:

maximize|fflfflfflfflfflffl{zfflfflfflfflfflffl}
α

L αð Þ=
Xn

i¼1
αi 2

1
2

Xn

i¼1
αiα jyiy jK xi, xj

� � ð9:46Þ

subject to : 0
 αi
 T and
Xn

i¼1
αiyi ¼ 0 for i ¼ 1, . . . , n ð9:47Þ

Again, we classify the test observation in the training/testing sets based on the
sign of f xð Þ ¼PNS

i¼1bαiyiK xi,xð Þ þ bβ0 ¼ bα�yð ÞTK xi,xð Þ þ bβ0 ; if f(x) < 0, then the
observation is assigned to the class corresponding to �1, but if f(x) > 0, then the
observation is assigned to the class corresponding to 1 (James et al. 2013). Also,bβ0¼ 1

NS

P
i2S

yi�
P
j2S
bα jy jK xi,x j

� � !
, where NS is the total number of support vectors

lying on a marginal hyperplane and
P
j2S
bα jy jK xi,x j

� �¼ bα�yð ÞTKei, where ei is the ith
unit vector, therefore φ(xi)¼ Kei, that is φ(xi) is the ith column of K, for i ¼ 1, 2, ...,
n. We chose f(x) as a nonlinear function of x and the possible kernels are those
explained above: linear, polynomial, Gaussian, or sigmoid. With the exception of the
linear kernel, all these kernels are nonlinear functions of x, but with fewer parameters
than quadratic, cubic, or a higher order expansion of x.

The SVM can be implemented with the R package e1071 in the R statistical
software (R Core Team 2018) with linear, polynomial, Gaussian, and sigmoid
kernels. This software also allows implementing the SVM method with ordinal
data under the following two approaches:

360 9 Support Vector Machines and Support Vector Regression

9.5.1 One-Versus-One Classification

When we have categorical (multi-class) data with more than two classes under the
one-versus-one classification approach, we construct K(K� 1)/2 binary SVMs, each
of which compares a pair of classes. Each SVM compares the kth class, coded as +1,
to the k’th class, coded as �1. At prediction time, a voting scheme is applied: all K
(K � 1)/2 binary SVMs are applied to an unseen sample and the class that gets the
highest number of “+1” predictions gets predicted by the combined classifier (James
et al. 2013).

9.5.2 One-Versus-All Classification

The one-versus-all approach is an alternative when there are more than two catego-
ries (K > 2) and consists of fitting K SVMs, each time comparing one of the K classes
to the remaining K� 1 classes, that is, in learning the kth classifier we treat all points
not in class k as a single not-k class by lumping them all together. To learn each of
the two class classifiers, we temporarily assign labels to n training points: observa-
tions in class k and not-k are assigned temporary labels +1 and �1, respectively.
Having done this for all K classes, we then predict the value of yi for input x by
taking

byi ¼ argmax f xð Þk
� �

for k ¼ 1, 2, . . . ,K,

where f(x)k¼
PNS

j¼1bαjky jKk xj, x
� �þ bβ0k. That is, for an x input, we classified the ith

observation in the class for which f(x)k k ¼ 1, 2, . . ., K is largest even if this
evaluation is negative, since this indicates that we have the highest level of confi-
dence that the test observation belongs to the kth class rather than to any of the other
classes. In general, SVMs are very competitive when you have a large number of
features (independent variables), for example, in genomic selection and in text
classification. SVMs with nonlinear kernels perform quite well in most cases and
are usually head to head with random forests, that is, sometimes random forests work
slightly better and sometimes SVMs win. It is effective when the number of
independent variables is greater than the number of observations. However, there
are no free lunches and SVMs have their difficulties. They can be computationally
expensive at times. SVMs do not perform well with noisy data sets. That being said,
one should be careful about when to choose and when not to choose SVM as the
classifier to solve the problem at hand.

Example 9.1 for binary data For this example, we used the EYT Toy data set
composed of 40 lines, four environments (Bed5IR, EHT, Flat5IR, and LHT), and
four response variables: DTHD, DTMT, GY, and Height. G_Toy_EYT is the
genomic relationship matrix of dimension 40 � 40. The first two variables are

9.5 Support Vector Machine 361

ordinal with three categories, the third is continuous (GY ¼ Grain yield) and the last
one (Height) is binary. In this example, we work with only the binary response
variable (Height).

First we load the data using load("Data_Toy_EYT.RData") using the
following code:

rm(list=ls())
library(BMTME)
library(e1071)
library(caret)

load("Data_Toy_EYT.RData")
ls()

Gg=data.matrix(G_Toy_EYT)
G=Gg

This part of the code gives as output

> load("Data_Toy_EYT.RData")
> ls()
[1] "G_Toy_EYT" "Pheno_Toy_EYT"

Here we can see two files: the first is the GRM and the second is the phenotypic
information. Then, using data.matrix(G_Toy_EYT), we accommodate the GRM in
the Gg object as a matrix.

> Gg=data.matrix(G_Toy_EYT)

With the next R code, we give a name to the phenotypic information; this is
ordered as

Data.Final=Pheno_Toy_EYT
Data.Final=Data.Final[order(Data.Final$Env,Data.Final$GID),]
head(Data.Final)

The first six observations of this phenotypic information are

> head(Data.Final)
GID Env DTHD DTMT GY Height

1 GID6569128 Bed5IR 1 1 6.119272 0
2 GID6688880 Bed5IR 2 2 5.855879 0
3 GID6688916 Bed5IR 2 2 6.434748 0
4 GID6688933 Bed5IR 2 2 6.350670 0
5 GID6688934 Bed5IR 1 2 6.523289 0
6 GID6688949 Bed5IR 1 2 5.984599 0

362 9 Support Vector Machines and Support Vector Regression

With the following code, we create the design matrices

########Creating the design matrix of lines ##################
Z1G=model.matrix(~0+as.factor(Data.Final$GID))
L=t(chol(Gg))
Z1G=Z1G%*%L
ZT=model.matrix(~0+as.factor(Data.Final$Env))
Z2TG=model.matrix(~0+Z1G:as.factor(Data.Final$Env))

Then with the next part of the code, we prepare the information to create the folds
for implementing a five-fold CV strategy.

##########Preparation for building the five-fold CV######
Data.Final_1=Data.Final[,c(1:3)]
colnames(Data.Final_1)=c("Line","Env","Response")
Env=unique(Data.Final_1$Env)
nI=length(unique(Data.Final$Env))
nCV=5

Using the latter information, we created the five-folds using the CV.KFold
function of the BMTME package

#############Training-testing partitions#####################
CrossV<-CV.KFold(Data.Final_1, K =nCV, set_seed=123)

Then with the next code, we selected Height as the response variable, and we also
got the number of rows in the data set

##########Selecting the Height, binary output######
y1=Data.Final$Height+1
y2=y1
n=dim(Data.Final)[1]

Next, we built the input data to implement the SVM method. To do this, we
applied the following code, using only the information of environments and geno-
typic information of lines; PCCC_Part ¼ c() is for saving the output of each
testing fold.

##########Concatenating the information for input information####
X1=as.data.frame(cbind(ZT,Z1G))
dim(X1)
PCCC_Part=c()

The next code implements the five-fold:

for(r in 1:nCV) {
a) input, output, and testing set###################
X2=X1

9.5 Support Vector Machine 363

y1=as.factor(y2)
positionTST=c(CrossV$CrossValidation_list[[r]])

b) Training and testing sets#######################
X_tr=droplevels(X2[-positionTST,])
X_ts=droplevels(X2[positionTST,])
y_tr=y1[-positionTST] ###Training
y_ts=y1[positionTST] ###Testing

####### c) Deleting columns with no variance##############
var_x=apply(X_tr,2,var)
length(var_x)
pos_var0=which(var_x>0)
length(pos_var0)
X_tr_New=X_tr[,pos_var0]
X_ts_New=X_ts[,pos_var0]

####### d) Fitting the model with SVM######################
fm1=svm(y=y_tr,x=X_tr_New)
ypred=predict(fm1,X_ts_New)
Predicted=ypred
Observed=y_ts
xtab <- table(Observed, Predicted)
Conf_Matrix=confusionMatrix(xtab)

####### e) Calculating the accuracy in terms of PCCC#########
PCCC=Conf_Matrix$overall[1]
PCCC_Part=c(PCCC_Part,PCCC)
}
PCCC_Part
mean(PCCC_Part)

In part a) of this code, we updated in each fold the input information (X matrix),
the output information (y1), and the testing set of each fold. It is important to point
out that the output variable (y1), when this is binary or ordinal, it is required to define
it as a factor for SVM methods. The outputs and inputs of each fold are obtained in
part b) of the code. In part c) of the code, those columns of the input information with
zero variance are deleted, since if they are not deleted, the SVM fails to converge. In
part d) of the code, the SVM is fitted, where we only provide the training set of the
input and output information. By default, the SVM implements the radial basis
function, or Gaussian kernel, and also by default, the input is scaled internally
with the SVM function. Further, in part d) of the code, the corresponding predictions
for the testing set of each fold are obtained. In part e) of the code, the metric PCCC is
calculated with the help of the caret package for each fold and saved in PCCC_Part.

Finally, the output in terms of PCCC for each fold is obtained with PCCC_Part,
and the average of the five-fold in terms of PCCC is obtained with mean
(PCCC_Part). The output of the implementation is given below.

364 9 Support Vector Machines and Support Vector Regression

> PCCC_Part
Accuracy Accuracy Accuracy Accuracy Accuracy
0.68750 0.78125 0.84375 0.71875 0.68750
> mean(PCCC_Part)
[1] 0.74375

We can see that the highest prediction was obtained in fold 3 with
PCCC ¼ 0.84375, while the lowest was observed in folds 1 and 5 with
PCCC ¼ 0.68750. Finally, the average of the five-fold was equal to
PCCC ¼ 0.74375, which means that 74.375% of the cases were correctly classified
in the testing sets. It is important to point out that this result was obtained without
taking into account the genotype � environment interaction. The same code can be
used taking into account the G � E by only replacing

X1 ¼ as:data:frame cbind ZT, Z1Gð Þð Þ

with G � E, using

X1 ¼ as:data:frame cbind ZT, Z1G, Z2TGð Þð Þ

WithG� E, the average PCCC¼ 0.5375, which is 20.625% lower than when the
G � E term is ignored. It is important to point out that to fit a model with the svm()
function without the G � E term, we can implement not only the Gaussian kernel
(radial) but also the linear, polynomial, and sigmoid kernels, by only specifying in
svm(y ¼ y_tr,x ¼ X_tr_New, kernel ¼ “linear”), the required kernel as linear,
polynomial, or sigmoid. The outputs using the four available kernels are given next:

> results
Type PCCC

1 radial 0.74375
2 linear 0.74375
3 polynomial 0.71250
4 sigmoid 0.74375

Here we can see that the PCCC for radial, linear, and sigmoid was 0.74375, and
the lowest PCCC was with the polynomial kernel with a value of 0.71250, while
with the G � E interaction term the PCCC were

> results
Type PCCC

1 radial 0.53750
2 linear 0.55625
3 polynomial 0.51250
4 sigmoid 0.56875

9.5 Support Vector Machine 365

Next, we provide the R code for tuning the hyperparameters under the SVM
method without taking into account the G � E interaction term. This code should be
used after part ###c) by deleting columns with no variance ###, of the code given
above inside the loop, with five-folds, but using only the information of fold ¼ 2.
The tuning function requires the method (in this case, an SVM method) to be tuned,
and then the training and testing sets. Then we need to specify the type of kernel,
which in this case was a linear kernel, and in ranges of the tune function are specified
the grid of values to the cost. It is important that, for the linear kernel, only the cost
parameter needs to be tuned, but for the radial kernel, the gamma parameter should
also be tuned.

############Tuning process#####################
obj <- tune(svm, train.y=y_tr,train.x=X_tr_New,kernel="linear",
ranges = list(cost =seq(0.001,0.5,0.005)))
summary(obj)
plot(obj)

Par_cost=as.numeric(obj$best.parameters[1])
Par_cost
bestmod=obj$best.model
bestmod

#########Predictions for the testing set######################
ypred=predict(bestmod,X_ts_New)
Predicted=ypred
Observed=y_ts
xtab <- table(Observed, Predicted)
Conf_Matrix=confusionMatrix(xtab)

PCCC=Conf_Matrix$overall[1]
PCCC

Part of the output of this code is given below.

> summary(obj)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:
cost
0.061

- best performance: 0.2423077

- Detailed performance results:
cost error dispersion

366 9 Support Vector Machines and Support Vector Regression

1 0.001 0.5698718 0.1057401
2 0.031 0.2653846 0.1101288
3 0.061 0.2423077 0.1124914
4 0.091 0.2576923 0.1033534
5 0.121 0.2980769 0.1116542
6 0.151 0.3057692 0.1029218
7 0.181 0.2903846 0.1245948
8 0.211 0.3057692 0.1259071
9 0.241 0.3057692 0.1259071
10 0.271 0.3134615 0.1333871
11 0.301 0.3134615 0.1333871
12 0.331 0.3134615 0.1333871
13 0.361 0.3134615 0.1333871
14 0.391 0.3134615 0.1333871
15 0.421 0.3134615 0.1333871
16 0.451 0.3134615 0.1333871
17 0.481 0.3217949 0.1373119

Here we can see that the lower error is obtained when the cost ¼ 0.061. It is
important to point out that these errors are calculated using a ten-fold cross-valida-
tion set with the training set of outer fold 2. The plot(obj) resulting from the tuning
process is given below.

In Fig. 9.9, again we can see that the minimum average validation error corre-
sponds to a cost value of 0.061, which was extracted with the R code as.numeric
(obj$best.parameters[1]). Then we used bestmod ¼ obj$best.model to extract the
best model that corresponds to the model with the lower error in the validation set
with a cost value of 0.061. Finally, the predictions for the outer testing set were
obtained with ypred ¼ predict(bestmod,X_ts_New), where the predictions are
performed using the best model of the grid, which in this case has a cost value of
0.061. The resulting prediction in terms of PCCC was 0.71875.

It is important to point out that in the case of nonlinear hyperplanes, a gamma
parameter also needs to be tuned. It is expected that the higher the gamma value, the

Fig. 9.9 Average validation error of ten-fold cross-validation for the grid of cost values

9.5 Support Vector Machine 367

better the fit to the training data set; for this reason, many times increasing the
gamma parameter leads to overfitting. Now we implemented the SVM by tuning the
gamma values and the cost of nonlinear kernels and only the cost for the linear
hyperplane (the code we used is in Appendix 1), also ignoring the G � E interaction
term. The results obtained for each type of kernel are given below.

> results
Type MSE

1 linear 0.74375
2 radial 0.74375
3 polynomial 0.74375
4 sigmoid 0.71875

We can see that tuning the parameters did not improve the prediction performance
more than when using the default values for these hyperparameters. This means that
many times the default values do a good job and that choosing the right values for the
tuning process is challenging.

Example 9.2 for ordinal data Once again, we used the EYT Toy data set com-
posed of 40 lines, four environments (Bed5IR, EHT, Flat5IR, and LHT), and four
response variables: DTHD, DTMT, GY, and Height. But now we worked with the
ordinary response variable (DTHD) that has three response options.

Since the data set was the same, the code used for its implementation was the
same, but now we worked with the DTHD categorical variable. This means that the
key modification was that now we used the DTHD as the response variable, which
was chosen using the following code:

##########Selecting the DTHD, ordinal output######
y1=Data.Final$DTHD
y2=y1
n=dim(Data.Final)[1]

Also, by using five-folds without tuning and ignoring the G � E interaction term
for the four types of kernels, we got the following results:

> results
Type PCCC

1 radial 0.76875
2 linear 0.65625
3 polynomial 0.76250
4 sigmoid 0.73125

Here the best predictions were obtained under the Gaussian or radial kernel with
PCCC ¼ 0.76875 and the worst under the linear kernel with PCCC ¼ 0.65625. The
complete code for reproducing these results is given in Appendix 2. Next, we

368 9 Support Vector Machines and Support Vector Regression

provide the performance also with five-fold cross-validation but tuning the gamma
parameters and cost for nonlinear kernels, and only the cost for those with linear
kernels.

> results
Type PCCC

1 linear 0.65625
2 radial 0.76875
3 polynomial 0.76250
4 sigmoid 0.74375

Once again, the best predictions were observed under the Gaussian kernel and the
worst under the linear kernel; however, there was no improvement when using the
default values for gamma and cost. In this example, we saw that implementation of
the SVM method for binary or ordinal data with the e1071 library is the same, but
taking care that the response variable is defined as a factor. However, this library
works for binary data by default, since the machinery for SVM (derivations
explained above) was designed for binary data. In the case of ordinal data (multi-
class classification), by default, library e1071 implements the “one-vs-one”
approach explained above, where k(k � 1)/2 binary classifiers are trained and the
appropriate class is found by a voting scheme.

9.6 Support Vector Regression

The support vector regression (SVR) is inspired by the support vector machine
algorithm for binary response variables. The main idea of the algorithm consists of
only using residuals smaller in absolute value than some constant (called ε-sensitiv-
ity), that is, fitting a tube of ε width to the data, as illustrated in Fig. 9.10.

Two sets of points are defined as in binary classification: those falling inside the
tube, which are ε-close to the predicted function and thus not penalized, and those
falling outside, which are penalized based on their distance from the predicted
function, in a way that is similar to the penalization used by SVMs in classification.
Due to the fact that the idea behind support vector regression (SVR) is very similar to
SVM, which consists of finding a well-fitting hyperplane in a kernel-induced feature
space that will have good generalization performance using the original features. For
this reason, detailed SVR theory is not covered in this book, but interested readers
can find this information in the following references: Burges (1998); Awad and
Khanna (2015). Also, there is no agreement that the performance of SVR is better
compared to any type of regression machines for predicting continuous outcomes.
For this reason, next we will illustrate the implementation of SVR in the e1071
library.

9.6 Support Vector Regression 369

Example 9.3 for continuous data Once again, we used the EYT Toy data set
composed of 40 lines, four environments (Bed5IR, EHT, Flat5IR, and LHT), and
four response variables, DTHD, DTMT, GY, and Height, but now we work with the
GY variable, which is continuous.

Since the data set is the same, all the codes used for its implementation are the
same, but now we work with the continuous GY variable. This continuous response
variable was chosen using the following code:

##########Selecting the GY, continuous response variable######
y1=Data.Final$GY
y2=y1
n=dim(Data.Final)[1]

It is important to point out that the code for implementing SVR is exactly the
same as that used to implement SVM, but with the difference that here it is not
necessary to put the response variable (outcome) as a factor, since now the response
variable is continuous. The code used now without G � E interaction is given in
Appendix 3, but the only difference between this code and the code given in
Appendix 2 is the following:

X2=X1
actual_CV=r
y1=y2
positionTST=c(CrossV$CrossValidation_list[[r]])

By using five-folds without tuning and ignoring theG� E interaction term for the
five types of kernels, we got the following results:

Fig. 9.10 E-insensitive
regression band. The solid
blue line represents the
estimated regression curve f
(x)

370 9 Support Vector Machines and Support Vector Regression

> results
Type MSE

1 linear 0.3403227
2 radial 1.0868555
3 polynomial 2.8076426
4 sigmoid 0.4211818

Here we see that the best predictions were obtained with the linear kernel, the
second best with the sigmoid kernel, and the worst with the polynomial kernel.
When theG� E interaction term is taken into account, the prediction performance in
terms of MSE is equal to

> results
Type MSE

1 linear 1.366566e+01
2 radial 2.052131e+00
3 polynomial 6.675209e+06
4 sigmoid 2.296421e+00

In general, taking into account the G � E interaction term produced a worse
prediction performance. But now the best predictions were under the radial kernel
and the worst under the polynomial kernel. These results were also obtained using
Appendix 3, but with X1 ¼ as.data.frame(cbind(ZT,Z1G,Z2TG)).

Finally, this chapter provides the fundamentals of support vector machines which
were studied in considerable detail and in such a way that the user understands the
basis of this powerful method. We provided many examples applied for genomic
predictions that illustrated how to fit SVM methods for binary, ordinal, and contin-
uous outcomes with and without genotype � environment interaction. We also
provided the components needed to build some kernels manually, which is the key
for capturing nonlinearities of the input data.

Appendix 1

Tuning process for different types of kernels ignoring the G � E interaction term
with a binary response variable denoted as Height.

rm(list=ls())
library(BMTME)
library(plyr)
library(tidyr)
library(dplyr)
library(e1071)
library(caret)
#################Loading the data###############################
load("Data_Toy_EYT.RData")
ls()

Appendix 1 371

Gg=data.matrix(G_Toy_EYT)
Data.Final=Pheno_Toy_EYT

##########Ordering the data####################################
Data.Final=Data.Final[order(Data.Final$Env,Data.Final$GID),]

########Creating the design matrix of lines ##################
Z1G=model.matrix(~0+as.factor(Data.Final$GID))
L=t(chol(Gg))
Z1G=Z1G%*%L
ZT=model.matrix(~0+as.factor(Data.Final$Env))
Z2TG=model.matrix(~0+Z1G:as.factor(Data.Final$Env))

############Preparation for training-testing sets############
Data.Final_1=Data.Final[,c(1:3)]
colnames(Data.Final_1)=c("Line","Env","Response")
Env=unique(Data.Final_1$Env)
nI=length(unique(Data.Final$Env))

#############Training-testing partitions#####################
nCV=5
CrossV<-CV.KFold(Data.Final_1, K =nCV, set_seed=123)

Y=Data.Final[,3:ncol(Data.Final)]
y1=Y$Height+1
y2=y1
n=dim(Y)[1]

##########Concatenating the information for input information####
X1=as.data.frame(cbind(ZT,Z1G))
dim(X1)

Pred_all_traits<-data.frame()

results<-data.frame() #save cross-validation results
Type=list("linear","radial","polynomial","sigmoid")
for (i in 1:4){
PCCC_Part=c()
for(r in 1:nCV) {
a) input, output, and testing set###################

X2=X1
actual_CV=r
y1=as.factor(y2)
positionTST=c(CrossV$CrossValidation_list[[r]])

b) Training and testing sets#######################
X_tr=droplevels(X2[-positionTST,])
X_ts=droplevels(X2[positionTST,])
y_tr=y1[-positionTST] ###Training
y_ts=y1[positionTST]

372 9 Support Vector Machines and Support Vector Regression

####### c) Deleting columns with no variance##############
var_x=apply(X_tr,2,var)
length(var_x)
pos_var0=which(var_x>0)
length(pos_var0)
X_tr_New=X_tr[,pos_var0]
X_ts_New=X_ts[,pos_var0]

####### d) Grid and tuning process#############################
Nobs=nrow(X_tr_New)
Ncols=ncol(X_tr_New)
Ncols_2=Ncols-10

gamma_values=seq(1/(Ncols-3),1/(Ncols-20),1/(10*Ncols))

obj<-tune(svm,train.y=y_tr,train.x=X_tr_New, kernel=Type[[i]],
ranges=list(gamma=gamma_values, cost =seq(1.3, 2, 0.05)),tunecontrol
= tune.control(sampling = "fix"))

Par_gamma=as.numeric(obj$best.parameters[1])

Par_cost=as.numeric(obj$best.parameters[2])

Best.model=obj$best.model

#########e) predictions with the best model######################
ypred=predict(Best.model,X_ts_New)
Predicted=ypred
Observed=y_ts
xtab <- table(Observed, Predicted)
Conf_Matrix=confusionMatrix(xtab)

#######Calculating the accuracy in terms of PCCC#########
PCCC=Conf_Matrix$overall[1]
PCCC_Part=c(PCCC_Part,PCCC)
}
PCCC_Part

results=rbind(results,data.frame(Type=Type[[i]], PCCC=mean
(PCCC_Part)))
}
results

Appendix 2

Training SVM models for different types of kernels ignoring the G � E interaction
term, without tuning, with the ordinal response variable DTHD with three classes.

Appendix 2 373

rm(list=ls())
library(BMTME)
library(plyr)
library(tidyr)
library(dplyr)
library(e1071)
library(caret)

########Loading the data#######################################
load("Data_Toy_EYT.RData")
ls()
Gg=data.matrix(G_Toy_EYT)
Data.Final=Pheno_Toy_EYT

########Ordering the data#####################################
Data.Final=Data.Final[order(Data.Final$Env,Data.Final$GID),]

########Creating the design matrix of Lines ##################
Z1G=model.matrix(~0+as.factor(Data.Final$GID))
L=t(chol(Gg))
Z1G=Z1G%*%L
ZT=model.matrix(~0+as.factor(Data.Final$Env))
Z2TG=model.matrix(~0+Z1G:as.factor(Data.Final$Env))

######Preparation for building training-testing sets###########
Data.Final_1=Data.Final[,c(1:3)]
colnames(Data.Final_1)=c("Line","Env","Response")
Env=unique(Data.Final_1$Env)
nI=length(unique(Data.Final$Env))

#############Training-testing partitions#####################
nCV=5
CrossV<-CV.KFold(Data.Final_1, K =nCV, set_seed=123)

##########Selecting the DTHD, ordinal output######
Y=Data.Final[,3:ncol(Data.Final)]
y1=Y$DTHD
y1
y2=y1
n=dim(Y)[1]

##########Concatenating the information for input information####
X1=as.data.frame(cbind(ZT,Z1G))
dim(X1)

Pred_all_traits<-data.frame()

results<-data.frame() #save cross-validation results
Type=list("radial","linear","polynomial","sigmoid")

374 9 Support Vector Machines and Support Vector Regression

for (i in 1:4){
PCCC_Part=c()

for(r in 1:nCV) {
a) input, output, and testing set###################
X2=X1
actual_CV=r
y1=as.factor(y2)
positionTST=c(CrossV$CrossValidation_list[[r]])

b) Training and testing sets#######################
X_tr=droplevels(X2[-positionTST,])
X_ts=droplevels(X2[positionTST,])
y_tr=y1[-positionTST] ###Training
y_ts=y1[positionTST]

####### c) Deleting columns with no variance##############
var_x=apply(X_tr,2,var)
length(var_x)
pos_var0=which(var_x>0)
length(pos_var0)
X_tr_New=X_tr[,pos_var0]
X_ts_New=X_ts[,pos_var0]

####### d) Fitting the model with SVM######################
fm1=svm(y=y_tr,x=X_tr_New,kernel=Type[[i]])
ypred=predict(fm1,X_ts_New)
Predicted=ypred
Observed=y_ts
xtab <- table(Observed, Predicted)
Conf_Matrix=confusionMatrix(xtab)

####### e) Calculating the accuracy in terms of PCCC#########
PCCC=Conf_Matrix$overall[1]
PCCC_Part=c(PCCC_Part,PCCC)
}
PCCC_Part

results=rbind(results,data.frame(Type=Type[[i]], PCCC=mean
(PCCC_Part)))
}
results

Appendix 3

Training SVR models for different types of kernels ignoring the G � E interaction
term, without tuning, with the continuous response variable GY.

rm(list=ls())
library(BMTME)

Appendix 3 375

library(plyr)
library(tidyr)
library(dplyr)
library(e1071)

load("Data_Toy_EYT.RData")
ls()
Gg=data.matrix(G_Toy_EYT)
G=Gg

Data.Final=Pheno_Toy_EYT
Data.Final=Data.Final[order(Data.Final$Env,Data.Final$GID),]

########Creating the design matrix of lines ##################
Z1G=model.matrix(~0+as.factor(Data.Final$GID))
L=t(chol(Gg))
Z1G=Z1G%*%L
ZT=model.matrix(~0+as.factor(Data.Final$Env))
Z2TG=model.matrix(~0+Z1G:as.factor(Data.Final$Env))
nCV=5

Data.Final_1=Data.Final[,c(1:3)]
colnames(Data.Final_1)=c("Line","Env","Response")
Env=unique(Data.Final_1$Env)
nI=length(unique(Data.Final$Env))

#############Training-testing partitions#####################
CrossV<-CV.KFold(Data.Final_1, K =nCV, set_seed=123)

Y=Data.Final[,3:ncol(Data.Final)]
head(Y)
y1=Y$GY
y2=y1
n=dim(Y)[1]
##########Joining the information for input information####
X1=as.data.frame(cbind(ZT,Z1G))
dim(X1)

Pred_all_traits<-data.frame()

results<-data.frame() #save cross-validation results
Type=list("linear","radial","polynomial","sigmoid")
for (i in 1:4){
MSE_Part=c()
for(r in 1:nCV) {
#r=1
X2=X1
actual_CV=r
y1=y2
#y1=as.factor(y2)
positionTST=c(CrossV$CrossValidation_list[[r]])

376 9 Support Vector Machines and Support Vector Regression

##############Training and testing sets################
X_tr=droplevels(X2[-positionTST,])
X_ts=droplevels(X2[positionTST,])
y_tr=y1[-positionTST] ###Training
y_ts=y1[positionTST]

##########Deleting columns with no variance##############
var_x=apply(X_tr,2,var)
length(var_x)
pos_var0=which(var_x>0)
length(pos_var0)
X_tr_New=X_tr[,pos_var0]
X_ts_New=X_ts[,pos_var0]

#########Fitting the model with SVM######################
fm1=svm(y=y_tr,x=X_tr_New,kernel=Type[[i]])
ypred=predict(fm1,X_ts_New)

Predicted=as.numeric(ypred)
Observed=as.numeric(y_ts)

MSE=mean((Predicted-Observed)^2)
MSE_Part=c(MSE_Part,MSE)
}
MSE_Part
mean(MSE_Part)

results=rbind(results,data.frame(Type=Type[[i]], MSE=mean
(MSE_Part)))
}
results

References

Attewell P, Monaghan DB, Kwong D (2015) Data mining for the social sciences: an introduction.
University of California Press, Oakland

Awad M, Khanna R (2015) Efficient learning machines—theories, concepts, and applications for
engineers and system designers. Apress Open

Bishop CM (2006) Pattern recognition and machine learning. Springer Science + Business Media,
LCC, New York

Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl
Disc 2(2):121–167

Byun H, Lee SW (2002) Applications of support vector machines for pattern recognition: a
survey. In: SVM ‘02 proceedings of the first international workshop on pattern recognition
with support vector machines. Springer, London, pp 213–236

References 377

Cortes C, Vapnik V (1995) Support-vector network. Mach Learn 20:125
James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with

applications in R. Springer, New York
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/
Vapnik V (1995) The nature of statistical learning theory. Springer, New York

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

378 9 Support Vector Machines and Support Vector Regression

http://www.r-project.org/
http://creativecommons.org/licenses/by/4.0/

	Chapter 9: Support Vector Machines and Support Vector Regression
	9.1 Introduction to Support Vector Machine
	9.2 Hyperplane
	9.3 Maximum Margin Classifier
	9.3.1 Derivation of the Maximum Margin Classifier
	9.3.2 Wolfe Dual

	9.4 Derivation of the Support Vector Classifier
	9.5 Support Vector Machine
	9.5.1 One-Versus-One Classification
	9.5.2 One-Versus-All Classification

	9.6 Support Vector Regression
	Appendix 1
	Appendix 2
	Appendix 3
	References

