
Chapter 8
Reproducing Kernel Hilbert Spaces
Regression and Classification Methods

8.1 The Reproducing Kernel Hilbert Spaces (RKHS)

One of the main goals of genetic research is accurate phenotype prediction. This goal
has largely been achieved for Mendelian diseases with a small number of risk
variants (Schrodi et al. 2014). However, many traits (like grain yield) have a
complex genetic architecture that is not well understood (Golan and Rosset 2014).
Phenotype prediction for such traits remains a major challenge. A key challenge in
complex phenotype prediction is accurate modeling of genetic interactions, com-
monly known as epistatic effects (Cordell 2002). In recent years, there has been
mounting evidence that epistatic interactions are widespread throughout biology
(Moore and Williams 2009; Lehner 2011; Hemani et al. 2014; Buil et al. 2015). It is
well accepted that epistatic interactions are biologically plausible, on the one hand
(Zuk et al. 2012), and are difficult to detect, on the other hand (Cordell 2009),
suggesting that they may be highly influential in our limited success in modeling
complex heritable traits.

Reproducing Kernel Hilbert Spaces (RKHS) regression was one of the earliest
statistical machine learning methods suggested for use in plant and animal breeding
(Gianola et al. 2006; Gianola and van Kaam 2008) for the prediction of complex
traits. An RKHS is a Hilbert space of functions in which all the evaluation func-
tionals are bounded linear functionals. The fundamental idea of RKHS methods is to
project the given original input data contained in a finite-dimensional vector space
onto an infinite-dimensional Hilbert space. The kernel method consists of
transforming the data using a kernel function and then applying conventional
statistical machine learning techniques to the transformed data, hoping for better
results. Methods based on implicit transformations (RKHS methods) have become
very popular for analyzing nonlinear patterns in data sets from various fields of
study. Furthermore, the introduction of kernel functions has become an efficient
alternative to obtain measures of similarity between objects that do not have a natural
vector representation. Although the best known application of kernel methods is
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Support Vector Machines (SVM), which is studied in the next chapter, lately it has
been shown that any learning algorithm based on distances between objects can be
formulated in terms of kernel functions, applying the so-called “kernel trick.”
However, RKHS methods are not limited to regression; they are also really powerful
for classification and data compression problems and theoretically sound for dealing
with nonlinear phenomena in general. For these reasons, they have found a wide
range of practical applications ranging from bioinformatics to text categorization,
from image analysis to web retrieval, from 3D reconstruction to handwriting recog-
nition, and from geostatistics to chemoinformatics. The increase in popularity of
kernel-based methods is also due in part to the fact that they provide a rich way to
capture nonlinear patterns in data that cannot be captured with conventional linear
statistical learning methods. In genomic selection, the application of RKHS methods
continues to increase, for example, Long et al. (2010) found better performance of
RKHS methods over linear models in body weight of broiler chickens. Crossa et al.
(2010) compared RKHS versus Bayesian Lasso and found that RKHS was better
than Bayesian Lasso in the wheat data set, but a similar performance of both methods
was observed in the maize data set. Cuevas et al. (2016, 2017, 2018) found superior
performance of RKHSmethods over linear models using Gaussian kernels on data of
maize and wheat. Cuevas et al. (2019) also found that when using pedigree, markers,
and near-infrared spectroscopy (NIR) data (which is an inexpensive and nondestruc-
tive high-throughput phenotyping technology for predicting unobserved line perfor-
mance in plant breeding trials), kernel methods (Gaussian kernel and arc-cosine
kernel) outperformed linear models in terms of prediction performance. However,
other authors found minimal differences between RKHS methods and linear models,
for example, Tusell et al. (2013) in litter size in swine, Long et al. (2010) and Morota
et al. (2013) in progeny tests of dairy sires, and Morota et al. (2014) in phenotypes of
dairy cows. These publications have empirically shown equal or better prediction
ability of RKHS methods over linear models. For this reason, the applications of
kernel methods in GS are expected to continue increasing since they can be
implemented in current software of genomic prediction and because they are
(a) very flexible, (b) easy to interpret, (c) theoretically appealing for accommodating
cryptic forms of gene action (Gianola et al. 2006; Gianola and van Kaam 2008),
(d) these methods can be used with almost any type of information (e.g., covariates,
strings, images, and graphs) (de los Campos et al. 2010), (e) computation is
performed in an n-dimensional space even when the original input information has
more columns ( p) than observations (n) thus avoiding the p � n problem (de los
Campos et al. 2010), (f) they provide a new viewpoint whose full potential is still far
from our understanding, and (g) they are very attractive due to their computational
efficiency, robustness, and stability.

The goal of this chapter is to give the user (student or scientist) a friendly
introduction to regression and classification methods based on kernels. We also
cover the essentials of kernels methods, and with examples, we show the user how to
handcraft an algorithm of a kernel for applications in the context of genomic
selection.
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8.2 Generalized Kernel Model

Like any regression problem, a generalized kernel model assumes that we have pairs
(yi, xi) for i ¼ 1, . . ., n, where yi and xi are the response variable and the vector of
independent variables (pedigree of marker data) measured in individual i, and the
relationship between yi and xi is given by

Distribution : yi � p yijμið Þ
Linear predictor : ηi ¼ f xið Þ ¼ η0 þ kTi β

Link function : ηi ¼ g μið Þ

where g(.) is a known link function, μi ¼ h(ηi), h(.) denotes the inverse link
function, f xið Þ ¼ η0 þ kTi β, η0 is an intercept term, ki ¼ [K(xi, x1), . . .,K(xi, xn)]

T,
K(., .) is the kernel function, and β = (β1, . . ., βn)

T is an n � 1 vector of coefficients.
This generalized kernel model provides a unifying framework for kernel-based
analyses for dealing with continuous, binary, categorical, and count data, since
with different p(yi| μi) and g(.), we have different models. It is very interesting to
point out that under the kernel framework, the problem is reduced to finding
n regression coefficients instead of p, as in conventional regression models, thus
avoiding the problem of having to solve a regression problem with p � n. Also,
kernel methods are very useful when genotypes and phenotypes are connected in
ways that are not well addressed by the linear additive models that are standard in
quantitative genetics.

8.2.1 Parameter Estimation Under the Frequentist Paradigm

Inferring f requires defining a collection (or space) of functions from which an
element, bf , will be chosen via a criterion. Specifically, in RKHS, estimates are
obtained by solving the following optimization problem:

min|ffl{zffl}
f2H

1
n

Xn
i¼1

L yi, f xið Þð Þ þ λ fk k2H
( )

, ð8:1Þ

which mean that the optimization problem is performed within the space of functions
H, a RKHS, f 2 H and k f kH denotes the norm of f in Hilbert space H; L(yi, f(xi)) is
some measure of goodness of fit, that is, a loss function viewed as the negative
conditional log-likelihood, which should be chosen in agreement with the type of
response variable. For example, for continuous outcomes, this should be constructed
in terms of Gaussian distributions, when the response variable is binary in terms of
Bernoulli distributions, when the response is count in terms of Poisson or negative
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binomial distribution, and when it is categorical in terms of multinomial distribu-
tions; λ is a smoothing or regularization parameter that should be positive and should
control the trade-off between model goodness of fit and complexity; and fk k2H is the
square of the norm of f(xi) on H, a measure of model complexity (de los Campos
et al. 2010). Hilbert spaces are complete linear spaces endowed with a norm that is
the square root of the inner product in the space. The Hilbert spaces that are relevant
for our discussion are RKHS of real-valued functions, here denoted as H. Those
interested in more technical details of RKHS of real functions should read Wahba
(1990). By the representer theorem (Wahba 1990), which tells us that the solutions to
some regularization functionals in high or infinite-dimensional spaces fall in a finite-
dimensional space, the solution for (8.1) admits a linear representation

f xið Þ ¼ η0 þ
Xn
j¼1

β jK xi, x j

� � ¼ η0 þ kTi β, ð8:2Þ

where η0 is an intercept term, K(�, �) is the kernel function, ki ¼ [K(xi ,x1), . . ., K(xi,xn)]
T

as defined before, and βj are beta coefficients. Notice that fk k2H ¼ Pn
l, j¼1

βlβ jK xl, xj
� �

,

and by substituting (8.2) into (8.1), we obtain the minimization problem under a
frequentist framework with respect to η0 and β, as did Gianola et al. (2006) and
Zhang et al. (2011):

min|ffl{zffl}
η0, β

1
n

Xn
i¼1

L yi, η0 þ kTi β
� �þ λ

2
βTKβ

( )
, ð8:3Þ

where K = [k1, . . ., kn] is the n � n kernel matrix with ki as defined above. Since K
needs to be symmetric and positive semi-definite, the term βTKβ is an empirical
RKHS norm with regard to the training data, λ is a smoothing or regularization
parameter that should be positive and should control the trade-off between model
goodness of fit and complexity, and the factor 1

2 is introduced for convenience. The
second term of (8.3) acts as a penalization term that is added to the minus
log-likelihood. The goal is to find η0 and β, which is equivalent to finding f xið Þ ¼
η0 þ kTi β that minimizes (8.3). f(xi) is based on a basis expansion of kernel functions
and this relationship f xð Þ ¼ η0 þ kTi β is due to the representer theorem (Wahba
1990). Therefore, model specification under the generalized RKHS methods
depends on the choice of loss function L(..), the Hilbert space H to build K, and
the smoothing parameter λ. The smoothing parameter λ can be chosen by cross-
validation or generalized cross-validation under the frequentist framework or by
specifying a prior distribution for the β coefficients under the Bayesian framework
(Gianola and van Kaam 2008). It is important to point out that when the response
variable is coded as yi 2 {�1, 1} and the hinge function is used as the loss function,
the problem to solve is the standard support vector machine (Vapnik 1998), which is
studied in the next chapter.
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8.2.2 Kernels

A kernel function converts information on a pair of subjects into a quantitative
measure representing their similarity with the requirement that the function must
create a symmetric positive semi-definite (psd) matrix when applied to any subset of
subjects. The psd requirement ensures a statistical foundation for using the kernel in
penalized regression models. From a statistical perspective, the kernel matrix can be
viewed as a covariance matrix, and we later show how this aids in the construction of
kernels. Kernels are used to nonlinearly transform the input data x1, . . ., xn 2 X into a
high-dimensional feature space. Next, we provide a definition of kernel function.

Kernel function. Kernel function K is a “similarity” function that corresponds to
an inner product in some expanded feature space that for all xi, xj 2 Χ satisfies

K xi, x j

� � ¼ φ xið ÞTφ x j

� �
,

where φ is a mapping (transformation) from X to an (inner product) feature space F,
φ : x → φ(x). From this definition, we can see that the kernel has the following
properties:

1. It is a symmetric function of its argument so that K(xi, xj) ¼ K(xj, xi).
2. A necessary and sufficient condition for a function K(xi, xj) to be a valid kernel

(Shawe-Taylor and Cristianini 2004) is that the Gram matrix, also called kernel
matrix K, whose elements are given by K(xi, xj), should be positive semi-definite
for all possible choices of x1, . . ., xn 2 X.

3. Kernels are all those functions K(u, v) that verify Mercer’s theorem, that is, for
which Z

u, v

K u, vð Þg uð Þg vð Þdudv > 0

for all g() square-integrable functions.

Mercer’s theorem is an equivalent formulation of the finitely positive semi-
definite property for vector spaces. The finitely positive semi-definite property
suggests that kernel matrices form the core data structure for kernel methods
technology. By manipulating kernel matrices, one can tune the corresponding
embedding of the data in the kernel-defined feature space.

Next, we give an example of the utility of a kernel function and how this works.
We assumed that we measured a sample of n plants with two independent variables
(x1, x2) and one binary dependent variable (y), that is, (x11, x21, y1), . . ., (x1n, x2n, yn).
Then we plotted the observed data in Fig. 8.1 (left panel), and since the response
variable is binary, we used triangles for denoting diseased plants and crosses for
non-diseased plants. The goal is to build a classifier for unseen data using the data
given in Fig. 8.1 as the training set. It is not possible to create a linear decision
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boundary to separate both types of plants (diseased vs. non-diseased) since the true
decision boundary is an ellipse in predictor space (Fig. 8.1, left panel). The job of a
kernel consists of estimating this boundary by first transforming (mapping) the input
information (predictors) via a nonlinear mapping function into a feature map, where
the problem can be reduced to estimating a hyperplane (linear boundary) between
the diseased and non-diseased plants. We mapped the input information (Fig. 8.1,
left panel) to the feature space using the following nonlinear map φ xð Þ ¼
z1 ¼ x21, z2 ¼ x22, z3 ¼

ffiffiffi
2

p
x1x2

� �
(Fig. 8.1, right panel) and the ellipse became a

hyperplane that is parallel to the z3 axis, which means that all points are plotted on
the (z1, z2) plane. Therefore, in the feature space, the problem reduces to estimating a
hyperplane from the mapped data points.

For this reason, in generalized kernel models, the choice of the kernel function
(H ) is of paramount importance since it defines the space of functions over which the
search for f is performed, and because Hilbert spaces are normed spaces (Akhiezer
and Glazman 1963). As mentioned above, by choosing H one automatically defines
the reproducing kernel (K) which should be at least a psd matrix (de los Campos
et al. 2010). There are two main properties that are required for the successful
implementation of a kernel function. First, it should capture as precisely as possible
the measure of similarity to the particular task and domain, and second, its construc-
tion should require significantly less computational resources than would be needed
for an explicit evaluation of the corresponding feature mapping, φ.

We will call the original input information (X) the input space. Then, with the
kernel approach, we define a function for each pair of elements (columns) in this
space X that corresponds to a real value. The transformed feature information with
the kernel function is called mapped feature space.

Fig. 8.1 Mapping of the two predictor (x1, x2) problems with binary dependent variables (y;
crosses ¼ 1 and triangles ¼ 0) where the true decision boundary is an ellipse in predictor space
(left panel) to a feature map via nonlinear mapping, φ(x). Input space (left panel) and feature space
(right panel)
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8.2.3 Kernel Trick

By kernel trick we mean the use of kernel functions to operate in a high-dimensional
space, implicit feature space, without ever computing the coordinates of the data in
that space, but rather by simply computing the inner products between the images of
all pairs of data in the feature space. This operation is often computationally cheaper
than the explicit computation of the coordinates. This means that the kernel trick
allows you to perform algebraic operations in the transformed data space efficiently
and without knowing the transformation φ. For this reason, the kernel trick is a
computational trick used to compute inner products in higher dimensional spaces at a
low cost. Thus, in principle, any statistical machine learning technique for data in
X ⊂ ℝn that can be formulated in a computational algorithm in terms of dot
products can be generalized to the transformed data using the kernel trick. Kernel
functions have been introduced for sequence data, graphs, text, images, as well as
vectors.

To better understand the kernel trick, we provide an example. Assume that we
measure two independent variables (x1, x2) in four individuals. In matrix notation,
the information of the independent variables (input information) is equal to

X ¼

x11 x12
x21 x22
x31

x41

x32

x42

26664
37775

Also, assume we will build a polynomial kernel of degree 2, with

φ xið ÞT ¼ z1 ¼ x21, z2 ¼ x22, z3 ¼
ffiffiffi
2

p
x1x2

� �
:

Therefore, for building the Gram matrix (kernel matrix), we need to compute

K ¼

φ x1ð ÞTφ x1ð Þ φ x1ð ÞTφ x2ð Þ φ x1ð ÞTφ x3ð Þ φ x1ð ÞTφ x4ð Þ
φ x2ð ÞTφ x1ð Þ φ x2ð ÞTφ x2ð Þ φ x2ð ÞTφ x3ð Þ φ x2ð ÞTφ x4ð Þ
φ x3ð ÞTφ x1ð Þ
φ x4ð ÞTφ x1ð Þ

φ x3ð ÞTφ x2ð Þ φ x3ð ÞTφ x3ð Þ φ x3ð ÞTφ x4ð Þ
φ x4ð ÞTφ x2ð Þ φ x4ð ÞTφ x3ð Þ φ x4ð ÞTφ x4ð Þ

266664
377775

This means that we need to compute each coordinate (cell of K) with φ(xi)
Tφ(xj),

with i, j ¼ 1, 2, 3, 4. Note that
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φ xið ÞTφ x j

� � ¼ x2i1, x
2
i2,

ffiffiffi
2

p
xi1xi2

� � x2j1

x2j2ffiffiffi
2

p
x j1x j2

264
375 ¼ x2i1x

2
j1 þ 2xi1xi2x j1x j2 þ x2i2x

2
j2

¼ xi1x j1 þ xi2x j2
� �2

:

Therefore,

K¼

x211þ x212
� �2

x11x21þ x12x22ð Þ2 x11x31þ x12x32ð Þ2 x11x41þ x12x42ð Þ2
x21x11þ x22x12ð Þ2 x221þ x222

� �2
x21x31þ x22x32ð Þ2 x21x41þ x22x42ð Þ2

x31x11þ x32x12ð Þ2

x41x11þ x42x12ð Þ2
x31x21þ x32x22ð Þ2 x231þ x232

� �2
x31x41þ x32x42ð Þ2

x41x21þ x42x22ð Þ2 x41x31þ x42x32ð Þ2 x241þ x242
� �2

26666664

37777775
To compute K we calculated each coordinate using φ(xi)

Tφ(xj). However, note
that

φ xið ÞTφ x j

� � ¼ xi1x j1 þ xi2x j2
� �2 ¼ xTi x j þ 0

� �2
,

where xTi ¼ xi1, xi2½ � and x j ¼
x j1

x j2

� 	
.

Hence, the function

K x j, x j

� � ¼ xTi x j þ 0
� �2

corresponds to a polynomial kernel of degree d ¼ 2, and constant a ¼ 0, with F, its
corresponding feature space. This means that we can compute the inner product
between the projections of two points into the feature space without explicitly
evaluating the coordinates. In other words, the kernel trick means that we can
compute each element (coordinate) of the kernel matrix K, without any knowledge
of the true nature of φ(xi); we only need to know the kernel function K(xj, xj). This
means that the kernel function is a key ingredient for implementing kernel methods
in statistical machine learning.

Next, we provide another simple example also using the polynomial kernel of
degree 2, with the same two independent variables (x1, x2) but with a constant value
a ¼ 1, that is, K(xj, xj)¼ xTi x j þ 1

� �2
. According to the kernel trick, this means that

we do not need knowledge of φ(xi) to compute all coordinates of the matrix of kernel
K, since each coordinate will take values of
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K x j, x j

� � ¼ xTi x j þ 1
� �2 ¼ xi1x j1 þ xi2x j2 þ 1

� �2
¼ xi1x j1 þ xi2x j2
� �2 þ 2 xi1x j1 þ xi2x j2

� �þ 1

¼ x2i1x
2
j1 þ 2xi1xi2x j1x j2 þ x2i2x

2
j2 þ 2 xi1x j1 þ xi2x j2

� �þ 1:

Therefore, the K matrix is

¼

x211þx212þ1
� �2

x11x21þx12x22þ1ð Þ2 x11x31þx12x32þ1ð Þ2 x11x41þx12x42þ1ð Þ2
x21x11þx22x12þ1ð Þ2 x221þx222þ1

� �2
x21x31þx22x32þ1ð Þ2 x21x41þx22x42þ1ð Þ2

x31x11þx32x12þ1ð Þ2

x41x11þx42x12þ1ð Þ2
x31x21þx32x22þ1ð Þ2 x231þx232þ1

� �2
x31x41þx32x42þ1ð Þ2

x41x21þx42x22þ1ð Þ2 x41x31þx42x32þ1ð Þ2 x241þx242þ1
� �2

26666664

37777775
This implies that we computed each coordinate of K without first computing

φ(xi). This trick is really useful since for computing each coordinate of K in this
example, we only performed dot products with vectors of size two, in the original
dimension of the input information, and not dot products of vectors of dimension
2þ 2

2

 !
¼ 6 , which is the dimension, in this example, of φ xið ÞT ¼

x2i1,
ffiffiffi
2

p
xi1,

ffiffiffi
2

p
xi1xi2,

ffiffiffi
2

p
xi2, x2i2, 1


 �
. Therefore, this trick facilitates the computation

of K since it requires less computation resources. The utility of the trick is better
appreciated in a large dimensional setting. For example, assume that the input
information of each individual (xi) contains 784 independent variables; this means
that to compute matrixKwe need to compute, for each coordinate, only dot products

of vectors of dimension 784 and not of dimension
784þ 2

2

 !
¼ 308, 505, which

is the dimension of φ(xi)
T for the same polynomial kernel with degree 2. For this

reason, kernel methods are well suited for handling a massive amount of informa-
tion, because the computational burden can be proportional to the number of data
points rather than to the number of predictor variables (e.g., markers in the context of
genomic prediction). This is particularly true if a common weight is assigned to each
marker (Morota et al. 2013).

In simple terms, the kernel trick makes it possible to perform a transformation
from the input data space to a higher dimensional feature space, where the
transformed data can be analyzed with conventional linear models and the problem
becomes tractable. However, the result highly depends on the considered transfor-
mation. If the kernel function is not appropriate for the problem, or the kernel
parameters are badly set, the fitted model can be of poor quality. Due to this, special
care must be taken when selecting both the kernel function and the kernel parameters
to obtain good results.

The kernel trick allows an efficient search in a higher dimensional space, while
the related estimation problems are often cast as convex optimization problems that
can be solved by many established algorithms and packages. Kernel methods can be
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applied to all data analysis algorithms whose inputs can be expressed in terms of dot
products. If the data in the original space cannot be analyzed satisfactorily with
conventional statistical machine learning techniques, the strategy to extend it to
nonlinear models using kernel methods is based on the apparently paradoxical idea
of transforming the data, by means of a nonlinear function, toward a space with a
greater dimension than the space where the data are located and applying any
statistical machine learning algorithm to the transformed data.

Therefore, in general terms, the kernelization of an algorithm consists of its
reformulation, so that the determination of a pattern or linear regularity in the data
can be carried out exclusively from the information collected in the scalar products
calculated for all the pairs of elements in the space. Kernel functions are character-
ized by the property that all finite kernel matrices are positive semi-definite.

8.2.4 Popular Kernel Functions

Next, we provide the most popular kernel methods in statistical machine learning.

Linear Kernel This kernel is defined as K xi, x j

� � ¼ xTi x j. For example,

K x, zð Þ ¼ x1, x2ð Þ z1

z2

� 

¼ x1z1 þ x2z2 ¼ φ xð ÞTφ zð Þ:

Next, we provide an R function for calculating this kernel that can be used for both
single-attribute value vectors and for the whole data set:

K.linear=function(x1, x2=x1) {as.matrix(x1)%*%t(as.matrix(x2)) }

Next, we simulate a matrix data set:

set.seed(3)
X=matrix(round(rnorm(16,2,0.2),2),ncol=8)
X

that gives as output:

> set.seed(3)
> X=matrix(round(rnorm(16,2,0.2),2),ncol=8)
> X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1.81 2.05 2.04 2.02 1.76 1.85 1.86 2.03
[2,] 1.94 1.77 2.01 2.22 2.25 1.77 2.05 1.94

For individual features in pairs of individuals, this function is used as
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> K.linear(X[1,1:4],X[2,1:4])
[,1] [,2] [,3] [,4]

[1,] 3.5114 3.2037 3.6381 4.0182
[2,] 3.9770 3.6285 4.1205 4.5510
[3,] 3.9576 3.6108 4.1004 4.5288
[4,] 3.9188 3.5754 4.0602 4.4844

while for the full set of features, it can be used as

> K.linear(X)
[,1] [,2]

[1,] 29.8212 30.7104
[2,] 30.7104 32.0265

This kernel does not overcome the linearity limitation of linear classification and
linear regression models in any way since it leaves the original representation
unchanged. It is important to point out that linear kernels (such as linear regression,
linear support vector machines, and linear support vector regression algorithms) are
special cases of more sophisticated kernel-based algorithms.

Polynomial Kernel As mentioned above, this kernel is defined as K xi, x j

� � ¼
γxTi x j þ a
� �d

, where a is a real scalar and d is a positive integer, and where γ > 0,
a� 0, and d > 0 are parameters. This kernel family makes it possible to easily control
the enhanced representation size and degree of nonlinearity by adjusting the
d parameter. Positive a can be used to adjust the relative impact of higher order
and lower order terms in the resulting polynomial representation. For example, when
γ ¼ 1, a ¼ 0, and d ¼ 2, we have

K x, zð Þ ¼ x1, x2ð Þ z1

z2

� 
� 
2

¼ x1z1 þ x2z2ð Þ2 ¼

x21z
2
1 þ 2x1z1x2z2 þ x22z

2
2 ¼ x21,

ffiffiffi
2

p
x1x2, x

2
2

h i z21ffiffiffi
2

p
z1z2

z22

264
375 ¼ φ xð ÞTφ zð Þ:

However, when γ ¼ 1, a ¼ 1, and d ¼ 2, we have

K x, zð Þ ¼ x1, x2ð Þ z1

z2

� 

þ 1

� 
2

¼ x1z1 þ x2z2 þ 1ð Þ2 ¼
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1þ 2x1z1 þ 2x2z2 þ x21z
2
1 þ x22z

2
2 þ 2x1z1x2z2

¼ 1,
ffiffiffi
2

p
x1,

ffiffiffi
2

p
x2, x

2
1,

ffiffiffi
2

p
x1x2, x

2
2

h i
1ffiffiffi
2

p
z1ffiffiffi

2
p

z2

z21ffiffiffi
2

p
z1z2
z22

2666666666664

3777777777775
¼ φ xð ÞTφ zð Þ:

This demonstrates that increasing a increases the coefficients of lower order terms.

The dimension of the feature space for the polynomial kernel is equal to
pþ d

d

 !
.

For example, for an input vector of dimension p ¼ 10 and polynomial with degree

d ¼ 3, the dimension for this polynomial kernel is equal to
10þ 3

3

 !
¼286, while

if p ¼ 1000 and d ¼ 3, the dimension for this polynomial kernel is equal to
1000þ 3

3

 !
¼167,668,501. Although convenient to control and easy to under-

stand, the polynomial kernel family may be insufficient to adequately represent more
complex relationships.

The R code for calculating this kernel is given next:

K.polynomial=function(x1, x2=x1, gamma=1, b=0, d=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^d}

Now this function can be used as

> K.polynomial(X[1,1:4],X[2,1:4])
[,1] [,2] [,3] [,4]

[1,] 43.29532 32.88180 48.15306 64.87758
[2,] 62.90234 47.77288 69.95999 94.25850
[3,] 61.98630 47.07716 68.94117 92.88582
[4,] 60.18099 45.70607 66.93331 90.18058

But for the full set of features, it can be used as

> K.polynomial(X)
[,1] [,2]

[1,] 26520.11 28963.86
[2,] 28963.86 32849.48
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Sigmoidal Kernel This kernel is defined as K xi, x j

� � ¼ tan h γxTi x j þ b
� �

, where

tanh is the hyperbolic tangent defined as tan h zð Þ ¼ sin h zð Þ= cos h zð Þ ¼
exp zð Þ� exp �zð Þ
exp zð Þþ exp �zð Þ. This function is widely used as the activation function for artificial

neural networks and deep learning models, and hence has also become popular for
kernel methods. If used with properly adjusted parameters, it can represent complex
nonlinear relationships. In some parameter settings, it actually becomes similar to the
radial kernel (Lin and Lin 2003) described below. However, the sigmoid function
may not be positive definite for some parameters, and therefore may not actually
represent a valid kernel (Lin and Lin 2003).

Next, we provide an R code for calculating this kernel:

K.sigmoid=function(x1,x2=x1, gamma=0.1, b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }

This function is used as

> K.sigmoid(X[1,1:4],X[2,1:4])
[,1] [,2] [,3] [,4]

[1,] 0.3373862 0.3098414 0.3485656 0.3815051
[2,] 0.3779793 0.3477219 0.3902119 0.4260822
[3,] 0.3763152 0.3461650 0.3885066 0.4242635
[4,] 0.3729798 0.3430454 0.3850881 0.4206158

For the full set of features, it is used as

> K.sigmoid(X)
[,1] [,2]

[1,] 0.9948752 0.9957083
[2,] 0.9957083 0.9966999

Gaussian Kernel This kernel, also known as the radial basis function kernel,
depends on the Euclidean distance between the original attribute value vectors
(i.e., the Euclidean norm of their difference) rather than on their dot product,

K xi, x j

� � ¼ e�γ xi�x jk k2

¼ e�γ xTi xi�2xTi xiþxTjx j½ �, where γ is a positive real scalar. It is
known that the feature vector φ that corresponds to the Gaussian kernel is actually
infinitely dimensional (Lin and Lin 2003). Therefore, without the kernel trick, the
solution cannot be computed explicitly. This type of kernel tends to be particularly
popular, but it is sensitive to the choice of the γ parameter and may be prone to
overfitting.
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The R code for calculating this kernel is given next:

l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]) ^2)))}

This function is used as

> K.radial(X[1,1:4],X[2,1:4])
[,1] [,2] [,3] [,4]

[1,] 0.9832420 0.9984013 0.9607894 0.8452693
[2,] 0.9879729 0.9245945 0.9984013 0.9715136
[3,] 0.9900498 0.9296938 0.9991004 0.9681193
[4,] 0.9936204 0.9394131 0.9999000 0.9607894

while for the full set of features, it can be used as

> K.radial(X)
[,1] [,2]

[1,] 1.0000000 0.6525288
[2,] 0.6525288 1.0000000

The parameter γ controls the flexibility of the Gaussian kernel in a similar way as
the degree d in the polynomial kernel. Large values of γ correspond to large values of
d since, for example, they allow classifiers to fit any labels, hence risking overfitting.
In such cases, the kernel matrix becomes close to the identity matrix. On the other
hand, small values of γ gradually reduce the kernel to a constant function, making it
impossible to learn any nontrivial classifier. The feature space has infinite dimen-
sions for every value of γ, but for large values, the weight decays very fast on the
higher order features. In other words, although the rank of the kernel matrix is full,
for all practical purposes, the points lie in a low-dimensional subspace of the feature
space.

Exponential Kernel This kernel is defined as K xi, xj
� � ¼ e�γ xi�xjk k, which is quite

similar to the Gaussian kernel function.

The R code is given below:

K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}
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For individual features in pairs of individuals, it can be used as

> K.exponential(X[1,1:4],X[2,1:4])
[,1] [,2] [,3] [,4]

[1,] 0.8780954 0.9607894 0.8187308 0.6636503
[2,] 0.8958341 0.7557837 0.9607894 0.8436648
[3,] 0.9048374 0.7633795 0.9704455 0.8352702
[4,] 0.9231163 0.7788008 0.9900498 0.8187308

while for full set of features, it can be used as

> K.exponential(X)
[,1] [,2]

[1,] 1.0000000 0.5202864
[2,] 0.5202864 1.0000000

Arc-Cosine Kernel (AK) For AK, an important component is the angle between two
vectors computed from inputs xi, xj as

θi,j ¼ cos �1 xTi xj
xik k xj
�� ��

 !
,

where kxik is the norm of observation i. The following kernel is positive semi-
definite and related to an ANN with a single hidden layer and the ramp activation
function (Cho and Saul 2009).

AK1 xi, xj
� � ¼ 1

π
xik k xj
�� �� J θi,j

� �
, ð8:4Þ

where π is the pi constant and J(θi,j) ¼ [sin(θi,j) + (π � θi,j) cos (θi,j)]. Equation (8.4)
gives a symmetric positive semi-definite matrix (AK1) preserving the norm of the
entries such that AK(xi, xi) ¼ kxik2 and AK(xi,�xi) ¼ 0 and models nonlinear
relationships.

Note that the diagonals of the AK matrix are not homogeneous and express
heterogeneous variances of the genetic value u; this is different from the Gaussian
kernel matrix, with a diagonal that expresses homogeneous variances. This property
could be a theoretical advantage of AK when modeling interrelationships between
individuals.

In order to emulate the performance of an ANN with more than one hidden layer
(l ), Cho and Saul (2009) proposed a recursive relationship of repeating l times the
interior product:
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AK lþ1ð Þ xi, x j

� � ¼ 1
π

AK lð Þ xi, xið ÞAK lð Þ x j, x j

� �h i1
2
J θ lð Þ

i,j

� �
, ð8:5Þ

where θ lð Þ
i,j ¼ cos �1 AK lð Þ xi, x j

� �
AK lð Þ xi, xið ÞAK lð Þ x j, x j

� �
 ��1
2

n o
.

Thus, computing AK(l + 1) at level (layer) l + 1 is done from the previous layer
AK(l ). Computing a bandwidth (the smoothing parameter that controls variance and
bias in the output, e.g., the γ parameter in the Gaussian kernel) is not necessary, and
the only computational effort required is to compute the number of hidden layers.
Cuevas et al. (2019) described a maximum marginal likelihood method used to
select the number of hidden layers (l ) for the AK kernel. It is important to point out
that this kernel method is like a deep neural network since it allows using more than
one hidden layer.

The R code for the AK kernel with one hidden layer is given below:

K.AK1_Final<-function(x1,x2){
n1<-nrow(x1)
n2<-nrow(x2)
x1tx2<-x1%*%t(x2)
norm1<-sqrt(apply(x1,1,function(x) crossprod(x)))
norm2<-sqrt(apply(x2,1,function(x) crossprod(x)))
costheta = diag(1/norm1)%*%x1tx2%*%diag(1/norm2)
costheta[which(abs(costheta)>1,arr.ind = TRUE)] = 1
theta<-acos(costheta)
normx1x2<-norm1%*%t(norm2)
J = (sin(theta)+(pi-theta)*cos(theta))
AK1 = 1/pi*normx1x2*J
AK1<-AK1/median(AK1)
colnames(AK1)<-rownames(x2)
rownames(AK1)<-rownames(x1)
return(AK1)

}

For the full set of features, it can be used as

> K.AK1_Final(x1=X,x2=X)
[,1] [,2]

[1,] 0.9709 1.000000
[2,] 1.0000 1.042699

Since the K.AK1_Final() kernel function is only useful for one hidden layer, for
this reason, the next part of the code extends this to more than one hidden layer.

####Kernel Arc-Cosine with deep=4#####
diagAK_f<-function(dAK1)
{
AKAK = dAK1^2
costheta = dAK1*AKAK^(-1/2)
costheta[which(costheta>1,arr.ind = TRUE)] = 1
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theta = acos(costheta)
AKl = (1/pi)*(AKAK^(1/2))*(sin(theta)+(pi-theta)*cos(theta))
AKl
AKl<-AKl/median(AKl)

}
AK_L_Final<-function(AK1,dAK1,nl){
n1<-nrow(AK1)
n2<-ncol(AK1)
AKl1 = AK1
for ( l in 1:nl){

AKAK<-tcrossprod(dAK1,diag(AKl1))

costheta<-AKl1*(AKAK^(-1/2))
costheta[which(costheta>1,arr.ind = TRUE)] = 1
theta <-acos(costheta)

AKl<-(1/pi)*(AKAK^(1/2))*(sin(theta)+(pi-theta)*cos(theta))
dAKl = diagAK_f(dAK1)
AKl1 = AKl
dAK1 = dAKl

}
AKl<-AKl/median(AKl)
rownames(AKl)<-rownames(AK1)
colnames(AKl)<-colnames(AK1)
return(AKl)

}

Next, we illustrate how to use this kernel function for an AR kernel with four
hidden layers:

> AK1=K.AK1_Final(x1=X,x2=X)
> AK_L_Final(AK1= AK1,dAK1=diag(AK1),nl=4)

[,1] [,2]
[1,] 0.9649746 1.000000
[2,] 1.0000000 1.036335

Hybrid Kernel We understand by hybrid kernels when two or more kernels are
combined, since complex kernels can be created by simple operations (multiplica-
tion, addition, etc.) that combine simpler kernels. An example of a hybrid kernel can
be obtained by multiplying the polynomial kernel and the Gaussian kernel. This

kernel is defined as xTi x j þ a
� �d

e�γ xi�x jk k. However, other types of kernels can also
be combined in the same fashion or with other basic operations, like kernel averag-
ing, which is explained next.

Kernel Averaging Averaging is another way to create hybrid kernels, since kernel
methods do not preclude the use of several kernels together (de los Campos et al.
2010). To illustrate the construction of these kernels, we assume that we have three
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kernels K1, K2, and K3 that are distinct from each other. In this approach, the three

kernels are “averaged” to form a new kernel K ¼ K1
σ2K1
σ2K

þ K2
σ2K2
σ2K

þ K3
σ2K3
σ2K

, where

σ2K1
, σ2K2

, σ2K3
are variance components attached to kernels K1, K2, and K3, respec-

tively, and σ2K is the sum of the three variances. The ratios of the three variance
components are tantamount to the relative contributions of the kernels. For instance,
the kernels used can be three Gaussian kernels with different bandwidth parameter
values, as employed in Tusell et al. (2013), or one can fit several parametric kernels
jointly, e.g., the additive (G), dominance (D), and additive by dominance (G#D)
kernels, as in Morota et al. (2014). While there are many possible choices of kernels,
the kernel function can be estimated via maximum likelihood by recourse to the
Matérn family of covariance functions (e.g., Ober et al. 2011) or by fitting several
candidate kernels simultaneously through multiple kernel learning.

Hybrid kernels illustrate a general principle of how more complex kernels can be
created from simpler ones in a number of different ways. Kernels can even be
constructed that correspond to infinite-dimensional feature spaces at the cost of
only a few extra operations in the kernel evaluations, like the Gaussian kernel
which most often is good enough (Ober et al. 2011). There are many other kernels,
however, the above-mentioned kernels are the most popular. For example, Morota
et al. (2013) evaluated diffusion kernels for discrete inputs with animal and plant
data, and compared these to the Gaussian kernel. Differences in predictive ability
were minimal; this is fortunate because computing diffusion kernels is time-
consuming.

The bandwidth parameter can be selected based on (1) a cross-validation proce-
dure, (2) restricted maximum likelihood (Endelman 2011), and (3) an empirical
Bayesian method such as the one proposed by Pérez-Elizalde et al. (2015). The
optimal value of the bandwidth parameter is expected to change with many factors
such as (a) distance function, (b) number of markers, allelic frequency, and coding of
markers, all markers affecting the distribution of observed distances, and (c) genetic
architecture of the trait, a factor affecting the expected prior correlation of genetic
values (de los Campos et al. 2010).

As pointed out above, kernel methods only need information of the kernel
function K(xi, xj), assuming that this has been defined. For this reason, nonvectorial
patterns x such as sequences, trees, and graphs can be handled. That is, kernel
functions are not restricted to vectorial inputs: kernels can be designed for objects
and structures as diverse as strings, graphs, text documents, sets, and graph nodes. It
is important to point out that the kernel trick can be applied in unsupervised methods
like cluster analysis, and dimensionality reduction methods like principal component
analysis, independent component analysis, etc.
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8.2.5 A Two Separate Step Process for Building Kernel
Machines

The goal of this section is to emphasize that the building process of kernel machines
consists of two general independent steps. The first one consists of calculating the
Gram matrix (kernel matrix K) using only the information of the independent vari-
ables (input). This means that in this process the user needs to define the type of
kernel function that he (she) will use in such a way as to capture the hypothesized
nonlinear patterns in the input data. Then in the second step, after the kernel is ready,
we select the statistical machine learning algorithm that will be used for training the
model using the dependent variable, the kernel built in the first step and other
available covariates. These two separate steps for building kernel methods for
prediction imply that we can use conventional linear statistical machine learning
algorithms to accommodate a particular type of kernel function. The only important
consideration when choosing the kernel is that it should be suitable for the data at
hand. But, if you built the kernel, you can evaluate the performance of this kernel
with many other statistical machine learning methods. This illustrates the two
separate steps required for training predictive machines using kernel methods
where any statistical machine learning method can be combined with any kernel
function. It is important to point out that since many machine learning methods are
only able to work with linear patterns, using the kernel trick allows you to build
nonlinear versions of the linear algorithms, without the need to modify the original
machine learning algorithm. The following sections show how the kernel trick works
in some standard statistical machine learning models.

8.3 Kernel Methods for Gaussian Response Variables

When the response variable is Gaussian, the negative log-likelihood that needs to be
used to minimize expression (8.3) belongs to a normal distribution and the expres-
sion (8.3) is reduced to

min|ffl{zffl}
η0, β

1
n

Xn
i¼1

yi � η0 � kTi β
� �2 þ λ

2
βTKβ

( )
:

In matrix notation, the latter expression can be expressed as

min|ffl{zffl}
η0, β

1
2

y	 � Kβð ÞT y	 � Kβð Þ þ λ
2
βTKβ

� �
,

where y	 = y2 1y , using y as an estimator of the intercept (η0). The first-order
conditions to this problem are familiar to us (see Chap. 3) and are
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KTK þ λK

 �

β ¼ KTy	

Further, since K = KT and K�1 exist, pre-multiplication by K�1 yields

β ¼ K þ λI½ ��1y	,

where I is an identity matrix of dimension n3 n, and to estimate β, λmust be known.
It is important to point out that even in the context of large p and small n, the number
of beta coefficients (β) that need to be estimated is equal to n, which considerably
reduces the computation resources in the estimation process. This solution to the beta
coefficients obtained under Gaussian response variables is known as kernel Ridge
regression in statistical machine learning, and was first obtained by Gianola et al.
(2006) and Gianola and van Kaam (2008) in the context of a mixed effects model
under a Bayesian treatment. The predicted values in the original scale of the response
variables can be obtained as

by ¼ 1yþ Kbβ:
For a new observation with vector of inputs (xnew), the predictions are made using

the following expression:

bynew = yþ
Xn
i¼1

bβiK xi, xnewð Þ

Next, we provide some examples of Gaussian response variables using different
kernel methods.

Example 1 for continuous response variables. The data comprise family, marker,
and phenotypic information of 599 lines that were evaluated for grain yield (GY) in
four environments. Marker information consisted of 1447 Diversity Array Technol-
ogy (DArT) markers, generated by Triticarte Pty. Ltd. (Canberra, Australia). Also,
this data set contains the pedigree relationship matrix and is preloaded in the BGLR
package with the name wheat. We named this data set the wheat599 data set. The GY
measured in the four environments was used for single environment analysis using
various kernel methods.

The first six observations for trait GY in the four environments (labeled 1, 2,
4, and 5) are given next.

> head(y)
1 2 4 5

775 1.6716295 -1.72746986 -1.89028479 0.0509159
2166 -0.2527028 0.40952243 0.30938553 -1.7387588
2167 0.3418151 -0.64862633 -0.79955921 -1.0535691
2465 0.7854395 0.09394919 0.57046773 0.5517574
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3881 0.9983176 -0.28248062 1.61868192 -0.1142848
3889 2.3360969 0.62647587 0.07353311 0.7195856

Also, next are given the first six observations for five standardized markers

> head(XF[,1:5])
wPt.0538 wPt.8463 wPt.6348 wPt.9992 wPt.2838

[1,] -1.3598855 0.2672768 0.772228 0.4419075 0.439209
[2,] 0.7341284 0.2672768 0.772228 0.4419075 0.439209
[3,] 0.7341284 0.2672768 0.772228 0.4419075 0.439209
[4,] -1.3598855 0.2672768 0.772228 0.4419075 0.439209
[5,] -1.3598855 0.2672768 0.772228 0.4419075 0.439209
[6,] 0.7341284 0.2672768 0.772228 0.4419075 0.439209

Then with the code given in Appendix 1, that uses the wheat599 data set, the nine
kernels explained above were illustrated. We implemented the kernel Ridge regres-
sion method using the library glmnet. The results of the nine kernels for GY in each
of the four environments are given next.

Table 8.1 indicates that the best predictions were observed in the four environ-
ments under the Sigmoid kernel and the worst under the polynomial kernel.

8.4 Kernel Methods for Binary Response Variables

When the response variable is binary, instead of using the sum of squares loss
function that was used before for continuous response variables, we now use the
negative log-likelihood of the product of Bernoulli distributions, and the expression
that needs to be minimized is given next:

min|ffl{zffl}
η0, β

1
n

Xn
i¼1

yi η0 þ kTi β
� �þ log 1þ exp η0 þ kTi β

� �
 �� �2 þ λ
2
βTKβ

( )

Estimation of the parameters η0 and β requires an iterative procedure, and
gradient descent methods are used for their estimation, like those explained for
logistic regression in Chaps. 3 and 7. Here, for the examples, we will use the glmnet
package.

In Table 8.2, we can observe the prediction performance using the binary trait
Height of the Data_Toy_EYT.R with nine kernels (linear, polynomial, sigmoid,
Gaussian, exponential, AK1, AK2, AK3, and AK4). The Data_Toy_EYT data set
contains 160 observations with 40 in each of the four environments that are present.
The phenotypic information consists of a column for lines, another for environments
and four corresponding to traits, two measured on a categorical scale, one continu-
ous, and the last one binary. The data set also contains a genomic relationship matrix
of the 40 lines that were evaluated in each of the four environments. Ten fold cross-
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validation was implemented and the worst performance in terms of the proportion of
cases correctly classified (PCCC) was with the sigmoid kernel and the best under the
polynomial and AK4 kernels. The R code for reproducing the results in Table 8.2 is
given in Appendix 2.

8.5 Kernel Methods for Categorical Response Variables

For categorical response variables, the loss function is the negative log-likelihood of
the product of multinomial distributions and the expression that needs to be mini-
mized is given next:

min|{z}
η0,β

�1
n

Xn
i¼1

XC
c¼1

I yi¼cf g η0cþkTi βc
� ��Xn

i¼1

log
XC
l¼1

exp η0lþkTi βl
� �" # !

þ λ
2

XC
l¼1

βTl Kβl

( )

The estimation process does not have an analytical solution, and gradient descent
methods are used for the estimation of the required parameters. The optimization
process is done with the same methods described in Chaps. 3 and 7 for categorical
response variables. The following illustrative examples were implemented using the
glmnet library.

Now the Data_Toy_EYT.R data set was used that was also used for illustrating
kernels with binary response variables. The nine kernels were implemented but with
the categorical response variable days to heading (DTHD). Again, the worst pre-
dictions occurred with the sigmoid kernel, but now the best predictions were
achieved with the AK2 kernel (Table 8.3). The code given in Appendix 2 can be
used for reproducing these results with two small modifications: (a) replace the
response variable y2¼Pheno$Height with y2¼Pheno$DTHD and (b) in the specifi-
cation of the model in glmnet, replace family¼'binomial' with family¼'multinomial'.

8.6 The Linear Mixed Model with Kernels

Under a linear mixed model (LMM) (y ¼ Cθ + Kβ + e), every individual i is
associated with a genotype vector xTi and a covariate vector cTi (e.g., gender, age,
herd, race, environment, etc.). Given a sample of individuals with a genotyped
variants matrix X ¼ xT1 , x

T
2 , . . . , x

T
n


 �T
and matrix of incidence nuisance variables

C ¼ cT1 , c
T
2 , . . . , c

T
n


 �T
, relating some effect (θ) to the phenotype vector y ¼ [y1,

y2, . . ., yn]
T that follows a multivariate normal distribution.

yjX,C � N Cθ,K þ Iσ2e
� �
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Here, K is a valid kernel encoding genotypic covariance, as long as it is
positive semi-definite and, again, represents similarities between genotyped individ-
uals. Now the nonparametric function is f(X)¼ Kβ and the nonparametric coefficients,

β, and residuals can be assumed to be independently distributed as β � N 0,K2 1σ2β

� �
and e � N 0, Iσ2e

� �
. θ is a vector of covariate coefficients (denoted as fixed effects), I

is the n � n identity matrix, and σ2e is the variance of the microenvironmental effects.
Now under this LMM approach, the function to be minimized becomes

min|ffl{zffl}
θ, β

J θ, βjλ½ � ¼ min|ffl{zffl}
θ, β

1
2σ2e

y� Cθ� Kβ½ �T y� Cθ� Kβ½ � þ λ
2
βTKβ

� �
:

After setting the gradient of J(.) with respect to θ and β simultaneously to zero
(Mallick et al. 2005; Gianola et al. 2006; Gianola and van Kaam 2008), the RKHS
regression estimating equations can be formulated in matrix form given σ2e and λ as

CTC CTK

KTC KTK þ λKσ2e

" # bθbβ
" #

¼ CTy

KTy

" #
ð8:6Þ

Recall that K is symmetric, so KTK = K2, and by multiplying the second system
of (8.6) by K�1 (assuming the inverse exists), we obtain

CTC CTK

ITC K þ λIσ2e

" # bθbβ
" #

¼ CTy

y

" #
ð8:7Þ

This avoids inverting K and forming KTK. Note that the variance of the nonpara-
metric coefficient σ2β ¼ λ�1 may be interpreted as variation due to marked additive
genomic variation.

The mixed model y ¼ Cθ + Kβ + e (reparametrization I) can be reparametrized as
y ¼ Cθ + u + e (reparametrization II), where u = Kβ, but with u distributed as
u � N 0,Kσ2u

� �
, and σ2u is the additive variance due to lines. Both parametrizations

produce the same solution since they are equivalent, with the following peculiarities.
Parametrization I has two main advantages: (1) kernel matrix K does not need to be
inverted. The inverse of kernel matrix K may be time-consuming or unfeasible if the
number of genotyped individuals is large, because the matrix is too dense. Currently,
there is the need to invert the matrix up to 100,000�100,000. (2) Genome-enabled
prediction of breeding values for any t new genotyped individuals (bunew ) without
phenotype can be done using a simple matrix–vector product bunew =Ks

bβ, where bβ
are the n nonparametric coefficients estimated from the n individuals in the training
set, Ks is a matrix of dimension (t � n) containing the genomic similarity values
between the t new individuals whose direct genomic merits are to be predicted and
the individuals in the training set. When K is the genomic relationship matrix
calculated as suggested by VanRaden (2008), the kernel is linear, but when K is
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calculated with nonlinear kernels such as the Gaussian, exponential, polynomial,
arc-cosine, sigmoid, etc., the same model can be used to capture nonlinear patterns
better. This means that with the mixed model equations given above, it is possible to
implement any of the proposed kernels since the only difference between them is the
transformation performed on the input information to obtain a particular kernel. This
means that the genomic relationship matrix used in a method known as genomic
BLUP (GBLUP) is replaced by a more general kernel matrix that creates similarities
among individuals, even if genetically unrelated. However, for a particular data set,
some kernels will perform better and others worse, since the performance of the
kernels is data-dependent. In our context, a kernel is any smooth functionK defining
a covariance structure among individuals. Also, as mentioned above, we can mix
many kernels using a weighted sum or product of them to create new kernels. In
general, as mentioned many times in this chapter, there is enough empirical evidence
that kernel methods outperform conventional regression methods that are only able
to capture linear patterns (Tusell et al. 2013; Long et al. 2010; Morota et al. 2013,
2014).

The solution of the mixed model equations given in (8.6 and 8.7) can be obtained
using the rrBLUP package (Endelman 2011). This package is not restricted only to
linear kernels since it is also useful for estimating marker effects by Ridge regres-
sion, and BLUPs calculated based on an additive relationship matrix. In this pack-
age, variance components are estimated by either maximum likelihood (ML) or
restricted maximum likelihood (REML; default) using the spectral decomposition
algorithm of Kang et al. (2008). The R function returns the variance components, the
maximized log-likelihood (LL), the ML estimate for θ, and the BLUP solution for u.

The basic function for implementing the kernel methods using the rrBLUP
package is given next:

mixed.solve(y=y, Z=Z, K=K, X=X, method="REML"),

where y, Z, K, and X are the vector of response variables, the design matrix of
random effects, the kernel matrix, and the design matrix of fixed effects, respec-
tively. The estimation method by default is REML, but the ML method is also
allowed. The kernel matrix is calculated before using the mixed.solve() function. It is
important to point out that the function kinship.BLUP allows implementing three
kernel methods directly [linear kernel (RR), Gaussian kernel (GAUSS), and Expo-
nential kernel (EXP)] under a mixed model approach.

kinship.BLUP(y=y[trn], G.train=W[trn,], G.pred=W[tst,], X=X
[trn,], K.method="GAUSS", mixed.method="REML"),

where y[trn] contains the training part of the response variable, W[trn,] contains the
markers corresponding to the training set, W[tst,] contains the testing set of marker
data, X[trn,] contains the fixed effects corresponding to the training set, the K.
method¼"GAUSS" specifies that the Gaussian kernel will be implemented, and
finally, mixed.method¼"REML" specifies any of the two estimation methods
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REML or ML. As mentioned above, this kinship.BLUP() allows implementing three
kernels: linear, Gaussian, and Exponential. Using the wheat599 data set used in the
last examples, a ten fold cross-validation using the three default kernels was
implemented.

Table 8.4 shows that under a mixed model approach using the default kernels
[linear (RR), Gaussian (GAUSS), and Exponential (EXP)] available in the rrBLUP
library, the best predictions were observed in Env4 of data set wheat599 with the
Gaussian and Exponential kernels under both metrics. The R code for reproducing
the results in Table 8.4 is given in Appendix 3.

Table 8.5 provides the results of nine kernels for the response variable of Env4.
The building process was manual for the kernel matrices and the data set used for this
example was the wheat599 data set. Results for each of the nine kernels are given for
each fold and across the 10 folds. Table 8.5 shows that the best prediction perfor-
mance was observed with the Gaussian kernel and the worst under the polynomial
kernel. The R code for reproducing the results in Table 8.5 is given in Appendix 4.

8.7 Hyperparameter Tuning for Building the Kernels

Hand-tuning kernel functions can be time-consuming and requires expert knowl-
edge. A tuned kernel can improve the trained model, if standard kernels are insuf-
ficient for achieving a good transformation. In this section, we illustrate how to tune
kernels and we compare the standard kernel with a hand-tuned kernel. As pointed out
in Chap. 4, one approach to tuning is to divide the data into a training set, a tuning
set, and a testing set. The training set is for training the data, the tuning set is for

Table 8.4 Prediction performance in terms of mean square error (MSE) and Pearson’s correlation
(PC) for each fold for the wheat599 (Environment 4) data set under a mixed model and three
kernels: linear, Gaussian, and Exponential. These kernels are the defaults programmed in the
rrBLUP library

Linear Gaussian Exponential Linear Gaussian Exponential

Fold MSE MSE MSE PC PC PC

1 0.757 0.694 0.720 0.534 0.592 0.610

2 0.667 0.626 0.630 0.536 0.583 0.590

3 0.774 0.685 0.700 0.435 0.521 0.490

4 0.736 0.609 0.649 0.398 0.535 0.509

5 0.677 0.690 0.685 0.454 0.428 0.426

6 1.139 1.036 1.025 0.309 0.395 0.405

7 1.006 0.966 1.010 0.486 0.523 0.514

8 0.874 0.758 0.752 0.486 0.594 0.616

9 0.683 0.592 0.586 0.526 0.621 0.625

10 0.729 0.683 0.689 0.315 0.366 0.365

Average 0.804 0.734 0.745 0.448 0.516 0.515
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choosing the best hyperparameter combination, and the testing set is for evaluating
the prediction performance with the best hyperparameters. However, when the data
sets are small after selecting the best combination of hyperparameters, the training
and tuning sets are joined into one data set and with this data set the model is refitted
again with the best combination of hyperparameters, and finally, the prediction
performance is evaluated with the testing set.

This conventional approach to tuning is illustrated next using the wheat599 data
set. To illustrate how to choose the hyperparameter, we will work with the arc-cosine
kernel where the hyperparameter to be tuned is the number of hidden layers, for
which we used a grid of 10 values (1, 2,. . ., 9, 10). To be able to tune the number of
hidden layers, first we divided the original data set into four mutually exclusive parts
with four fold cross-validation. This is called the outer cross-validation strategy.
Then three of these parts were used for training and the remaining for testing. A ten
fold cross-validation was performed in each of the outer training sets; this is called
inner cross-validation. Nine out of the ten formed the inner training set and the
remaining the tuning set. Then for each of the outer folds, the grid was evaluated
with 10 values in the grid for the number of hidden layers, with the inner ten fold
cross-validation strategy and for each of the 10 tuning sets, the mean square error of
prediction was computed for each of the 10 values of the hidden layers in the grid.
Then the average mean square error of the 10 inner cross-validations (in each outer
fold) was computed for each value in the grid; it was selected as the optimal number
of hidden layers in the grid that provides the smallest MSE. Then the inner training
and the tuning sets (inner testing) were joined together for refitting the model with
the optimal number of hidden layers, and finally, the prediction performance also in
terms of MSE was evaluated in the outer testing set. The average of the four values of
the outer testing set is reported as the final prediction performance. Under this
strategy, the optimal number of hidden layers is different for each fold.

Figure 8.2 shows that the optimal number of hidden layers is different in each
fold. In folds 1 and 3 (Fig. 8.2a, c), the optimal number of hidden layers was equal to
3, in folds 3 and 4 (Fig. 8.2b, d), the optimal number of hidden layers was equal to
8. Finally, with these optimal values, the model was refitted with the information of
the inner training + tuning set, and then for each fold, the mean square error (MSE)
was calculated for each outer testing set; the MSEs were 0.6878 (fold 1), 0.6963
(fold 2), 0.9725 (fold 3), and 0.7212 (fold 4), with an MSE across folds equal to
0.7694. The R code for reproducing these results is given in Appendix 5.

8.8 Bayesian Kernel Methods

For a single environment, the model can be expressed as

y ¼ μ1þ uþ e, ð8:8Þ
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where μ is the overall mean, 1 is the vector of ones, and y is the vector of
observations of size n. Moreover, u is the vector of genomic effects
u � N 0, σ2uK

� �
, where σ2u is the genomic variance estimated from the data, and

matrix K is the kernel constructed with any of the kernel methods explained above
(linear, polynomial, sigmoid, Gaussian, exponential, AK1, AK2, ...). The random
residuals are assumed independent with normal distribution e � N 0, σ2eI

� �
, where σ2e

is the error variance.
Now the kernel Ridge regression is cast under a Bayesian framework with λ ¼

σ2e=σ
2
u , where σ2e and σ2u are the residual and variance attached to u, respectively.

With a flat prior to mean parameter (μ), σ2e � χ�2
v,S , and the induced priors u j σ2u �

Nn 0,Kσ2g
� �

and σ2u � χ�2
vu, Su

, the full conditional posterior distribution of u in model

(8.8) is given by
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f uj�ð Þ / L μ,u, σ2e ; y
� �

f ujσ2u
� �

/ 1

2πσ2e
� �n

2
exp � 1

2σ2e
y� 1nμ� u2

� 	
1

σ2u
� �n

2
exp � 1

2σ2u
uTK�1u

� 	� 

/ exp � 1

2
u� euð ÞTeK�1

u� euð Þ
h in o

,

where eK= σ�2
u K2 1 þ σ�2

e In
� ��1

and eu= σ�2
e
eK y2 1nμð Þ, and from here u j 2 �

Nn eu, eK� �
. Then the mean/mode of u j � is eu ¼ σ�2

e
eK y2 1nμð Þ, which is also the

BLUP of u under the mixed model equation of Henderson (1975). For this reason,
model (8.8) is often referred to as GBLUP. However, here the genomic relationship
matrix (GRM; or pedigree matrix P) was replaced by any kernel K; for this reason,
under a Bayesian framework, we call this model a Bayesian kernel BLUP, which is
reduced to the pedigree (P) or Genomic (G) BLUP when we use the GRM or
pedigree matrix as the kernel.

The full conditional posterior of the rest of the parameters is equal to the GBLUP
model described in Chap. 6: μ j � � N eμ,eσ20� �

, where eσ20 ¼ σ2

n and eμ ¼ 1
n 1

T
n y2 uð Þ;

σ�2
e j � � χ�2ev,eS, where ev ¼ vþ n and eS ¼ Sþ y2 1nμ� uk k2; and σ2u j � � χ�2evu,eSu ,

where evu ¼ vu þ n and eSu ¼ uTK�1u. The Bayesian kernel BLUP, like the GBLUP,
does not face the large p and small n problem, since due to the kernel trick, a problem
of dimensionality p is converted into an n-dimensional problem.

The Bayesian kernel BLUP model (8.8) can also be implemented easily with the
BGLR R package, and when the hyperparameters S-v and Su-vu are not specified,
v ¼ vu ¼ 5 is used by default and the scale parameters are settled as in the BRR.
However, a two-step process is required for its implementation: Step 1: Select and
compute the kernel matrix to be used. Step 2: Use this kernel matrix to implement the
model using the BGLR package.

The BGLR code to fit this model is

ETA = list( list( model = ‘RHKS’, K = K , df0 = vu, S0 = Su, R2 = 1-R2)) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 =

R2)

When individuals had more than one replication, or a sophisticated experimental
design was used for data collection, the Bayesian kernel BLUP model is specified in
a more general way to take into account this structure, as follows:

Y ¼ 1nμþ Zuþ e ð8:9Þ

with Z the incident matrix of the genomic effects. This model cannot be fitted
directly in the BGLR and some precalculus is needed first to compute the “covari-
ance” matrix of the predictor Zu in model (8.9): K	 ¼ Var(Zu)¼ ZKZT. The BGLR
code for implementing this model is the following:
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Z = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))

K_start = Z%*%K%*%t(Z)
ETA = list( list( model = ‘RHKS’, K = K_start , df0 = vu, S0 = Su, R2 =

1-R2)) )
A = BGLR(y=y, ETA = ETA, nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 =

R2)

To illustrate how to implement the Bayesian kernel BLUP model in BGLR, some
examples are provided next.

Example 2 We again consider the prediction of grain yield (tons/ha) based on
marker information. The data set used consists of 30 lines in four environments with
one and two repetitions, and the genotype information consists of 500 markers for
each line. The numbers of lines with one (two) repetition are 6 (24), 2 (28), 0 (30),
and 3 (27) in Environments 1, 2, 3, and 4, respectively, resulting in 229 observations.
The performance prediction of all these models was evaluated with 10 random
partitions using a cross-validation strategy, where 80% of the complete data set
was used to fit the model and the rest to evaluate the model in terms of the mean
squared error (MSE) of prediction. Nine kernels were evaluated (linear¼GBLUP,
polynomial, sigmoid, Gaussian, exponential, AK1, AK2, AK3, and AK4). The R
code for implementing this model is given in Appendix 6.

The results for all kernels (shown in Table 8.6) were obtained by iterating 10,000
times the corresponding Gibbs sampler and discarding the first 1000 of them, using
the default hyperparameter values implemented in BGLR. We can observe that the
worst and second worst prediction performances were obtained under the sigmoid
and linear (GBLUP) kernels, while the best and second-best predictions were
obtained with polynomial and Gaussian kernels. However, it is important to point
out that the differences between the best and worst predictions were small.

8.8.1 Extended Predictor Under the Bayesian Kernel BLUP

The Bayesian kernel BLUP method can be extended, in terms of the predictor, to
easily take into account the effects of other factors. For example, in addition to the
genotype effect, the effects of environments and genotype � environment interac-
tion terms can also be incorporated as

y ¼ μ1þ ZEβE þ u1 þ u2 þ ε, ð8:10Þ

where y = [y1, . . ., yI]
0 are the observations collected in each of the I sites

(or environments). The fixed effects of the environment are modeled with the
incidence matrix of environments ZE, where the parameters to be estimated are the
intercepts for each environment (βE) (other fixed effects can be incorporated into the

model). In this model, u1 � N 0, σ2u1K1

� �
represents the genomic main effects, σ2u1 is

8.8 Bayesian Kernel Methods 283



T
ab

le
8.
6

M
ea
n
sq
ua
re
d
er
ro
r
(M

S
E
)
of

pr
ed
ic
tio

n
ac
ro
ss

10
ra
nd

om
pa
rt
iti
on

s,
w
ith

80
%

fo
r
tr
ai
ni
ng

an
d
th
e
re
st
fo
r
te
st
in
g,

un
de
r
ni
ne

ke
rn
el
m
et
ho

ds

P
ar
tit
io
n

L
in
ea
r

P
ol
yn

om
ia
l

S
ig
m
oi
d

G
au
ss
ia
n

E
xp

on
en
tia
l

A
K
1

A
K
2

A
K
3

A
K
4

1
0.
57

8
0.
56

9
0.
60

8
0.
56

6
0.
56

8
0.
57

1
0.
57

0
0.
56

5
0.
56

6

2
0.
35

5
0.
36

0
0.
37

1
0.
35

3
0.
35

3
0.
35

7
0.
35

6
0.
35

3
0.
35

4

3
0.
44

3
0.
43

2
0.
47

2
0.
42

8
0.
42

9
0.
43

5
0.
43

3
0.
43

1
0.
43

1

4
0.
38

7
0.
39

2
0.
39

9
0.
37

2
0.
37

4
0.
37

7
0.
38

0
0.
37

7
0.
37

5

5
0.
37

2
0.
32

9
0.
41

6
0.
33

4
0.
33

5
0.
35

1
0.
34

5
0.
34

3
0.
34

2

6
0.
81

0
0.
75

3
0.
86

4
0.
78

9
0.
80

0
0.
79

7
0.
79

4
0.
79

7
0.
79

2

7
0.
75

7
0.
74

0
0.
77

9
0.
75

2
0.
75

6
0.
74

9
0.
75

2
0.
75

1
0.
74

8

8
0.
35

2
0.
34

0
0.
36

2
0.
35

0
0.
35

2
0.
35

2
0.
34

8
0.
34

8
0.
34

8

9
0.
29

7
0.
30

2
0.
30

6
0.
29

4
0.
29

3
0.
29

5
0.
29

5
0.
29

2
0.
29

2

10
0.
55

1
0.
56

5
0.
55

2
0.
54

9
0.
55

0
0.
55

4
0.
55

0
0.
55

0
0.
54

8

A
ve
ra
ge

0.
49

0
0.
47

8
0.
51

3
0.
47

9
0.
48

1
0.
48

4
0.
48

2
0.
48

1
0.
48

0

284 8 Reproducing Kernel Hilbert Spaces Regression and Classification Methods



the genomic variance component estimated from the data, and K1 =Zu1KZ0
u1, where

Zu1 relates the genotypes to the phenotypic observations. The random effect u2 rep-
resents the interaction between the genomic effects and environments and is

modeled as u2 � N 0, σ2u2K2

� �
, where K2 = Zu1KZ0

u1

� �

ZEZE

0ð Þ , where 

is the

Hadamard product. The BGLR specification for this Bayesian kernel BLUP model
with the extended predictor is exactly the same as the GBLUP method studied in
Chap. 6, but instead of using the genomic relationship matrix (linear kernel), now
any of the kernels mentioned above is specified:

XE = model.matrix(~0+Env,data=dat_F)[,-1]
K.E=XE%*%t(XE)
Z_L = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique

(dat_F$GID)))
K_L=Z_L%*%K%*%t(Z_L) ###### K is the kernel matrix
K_LE= K.E*K_L
ETA_K=list(list(model='FIXED',X=XE),list(model='RKHS',K=K_L),

list(model='RKHS',K=K_LE))
y_NA = y
y_NA[Pos_tst] = NA

A = BGLR(y=y_NA,ETA=ETA_K,nIter = 1e4,burnIn = 1e3,verbose = FALSE,
nIter = 1e4, burnIn = 1e3, S0 = S, df0 = v, R2 = R2)

Now to illustrate the Bayesian kernel BLUP with the extended predictor
described in Eq. (8.10), we used a data set that contains 30 lines in four environ-
ments, and the genotyped information is composed of 500 markers for each line. We
call this data set dat_ls_E2. Now only the following kernels were implemented:
linear, polynomial, sigmoid, Gaussian, exponential, AK1, and AK4. The R code for
reproducing the results in Table 8.7 is given in Appendix 7. We can observe that
taking into account the genotype by environment interaction in the predictor, the best

Table 8.7 Mean squared error (MSE) of prediction across 10 random partitions, with 80% for
training and the rest for testing, under seven kernel methods with the predictor including the effects
of environment + genotypes + genotype � environment interaction term. Here we used the
dat_ls_E2 data set

Partition Linear Polynomial Sigmoid Gaussian Exponential AK1 AK4

1 0.729 0.662 0.775 0.665 0.930 0.700 0.742

2 0.533 0.559 0.596 0.499 0.573 0.515 0.496

3 0.691 0.629 0.724 0.633 0.634 0.654 0.620

4 0.646 0.621 0.678 0.631 0.748 0.626 0.633

5 0.517 0.550 0.488 0.517 0.490 0.519 0.516

6 0.674 0.650 0.683 0.597 0.586 0.640 0.607

7 0.419 0.435 0.474 0.376 0.558 0.403 0.397

8 0.400 0.409 0.406 0.359 0.349 0.381 0.361

9 0.618 0.611 0.641 0.589 0.586 0.605 0.587

10 0.539 0.494 0.567 0.473 0.493 0.507 0.485

Average 0.576 0.562 0.603 0.534 0.595 0.555 0.544
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prediction performance was obtained with the Gaussian kernel while the worst was
obtained under the sigmoid kernel.

It is important to point out that in the predictor under a Bayesian kernel BLUP
using BGLR, as many terms as desired can be included, and the specification is very
similar to how it was done with three terms in the predictor in this example. Using
BGLR, the Bayesian kernel BLUP can be implemented for binary and ordinal
response variables. Next, we provide one example for binary response variables
and one for categorical response variables.

8.8.2 Extended Predictor Under the Bayesian Kernel BLUP
with a Binary Response Variable

It is important to point out that it is feasible to implement the Bayesian kernel BLUP
with binary response variables using the probit link function in BGLR. This imple-
mentation first requires calculating the kernel to be used; then with the following
lines of code, the Bayesian kernel BLUP can be fitted for binary and categorical
response variables:

XE = model.matrix(~0+Env,data=dat_F)[,-1]
K.E=XE%*%t(XE)
Z_L = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))
K_L=Z_L%*%K%*%t(Z_L)
K_LE= K.E*K_L
ETA_K=list(list(model='FIXED',X=XE),list(model='RKHS',K=K_L),

list(model='RKHS',K=K_LE))
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K, response_type="ordinal",nIter = 1e4,

burnIn = 1e3,verbose = FALSE)
Probs = A$probs[Pos_tst,]

When categorical response variables are used, two different things need to be
modified to fit the model in BGLR. The first one is that we need to specify
response_type¼"ordinal" and the other is that the outputs now are the probabilities
that can be extracted with A$probs. When response_type¼"ordinal" is ignored, the
response variable is assumed Gaussian by default.

To give an example with a binary response variable, we used the EYT Toy data
set (Data_Toy_EYT. RData) that is preloaded in the BMTME library. This data set is
composed of 40 lines, four environments (Bed5IR, EHT, Flat5IR, and LHT), and
four response variables: DTHD, DTMT, GY, and Height. G_Toy_EYT is the
genomic relationship matrix of dimension 40� 40. The first two variables are ordinal
with three categories, the third is continuous (GY ¼ Grain yield) and the last one
(Height) is binary. In this example, we work with only the binary response variable
(Height).

286 8 Reproducing Kernel Hilbert Spaces Regression and Classification Methods



Table 8.8 gives the results of implementing the Bayesian kernel BLUP method
under a binary response variable with seven kernels using the ETY Toy data set with
trait Height. The best predictions using the EYT Toy data set were obtained with
kernel AK4, and the worst was under kernel sigmoid. Again, we can see that, in
general, most kernel methods outperform the linear kernel. The R code for
reproducing the results in Table 8.8 is given in Appendix 8.

8.8.3 Extended Predictor Under the Bayesian Kernel BLUP
with a Categorical Response Variable

The fitting process in BGLR for the categorical response variable is exactly the same
as the binary response variable explained above. For this reason, the results given in
Table 8.9 for the categorial response variable were obtained with the same R code
given in Appendix 8 with the following two modifications: (a) y¼dat_F$DTMT
instead of y¼dat_F$Height and b) yp_ts¼apply(Probs,1,which.max) instead of
yp_ts¼apply(Probs,1,which.max)-1, since now the response variable has levels
1, 2, and 3.

Table 8.9 shows that the best prediction performance for the categorical response
variable was observed in the polynomial kernel while the worst was under the AK4
kernel.

Table 8.8 Proportion of cases correctly classified (PCCC) across 10 random partitions, with 80%
for training and the rest for testing, under seven kernel methods with the predictor including the
effects of environment + genotypes + genotype � environment interaction term with the
Data_Toy_EYT with trait Height

Partition Linear Polynomial Sigmoid Gaussian Exponential AK1 AK4

1 0.781 0.781 0.750 0.719 0.625 0.813 0.844

2 0.594 0.625 0.594 0.719 0.750 0.813 0.844

3 0.688 0.625 0.688 0.656 0.719 0.688 0.688

4 0.688 0.656 0.656 0.563 0.656 0.781 0.781

5 0.406 0.500 0.406 0.563 0.531 0.531 0.563

6 0.656 0.656 0.656 0.656 0.688 0.688 0.719

7 0.625 0.625 0.625 0.656 0.688 0.688 0.719

8 0.719 0.688 0.688 0.719 0.719 0.719 0.719

9 0.500 0.563 0.500 0.688 0.719 0.750 0.719

10 0.531 0.563 0.531 0.688 0.594 0.688 0.688

Average 0.619 0.628 0.609 0.663 0.669 0.716 0.728
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8.9 Multi-trait Bayesian Kernel

In BGLR, it is possible to fit multi-trait Bayesian kernel BLUP methods, and the
fitting process is exactly the same as fitting multi-trait Bayesian GBLUP methods
(see Chap. 6). The only difference is that instead of using a linear kernel, any kernel
can be used. The basic R code for fitting multi-trait Bayesian kernel methods is
given next:

y_NA = data.matrix(y)
y_NA[Pos_tst,] = NA
A4= Multitrait(y = y_NA, ETA=ETA_K.Gauss,resCov = list(type ="UN",

S0=diag(4),df0= 5), nIter =10000, burnIn = 1000)
Me_Gauss= PC_MM_f(y[Pos_tst,],A4$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
A4$ETAHat[Pos_tst,]

To illustrate the fitting process of a multi-trait Bayesian kernel BLUP method, we
used the EYT Toy data set (Data_Toy_EYT. RData), but using the four response
variables simultaneously (even though only GY is Gaussian, we assumed that the
four response variables satisfy this assumption). The R code for its implementation is
given in Appendix 9. Table 8.10 gives the results of the prediction performance in
terms of the mean square error across the 10 random partitions, where the best kernel
for prediction differs between environment-trait combinations. The polynomial
kernel and the linear kernel were the best in 4 out of 16 environment-trait
combinations.

Table 8.9 Proportion of cases correctly classified (PCCC) across 10 random partitions, with 80%
for training and the rest for testing, under seven kernel methods with the predictor including effects
of environment + genotypes + genotype � environment interaction term with the Data_Toy_EYT
with the ordinal trait DTMT

Fold Linear Polynomial Sigmoid Gaussian Exponential AK1 AK4

1 0.656 0.656 0.656 0.688 0.688 0.688 0.625

2 0.688 0.688 0.688 0.656 0.688 0.688 0.688

3 0.813 0.813 0.813 0.813 0.813 0.781 0.781

4 0.719 0.719 0.719 0.656 0.656 0.688 0.656

5 0.563 0.625 0.563 0.656 0.656 0.625 0.656

6 0.719 0.750 0.750 0.781 0.750 0.750 0.750

7 0.625 0.656 0.625 0.625 0.594 0.625 0.594

8 0.594 0.594 0.594 0.594 0.594 0.594 0.594

9 0.688 0.688 0.688 0.656 0.656 0.625 0.625

10 0.750 0.719 0.781 0.750 0.719 0.750 0.719

Average 0.681 0.691 0.688 0.688 0.681 0.681 0.669
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8.10 Kernel Compression Methods

By kernel compression methods, we mean those tools that allow us to approximate
kernels without affecting the prediction accuracy very much, but gaining a signifi-
cant reduction in computational resources. There are many methods for compression
of kernel methods. However, in this section, we only illustrate the method proposed
by Cuevas et al. (2020). The basic idea of this method consists of approximating the
original kernel using a small size (m) of the original n observations (lines in the
context of GS) available in the training set, which significantly reduces the required
computational resources required to build the kernel matrix.

Before giving the details of the compression of kernels proposed by Cuevas et al.
(2020), it is important to point out that model (8.8) can be reparametrized as
Eq. (8.11) if the eigenvalue decomposition of the kernel matrix K is expressed as
US1/2S1/2U0,

y ¼ μ1n þ Pf þ ε, ð8:11Þ

where f � N 0, σ2f Ir,r
� �

(where r is the rank of K) and P = US1/2. Note that models

(8.8) and (8.11) are equivalent. Model (8.11) can be fitted by the conventional Ridge
regression model. This Ridge regression reparameterization most of the time is
computationally very efficient, since most of the time r < min (n, p), which is
common in multi-environment and/or multi-trait models. It should be noted that

Table 8.10 Mean square error (MSE) of prediction across 10 random partitions, with 80% for
training and the rest for testing, under seven kernel methods with the predictor including the effects
of environment + genotypes + genotype � environment interaction term with the Data_Toy_EYT
assuming that the multi-trait response is Gaussian

Env Trait Linear Polynomial Sigmoid Gaussian Exponential AK1 AK4

EHT DTHD 0.302 0.292 0.303 0.274 0.268 0.280 0.280

EHT DTMT 0.164 0.180 0.162 0.154 0.152 0.158 0.158

EHT GY 0.333 0.396 0.321 0.342 0.348 0.354 0.354

EHT Height 0.167 0.149 0.162 0.156 0.150 0.148 0.148
LHT DTHD 0.261 0.243 0.259 0.229 0.220 0.234 0.234

LHT DTMT 0.357 0.341 0.360 0.322 0.310 0.326 0.326

LHT GY 0.328 0.302 0.322 0.319 0.333 0.318 0.318

LHT Height 0.228 0.230 0.233 0.232 0.230 0.232 0.232

Bed5IR DTHD 0.150 0.160 0.151 0.148 0.153 0.155 0.155

Bed5IR DTMT 0.202 0.228 0.199 0.203 0.210 0.214 0.214

Bed5IR GY 0.138 0.138 0.136 0.136 0.135 0.134 0.134
Bed5IR Height 0.189 0.178 0.189 0.185 0.184 0.182 0.182

Flat5IR DTHD 0.186 0.190 0.189 0.194 0.200 0.191 0.191

Flat5IR DTMT 0.211 0.224 0.211 0.216 0.226 0.219 0.219

Flat5IR GY 0.477 0.465 0.478 0.478 0.469 0.471 0.471

Flat5IR Height 0.179 0.178 0.180 0.183 0.182 0.183 0.183
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only r effects can be summarized and projected for P to explain the n effects without
any significant loss of precision with the available information.

Next, we describe the Cuevas et al. (2020) method for compressing the kernel
matrix K. First, the method approximates the original kernel matrix (K) using a
smaller sub-matrix Km,m (m < n) constructed with m out of n lines. The rank of Km,m

is m. Under the assumption that the row vectors are linearly independent, Williams
and Seeger (2001) showed that the Nyström approximation of the kernel is as
follows:

K � Q ¼ Kn,mK
�1
m,mK

0
n,m,

where Q will have the rank of Km,m, that is, m. The computation of this kernel is
facilitated since it is not necessary to compute and store the original matrix K, since
only Km,m and Kn,m are required.

Therefore, Km,m can be computed withm lines with all the pmarkers, that is, Xm,p.

For the linear kernel (GBLUP), Km,m ¼ Xm,pX0
m,p

p and Kn,m ¼ Xn,pX0
m,p

p which captures

the relationship of all n lines with the m lines. Note that in the construction of Q, all
the n lines and all the p markers are considered, but not all their relationships are

accounted for. For example, relationships Kn�m,n�m ¼ Xn�m,pX0
n�m,p

p are not considered

(where n � m represents the complement to the m lines). To try to explain this, we

ordered the elements of matrix Q per block, such that Qn,n =
Qm,m Qm,n�m

Qn�m,m Qn�m,n�m

� 	
.

Rassmussen and Williams (2006) showed that Qm,m = Km,m, Qn�m,m = Kn�m,m,
Qm,n�m = Km,n�m, and that the difference Kn�m,n�m 2 Qn�m,n�m, that is, Kn�m,n�m

2 Kn�m,mK2 1
m,mKm,n�m is known as the Schur complement of Km,m on Kn, n. Then,

because it is assumed that Km,m and Kn,n are positive semi-definite, their difference is

also positive semi-definite: Qn,n =
Km,m Km,n�m

Kn�m,m Qn�m,n�m

� 	
. Assuming the effects of

un � m j um are conditional and independent, Snelson and Ghahramani (2006) and
Misztal et al. (2014) proposed substituting the diagonal of the differences of
Qn � m, n � m with the diagonal of Kn � m, n � m.

In the method called projected process, Seeger et al. (2003) theoretically
showed that using all lines and considering the minimum Kullback–Leibler distance
KL(q(u| y)kp(u| y)) justify that the matrix K in the prior distribution of u (of model
8.8) can be substituted for the Q approximations from Nyström (Titsias 2009). That
is, the random genetic vectors have a normal distribution u � N 0, σ2uQ

� �
, where

Q=Kn,mK2 1
m,mK

0
n,m:

With these adjustments in the distribution of the random effects u, we used model
(8.8) for prediction. It is common to estimate parameters σ2e and σ2u of the model
with the marginal likelihood and then predict the random effects using the inversion
lemma, which is fast. Furthermore, if matrix Q is directly used in BGLR, there is no

290 8 Reproducing Kernel Hilbert Spaces Regression and Classification Methods



advantage in terms of saving computational resources using the approximate kernel.
Therefore, an eigen decomposition of K2 1

m,m =US2 1=2S2 1=2U0 is used where U are
the eigenvectors of order m � m and Sm,m is a diagonal matrix of order m � m with
the eigenvalues ordered from largest to smallest. These values are substituted in Q
resulting in un � N 0, σ2uKn,mUS2 1=2S2 1=2U0K0

n,m

�
), and thus, thanks to the proper-

ties of the normal distribution, model (8.8) can be expressed like model (8.11) as

y ¼ μ1n þ Pf þ ε ð8:12Þ

Model (8.12) is similar to model (8.11), except that f is a vector of order m � 1

with a normal distribution of the form f � N 0, σ2f Im,m
� �

, where P = Km, nUS
21/2 is

now the design matrix. This implies estimating only m effects that are projected into
the n-dimensional space in order to predict un and explain yn. Note that model (8.12)
has a Ridge regression solution, and thus available software for Bayesian Ridge
regression like BGLR R or software for conventional Ridge regression like glmnet
can be used for fitting model (8.12).

In summary, according to Cuevas et al. (2020), the approximation described
above consists of the following steps:

Step 1. Computing the following matrices, matrix Km,m from m lines of the
training set.

Step 2. Computing matrix Kn,m.
Step 3. Eigenvalue decomposition of Km,m.
Step 4. Computing matrix P = Kn,mUS

21/2.
Step 5. Fitting the model under a Ridge regression framework (like BGLR or

glmnet) and making genomic-enabled predictions for future data.

With the following R code, the P = Kn,mUS
21/2 (matrix design) can be computed

under a linear kernel.

##################Linear approximate kernel########################
Sparse_linear_kernel = function(m, X){
m = m
XF = X
p = ncol(XF)
pos_m = sample(1:nrow(XF),m)
####Step 1 compute K_m###############3
X_m = XF[pos_m,]
dim(X_m)
K_m = X_m% * %t(X_m)/p
dim(K_m)
######Step 2 compute K_n_m###########
K_n_m = XF% * %t(X_m)/p
dim(K_n_m)
######Step 3 compute eigenvalue decomposition of K_m######
EVD_K_m = eigen(K_m)
####Eigenvectors
U = EVD_K_m$vectors
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###Eigenvalues###
S = EVD_K_m$values
####Square root of the inverse of eigenvalues#####
S_0.5_Inv = sqrt(1/S)
#####Diagonal matrix of square root of inverse of eigenvalues###
S_mat_Inv = diag(S_0.5_Inv)
#####Computing matrix P
P = K_n_m% * %U% * %S_mat_Inv
return(P)}

To use this function to create the design matrix P = Kn,mUS
21/2, you need to

provide the standardized matrix of markers X, and the number of lines m, to be used
for computing the approximate linear kernel. Then with this P you can implement
the Ridge regression model under a Bayesian or conventional framework.

Table 8.11 indicates that the lower the value of m for building the approximate
kernel, the smaller the time required for its implementation in the four response
variables (Env1, . . ., Env4). The table also shows that the lower the value of m, the
worse the prediction performance in terms of MSE and PC. However, it is really
interesting that with a reduction in the training set from 599 (all data) to 264 (only
44% of the total data set), the implementation time is reduced to almost half without
any significant loss in terms of prediction performance. The complete R code to
reproduce the results provided in Table 8.11 is given in Appendix 10.

The approximate kernel method can be used for any of the kernels studied before.
The construction of the approximate Gaussian kernel matrix can be done with the
following R function:

####################Gaussian kernel function######################
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
K.rad=K.radial(x1=XF,x2=XF, gamma=1/ncol(XF))

######################Approximate Guassian kernel#################
Sparse_Gaussian_kernel=function(m,X){
m=m
XF=X
p=ncol(XF)
pos_m=sample(1:nrow(XF),m)
####Step 1 compute K_m###############3
X_m=XF[pos_m,]
dim(X_m)
K_m=K.radial(x1=X_m,x2=X_m, gamma=1/p)

######Step 2 compute K_n_m###########
K_n_m=K.radial(x1=XF,x2=X_m, gamma=1/p)

############Step 3 compute eigenvalues decomposition of
K_m###########
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EVD_K_m=eigen(K_m)
####Eigenvectors
U=EVD_K_m$vectors
###Eigenvalues###
S=EVD_K_m$values
####Square root of the inverse of eigenvalues #####
S_0.5_Inv=sqrt(1/S)
#####Diagonal matrix of square root of inverse of eigenvalues###
S_mat_Inv=diag(S_0.5_Inv)
######Computing matrix P
P=K_n_m%*%U%*%S_mat_Inv
return(P)}

With this approximate kernel method, an equivalent to Table 8.11 was
reproduced, but instead of using a linear kernel, a Gaussian kernel was used. The
results for the same values of m as those used in Table 8.11 (m ¼ 15, 32, 74,
132, 264, and 599), with the wheat599 data set for each of the four response
variables are given in Table 8.12.

Again, we can see in Table 8.12 that the lower the training set (m) used for
approximating the kernel, the lower the prediction performance, but the shorter the
implementation time. However, it is very interesting to point out that with this data
set, the approximation obtained when 44% (264 lines) of the original lines
(599 lines) were used is quite good for the four response variables (E1,. . ., E4).
However, the approximation to the full data set was slightly better under the
approximate linear kernel (Table 8.11) than under the approximate Gaussian kernel
(Table 8.12), but in general, the predictions obtained with the Gaussian kernel (full
and approximated) were better than those obtained with the linear kernel (full and
approximated). It is really important to point out that the R code given in Appendix
10 can be used for reproducing the results given in Table 8.12, but by replacing the
function of the approximate linear kernel with the function for the approximate
Gaussian kernel.

8.10.1 Extended Predictor Under the Approximate Kernel
Method

Now we will illustrate the approximate kernel using the expanded predictor (8.10)
that, in addition to the main effect of lines, contains the main effects of environments
and the interaction term between environments and lines. Therefore, the approximate

method is similar to the case of a single environment, that is, u1 � N 0, σ2u1Q
u1

� �
,

where K1 � Qg ¼ Zu1 Kn,mK2 1
m,mK

T
n,m

� �
ZT
u1 , whereas for the random interaction

u2 � N 0, σ2u2Q
u2

� �
, where K2 � Qu2 = Zu1 Kn,mK2 1

m,mK
T
n,m

� �
ZT
u1


 �

ZEZE

T

 �

.

Also, we decomposed K2 1
m,m in such a way that model (8.10) could be approxi-

mated as
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y ¼ μ1þ ZEβE þ Pu1 f þ Pu2 l þ ε, ð8:13Þ

where Pu1 =Zu1P=Zu1Kn,mUS2 1=2 of order n	 � m, with n	 ¼ n1 + n2 + . . . + nI,
with f a vector of m� 1;Pu2 =Pu1 : ZE of order n	 � mI and the vector l is of order
mI � 1, and the notation Pu1 : ZE denotes the interaction term between the design
matrix Pu1 and ZE.

In summary, the suggested approximate method described above can be summa-
rized as

Step 1. We assume that we have a matrix of markersX that contains the lines without
replication, that is, each row corresponds to a different line. We assume that this
matrix contains L lines (rows) and p markers (columns). Also, it is important to
point out that this matrix is standardized by columns.

Step 2: We randomly select m lines out of L from the training set X.
Step 3. Next we construct matrices Km,m and KL,m, from the matrix of markers as

Km,m ¼ Xm,pX0
m,p

p , KL,m ¼ XL,pX0
m,p

p

Step 4. Eigenvalue decomposition of Km,m.
Step 5. Computing matrix P = Kn,mUS

21/2.

Step 6. Computing matrix Pu1 =Zu1 P=Zu1Kn,mUS2 1=2:
Step 7. Computing matrix Pu2 =Pu1 : ZE , where : denotes the interaction between

the design matrix Pu1 and ZE.
Step 8. Fitting the model under a Ridge regression framework (like BGLR or

glmnet) and making genomic-enabled predictions for future data.

It is important to point out that the extension of the approximate kernel method
for an extended predictor requires that some lines were studied in some environ-
ments but not in all environments. This extended approximate kernel method is
expected to be efficient when the number of environments is low and the number of
lines is large.

To illustrate the extended approximate kernel method, we used the
Data_Toy_EYT that contains four environments, four traits, and 40 observations
in each environment. Here we only used the continuous trait (GY) as the response
variable. The approximate kernels were built using only the lines (40 lines) from
which the training set was built with m ¼ 4, 8, 12, 16, 20, and 40 lines. Now instead
of using only one kernel, we implemented five (linear, polynomial, sigmoid, Gauss-
ian, and exponential). The R code for reproducing the results in Table 8.13 is given
in Appendix 11.

We can see in Table 8.13 that there are differences in the prediction performance
using different kernels. However, the approximate kernel, even with m ¼ 4, many
times outperformed the prediction performance of the exact kernel (m ¼ 40), which
implies that when the lines are quite correlated even with a small sample size m,
approximating the kernel is enough to get good prediction performance. But the time
gained using a sample size m, that is less than n total number of lines, significantly
reduces the implementation time, and this gain in implementation time is more
relevant when the number of lines is very large, as was stated by Cuevas
et al. (2020).
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8.11 Final Comments

In the context of genomic prediction, arguably, genotypes and phenotypes may be
linked in functional forms that are not well addressed by the linear additive models
that are standard in quantitative genetics. Therefore, developing statistical machine
learning models for predicting phenotypic values from all available molecular
information and that are capable of capturing complex genetic network architectures
is of great importance. Kernel Ridge regression methods are nonparametric predic-
tion models proposed for this purpose. Their essence is to create a spatial distance-
based relationship matrix called a kernel (Morota et al. 2013). For this reason, many
kernel functions have been developed to capture complex nonlinear patterns that
many times outperform conventional linear regression models in terms of prediction
performance.

The kernel trick allows you to build nonlinear versions of any linear algorithms
by replacing their independent variables (predictors) with a kernel function, giving
them greater advantages.

1. The kernels are interpreted as scalar products in high-dimensional spaces.
2. There are kernels with great versatility and composite kernels can be built; some

can be computed in closed form, while others require an iterative process.

Table 8.13 Prediction performance in terms of mean square error (MSE) and average Pearson’s
correlation (PC) under five approximate Gaussian kernel methods with the method proposed by
Cuevas et al. (2020)

Metrics Kernel m ¼ 4 m ¼ 8 m ¼ 12 m ¼ 16 m ¼ 20 m ¼ 40

MSE Linear 0.306 0.325 0.367 0.329 0.327 0.325

PC Linear 0.939 0.936 0.926 0.935 0.935 0.936

Time Linear 12.300 17.780 17.090 17.340 19.330 27.240

MSE Polynomial 0.330 0.343 0.356 0.308 0.325 0.342

PC Polynomial 0.934 0.931 0.927 0.939 0.935 0.933

Time Polynomial 17.000 17.030 18.280 20.470 21.180 25.750

MSE Sigmoid 0.383 0.295 0.335 0.314 0.328 0.324

PC Sigmoid 0.923 0.941 0.934 0.937 0.935 0.936

Time Sigmoid 19.400 18.550 17.170 19.770 20.450 23.550

MSE Gaussian 0.325 0.337 0.351 0.335 0.331 0.340

PC Gaussian 0.936 0.932 0.929 0.934 0.935 0.933

Time Gaussian 18.530 19.300 20.090 18.730 22.360 30.630

MSE Exponential 0.333 0.320 0.339 0.381 0.363 0.348

PC Exponential 0.932 0.936 0.932 0.924 0.927 0.932

Time Exponential 17.220 18.860 20.090 21.730 19.200 24.970

Ten fold cross-validation was implemented and the prediction performance is only reported for the
testing set. Six values of training size m were implemented: 4, 8, 12, 16, 20, and 40 (all data). Time
reported: the implementation time in seconds. The data set used for this example was
Data_Toy_EYT with trait GY as the response variable that was used before in Table 8.10
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3. The number of dimensions increases the complexity, and with it the risk of
overfitting.

4. Kernel methods are an alternative to least square methods algorithms that
control complexity through regularization.

5. Kernel methods guarantee existence and uniqueness, just like least square
methods.

6. Nonlinear versions can be made using the kernel trick, obtaining statistical
machines with great expressive capacity, but with training control.

7. Kernel statistical machine learning methods provide promising tools for large-
scale and high-dimensional genomic data processing.

8. Kernel methods can also be viewed from a regression perspective and can be
integrated with classical methods for gene prioritizing, prediction, and data
fusion.

9. Kernel methods allow you to further improve the scalability of conventional
machine learning methods and their versatility to work with heterogeneous
inputs.

10. Kernel methods are remarkably flexible and elegant, as they are the predictive
principle underlying most linear mixed models commonly used in plant breed-
ing, as well as others used in spatial analysis of classification problems.

11. Kernel methods exploit complexity to improve prediction accuracy, but do not
help very much to increase the understanding of the complexity.

12. Kernels based on data compression ideas are very promising for dealing with
very large data sets, but software is needed, as well as more research to develop
new methods and improve the existing methods.

Appendix 1

R code for manually implementing nine kernels (linear, polynomial, sigmoid,
Gaussian, exponential, AK1, AK2, AK3, and AK4) with a continuous response
variable; the results are provided in Table 8.1.

rm(list=ls(all=TRUE))
library(plyr)
library(tidyr)
library(dplyr)
library(glmnet)
library(BGLR)
data(wheat) #Loads the wheat data set
y=wheat.Y
dim(y)
head(y)

XF=scale(wheat.X)
dim(XL)
head(XF[,1:5])
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########Linear Kernel############
K.linear=function(x1, x2=x1,gamma=1) {gamma*(as.matrix(x1)%*%t(as.
matrix(x2))) }
K.lin=K.linear(x1=XF,x2=XF,gamma=1/ncol(XF))
dim(K.lin)
X.lin=t(chol(K.lin))

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, p=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^p}

K.poly=K.polynomial(x1=XF,x2=XF,gamma=1/ncol(XF))
dim(K.poly)
X.poly=t(chol(K.poly))

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1/ncol(XF), b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
K.sig=K.sigmoid(x1=XF,x2=XF)
dim(K.sig)
ei=eigen(K.sig)
pos_neg=which(ei$values<0)
Eigenv=ei$value
Eigenv[pos_neg]=0
Eigenv
X.sig=ei$vectors%*%diag(sqrt(Eigenv))%*%t(ei$vectors)

########Radial Kernel############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
K.rad=K.radial(x1=XF,x2=XF, gamma=1/ncol(XF))
dim(K.rad)
X.rad=t(chol(K.rad))

########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

K.exp=K.exponential(x1=XF,x2=XF, gamma=1/ncol(XF))
dim(K.exp)
X.exp=t(chol(K.exp))

############Arc-cosine kernel with L=1#######
K.AC1<-function(X){
n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
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GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)

return(GC1)
}

####Arc-cosine kernel with L>1########
AK1<-K.AC1(XF)
X.AK1=t(chol(AK1))
K.AC.L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC
for ( l in 1:nl){
Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1
angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)
GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)

*cos(angulo))
}
GC<-GC/median(GC)
rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}
AK1=AK1
AK2<-K.AC.L(GC=AK1,nl=2)
X.AK2=t(chol(AK2))
AK3<-K.AC.L(GC=AK1,nl=3)
X.AK3=t(chol(AK3))
AK4<-K.AC.L(GC=AK1,nl=4)
.AK4=t(chol(AK4))

###########Cholesky of each kernel#######
X_ker=list(X.lin=X.lin, X.poly=X.poly,X.sig=X.sig,X.rad=X.rad,X.
exp=X.exp,X.AK1=X.AK1, X.AK2=X.AK2,X.AK3=X.AK3,X.AK4=X.AK4)
kernel.name=c
("Linear","Polynomial","Sigmoid","Gaussian","Exponential", "AK1",
"AK2","AK3","AK4")

#####K-fold cross-validation
n=nrow(XF)
No.folds=10
set.seed(10)
Grpv= findInterval(cut(sample(1:n,n),breaks=No.folds),1:n)

Y=y
Env_name=colnames(y)
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rownames(Y)=1:n
Pred_all_kelnels<-data.frame()
for (t in 1:4){
y2=Y[,t]

results<-c() #save cross-validation results
for (k in 1:9){
MSE_Part=c()
for(r in 1:No.folds) {
#r=1
Xstar=X_ker[[k]]
rownames(Xstar)=1:n
X2=Xstar
actual_CV=r
y1=y2

positionTST=which(Grpv==r)

y_tr = y1[-positionTST] ; X_tr = X2[-positionTST,];
y_tst = y1[positionTST]; X_tst = X2[positionTST,]

A_RR = cv.glmnet(X_tr,y_tr,family='gaussian',
alpha=0,type.measure='mse')

ypred= as.numeric(predict(A_RR,newx=X_tst,s='lambda.min',
type='class'))
Predicted=ypred
Observed=as.numeric(y_tst)

MSE=mean((Predicted-Observed)^2)
MSE_Part=c(MSE_Part,MSE)
}
MSE_Part
mean(MSE_Part)

results=c(results,mean(MSE_Part))
}
results1=t(results)
colnames(results1)=kernel.name
Pred_all_kelnels=rbind(Pred_all_kelnels,data.frame(Env=Env_name
[t],results1))
}
Pred_all_kelnels
write.csv(Pred_all_kelnels, file ="Kernel_Example_8.1v2.csv")

Appendix 2

R code for manually implementing nine kernels (linear, polynomial, sigmoid,
Gaussian, exponential, AK1, AK2, AK3, and AK4) with a binary response variable;
the results are provided in Table 8.2.
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rm(list=ls(all=TRUE))
library(plyr)
library(tidyr)
library(dplyr)
library(glmnet)

load("Data_Toy_EYT.RData")
ls()
Pheno=Pheno_Toy_EYT
dim(G_Toy_EYT)
XF=t(chol(G_Toy_EYT))
dim(XF)
head(XF[,1:5])

########Linear Kernel############
K.linear=function(x1, x2=x1,gamma=1) {gamma*(as.matrix(x1)%*%t(as.
matrix(x2))) }
K.lin=K.linear(x1=XF,x2=XF,gamma=1/ncol(XF))
dim(K.lin)
X.lin=t(chol(K.lin))

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, p=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^p}

K.poly=K.polynomial(x1=XF,x2=XF,gamma=1/ncol(XF))
dim(K.poly)
X.poly=t(chol(K.poly))

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1/ncol(XF), b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
K.sig=K.sigmoid(x1=XF,x2=XF, gamma=1/1*ncol(XF))
dim(K.sig)
ei=eigen(K.sig)
pos_neg=which(ei$values<0)
Eigenv=ei$value
Eigenv[pos_neg]=0
Eigenv
X.sig=ei$vectors%*%diag(sqrt(Eigenv))%*%t(ei$vectors)

########Radial Kernel############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
K.rad=K.radial(x1=XF,x2=XF, gamma=1/ncol(XF))
dim(K.rad)
X.rad=t(chol(K.rad))

########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
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exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),
Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

K.exp=K.exponential(x1=XF,x2=XF, gamma=1/ncol(XF))
dim(K.exp)
X.exp=t(chol(K.exp))

############Arc-cosine kernel with L=1#######
K.AC1<-function(X){
n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)
return(GC1)

}

####Arc-cosine kernel with L>1########
AK1<-K.AC1(XF)
X.AK1=t(chol(AK1))
K.AC.L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC
for ( l in 1:nl){
Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1
angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)

GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)
*cos(angulo))
}

GC<-GC/median(GC)
rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}
AK1=AK1
AK2<-K.AC.L(GC=AK1,nl=2)
X.AK2=t(chol(AK2))
AK3<-K.AC.L(GC=AK1,nl=3)
X.AK3=t(chol(AK3))
AK4<-K.AC.L(GC=AK1,nl=4)
X.AK4=t(chol(AK4))
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########Design matrices###
ZE=model.matrix(~0+as.factor(Pheno$Env))
ZL=model.matrix(~0+as.factor(Pheno$GID))
cbind(colnames(ZL), colnames(G_Toy_EYT))
###########Cholesky of each kernel#######
X_ker=list(X.lin=cbind(ZE,ZL%*%X.lin), X.poly=cbind(ZE,ZL%*%X.
poly),X.sig=cbind(ZE,ZL%*%X.sig),X.rad=cbind(ZE,ZL%*%X.rad),X.
exp=cbind(ZE,ZL%*%X.exp),X.AK1=cbind(ZE,ZL%*%X.AK1), X.AK2=cbind
(ZE,ZL%*%X.AK2),X.AK3=cbind(ZE,ZL%*%X.AK3),X.AK4=cbind(ZE,ZL%*%X.
AK4))
kernel.name=c
("Linear","Polynomial","Sigmoid","Gaussian","Exponential", "AK1",
"AK2","AK3","AK4")

#####K-fold cross-validation
n=nrow(Pheno)
No.folds=10
set.seed(10)
Grpv= findInterval(cut(sample(1:n,n),breaks=No.folds),1:n)

########Response variable#################################
y2=Pheno$Height
results<-data.frame() #save cross-validation results
for(r in 1:No.folds) {
y1=y2
positionTST=which(Grpv==r)
PCCC_Part=c()
for (k in 1:9){
Xstar=X_ker[[k]]
rownames(Xstar)=1:n
X2=Xstar
y_tr = y1[-positionTST] ; X_tr = X2[-positionTST,];
y_tst = y1[positionTST]; X_tst = X2[positionTST,]

A_RR = cv.glmnet(X_tr,y_tr,family='binomial',
alpha=0,type.measure='class')

ypred= as.numeric(predict(A_RR,newx=X_tst,s='lambda.min',
type='class'))
Predicted=ypred
Observed=as.numeric(y_tst)

PCCC=1-mean(Predicted!=Observed)
PCCC_Part=c(PCCC_Part,PCCC)
}
names(PCCC_Part)=kernel.name
results=rbind(results,data.frame(fold=r,t(PCCC_Part)))
}
results
apply(results[,-1],2,mean)
write.csv(results, file ="Kernel_Binary_Example_Table_8.2.csv")
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Appendix 3

R code for implementing three default kernels in rrBLUP (linear, Gaussian, and
Exponential), and the results are provided in Table 8.4.

library(rrBLUP) #load rrBLUP
library(BGLR) #load BLR
data(wheat) #load wheat data
X=wheat.X
dim(X)
X <- 2*X-1 #recode genotypes
X=scale(X)
t=4
y <-wheat.Y[,t] #yields from E1
yy=y
MSE=function(yobserved,ypredicted){
MSE=mean((yobserved-ypredicted)^2)

}
n_records=nrow(X)
n_folds=10
set.seed(10)
sets <- findInterval(cut(sample(1:n_records, n_records),

breaks=n_folds), 1:n_records)
results=data.frame()
for (i in 1:n_folds){
# i=1
trn <- which(sets!=i)
tst <- which(sets==i)
ans.RR<-kinship.BLUP(y=y[trn],

G.train=X[trn,],G.pred=X[tst,])
#accuracy with RR
Cor_RR=cor(ans.RR$g.pred,yy[tst])
MSE_RR=MSE(ans.RR$g.pred,yy[tst])

ans.GAUSS<-kinship.BLUP(y=y[trn],
G.train=X[trn,],G.pred=X[tst,],
K.method="GAUSS")

#accuracy with GAUSS
Cor_GAUSS=cor(ans.GAUSS$g.pred,yy[tst])
MSE_GAUSS=MSE(ans.GAUSS$g.pred,yy[tst])

ans.EXP<-kinship.BLUP(y=y[trn],
G.train=X[trn,],G.pred=X[tst,],
K.method="EXP")

#accuracy with EXponential
Cor_EXP=cor(ans.EXP$g.pred,yy[tst])
MSE_EXP=MSE(ans.EXP$g.pred,yy[tst])

results=rbind(results,data.frame(Fold=i, MSE_RR=MSE_RR,
MSE_GAUSS=MSE_GAUSS, MSE_EXP=MSE_EXP,Cor_RR=Cor_RR,
Cor_GAUSS=Cor_GAUSS, Cor_EXP=Cor_EXP))
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}
results

write.csv(results,file="Kernel_Mixed_Example_Table_8.4.csv")

Appendix 4

R code for manually implementing nine kernels (linear, polynomial, sigmoid,
Gaussian, exponential, AK1, AK2, AK3, and AK4); the results are provided in
Table 8.5.

library(rrBLUP) #load rrBLUP
library(BGLR) #load BLR
data(wheat) #load wheat data
X=wheat.X
dim(X)
X <- 2*X-1 #recode genotypes

XF=scale(wheat.X)
dim(XF)
head(XF[,1:5])

########Linear Kernel############
K.linear=function(x1, x2=x1,gamma=1) {gamma*(as.matrix(x1)%*%t(as.
matrix(x2))) }
K.lin=K.linear(x1=XF,x2=XF,gamma=1/ncol(XF))
dim(K.lin)

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, p=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^p}

K.poly=K.polynomial(x1=XF,x2=XF,gamma=1/ncol(XF))
dim(K.poly)

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1/ncol(XF), b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
K.sig=K.sigmoid(x1=XF,x2=XF)
ei=eigen(K.sig)
pos_neg=which(ei$values<0)
Eigenv=ei$value
Eigenv[pos_neg]=0
Eigenv
K.sig=ei$vectors%*%diag((Eigenv))%*%t(ei$vectors)
########Radial Kernel############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
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exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),
Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}

K.rad=K.radial(x1=XF,x2=XF, gamma=1/ncol(XF))
dim(K.rad)

########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

K.exp=K.exponential(x1=XF,x2=XF, gamma=1/ncol(XF))
dim(K.exp)
############Arc-cosine kernel with L=1#######
K.AC1<-function(X){
n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)

return(GC1)
}

####Arc-cosine kernel with L>1########
AK1<-K.AC1(XF)
K.AC.L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC

for ( l in 1:nl){
Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1
angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)
GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)

*cos(angulo))
}
GC<-GC/median(GC)
rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}
AK1=AK1
AK2<-K.AC.L(GC=AK1,nl=2)
AK3<-K.AC.L(GC=AK1,nl=3)
AK4<-K.AC.L(GC=AK1,nl=4)
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###########Cholesky of each kernel#######
K_ker=list(K.lin=K.lin, K.poly=K.poly,K.sig=K.sig,K.rad=K.rad,K.
exp=K.exp,K.AK1=AK1, K.AK2=AK2,K.AK3=AK3,K.AK4=AK4)
kernel.name=c
("Linear","Polynomial","Sigmoid","Gaussian","Exponential", "AK1",
"AK2","AK3","AK4")

#####K-fold cross-validation
n=nrow(XF)
No.folds=10
set.seed(10)
Grpv= findInterval(cut(sample(1:n,n),breaks=No.folds),1:n)
Env_name=colnames(wheat.Y)
t=4
y2=wheat.Y[,t]
results_ker=data.frame() #save cross-validation results

for (k in 1:9){
Kstar=K_ker[[k]]
rownames(Kstar)=1:n
results=data.frame()
for(r in 1:No.folds) {
y1=y2
positionTST=which(Grpv==r)
y1[positionTST]=NA
I=diag(n)
fit_Mix <- mixed.solve(y=y1,Z=I,K=Kstar)
Pred_y=c(fit_Mix$beta)*rep(1,nrow(Kstar))+c(fit_Mix$u)
MSE=mean((Pred_y[positionTST]-y2[positionTST])^2)
results=rbind(results,data.frame(MSE=MSE))

}
results
results_ker=rbind(results_ker,data.frame(Kernel=kernel.name[k],t

(results)))
}

results_ker
colnames(results_ker)=c("Kernel",

"1","2","3","4","5","6","7","8","9","10")
results_ker

write.csv(results_ker, file ="Example_Mixed_Table_8.5.csv")

Appendix 5

R code for tuning the number of hidden layers in the arc-cosine kernel (Fig. 8.2).

library(rrBLUP) #load rrBLUP
library(BGLR) #load BLR
data(wheat) #load wheat data
X=wheat.X

308 8 Reproducing Kernel Hilbert Spaces Regression and Classification Methods



dim(X)
X <- 2*X-1 #recode genotypes
XF=scale(wheat.X)
rownames(XF)=1:599
dim(XF)
head(XF[,1:5])

############Arc-cosine kernel with L=1#######
K.AC1<-function(X){
n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)
return(GC1)

}

####Arc-cosine kernel with L>1########
AK1<-K.AC1(XF)
K.AC.L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC

for ( l in 1:nl){

Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1

angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)
GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)

*cos(angulo))
}
GC<-GC/median(GC)
rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}
AK1=AK1
AK2<-K.AC.L(GC=AK1,nl=2)
dim(AK2)

#####K-fold cross-validation
n=nrow(XF)
No.folds=4
set.seed(10)
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Grpv= findInterval(cut(sample(1:n,n),breaks=No.folds),1:n)
Env_name=colnames(wheat.Y)

t=4
rownames(wheat.Y)=1:599
y2=wheat.Y[,t]
results=data.frame()
for(r in 1:No.folds) {
# r=4

y1=y2
positionTST=which(Grpv==r)
positionTRN=which(Grpv!=r)
n_inner=length(positionTRN)
ICV= findInterval(cut(sample(1:length(positionTRN),n_inner),

breaks=No.folds),1:n_inner)
Lvec=1:10
Ave_MSE_L=c()
for (L in 1:length(Lvec)){

results_Inner=c()
for (j in 1:No.folds){

y1_trn=y1[positionTRN]
y1_trnI=y1_trn
AKL<-K.AC.L(GC=AK1,nl=L)
Kstar_inner=AKL[positionTRN,positionTRN]
pos_TST=which(ICV==j)
y1_trnI[pos_TST]=NA
length(y1_trn)
I=diag(length(y1_trn))
fit_MixI <- mixed.solve(y=y1_trnI,Z=I,K=Kstar_inner)
Pred_yI=c(fit_MixI$beta)*rep(1,nrow(Kstar_inner))+c(fit_MixI$u)
MSE_Inner=mean((Pred_yI[pos_TST]-y1_trn[pos_TST])^2)
results_Inner=c(results_Inner,MSE_Inner)
}

MSE_L=mean(results_Inner)
MSE_L
Ave_MSE_L=c(Ave_MSE_L,MSE_L)
opt_mse=which.min(Ave_MSE_L)
L_opt=Lvec[opt_mse]
}

AKL_opt<-K.AC.L(GC=AK1,nl=L_opt )
Kstar=AKL_opt
y1[positionTST]=NA
I=diag(n)

fit_Mix <- mixed.solve(y=y1,Z=I,K=Kstar)
Pred_y=c(fit_Mix$beta)*rep(1,nrow(Kstar))+c(fit_Mix$u)
MSE=mean((Pred_y[positionTST]-y2[positionTST])^2)
results=rbind(results,data.frame(MSE=MSE))}

results
apply(results,2,mean)
par(mar=c(4,6,6,4))
plot(1:10,Ave_MSE_L, ylab="Mean Square Error",xlab="Number of hidden
layers",lwd=12, cex.axis =1.5, cex.lab = 2)
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Appendix 6

R code for implementing nine kernels under a Bayesian kernel BLUP approach with
only genotypic effects in the predictor (Table 8.6).

rm(list=ls())
library(BGLR)
load('dat_ls_E1.RData',verbose=TRUE)
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
#Marker data
dat_M = dat_ls$dat_M
dim(dat_M)

dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F,5)
dim(dat_F)

#Matrix design of markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
XM = scale(XM)
dim(XM)

n = dim(dat_F)[1]
y = dat_F$y

#10 random partitions
K = 10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))

Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)

#GBLUP=Linear kernel
dat_M = scale(dat_M)
G = tcrossprod(dat_M)/dim(dat_M)[2]
dim(G)
#Matrix design of GIDs
Z = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))
Ga = Z%*%G%*%t(Z)
ETA_GB = list(list(model='RKHS',K = Ga))
#Tab = data.frame(PT = 1:K,MSEP = NA)
set.seed(1)
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
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y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_GB,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_GB[k] = mean((y[Pos_tst]-yp_ts)^2)

}

mean(Tab$MSEP_GB)
sd(Tab$MSEP_GB)

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, p=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^p}

K.poly=K.polynomial(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))
dim(K.poly)
K.poly.Exp= Z%*%K.poly%*%t(Z)
ETA_K.poly = list(list(model='RKHS',K=K.poly.Exp))

for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.poly,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_Poly[k] = mean((y[Pos_tst]-yp_ts)^2)

}

mean(Tab$MSEP_Poly)
sd(Tab$MSEP_Poly)
cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1, b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
K.sig=K.sigmoid(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))
#K.sig=K.sig+diag(599)*0.1

K.sig.Exp= Z%*%K.sig%*%t(Z)
ETA_K.sig = list(list(model='RKHS',K=K.sig.Exp))
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.sig,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_sig[k] = mean((y[Pos_tst]-yp_ts)^2)

}
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mean(Tab$MSEP_sig)
sd(Tab$MSEP_sig)
cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

########Gaussian or Radial Kernel############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
K.rad=K.radial(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.rad)

K.Gauss.Exp= Z%*%K.rad%*%t(Z)
ETA_K.Gauss = list(list(model='RKHS',K=K.Gauss.Exp))
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.Gauss,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_Gauss[k] = mean((y[Pos_tst]-yp_ts)^2)

}

mean(Tab$MSEP_Gauss)
sd(Tab$MSEP_Gauss)
cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

K.exp=K.exponential(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.exp)

K.Expo.Exp= Z%*%K.exp%*%t(Z)
ETA_K.Expo = list(list(model='RKHS',K=K.Expo.Exp))
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.Expo,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_Expo[k] = mean((y[Pos_tst]-yp_ts)^2)

}
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mean(Tab$MSEP_Expo)
sd(Tab$MSEP_Expo)
cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

############Arc-cosine kernel with deep=1#######
K.AK1<-function(X){
n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)

return(GC1)
}

AK1<-K.AK1(dat_M)

K.AK1.Exp= Z%*%AK1%*%t(Z)
ETA_K.AK1 = list(list(model='RKHS',K=K.AK1.Exp))
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.AK1,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_AK1[k] = mean((y[Pos_tst]-yp_ts)^2)

}

mean(Tab$MSEP_AK1)
sd(Tab$MSEP_AK1)
cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

####Arc-cosine kernel with deep=2#####
AK_L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC

for ( l in 1:nl){

Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1
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angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)

GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)
*cos(angulo))

}

GC<-GC/median(GC)

rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}

AK2<-AK_L(GC=AK1,nl=2)
K.AK2.Exp= Z%*%AK2%*%t(Z)
ETA_K.AK2 = list(list(model='RKHS',K=K.AK2.Exp))
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.AK2,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_AK2[k] = mean((y[Pos_tst]-yp_ts)^2)

}

mean(Tab$MSEP_AK2)
sd(Tab$MSEP_AK2)
cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

#######Arc-cosine kernel with deep=3
AK3<-AK_L(GC=AK1,nl=3)
K.AK3.Exp= Z%*%AK3%*%t(Z)
ETA_K.AK3 = list(list(model='RKHS',K=K.AK3.Exp))
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.AK3,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_AK3[k] = mean((y[Pos_tst]-yp_ts)^2)

}

mean(Tab$MSEP_AK3)
sd(Tab$MSEP_AK3)
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cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

#######Arc-cosine kernel with deep=4
AK4<-AK_L(GC=AK1,nl=4)
K.AK4.Exp= Z%*%AK4%*%t(Z)
ETA_K.AK4 = list(list(model='RKHS',K=K.AK4.Exp))
for(k in 1:K)
{
Pos_tst = PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.AK4,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab$MSEP_AK4[k] = mean((y[Pos_tst]-yp_ts)^2)

}

mean(Tab$MSEP_AK4)
sd(Tab$MSEP_AK4)
cor(y[Pos_tst],yp_ts)
plot(y[Pos_tst],yp_ts);abline(a=0,b=1)

write.csv(Tab,file='Tab_MSEP-Ex1-Kernels.csv',row.names = FALSE)

Appendix 7

R code for implementing seven kernels under a Bayesian kernel BLUP approach
with effects of environment + genotype + genotype �environment interaction in the
predictor (Table 8.7).

rm(list=ls())
library(BGLR)
library(BMTME)
load('dat_ls_E2.RData',verbose=TRUE)
#Phenotypic data
dat_F = dat_ls$dat_F
head(dat_F)
dim(dat_F)
#Marker data
dat_M = dat_ls$dat_M
dim(dat_M)

dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F)

head(dat_F,5)
#Matrix design for markers
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Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
dim(XM)
XM = scale(XM)
#Environment design matrix
XE = model.matrix(~0+Env,data=dat_F)[,-1]
K.E=XE%*%t(XE)
dim(K.E)

#GID design matrix and Environment-GID design matrix
#for RKHS models
Z_L = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))

n=dim(dat_F)[1]
y=dat_F$y

#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))

########Linear kernel=GBLUP
dat_M=scale(dat_M)
G=tcrossprod(dat_M)/dim(dat_M)[2]
dim(G)
#Covariance matrix for Zg
K_L=Z_L%*%G%*%t(Z_L)
#Covariance matrix for random effects ZEg
K_LE= K.E*K_L

ETA_K.Linear=list(list(model='FIXED',X=XE),list(model='RKHS',
K=K_L),

list(model='RKHS',K=K_LE))

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, p=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^p}

K.poly=K.polynomial(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))
dim(K.poly)
K.poly.Exp=Z_L%*%K.poly%*%t(Z_L)

#Covariance matrix for random effects ZEg
K.GE.poly= K.E*K.poly.Exp
ETA_K.poly = list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
poly.Exp),

list(model='RKHS',K=K.GE.poly))

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1, b=0)
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{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
K.sig=K.sigmoid(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))

K.sig.Exp= Z_L%*%K.sig%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.sig= K.E*K.sig.Exp
ETA_K.sig = list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
sig.Exp),

list(model='RKHS',K=K.GE.sig))

########Gaussian or Radial Kernel############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
K.rad=K.radial(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.rad)

K.Gauss.Exp= Z_L%*%K.rad%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.Gauss=K.E*K.Gauss.Exp
ETA_K.Gauss=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
Gauss.Exp),

list(model='RKHS',K=K.GE.Gauss))

########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

K.exp=K.exponential(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.exp)
K.Expo.Exp= Z_L%*%K.exp%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.Exp=K.E*K.Expo.Exp
ETA_K.Exp=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
Expo.Exp),

list(model='RKHS',K=K.GE.Exp))
############Arc-cosine kernel with deep=1#######
K.AK1<-function(X){
n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)

return(GC1)
}
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AK1<-K.AK1(dat_M)

K.AK1.Exp= Z_L%*%AK1%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.AK1=K.E*K.AK1.Exp
ETA_K.AK1=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
AK1.Exp),

list(model='RKHS',K=K.GE.AK1))
####Arc-cosine kernel with deep=4#####
AK_L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC

for ( l in 1:nl){
Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1
angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)
GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)

*cos(angulo))
}
GC<-GC/median(GC)

rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}

AK4<-AK_L(GC=AK1,nl=4)
K.AK4.Exp= Z_L%*%AK4%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.AK4=K.E*K.AK4.Exp
ETA_K.AK4=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
AK4.Exp),

list(model='RKHS',K=K.GE.AK4))

Tab1_m = data.frame(PT = 1:K,MSEP = NA)
Tab1_MSE = data.frame(PT = 1:K,MSEP = NA)
Tab1_Cor = data.frame(PT = 1:K,MSEP = NA)
for(k in 1:K)
{
set.seed(1)
Pos_tst =PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.Linear,nIter = 1e4,burnIn = 1e3,verbose =

FALSE)
yp_ts = A$yHat[Pos_tst]
Tab1_MSE$Linear[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_Cor$Linear[k] = cor(y[Pos_tst],yp_ts)
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A = BGLR(y=y_NA,ETA=ETA_K.poly,nIter = 1e4,burnIn = 1e3,verbose =
FALSE)

yp_ts = A$yHat[Pos_tst]
Tab1_MSE$poly[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_Cor$poly[k] = cor(y[Pos_tst],yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.sig,nIter = 1e4,burnIn = 1e3,verbose =
FALSE)

yp_ts = A$yHat[Pos_tst]
Tab1_MSE$sig[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_Cor$sig[k] = cor(y[Pos_tst],yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.Gauss,nIter = 1e4,burnIn = 1e3,verbose =
FALSE)

yp_ts = A$yHat[Pos_tst]
Tab1_MSE$Gauss[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_Cor$Gauss[k] = cor(y[Pos_tst],yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.Exp,nIter = 1e4,burnIn = 1e3,verbose =
FALSE)

yp_ts = A$yHat[Pos_tst]
Tab1_MSE$Exp[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_Cor$Exp[k] = cor(y[Pos_tst],yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.AK1,nIter = 1e4,burnIn = 1e3,verbose =
FALSE)

yp_ts = A$yHat[Pos_tst]
Tab1_MSE$AK1[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_Cor$AK1[k] = cor(y[Pos_tst],yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.AK4,nIter = 1e4,burnIn = 1e3,verbose =
FALSE)

yp_ts = A$yHat[Pos_tst]
Tab1_MSE$AK4[k] = mean((y[Pos_tst]-yp_ts)^2)
Tab1_Cor$AK4[k] = cor(y[Pos_tst],yp_ts)

}
Tab1_MSE
apply(Tab1_MSE[,-c(1:2)],2,mean)
write.csv(Tab1_MSE,file="Tab_MSEP.Ex2_kernels_New.csv")

Appendix 8

R code for implementing seven kernels under a Bayesian kernel BLUP with a binary
response variable with effects of environment + genotype + genotype�environment
interaction in the predictor (Table 8.8).

rm(list=ls())
library(BGLR)
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library(BMTME)
load('Data_Toy_EYT.RData',verbose=TRUE)
ls()
#Phenotypic data
dat_F =Pheno_Toy_EYT
head(dat_F)
dim(dat_F)
#Marker data
dat_M =t(chol(G_Toy_EYT))
dim(dat_M)

dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F)

head(dat_F,5)
#Matrix design for markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]

XM =XM
#Environment design matrix
XE = model.matrix(~0+Env,data=dat_F)[,-1]
K.E=XE%*%t(XE)
dim(K.E)

#GID design matrix for lines
Z_L = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))
n=dim(dat_F)[1]
y=dat_F$Height

#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))

########Linear kernel=GBLUP
G=G_Toy_EYT
dim(G)
#Covariance matrix for lines
K_L=Z_L%*%G%*%t(Z_L)
#Covariance matrix for GE term
K_LE= K.E*K_L
##########Predictor
ETA_K.Linear=list(list(model='FIXED',X=XE),list(model='RKHS',
K=K_L),

list(model='RKHS',K=K_LE))

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, p=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^p}
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K.poly=K.polynomial(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))
dim(K.poly)
K.poly.Exp=Z_L%*%K.poly%*%t(Z_L)

#Covariance matrix for GE term
K.GE.poly= K.E*K.poly.Exp
ETA_K.poly = list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
poly.Exp),

list(model='RKHS',K=K.GE.poly))

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1, b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
K.sig=K.sigmoid(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))

K.sig.Exp= Z_L%*%K.sig%*%t(Z_L)
#Covariance matrix for GE term
K.GE.sig= K.E*K.sig.Exp
ETA_K.sig = list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
sig.Exp),

list(model='RKHS',K=K.GE.sig))

########Gaussian or Radial Kernel############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
K.rad=K.radial(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.rad)

K.Gauss.Exp= Z_L%*%K.rad%*%t(Z_L)
#Covariance matrix for GE term
K.GE.Gauss=K.E*K.Gauss.Exp
ETA_K.Gauss=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
Gauss.Exp),

list(model='RKHS',K=K.GE.Gauss))

########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

K.exp=K.exponential(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.exp)
K.Expo.Exp= Z_L%*%K.exp%*%t(Z_L)
#Covariance matrix for GE term
K.GE.Exp=K.E*K.Expo.Exp
ETA_K.Exp=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
Expo.Exp),

list(model='RKHS',K=K.GE.Exp))
############Arc-cosine kernel with deep=1#######
K.AK1<-function(X){
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n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)
return(GC1)

}

AK1<-K.AK1(dat_M)
K.AK1.Exp= Z_L%*%AK1%*%t(Z_L)
#Covariance matrix for GE term
K.GE.AK1=K.E*K.AK1.Exp
ETA_K.AK1=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
AK1.Exp),

list(model='RKHS',K=K.GE.AK1))
####Arc-cosine kernel with deep=4#####
AK_L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC

for ( l in 1:nl){

Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1
angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)
GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)

*cos(angulo))
}

GC<-GC/median(GC)

rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}

AK4<-AK_L(GC=AK1,nl=4)
K.AK4.Exp= Z_L%*%AK4%*%t(Z_L)
#Covariance matrix for GE term
K.GE.AK4=K.E*K.AK4.Exp
ETA_K.AK4=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
AK4.Exp),

list(model='RKHS',K=K.GE.AK4))
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Tab1_PCCC = data.frame(PT = 1:K,PCCC = NA)

for(k in 1:K) {
set.seed(1)
Pos_tst =PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA_K.Linear,response_type="ordinal",nIter =

1e4,burnIn = 1e3,verbose = FALSE)
Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)-1
Tab1_PCCC$Linear[k] = 1-mean(y[Pos_tst]!=yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.poly,response_type="ordinal",nIter =
1e4,burnIn = 1e3,verbose = FALSE)

Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)-1
Tab1_PCCC$poly[k] = 1-mean(y[Pos_tst]!=yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.sig,response_type="ordinal",nIter = 1e4,
burnIn = 1e3,verbose = FALSE)

Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)-1
Tab1_PCCC$sig[k] = 1-mean(y[Pos_tst]!=yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.Gauss,response_type="ordinal",nIter =
1e4,burnIn = 1e3,verbose = FALSE)

Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)-1
Tab1_PCCC$Gauss[k] = 1-mean(y[Pos_tst]!=yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.Exp,response_type="ordinal",nIter = 1e4,
burnIn = 1e3,verbose = FALSE)

Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)-1
Tab1_PCCC$Exp[k] = 1-mean(y[Pos_tst]!=yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.AK1,response_type="ordinal",nIter = 1e4,
burnIn = 1e3,verbose = FALSE)

Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)-1
Tab1_PCCC$AK1[k] = 1-mean(y[Pos_tst]!=yp_ts)

A = BGLR(y=y_NA,ETA=ETA_K.AK4,response_type="ordinal",nIter = 1e4,
burnIn = 1e3,verbose = FALSE)

Probs = A$probs[Pos_tst,]
yp_ts = apply(Probs,1,which.max)-1
Tab1_PCCC$AK4[k] = 1-mean(y[Pos_tst]!=yp_ts)

}
Tab1_PCCC
apply(Tab1_PCCC[,-c(1:2)],2,mean)

write.csv(Tab1_PCCC,file="Tab_PCCC.Ex3_kernels_Final.csv")
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Appendix 9

R code for implementing seven kernels under a multi-trait Bayesian kernel BLUP
with a Gaussian response variable with effects of environment + genotype + geno-
type �environment interaction in the predictor (Table 8.10).

rm(list=ls())
library(BGLR)
library(BMTME)
library(BGLR)
library(plyr)
library(tidyr)
library(dplyr)
load('Data_Toy_EYT.RData',verbose=TRUE)
ls()
#Phenotypic data
dat_F =Pheno_Toy_EYT
head(dat_F)
dim(dat_F)
#Marker data
dat_M =t(chol(G_Toy_EYT))
dim(dat_M)

dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F)

head(dat_F,5)
#Matrix design for markers
Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[Pos,]
dim(XM)
XM =XM
#Environment design matrix
XE = model.matrix(~0+Env,data=dat_F)[,-1]
K.E=XE%*%t(XE)

#GID design matrix of lines
Z_L = model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))

n=dim(dat_F)[1]
head(dat_F)
y=dat_F[,3:6]
head(y)

#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))
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########Linear kernel=GBLUP
G=G_Toy_EYT
dim(G)
#Covariance matrix for Zg
K_L=Z_L%*%G%*%t(Z_L)
#Covariance matrix for random effects ZEg
K_LE= K.E*K_L

ETA_K.Linear=list(list(model='FIXED',X=XE),list(model='RKHS',
K=K_L),

list(model='RKHS',K=K_LE))

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, p=3){
(gamma*(as.matrix(x1)%*%t(x2))+b)^p}

K.poly=K.polynomial(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))
dim(K.poly)
K.poly.Exp=Z_L%*%K.poly%*%t(Z_L)

#Covariance matrix for GE
K.GE.poly= K.E*K.poly.Exp
ETA_K.poly = list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
poly.Exp),

list(model='RKHS',K=K.GE.poly))

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1, b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }
K.sig=K.sigmoid(x1=dat_M,x2=dat_M,gamma=1/ncol(dat_M))

K.sig.Exp= Z_L%*%K.sig%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.sig= K.E*K.sig.Exp
ETA_K.sig = list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
sig.Exp),

list(model='RKHS',K=K.GE.sig))

########Gaussian or Radial Kernel############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}
K.rad=K.radial(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.rad)

K.Gauss.Exp= Z_L%*%K.rad%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.Gauss=K.E*K.Gauss.Exp
ETA_K.Gauss=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
Gauss.Exp),

list(model='RKHS',K=K.GE.Gauss))
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########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

K.exp=K.exponential(x1=dat_M,x2=dat_M, gamma=1/ncol(dat_M))
dim(K.exp)
K.Expo.Exp= Z_L%*%K.exp%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.Exp=K.E*K.Expo.Exp
ETA_K.Exp=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
Expo.Exp),

list(model='RKHS',K=K.GE.Exp))
############Arc-cosine kernel with deep=1#######
K.AK1<-function(X){
n<-nrow(X)
cosalfa<-cor(t(X))
angulo<-acos(cosalfa)
mag<-sqrt(apply(X,1,function(x) crossprod(x)))
sxy<-tcrossprod(mag)
GC1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,n,n)-angulo)*cosalfa)
GC1<-GC1/median(GC1)
colnames(GC1)<-rownames(X)
rownames(GC1)<-rownames(X)

return(GC1)
}

AK1<-K.AK1(dat_M)

K.AK1.Exp= Z_L%*%AK1%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.AK1=K.E*K.AK1.Exp
ETA_K.AK1=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
AK1.Exp),

list(model='RKHS',K=K.GE.AK1))
####Arc-cosine kernel with deep=4#####
AK_L<-function(GC,nl){
n<-nrow(GC)
GC1<-GC

for ( l in 1:nl){
Aux<-tcrossprod(diag(GC))
cosalfa<-GC*(Aux^(-1/2))
cosa<-as.vector(cosalfa)
cosa[which(cosalfa>1)]<-1

angulo<-acos(cosa)
angulo<-matrix(angulo,n,n)
GC<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,n,n)-angulo)

*cos(angulo))
}
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GC<-GC/median(GC)
rownames(GC)<-rownames(GC1)
colnames(GC)<-colnames(GC1)
return(GC)

}

AK4<-AK_L(GC=AK1,nl=4)
K.AK4.Exp= Z_L%*%AK4%*%t(Z_L)
#Covariance matrix for random effects ZEg
K.GE.AK4=K.E*K.AK4.Exp
ETA_K.AK4=list(list(model='FIXED',X=XE),list(model='RKHS',K=K.
AK4.Exp),

list(model='RKHS',K=K.GE.AK4))

source('PC_MM.R')#See below

Tab1_Metrics = data.frame()

for(k in 1:K) {
#k=1
set.seed(1)
Pos_tst =PT[,k]
y_NA = data.matrix(y)
y_NA[Pos_tst,] = NA

A1= Multitrait(y = y_NA, ETA=ETA_K.Linear,resCov = list(type ="UN",
S0=diag(4),df0= 5),

nIter =10000, burnIn = 1000)
Me_linear= PC_MM_f(y[Pos_tst,],A1$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
Me_linear

A2= Multitrait(y = y_NA, ETA=ETA_K.poly,resCov = list(type ="UN",
S0=diag(4),df0= 5),

nIter =10000, burnIn = 1000)
Me_poly= PC_MM_f(y[Pos_tst,],A2$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
Me_poly

A3= Multitrait(y = y_NA, ETA=ETA_K.sig,resCov = list(type ="UN",
S0=diag(4),df0= 5),

nIter =10000, burnIn = 1000)
Me_sig= PC_MM_f(y[Pos_tst,],A3$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
Me_sig

A4= Multitrait(y = y_NA, ETA=ETA_K.Gauss,resCov = list(type ="UN",
S0=diag(4),df0= 5),

nIter =10000, burnIn = 1000)
Me_Gauss= PC_MM_f(y[Pos_tst,],A4$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
Me_Gauss
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A5= Multitrait(y = y_NA, ETA=ETA_K.Exp,resCov = list(type ="UN",
S0=diag(4),df0= 5),

nIter =10000, burnIn = 1000)
Me_Exp= PC_MM_f(y[Pos_tst,],A5$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
Me_Exp

A6= Multitrait(y = y_NA, ETA=ETA_K.AK1,resCov = list(type ="UN",
S0=diag(4),df0= 5),

nIter =10000, burnIn = 1000)
Me_AK1= PC_MM_f(y[Pos_tst,],A6$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
Me_AK1

A7= Multitrait(y = y_NA, ETA=ETA_K.AK4,resCov = list(type ="UN",
S0=diag(4),df0= 5),

nIter =10000, burnIn = 1000)
Me_AK4= PC_MM_f(y[Pos_tst,],A7$ETAHat[Pos_tst,],Env=dat_F$Env

[Pos_tst])
Me_AK4
Tab1_Metrics=rbind(Tab1_Metrics, data.frame(Fold=k,

Trait=Me_linear[,1],Env=Me_linear[,2],MSE_linear=Me_linear[,4],
MSE_poly=Me_poly[,4],MSE_sig=Me_sig[,4],MSE_Gauss=Me_Gauss[,4],
MSE_Exp=Me_Exp[,4],MSE_AK1=Me_AK1[,4],MSE_AK4=Me_AK4[,4]))
}

Tab1_Metrics
Tab_R = Tab1_Metrics%>%group_by(Env,Trait)%>%select(MSE_linear,
MSE_poly,MSE_sig,MSE_Gauss,MSE_Exp,MSE_AK1,MSE_AK4)%>%summarise
(Linear= mean(MSE_linear),

Polynomial= mean(MSE_poly),Sigmoid= mean(MSE_sig),Gaussian= mean
(MSE_Gauss),Exponential= mean(MSE_Exp),AK1= mean(MSE_AK4),AK4= mean
(MSE_AK4))
Tab_R = as.data.frame(Tab_R)
Tab_R

write.csv(Tab_R, file="Tab_R_MSE_C.Ex5_kernels_multi_trait_Final.
csv")

Appendix 10

R code for implementing the approximate kernel method proposed by Cuevas et al.
(2020) with the wheat599 data set (Table 8.11).

rm(list=ls())
library(rrBLUP) #load rrBLUP
library(BGLR) #load BLR
data(wheat) #load wheat data
X=wheat.X
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XF=scale(wheat.X)
rownames(XF)=1:599
dim(XF)
head(XF[,1:5])

############Linear kernel########################
Sparse_linear_kernel=function(m,X){
m=m
XF=X
p=ncol(XF)
pos_m=sample(1:nrow(XF),m)
####Step 1 compute K_m###############3
X_m=XF[pos_m,]
dim(X_m)
K_m=X_m%*%t(X_m)/p
dim(K_m)
######Step 2 compute K_n_m###########
K_n_m=XF%*%t(X_m)/p
dim(K_n_m)
######Step 3 compute eigenvalue decomposition of K_m######
EVD_K_m=eigen(K_m)
####Eigenvectors
U=EVD_K_m$vectors
###Eigenvalues###
S=EVD_K_m$values
####Square root of the inverse of eigenvalues #####
S_0.5_Inv=sqrt(1/S)
#####Diagonal matrix of square root of inverse of eigenvalues###
S_mat_Inv=diag(S_0.5_Inv)
######Computing matrix P
P=K_n_m%*%U%*%S_mat_Inv
return(P)}

#####K-fold cross-validation
n=nrow(XF)
No.folds=10
set.seed(2)
Grpv= findInterval(cut(sample(1:n,n),breaks=No.folds),1:n)
Grpv
Env_name=colnames(wheat.Y)
results_all_traits=data.frame()
for (t in 1:4){
t=t
rownames(wheat.Y)=1:599
y2=wheat.Y[,t]
mvec=c(15,32,74,132,264,599)
results_all=data.frame()

for (j in 1:6){
m=mvec[j]
P=Sparse_linear_kernel(m,X=XF)
results=data.frame()
start_time <- proc.time()

330 8 Reproducing Kernel Hilbert Spaces Regression and Classification Methods



for(r in 1:No.folds) {
y1=y2
positionTST=which(Grpv==r)
positionTRN=which(Grpv!=r)
y1[positionTST] = NA
ETA=list(list(model='BRR',X=P))
A=BGLR(y=y1,ETA=ETA,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yHat= A$yHat[positionTST]
MSE=mean((y2[positionTST]-yHat)^2)
Cor=cor(y2[positionTST],yHat)
results=rbind(results,data.frame(MSE=MSE, Cor=Cor))
}

Summary=apply(results,2,mean)
end_time <- proc.time()
Time=c(end_time[1] - start_time[1])
Time
results_all=rbind(results_all,data.frame(m=m, MSE=Summary[1],
Cor=Summary[2], Time=Time))
}
results_all
results_all_traits=rbind(results_all_traits,data.frame
(results_all))
}
results_all_traits
write.csv(results_all_traits,file="Table8.11_Final.csv")

Appendix 11

R code for implementing the approximate kernel method with five kernels with the
Data_Toy_EYT data set (Table 8.13).

rm(list=ls())
library(BGLR)
library(BMTME)
load('Data_Toy_EYT.RData',verbose=TRUE)
ls()
#Phenotypic data
dat_F =Pheno_Toy_EYT
head(dat_F)
dim(dat_F)
#Marker data as Cholesky of the genomic relationship matrix
dat_M =t(chol(G_Toy_EYT))
dim(dat_M)

dat_F = transform(dat_F, GID = as.character(GID))
head(dat_F)

head(dat_F,5)
#Matrix design for markers
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Pos = match(dat_F$GID,row.names(dat_M))
XM = dat_M[unique(Pos),]
dim(XM)

########Gaussian Kernel function############
l2norm=function(x){sqrt(sum(x^2))}
K.radial=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j])^2)))}

########Polynomial Kernel############
K.polynomial=function(x1, x2=x1, gamma=1, b=0, d=3)
{ (gamma*(as.matrix(x1)%*%t(x2))+b)^d}

########Sigmoid Kernel############
K.sigmoid=function(x1,x2=x1, gamma=1, b=0)
{ tanh(gamma*(as.matrix(x1)%*%t(x2))+b) }

########Exponential Kernel############
K.exponential=function(x1,x2=x1, gamma=1){
exp(-gamma*outer(1:nrow(x1 <- as.matrix(x1)), 1:ncol(x2 <- t(x2)),

Vectorize(function(i, j) l2norm(x1[i,]-x2[,j]))))}

###########Approximate Guassian Kernel########################
Sparse_kernel=function(m,X,name){
m=m
XF=X
p=ncol(XF)
pos_m=sample(1:nrow(XF),m)
####Step 1 compute K_m###############3
X_m=XF[pos_m,]
dim(X_m)
if (name=="Linear") {
K_m=X_m%*%t(X_m)/p
######Step 2 compute K_n_m###########
K_n_m=XF%*%t(X_m)/p

} else if (name=="Polynomial") {
K_m=K.polynomial(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 compute K_n_m###########
K_n_m=K.polynomial(x1=XF,x2=X_m,gamma=1/p)

} else if (name=="Sigmoid") {
K_m=K.sigmoid(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 compute K_n_m###########
K_n_m=K.sigmoid(x1=XF,x2=X_m,gamma=1/p)

}else if (name=="Gaussian") {
K_m=K.radial(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 compute K_n_m###########
K_n_m=K.radial(x1=XF,x2=X_m,gamma=1/p)

} else {
K_m=K.exponential(x1=X_m,x2=X_m,gamma=1/p)
######Step 2 compute K_n_m###########
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K_n_m=K.exponential(x1=XF,x2=X_m,gamma=1/p)
}

######Step 3 compute eigenvalue decomposition of K_m######
EVD_K_m=eigen(K_m)
####Eigenvectors
U=EVD_K_m$vectors
###Eigenvalues###
S=EVD_K_m$values
####Square root of the inverse of eigenvalues #####
S_0.5_Inv=sqrt(1/S)
#####Diagonal matrix of square root of inverse of eigenvalues###
S_mat_Inv=diag(S_0.5_Inv)
######Computing matrix P
P=K_n_m%*%U%*%S_mat_Inv
return(P)}

#Environment design matrix
XE = model.matrix(~0+Env,data=dat_F)

#####Design matrix of lines
Z_L=model.matrix(~0+GID,data=dat_F,xlev = list(GID=unique
(dat_F$GID)))
dim(Z_L)
############Total observations in the data set and response variable
n=dim(dat_F)[1]
y=dat_F$GY

#Number of random partitions
K=10
set.seed(1)
PT = replicate(K,sample(n,0.20*n))
####Trainig sample size of lines m that will be used for training the
model
mvec=c(round(40*0.1),round(40*0.2),round(40*0.3),round(40*0.4),
round(40*0.5),round(40*1))
mvec
kernel_name=c("Linear","Polynomial", "Sigmoid", "Gaussian",
"Exponential")
results_all_kernels=data.frame()
for (i in 1:5) {
results_all=data.frame()
for (j in 1:6){
m=mvec[j]
P_Lines=Sparse_kernel(m=m,X=XM,name=kernel_name[i])
Z_Lines_Sparse=Z_L%*%P_Lines
#####Design matrix of lines x Environment interaction
Z_LE = model.matrix(~0+Z_Lines_Sparse:Env,data=dat_F)

ETA=list(list(model='FIXED',X=XE[,-1]),list(model='BRR',
X=Z_Lines_Sparse),

list(model='BRR',X=Z_LE))
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Tab1_Metrics= data.frame(PT = 1:K,MSE = NA)
start_time <- proc.time()
for(k in 1:K) {
Pos_tst =PT[,k]
y_NA = y
y_NA[Pos_tst] = NA
A = BGLR(y=y_NA,ETA=ETA,nIter = 1e4,burnIn = 1e3,verbose = FALSE)
yp_ts = A$yHat
Tab1_Metrics$MSE[k] = mean((y[Pos_tst]-yp_ts[Pos_tst])^2)
Tab1_Metrics$Cor[k] = cor(y[Pos_tst],yp_ts[Pos_tst])

}
end_time <- proc.time()
Time=c(end_time[1] - start_time[1])
Metrics=apply(Tab1_Metrics[,-c(1)],2,mean)
results_all=rbind(results_all,data.frame(m=m, MSE=Metrics[1],
Cor=Metrics[2], Time=Time))
}
results_all_kernels=rbind(results_all_kernels,data.frame
(kernel=kernel_name[i], t(results_all)))

}
results_all_kernels
write.csv(results_all_kernels,
file="Table_8.13_results_kernels_Final.csv")
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