
Chapter 4
Overfitting, Model Tuning, and Evaluation
of Prediction Performance

4.1 The Problem of Overfitting and Underfitting

The overfitting phenomenon occurs when the statistical machine learning model
learns the training data set so well that it performs poorly on unseen data sets. In
other words, this means that the predicted values match the true observed values in
the training data set too well, causing what is known as overfitting. Overfitting
happens when a statistical machine learning model learns the systematic and noise
(random fluctuations) parts in the training data to the extent that it negatively impacts
the performance of the statistical machine learning model on new data. This means
that the statistical machine learning model adapts very well to the noise as well as to
the signal that is present in the training data. The problem is that these concepts do
not apply to independent (new) data and negatively affect the model’s ability to
generalize. Overfitting is more probable when learning a loss function from a
complex statistical machine learning model (with more flexibility). For this reason,
many nonparametric statistical machine learning models also include constraints in
the loss function to improve the learning process of the statistical machine learning
models. For example, artificial neural networks (ANN), mentioned later, are a
nonparametric statistical machine learning model that is very flexible and is subject
to overfitting training data. This problem can be addressed by dropping out (setting
to zero) the weights of a certain percentage of hidden units in order to avoid
overfitting.

On the other hand, an underfitted phenomenon occurs when few predictors are
included in the statistical machine learning model, i.e., it is a very simple model that
poorly represents the complete picture of the predominant data pattern. This problem
also arises when the training data set is too small or not representative of the
population data. An underfitted model does a poor job of fitting the training data
and for this reason it is not expected to satisfactorily predict new data points. This
implies that the predictions using unseen data are weak, since individuals are
perceived as strangers unfamiliar with the training data set.
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Consider a scattered series of points (y1, x1), . . ., (yn, xn), on a plane, to which we
want to adjust a statistical machine learning method. This means that we are looking
for the best f(xi) that explains the existing relationship between the response variable
(yi) and the predictors (x1, . . ., xn). We assume that we have three options for f(xi):
M1, the simple model plotted in Fig. 4.1a; M2, an intermediate model shown in
Fig. 4.1b; and M3, a complex model shown in Fig. 4.1c.

Under the classification framework, the first panel in Fig. 4.1 (left side, panel a)
shows an unsatisfactory fit (underfitted) since the line does not cover most of the
points (has high bias) in the plot. As such, we expect that the prediction of unseen
data of this model, M1, will perform badly. In contrast, panel c of Fig. 4.1 shows an
almost perfect fit, since the predicted line covers all the data points. While at first
glance, you may think that model M3 will perform well when predicting unseen
data, this is actually untrue since the predicted line covers all points that are noise and
those that are signal (overfit); for this reason, this type of model also performs poorly
in the prediction of future data due to its complexity and high variance. Therefore,
the best option for predicting unseen data is model M2 (Fig. 4.1, panel b) since it
represents the predominant (smooth) pattern enough to represent the apparent data
pattern while maintaining a balance between bias and variance. For this reason, a
well-fitted model is one that faithfully represents the sought-after predominant
pattern in the data, while ignoring the idiosyncrasies in the training data. As such,
a well-fitted model in the testing set should be in the neighborhood of the model’s
accuracy based on the training data set, that is, the model’s accuracy in the testing set
should be approximately equal to that of the model’s accuracy in the training set. In
contrast, an overfitted model in the testing data set will be far from the neighborhood
of the model’s accuracy based on the training data set, and usually its prediction
performance is very high (good) in the training set and consequently low (bad) in the
testing set (Ratner 2017).

The paradox of overfitting is defined as complex models that contain more
information about the training data, but less information about the testing data
(future data we want to predict). In statistical machine learning, overfitting is a
major issue and leads to some serious problems in research: (a) some relationships

Fig. 4.1 Schematic illustration of three models for classification: (a) M1 with underfitting, (b) M2
with appropriate fitting, and (c) M3 with overfitting
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that seem statistically significant are only noise, (b) the complexity of the statistical
machine learning model is very large for the amount of data provided, and (c) the
model in general is not replicable and predicts poorly.

Since the main goal of developing and implementing statistical machine learning
methods is to predict unseen data not used for training the statistical machine
learning algorithm, researchers are mainly interested in minimizing the testing
error (generalization error applicable to future samples) instead of minimizing the
training error that is applicable to the observed data used for training the statistical
machine learning algorithm.

According to Shalev-Shwartz and Ben-David (2014), if the learning fails, these
are some approaches to follow:

1. Increase the sample size of the training set.
2. Modify the hypothesis by (a) enlarging it, (b) reducing it, (c) completely changing

it, and (d) changing the parameters being used. We understand a hypothesis as the
models and their parameters under evaluation. This point is very important to
reach a reasonable model for your data.

3. Change the feature representation of the data.
4. Change the statistical machine learning algorithm used.

4.2 The Trade-Off Between Prediction Accuracy andModel
Interpretability

Accuracy is the ability of a statistical machine learning model to make correct
predictions and those models with more complexity (called flexible models) are
better in terms of accuracy, while the simple, less complex models (called inflexible
models) are less accurate but more interpretable. Interpretability indicates to what
degree the model allows for human understanding of natural phenomena. For these
reasons, when the goal of the study is prediction, flexible models should be used;
however, when the goal of the study is inference, inflexible models are more
appropriate because they more easily interpret the relationship between the response
variables and the predictor variables. As the complexity of the statistical machine
learning model increases, the bias is reduced and the variance increases. For this
reason, when more parameters are included in the statistical machine learning model,
the complexity of the model increases and the variance becomes the main concern
while the bias steadily falls. For example, James et al. (2013) state that the linear
regression model is a relatively inflexible method because it only generates linear
functions, while the support vector machine method is one of the most flexible
statistical machine learning methods.

Before providing an analytical interpretation of the trade-off between the bias and
variance, we must understand the meaning of both concepts. Bias is the difference
between the expected prediction of our statistical machine learning model and the
true observed values. For example, assume that you poll a specific city where half of
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the population is high-income and the other half is low-income. If you collected a
sample of high-income people, you would conclude that the entire city has high
income. This means that your conclusion is heavily biased since you only sampled
people with high income. On the other hand, error variance refers to the amount that
the estimate of the objective function will change using a different training data set.
In other words, the error variance accounts for the deviation of predictions from one
repetition to another using the same training set. Ideally, when a statistical machine
learning model with low error variance predicts a value, the predicted value should
remain almost the same, even when changing from one training data set to another;
however, if the model has high variance, then the predicted values of the statistical
machine learning method are affected by the values of the data set. We provide a
graphical visualization of bias and variance with a bull’s eye diagram (see Fig. 4.2).
We assume that the center of the target is a statistical machine learning model that
perfectly predicts the correct answers. As we move away from the bull’s eye, our
predictions get worse. Let us assume that we can repeat our entire statistical machine
learning model building process to get a number of separate hits on the target. Each
hit represents an individual realization of our statistical machine learning model,
given the chance variability in the training data we gathered. Sometimes we accu-
rately predict the observations of interest since we captured a representative sample
in our training data, while other times we obtain unreliable predictions since our
training data may be full of outliers or nonrepresentative values. The four combina-
tions of cases resulting from both high and low bias and variance are shown in
Fig. 4.2.

Fig. 4.2 Graphical
representations of different
levels of bias and variance
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Burger (2018) concludes that the best scenario is the one with low bias and low
variance, since samples are acceptable representatives of the population (Fig. 4.2),
while in the case of high bias and low variance, the samples are fairly consistent, but
not particularly representative of the population (Fig. 4.2). However, when there is
low bias and high variance, the samples vary widely in their consistency, and only
some may be representative of the population (Fig. 4.2). Finally, with high bias and
high variance, the samples are somewhat consistent, but unlikely to be representa-
tive of the population (Fig. 4.2).

If we denote the variable we are trying to predict as y and our covariates as xi, we
may assume that there is a relationship between y and xi, as that given in Eq. (1.1)
from Chap. 1, where the error term is normally distributed with a mean of zero and
variance σ2. The expected prediction error for a new observation with value x, using
a quadratic loss function, is given by Hastie et al. (2008, page 223):

E y�bf xif g
� �2

¼E y� f xif gð Þ2þ E bf xif g
� �

� f xif g
� �2

þE bf xið Þ�E bf xif g
� �n o2

¼Var yð Þþ Bias bf xif g
� �h i2

þVar bf xið Þ
� �

¼Var Eð Þþ Bias bf xif g
� �h i2

þVar bf xið Þ
� �

,

where Bias is the result of misspecifying the statistical model f. Estimation variance
(the third term) is the result of using a sample to estimate f. The first term is the error
(irreducible error) that results even if the model is correctly specified and accurately
estimated. This irreducible error is the noise term in the true relationship that cannot
fundamentally be reduced by any model. Given the true model and infinite data to
train (calibrate) it, we should be able to reduce both the bias and variance terms to
0. However, in a world with imperfect models and finite data, there is a trade-off
between minimizing the bias and minimizing the variance. The above decomposition
reveals a source of the difference between explanatory and predictive modeling: In
explanatory modeling, the focus is on minimizing bias to obtain the most accurate
representation of the underlying theory. In contrast, predictive modeling seeks to
minimize the combination of bias and estimation variance, occasionally sacrificing
theoretical accuracy for improved empirical precision (Shmueli 2010).

These four aspects impact every step of the modeling process, such that the
resulting f is markedly different in the explanatory and predictive contexts.

Let us assume that f is a reasonable operationalization of the true function (F)
relating constructs X and Y. Choosing a function f � that is intentionally biased in
place of f is very undesirable from a theoretical–explanatory standpoint. However,
the election of f � is desirable to f under the prediction approach. We show this using
the statistical model y ¼ β1x1 + β2x2 + β3x3 + E, which is assumed to be correctly
specified with respect to F. Using data, we obtain the estimated model bf , which has
the following properties:
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Bias ¼ 0

Var bf xið Þ
� �

¼ Var bβ1x1 þ bβ2x2 þ bβ3x3� �
¼ σ2xT XXT

� �2 1
x,

where x is the vector x ¼ [x1, x2, x3]
T and X is the design matrix based on all

predictors. Combining the squared bias with the variance gives, as expected, the
prediction error (EPE).

E y�bf xif g
� �2

¼ σ2 þ 0þ σ2xT XXT
� �2 1

x= σ2 1þ xT XXT
� ��1

x
h i

:

In comparison, consider the estimated underspecified form bf � xið Þ ¼ x1bγ. The bias
and variance here are

Bias ¼ E bf xif g
� �

� f xif g ¼ x1 x1xT1
� ��1

xT1 β1x1 þ β2x2 þ β3x3ð Þ
� β1x1 þ β2x2 þ β3x3ð Þ

Var bf xið Þ
� �

¼ σ2x1 x1xT1
� ��1

xT1

Combining the squared bias with the variance EPE is equal to

E y�bf xif g
� �2

¼ x1 x1x
T
1

� ��1
xT1 x2β2 þ x3β3ð Þ � x2β2 þ x3β3ð Þ

h i2
þ σ2 1þ x1 x1x

T
1

� ��1
xT1

h i
:

Although the bias of the underspecified model f �(xi) is larger than that of f{xi}, its
variance can be smaller, and in some cases, so small that the overall EPE will be
lower for the underspecified model. Wu et al. (2007) showed the general result for an
underspecified linear regression model with multiple predictors. In particular, they
showed that the underspecified model that leaves out q predictors has a lower EPE
when the following inequality holds:

qσ2 > βT2X
T
2 I � H1ð ÞX2β2

This means that the underspecified model produces more accurate predictions, in
terms of lower EPE, in the following situations: (a) when the data are very noisy (large
σ2); (b) when the true absolute values of the excluded parameters (in our example, β2
and β3) are small; (c) when the predictors are highly correlated; and (d) when the
sample size is small or the range of left-out variables is small (Shmueli 2010).

Hagerty and Srinivasan (1991) nicely summarize this situation: “We note that the
practice in applied research of concluding that a model with a higher predictive
validity is “truer,” is not a valid inference. This paper shows that a parsimonious but
less true model can have a higher predictive validity than a truer but less parsimo-
nious model.”

114 4 Overfitting, Model Tuning, and Evaluation of Prediction Performance



4.3 Cross-validation

Cross-validation (CV) is a strategy for model selection or algorithm selection. CV
consists of splitting the data (at least once) for estimating the error of each algorithm.
Part of the data (the training set) is used for training each algorithm, and the
remaining part (the testing set) is used for estimating the error of the algorithm.
Then, CV selects the algorithm with the smallest estimated error. For this reason, CV
is used to evaluate the prediction performance of a statistical machine learning model
in out-of-sample data. This technique ensures that the data used for training the
statistical machine learning model are independent of the testing data set in which
the prediction performance is evaluated. It consists of repeating and recording the
arithmetic average obtained from the evaluation measures on different partitions.
Under k-fold CV, which is explained in greater detail later, this process is repeated a
total of k times, with each of the k groups getting the chance to play the role of the
test data, and the remaining k� 1 groups used as training data. In this way, we obtain
k different estimates of the prediction error. As prediction performance is reported
the average of these estimates of prediction error. CV is used in data analysis to
validate the implemented models where the main objective is prediction and to
estimate the prediction performance of a statistical learning model that will be
carried out in practice. In other words, CV evaluates how well the statistical machine
learning model generalized new data not used for training the model. The results of
the CV largely depend on how the division between the training and testing sets is
carried out. For this reason, in the following sections, we provide the more popular
types of CV used in the implementation of statistical learning models.

4.3.1 The Single Hold-Out Set Approach

The single hold-out set or validation set approach consists of randomly dividing the
available data set into a training set and a validation or hold-out set (Fig. 4.3). The
statistical machine learning model is trained with the training set while the hold-out

I1 I2 I3

I40 I5 I82...
Training

I62 I45

Complete data set

Testing
I88

In

Fig. 4.3 Schematic representation of the hold-out set approach. A set of observations are randomly
split into a training set with individuals I40, I5, I82, among others, and into a testing set with
observations I45, I88, among others. The statistical machine learning model is fitted on the training
set and its performance is evaluated on the validation set (James et al. 2013)
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set (testing set) is used to study how well that statistical machine learning model
performs on unseen data. For example, 80% of the data can be used for training the
model and the remaining 20% of the data for testing it. One weakness of the hold-out
(validation) set approach is that it depends on just one training-testing split and its
performance depends on how the data are split into the training and testing sets.

4.3.2 The k-Fold Cross-validation

In k-fold CV, the data set is randomly divided into k complementary folds (groups)
of approximately equal size. One of the subsets is used as testing data and the rest
(k� 1) as training data. Then k� 1 folds are used for training the statistical machine
learning model and the remaining fold for evaluating the out-of-sample prediction
performance. For these reasons, the statistical machine learning model is fitted
k times using a different partition (fold) as the testing set and the remaining k � 1
as the training set. Finally, the arithmetic mean of the k folds is obtained and reported
as the prediction performance of the statistical machine learning model (see Fig. 4.4).
This method is very accurate because it combines k measures of fitness resulting
from the k training and testing data sets into which the original data set was divided,
but at the cost of more computational resources. In practice, the choice of the number
of folds depends on the measurement of the data set, although 5 or 10 folds are the
most common choices.

Fig. 4.4 Schematic representation of the k-fold cross-validation with complementary subsets with
k ¼ 5
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It is important to point out that to reduce variability, we recommend
implementing the k-fold CV multiple times, each time using different complemen-
tary subsets to form the folds; the validation results are combined (e.g., averaged)
over the rounds (times) to give a better estimate of the statistical machine learning
model predictive performance.

4.3.3 The Leave-One-Out Cross-validation

The Leave-One-Out (or LOO) CV is very simple since each training data set is
created by including all the individuals except one, while the testing set only
includes the excluded individual. Thus, for n individuals in the full data set, we
have n different training and testing sets. This CV scheme wastes minimal data, as
only one individual is removed from the training set.

Regarding the k-fold cross-validation that was just explained, n models are built
from n individuals (samples) instead of k models, where n > k. Moreover, each
model is trained on n � 1 samples rather than (k � 1)n/k. In both cases, since k is
normally not too large and k < n, LOO is more computationally expensive than k-
fold cross-validation. In terms of prediction performance, LOO normally produces
high variance for the estimation of the test error. Because n � 1 of the n samples is
used to build each statistical machine learning model, those constructed from folds
are virtually identical to each other and to the model built from the entire training set.
However, when the learning curve is steep for the evaluated training size, then five-
or ten-fold cross-validation usually overestimates the generalization error.

Learning curves (LC) are considered effective tools to monitor the performance
of the employee exposed to a new task. LCs provide a mathematical representation
of the learning process that takes place as the task is repeated. In statistical machine
learning the LC is a line plot of learning (y-axis) over experience (x-axis). Learning
curves are extensively used in statistical machine learning for algorithms that learn
(their parameters) incrementally over time, such as deep neural networks. In
general, there is considerable empirical evidence suggesting that five- or ten-fold
cross-validation should be preferred to LOO.

4.3.4 The Leave-m-Out Cross-validation

The Leave-m-Out (LmO) CV is very similar to LOO as it creates all the possible
training/test sets by removing m samples from the complete set. For n samples, this

produces
n

m

 !
train-test pairs. Unlike LOO and k-fold, the test sets will overlap for

m > 1. For example, in a Leave-2-Out CV with a data set with four samples (I1, I2,
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I3, and I4), the total number of training-testing sets is equal to
4

2

 !
¼ 6; this means

that the six testing sets are: [I3, I4] [I1, I2], [I2, I4] [I1, I3], [I2, I3] [I1, I4], [I1, I4]
[I2, I3],[I1, I3] [I2, I4], and [I1,I2] [I3, I4], while the training sets are the comple-
mentary elements of each testing set.

4.3.5 Random Cross-validation

In this type of CV, the number of partitions (independent training-testing data set
splits) is defined by the user, and more partitions are better. Each partition is
generated by randomly dividing the whole data set into two subsets: the training
(TRN) data set and the testing (TST) data set. The percentage of the whole data set
assigned to the TRN and TST data sets is also fixed by the user. For example, for
each random partition, the user can decide that 80% of the whole data set can be
assigned to the TRN data set and the remaining 20% to the TST data set. Random
cross-validation is different from k-fold cross-validation because the partitions are
not mutually exclusive; this means that in the random cross-validation approach, one
observation can appear in more than one partition. Consequently, some samples
cannot be evaluated, whereas others can be evaluated more than once, meaning that
the testing and training subsets can be superimposed (Montesinos-López et al.
2018a, b). To control the randomness for reproducibility, we recommend using a
specific seed in the random number generator. We recommend using at least ten
random partitions to obtain enough accuracy in the estimate of prediction
performance.

4.3.6 The Leave-One-Group-Out Cross-validation

The Leave-One-Group-Out (LOGO) CV is useful when individuals are grouped
(in environments or years, or even another criterion), where the number of groups (g)
is at least two and the information of g � 1 groups are used as the training set while
all individuals of the remaining group are used as the testing set. For example, in the
context of genomic selection, when the plant breeder is interested in predicting these
lines in another environment, the same (or different) lines were frequently evaluated
in g environments or years, that represent the groups. Jarquín et al. (2017) denotes
this type of CV strategy as CV1 in the context of plant breeding. Under this
approach, the predictions are reported for each of the g groups because the scientist
is interested in the prediction performance of each environment. Many times, the
groups are the years under study and the aim is to predict the information of a
complete year. However, when the groups are years and if we suspect that there is a
considerable correlation between observations that are near in time. Therefore, it is
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imperative to evaluate our statistical machine learning model for time series data on
“future” observations. In this sense, the training sets are composed of the previous
years to predict the subsequent year. This method can also be seen as a variation of k-
fold CV, where the first folds are used for training the statistical machine learning
model and the fold (k + 1) is the corresponding testing set. The main difference in
this CV method is that successive training sets are supersets of those that come
before them. Also, it adds all surplus data to the first training partition, which is
always used to train the model (see Fig. 4.5).

Figure 4.5 shows that under this type of CV, for time series data, the predictions
are for g � 1 years; individuals from the first year are not predicted since a training
set is not available.

4.3.7 Bootstrap Cross-validation

First, we will define the bootstrapping method to understand how it is used in the CV
approach, which should then be straightforward. Bootstrapping is a type of
resampling method where, for example, B ¼ 10 samples of the same size are
repeatedly drawn, with replacement, from a single original sample. Afterward,
each of these B samples is used to estimate statistics (for example, the mean,
variance, median, minimum, etc.) of a population, and the average of all the
B sample estimates of the target statistic is reported as the final estimate. In the
context of statistical machine learning, these samples are used to evaluate the
prediction performance of the algorithm under study for unseen data. One important
difference between this CV approach and all the procedures explained above is that
now the training set has the same size (number of observations) as the original
sample because the bootstrap method replaced some individuals more than once.
According to Kuhn and Johnson (2013), as a result, some observations will be
represented multiple times in the bootstrap sample, while others will not be selected
at all; those observations not selected are referred to as the testing set, however, this
CV strategy is quite different than the previously explained. Efron (1983) pointed
out that the prediction performance of the bootstrap samples tends to have less
uncertainty than the k-fold cross-validation since on average, 63.2% of the data
points are represented (for training) at least once in any sample size. For this reason,

Fig. 4.5 Schematic representation of time series data with 5 years, using the previous year for
predicting the next year. However, in some practical applications, we are not interested in going too
far back in time since the training and testing sets will be less related the farther you go
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this CV approach has a bias similar to implementing a k¼ two fold cross-validation,
and as the training set becomes smaller, the bias becomes more problematic. To
understand this CV method, we provide a simple example of how the training and
testing samples are constructed. If we have a sample with 12 individuals denoted as
I1, I2, . . ., I12, we will select B ¼ 5 bootstrap samples. Each bootstrap sample is
obtained with replacement and the individuals that appear in each one correspond to
the training sample; those that are not present will correspond to the testing set.
Figure 4.6 provides the five bootstrap samples; each training sample has the same
size as the original, however, only some individuals appear in each bootstrap sample,
while those individuals that do not appear are included in the testing set. For
example, in the first fold, the training bootstrap sample contains seven different
individuals (I2, I3, I4, I6, I7, I8, and I9), while the testing set contains five
individuals (I1, I5, I10, I11, and I12). It is important to point out that since the
training sample has the same size as the original sample, some individuals in the
training sample are repeated at least twice; in the first fold, the individual I4 are
repeated three times, whereas I6, I7, and I8 are repeated twice. Finally, similar to
other methods, the statistical machine learning model is trained with each training
set; likewise, the prediction performance of the model is evaluated in each testing
set. The average of these sample predictions is reported as the estimated testing error.

4.3.8 Incomplete Block Cross-validation

Incomplete block (IB) CV should be used when there are J treatments evaluated in
I blocks and the same treatments are evaluated in all the blocks. The idea behind this

Fig. 4.6 Schematic representation of bootstrap cross-validation
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CV method is that some treatments should be present in some blocks but absent in
others, whereas the same treatment should be present in at least one environment
(block). The theory of incomplete block designs developed in the experimental
designs statistical area can be used to construct the training set. For example,
under a balanced incomplete block (BIB) design, the term incomplete means that
all treatments in each block cannot be evaluated, whereas balanced means that each
pair of treatments occur together λ times. The training set is constructed by first
defining the % of individuals in the TRN set using the equation sI ¼ Jr ¼ NTRN,
where J represents the number of treatments under study, I represents the number of
blocks under study, r denotes the number of repetitions of each treatment, and s
denotes the treatments per block. For example, suppose that we had J ¼ 10 treat-
ments and I ¼ 3 blocks (that is, 30 individuals), and we decided to use NTRN ¼ 21
(70%) of the total individuals in the TRN set. Therefore, the number of treatments by
block can be obtained by solving (sI¼ NTRN) for s, which results in s¼ NTRN/I. This
means that s ¼ 21/3 ¼ 7 treatments per block. Then, the corresponding elements for
the training set can be obtained with the function find.BIB(10, 3, 7) of the package
crossdes of the R statistical software. The numbers used in the function find.BIB()
denote the treatments, the blocks, and the treatments per block, respectively. Finally,
the treatments that make up the TRN set are shown in Table 4.1.

According to Table 4.1, it is clear that each treatment is present in two blocks and
missing in one block. For example, in Block 1 the testing set includes treatments 2, 4,
and 6; in Block 2, the testing set is composed of treatments 1, 8, and 10; and in Block
3, the testing set is composed of treatments 3, 5, and 9.

4.3.9 Random Cross-validation with Blocks

Random cross-validation with blocks was proposed by Lopez-Cruz et al. (2015) and
belongs to the so-called replicated TRN-TST cross-validation that appears in the
publication of Daetwyler et al. (2012), since some individuals can never be part of
the training set. This algorithm, like the incomplete block cross-validation, is
appropriate when we are interested in evaluating J lines in I blocks or environments
and tries to mimic a prediction problem faced by breeders in incomplete field trials
where lines are evaluated in some, but not all, target environments. The algorithm for
constructing the TRN-TST sets is described by the following steps: Step 1. Calculate
the total number of observations under study as N ¼ J � I; Step 2. Define the
proportion of observations used for training and testing, that is, PTRN and PTST; Step
3. Calculate the size of the testing set NTST¼ N� PTST; Step 4. Choose NTST lines at

Table 4.1 TRN data set for
I ¼ 3 blocks and J ¼ 10
treatments with 70% of data
for training

Block Treatments per block

1 1 3 5 7 8 9 10

2 2 3 4 5 6 7 9

3 1 2 4 6 7 8 10
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random without replacement if J � NTST, and with replacement otherwise; Step
5. Each chosen line will then be assigned to one of the I environments chosen at
random without replacement; Step 5. All the selected lines and environments will
form the training set, while the lines and environments that were not chosen will
form the corresponding testing set; and Step 6. Steps 1–5 are repeated depending on
the number of TRN-TST partitions required (Lopez-Cruz et al. 2015). This CV is
called CV2 in Jarquín et al. (2017). Next, we assume that we have ten lines or
treatments and three environments or blocks that will form the corresponding
training testing sets for only one partition: Step 1. The total number of observations
under study is N¼ 10� 3¼ 30; Step 2. We define PTRN ¼ 0.7 and PTST¼ 0.3; Step
3. The size of the testing set isNTST¼ 30� 0.3¼ 9; Step 4. Since J¼ 10�NTST¼ 9,
we selected the following lines at random without replacement: L1, L2, L3, L4, L5,
L6, L7, L8, L9, and L10; and Step 5. Each chosen line was assigned to one of the
I ¼ 3 environments randomly chosen without replacement, as shown in Table 4.2. It
is important to point out that this CV strategy only differs from the incomplete block
cross-validation in the way the lines are allocated to blocks.

4.3.10 Other Options and General Comments
on Cross-validation

It is important to highlight that when the data set is considerably large, it is better to
randomly split it into three parts: a training set, a validation set (or tuning set), and a
testing set. The training set and testing set are used as explained before, while the
validation (tuning set) set is used to estimate the prediction error for model selection,
which is the process of estimating the performance of different models in order to
choose the best one, or to evaluate the chosen statistical machine learning model
with a range of values of tuning hyperparameters to select the combination of
hyperparameters with the best prediction performance and then use these
hyperparameters (or best model) to evaluate the prediction performance in the testing
set (Fig. 4.7). It is important to point out that Fig. 4.7 shows only one random split of
the data in terms of the training, testing, and validation sets.

For example, assume that our data set has 50,000 rows (observations) and that we
have decided to use 5000 of them for the testing set and another 5000 for the
validation set. This means that 40,000 rows are left for the training set. At this
point, we train our statistical machine learning model with each component of the

Table 4.2 TRN-TST data sets for J ¼ 10 lines and I ¼ 3 environments

Environment Lines

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

1 TRN TST TRN TRN TST TRN TRN TST TRN TRN

2 TST TRN TRN TRN TRN TRN TST TRN TST TRN

3 TRN TRN TST TST TRN TRN TRN TRN TRN TST
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grid of hyperparameters of the training set and evaluate the prediction performance
on the validation set, as shown in the middle of Fig. 4.7. Finally, we will pick the best
model (best subset of hyperparameters) in terms of prediction performance in the
validation set and we are ready to evaluate the prediction performance in the testing
set. Then, we will report the testing error on the testing set, as can be observed at the
bottom of Fig. 4.7 (Cook 2017). Under this approach, the testing and validation sets
have approximately the same size to guarantee a similar out-of-sample prediction
performance. Since it is difficult to give general rules on how to choose the number
of observations in each of the three parts, a typical number might be 50% for
training, and 25% each for validation and testing (Hastie et al. 2008) or 70%,
15%, and 15% for training, validation, and testing, respectively. Another way to
find the optimal setting of hyperparameters using the grid search, which is very
common in deep learning, consists of picking values for each parameter from a finite
set of options [e.g., number of epochs (100, 150, 200, 250, 300); batch sizes (25, 50,
75, 100, 125); number of layers (1, 2, 3, 4, 5); and types of activation functions
(RELU, Sigmoid), . . .] and training the statistical machine learning model with
every permutation of hyperparameter choices using the training set. Then, the
combination of hyperparameters with the best prediction performance on the vali-
dation set is chosen, and we report the prediction performance of the best selected
model (set of hyperparameters) in the testing set (Buduma 2017). The aforemen-
tioned examples use the validation data set as a proxy measure of the accuracy
during the hyperparameter optimization process. However, it can also be used as a
proxy measure of the accuracy for model selection, and instead of using a grid of
hyperparameters, we can use a set of different statistical machine learning models;
here, the best model is chosen instead of the best combination of hyperparameters. It
is important to understand that when you have more than one random partition
(training-testing-validation), as shown in Fig. 4.8, the same process provided in
Fig. 4.7 is followed, however, the average of all the partitions is reported as a
measure of prediction performance. Also, if more precision is required in the
estimated prediction performance, you can repeat the process given in Fig. 4.8

Fig. 4.7 Schematic representation of the training, validation (tuning), and testing sets proposed by
Cook (2017)
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multiple times and report the average of all repetitions as a measure of prediction
performance.

As mentioned above, this approach (Figs. 4.7 and 4.8) is used for a large data set
however, in the case of a smaller data set, we suggest modifying this approach to
avoid wasting too much training data in validation sets. This modification consists of
performing an inner cross-validation approach since the training set is split into
complementary subsets, and each model is trained against a different combination of
these subsets, which is subsequently validated against the remaining parts. Once the
model hyperparameters have been selected, a final model is trained with the whole
training set (refitted) and the generalized prediction performance is measured on the
testing set. This approach was applied by Montesinos-López et al. (2018a, b), who
also split the original data into training and testing sets. Subsequently, each training
set was split again and 80% of the data was used for training a grid of
hyperparameters while the remaining 20% was used for validating (tuning) the
prediction performance and selecting the best combination of hyperparameters
with the best prediction performance. At this point, the deep learning algorithm
was refitted with the whole training set, and with this they evaluated the out-of-
sample prediction. They called the conventional training-testing partition outer
cross-validation, while the split performed in each training set used for
hyperparameter tuning was called inner cross-validation. It should be highlighted
that there are no differences between outer and inner CV and training-validation-test.
Finally, it should also be mentioned that any type of the cross-validation strategies
mentioned in this section (random CV, k-fold CV, Bootstrap CV, IB CV, etc.,) can
be used in both outer and inner CV, such as is the case with the five-fold CV.

4.4 Model Tuning

A hyperparameter is a parameter whose value is set before the learning process
begins. Hyperparameters govern many aspects of the behavior of statistical machine
learning models, such as their ability to learn features from data, the models’
exhibited degree of generalizability in performance when presented with new data,
as well as the time and memory cost of training the model, since different
hyperparameters often result in models with significantly different performance.
This means that tuning hyperparameter values is a critical aspect of the statistical
machine learning training process and a key element for the quality of the resulting

Fig. 4.8 Five partitions of training-validation-testing
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prediction accuracies. However, choosing appropriate hyperparameters is challeng-
ing (Montesinos-López et al. 2018a). Hyperparameter tuning finds the best version
of a statistical machine learning model by running many training sets on the original
data set using the algorithm and ranges of values of hyperparameters as specified.
The hyperparameter values that provide the best performance in out-of-sample
prediction evaluated by the chosen metric are then selected.

There are many ways of searching for the best hyperparameters. However, a
general approach defines a set of candidate values for each hyperparameter. Each
value of this set of candidate values is then applied with a resample of the training set
of the chosen statistical machine learning method, where we aggregate all the hold-
out predictions from which the best hyperparameters are chosen and refit the model
with the entire set (Kuhn and Johnson 2013). A schematic representation of the
tuning process proposed by Kuhn and Johnson (2013) is given in Fig. 4.9. It is
important to highlight that this process should be performed correctly because when
the same data are used for training and evaluating the prediction performance, the
prediction performance obtained is extremely optimistic.

For example, suppose a breeder is interested in developing an algorithm to
classify unseen plants as diseased or not diseased with an available training data
set. The goal is to minimize the rate of misclassification or to maximize the
percentage of cases correctly classified (PCCC). Also, assume that you are new to
the world of statistical machine learning and that you only understand the k-nearest
neighbor method. Since this algorithm depends only on the hyperparameter called
the number of neighbors (k), the question is which value of k to choose in such a way
that the prediction performance of this algorithm will be the best in the sample
prediction of plants. To find the best value of the k hyperparameter, you must specify
a range of values for k (for example, from 1 to 60 with increments of 1), then with a
part of your training data set, called the training-inner (or tuning that corresponds to
the training data in the inner loop) set, which is randomly selected. You proceed to
evaluate the 60 values of k with the k-nearest neighbor method and evaluate the

Fig. 4.9 Schematic representation of the tuning process proposed by Kuhn and Johnson (2013)

4.4 Model Tuning 125



prediction performance in the remaining part of the training set (validation set).
Next, you select the value of k from this range of values that best predicts (according,
for example, to the PCCC) out-of-sample data (validation set) and use this value to
perform the prediction of the unseen plants not used for training the model (testing
set). This is a widely adopted practice that consists of searching for the parameter
(usually through brute force loops) that yields the best performance over a validation
set. However, the process illustrated here is very simple because the k-nearest
neighbor model only depends on a unique hyperparameter; however, there are
other statistical machine learning algorithms (for example, deep learning methods)
where the tuning process is required for a considerable amount of hyperparameters.
For this reason, we encourage caution when choosing the statistical machine learn-
ing algorithm, since the amount of work required for performing the tuning process
depends on the chosen method.

4.4.1 Why Is Model Tuning Important?

Tuning the hyperparameters of the models is a key element to optimize your
statistical machine learning model to perform well in out-of-sample predictions.
The tuning process is more an art than a science because there is no unique formal
scientific procedure available in the literature. Nowadays, the tuning process is trial
and error that consists of implementing the statistical machine learning model many
times with different values of the hyperparameters and then comparing its perfor-
mance on the validation set in order to determine which set of hyperparameters
results in the most accurate model; for the final implementation, the set of
hyperparameters of the best model is used. As mentioned above, for the k-nearest
neighbor classifier, we need to choose the number of neighbors (k) using the tuning
process to obtain the optimal prediction performance of this algorithm, while for
conventional Ridge regression, the parameter lambda (λ) is obtained by tuning to
improve the out-of-sample predictions. These two statistical machine learning algo-
rithms that we just mentioned need only one hyperparameter; however, other
statistical machine learning methods may require more hyperparameters, as exem-
plified by deep learning models that require at least three hyperparameters (number
of neurons, number of hidden layers, type of activation function, batch size, etc.).
After tuning the required hyperparameters, the statistical machine learning model
learns the parameters from the data to be used for the final prediction of the testing
set. The choice of hyperparameters significantly influences the time required to train
and test a statistical machine learning model. Hyperparameters can be continuous or
of the integer type; for this reason, there are mixed-type hyperparameter optimiza-
tion methods.
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4.4.2 Methods for Hyperparameter Tuning (Grid Search,
Random Search, etc.)

Manual tuning of statistical machine learning models is of course possible, but relies
heavily on the user’s expertise and understanding of the underlying problem.
Additionally, due to factors such as time-consuming model evaluations, nonlinear
hyperparameter interactions in the case of large models that consist of tens or even
hundreds of hyperparameters, manual tuning may not be feasible since it is equiv-
alent to brute force. For this reason, the four most common approaches for
hyperparameter tuning reported in the literature are (a) grid search, (b) random
search, (c) Latin hypercube sampling, and (d) optimization (Koch et al. 2017).

In the grid search method, each hyperparameter of interest is discretized into a
desired set of values to be studied where the models are trained and assessed for all
combinations of the values across all hyperparameters (that is, a “grid”). Although
fairly simple and straightforward to carry out, a grid search is appropriate when there
are only a few values for a limited number of hyperparameters. However, although
this is a comprehensive way of assessing different hyperparameter values, when
there are many values for some or many hyperparameters, it quickly becomes quite
costly due to the number of hyperparameters and the number of discrete levels of
each. For example, in Ridge regression, this approach is implemented as follows:
since λ is the hyperparameter to be tuned, we first propose, for example, a grid of
100 values for this hyperparameter from λ ¼ 1010 to λ ¼ 10�2; then we divide the
training set into five inner training sets and five inner testing (tuning) sets, where
each of the 100 values of the grid is fitted using the inner training sets and the testing
error is evaluated with the inner testing sets. Then we get the average predicted test
error and pick one value out of the 100 values of the grid that produces the best
prediction performance. Next, we refit the statistical machine learning method to the
whole training set using the picked value of λ, and finally perform the predictions for
the testing set using the learned parameters of the training set with the best picked
value of λ. In all the models with one hyperparameter, it is practical to implement the
grid search method, but for example, in deep learning models, which many times
require six hyperparameters to be tuned, if only three values are used for each
hyperparameter, there are 36 ¼ 729 combinations that need to be evaluated, quickly
becoming computationally impracticable.

A random search differs from a grid search in that rather than providing a
discrete set of values to explore each hyperparameter, we determine a statistical
distribution for each hyperparameter from which values may be randomly sampled.
This affords a much greater chance of finding effective values for each
hyperparameter. While Latin hypercube sampling is similar to the previous method,
it is a more structured approach (McKay 1992) since it is an experimental design in
which samples are exactly uniform across each hyperparameter but random in
combinations. These so-called low-discrepancy point sets attempt to ensure that
points are approximately equidistant from one another in order to fill the space
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efficiently. This sampling supports coverage across the entire range of each
hyperparameter and is more likely to find good values of each hyperparameter.

The previous two methods for hyperparameter tuning are used to perform indi-
vidual experiments by building models with various hyperparameter values and
recording the model performance for each. Because each experiment is performed
in isolation, this process is parallelized, but is unable to use the information from one
experiment to improve the next experiment. Optimization methods, on the other
hand, consist of sequential model-based optimization where the results of previous
experiments are used to improve the sampling method of the next experiment. These
methods are designed to make intelligent use of fewer evaluations and thus save on
the overall computation time (Koch et al. 2017). Optimization algorithms that have
been used in statistical machine learning generally for hyperparameter tuning
include Broyden–Fletcher–Goldfarb–Shanno (BFGS) (Konen et al. 2011), covari-
ance matrix adaptation evolution strategy (CMA-ES) (Konen et al. 2011), particle
swarm (PS) (Renukadevi and Thangaraj 2014), tabu search (TS), genetic algorithms
(GA) (Lorena and de Carvalho 2008), and more recently, surrogate-based Bayesian
optimization (Dewancker et al. 2016). Also, recently the use of the response surface
methodology has been explored for tuning hyperparameters in random forest models
(Lujan-Moreno et al. 2018). However, the implementation of these optimization
methods is not straightforward because it requires expensive computation; also,
software development is required for implementing these algorithms automatically.
There have been advances in this direction for some machine learning algorithms in
the statistical analysis system (SAS), R and Python software (Koch et al. 2017). An
additional challenge is the potential unpredictable computation expense of training
and validating predictive models using different hyperparameter values. Finally,
although it is challenging, the tuning process often leads to hyperparameter settings
that are better than the default values, as it provides a heuristic validation of these
settings, giving greater assurance that a model configuration with a higher accuracy
has not been overlooked.

4.5 Metrics for the Evaluation of Prediction Performance

The quality of prediction performance of any statistical machine learning method in
a given data set consists of evaluating how close the predicted values are to the true
observed ones. In other words, the prediction performance quantifies the matching
degree between the predicted response value for a given observation and the true
response value for that observation (James et al. 2013). However, the metrics used
for quantifying the prediction performance depend on the type of response variable
under study; for this reason, we subsequently give the most popular metrics used for
this goal for four types of response variables.
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4.5.1 Quantitative Measures of Prediction Performance

Before implementing a statistical machine learning model, we assume that we have
our training observation {(x1, y1), (x2, y2), . . ., (xn, yn)} and we estimate f, as bf , with
the chosen statistical machine learning model. Then we can make predictions for
each of the response values (yi) with bf xið Þ and compute the predicted values for each
of the n observations in the training set; with these values we can calculate the mean

square error (MSE) for the training data set as E ¼ 1
n

Pn
i¼1

yi �bf xið Þ
� �2�

; however,

what we really want to predict are the values for unseen test observations that were
not used to train the statistical machine learning model. Assuming that the unseen
testing set is equal to {(xn + 1, yn + 1), (xn + 2, yn + 2), . . ., (xn + T, yn + T)}, the MSE for
the testing data set should be calculated as

MSETST ¼ 1
T

XnþT

i¼nþ1

yi �bf xið Þ
� �2

, ð4:1Þ

where bf xið Þ is the prediction that bf gives to the ith observation. The MSETST with a
lower value will have better predictions, which means that the predicted values are
very close to the true observed values. Also, the square root of MSETST can be used
as a measure of prediction performance and is called root mean square error
(RMSE).

Pearson’s correlation coefficient is a very popular measure of prediction perfor-
mance in plant breeding and can be calculated as

rTST ¼
PnþT

i¼nþ1
bf xið Þ �bf xið Þ
� �

yi � yið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnþT
i¼nþ1

bf xið Þ �bf xið Þ
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnþT

i¼nþ1 yi � yið Þ2
q , ð4:2Þ

wherebf xið Þ is the average of the T predictions that conform to the testing set, and yi is
the average of the T true observed values. In this case, the closer that the predictions
are to 1, the better the implemented statistical machine learning model will perform.
It is important to point out that Pearson’s correlation is defined between �1 and
1. However, to be convinced that the observed and predicted values match, it is a
common practice to perform a scatter plot of predicted versus observed (or vice
versa) values and when the observed and predicted values follow a straight line (45�

diagonal line) from the bottom left corner to the top right corner, this indicates a
perfect match between the observed and predicted values. For this reason, Pearson’s
correlation as a metric should be complemented with the intercept and slope, since
the slope and intercept describe the consistency and the model bias, respectively
(Smith and Rose 1995; Mesple et al. 1996). To obtain the slope and intercept, the
observed values (as y) versus the predicted values (as x) are regressed and in addition
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to Pearson’s correlation, these values should also be reported (slope and intercept).
The expected intercept should be zero and the slope 1, if the correlation obtained
between the observed and predicted values is high. It is important to avoid carrying
out the regression in the opposite way, i.e., using predicted values as y’s, and
observed values as x’s, since this leads to incorrect estimates of the slope and the
y-intercept. This denotes that a spurious effect is added to the regression parameters
when regressing predicted versus observed values and comparing them against the 1:
1 line. The user should also remember that underestimation of the slope and
overestimation of the y-intercept increase as Pearson’s correlation values decrease.
We strongly recommend that scientists evaluate their models by regressing observed
versus predicted values and test the significance of slope ¼ 1 and intercept ¼ 0
(Piñeiro et al. 2008). Finally, it is important to recall that the square of Pearson’s
correlation can also be used as a metric for measuring prediction performance since it
represents the proportion of the total variance explained by the regression model and
is called the coefficient of determination denoted as R2.

Next, we present the mean absolute error (MAE) metric that measures the
difference between two continuous variables (observed and predicted). The MAE
can be calculated with the following expression:

MAETST ¼ 1
T

XnþT

i¼nþ1

yi �bf xið Þ
��� ��� ð4:3Þ

Below we present another metric used to evaluate the prediction performance of
any statistical machine learning model; it was proposed by Kim and Kim (2016) and
is called mean arctangent absolute percentage error (MAAPE) that is calculated as
follows:

MAAPETST ¼
PnþT

i¼nþ1 arctan
yi�bf xið Þ

yi

���� ����� 	
T

ð4:4Þ

Although MAAPE is finite when the response variable (i.e., yi ¼ 0) equals zero,
since it has a satisfactory trigonometric representation. However, because MAAPE’s
value is expressed in radians, it is less intuitive, in addition to being scale-free. This
metric is a modification of the mean absolute percentage error (MAPE) which is
problematic because it is undefined when the response variable is equal to zero
(yi ¼ 0). MAAPE is also asymmetric since division by zero is defined and is not a
problem. It is important to point out that there are other metrics for measuring
prediction accuracy for continuous data, but we only presented the most
popular ones.

The distinction between the training and test MSE is important since we are not
interested in how well the statistical machine learning method performs in the
training data set, due to the fact that our main goal is to perform accurate predictions
in the unseen test data. For example, a plant breeder may be interested in developing
an algorithm to predict disease resistance of a plant in new environments based on
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records that were collected in a set of environments. We can train the statistical
machine learning method with the information collected in the set of environments,
but the interest is not in how well the statistical machine learning method predicts in
those previously collected environments. An environmental scientist can also be
interested in predicting the average annual rainfall in a municipality in Mexico, using
data from the last 20 years to train the model. Such measures could include sea
surface temperature, time, the yearly rotation of the earth, among others. In this case,
the scientist is really interested in predicting the average rainfall of the next 1 or
2 years, not in accurately predicting the years measured in the training set.

4.5.2 Binary and Ordinal Measures of Prediction
Performance

The binary and ordinal response variables are very common in classification prob-
lems, where the goal is to predict which category something falls into. An example
of a classification problem is analyzing financial data to determine if a client will be
granted credit or not. Another example is analyzing breeding data to predict if an
animal is at high risk for a certain disease or not. Below, we provide some popular
metrics to evaluate the prediction performance of this type of data.

The first metric is called a confusion matrix, which is a tool to visualize the
performance of a statistical machine learning algorithm that is used in supervised
learning for classifying categorical and binary data. Each column of the matrix
represents the number of predictions in each class, while each row represents the
instances in the real class. One of the benefits of confusion matrices is that they make
it easy to determine whether the system is confusing classes. Table 4.3 shows a
sample format of a confusion matrix of C classes.

With Eqs. (4.5–4.8) we can calculate the total number of false negatives (TFN),
false positives (TFP), true negatives (TTN) for each class i, and the total true
positives in the system, respectively:

TFNi ¼
XC
j¼1

j6¼i

nij ð4:5Þ

Table 4.3 Confusion matrix with more than two classes

Predicted values

Class 1 Class 2 . . . Class C

Observed values Class 1 n11 n12 . . . n1C
Class 2 n21 n22 . . . n2C
⋮ ⋮ ⋮ ⋮ ⋮
Class C nC1 nC2 . . . nCC
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TFPi ¼
XC
j¼1

j6¼i

nji ð4:6Þ

TTNi ¼
XC
j¼1

j 6¼i

XC
k¼1

k 6¼i

nji ð4:7Þ

TTPall ¼
XC
j¼1

njj ð4:8Þ

Below, we define the sensitivity (Se), precision (P), and specificity (Sp). The
sensitivity indicates the ability of our statistical learning algorithm to determine the
proportion of true positives that are correctly identified by the test. The precision is
the proportion of correct classification of our statistical machine learning model and
represents the proportion of cases correctly classified, while the specificity is the
ability of our statistical machine learning model to classify the true negative cases,
that is, the specificity is the proportion of true negatives that are correctly identified
by the test. Under the “one-versus-all basis,” where each category is compared with
the composed information of the remaining categories, we provide the expressions
for computing the generalized precision, sensitivity, and specificity for each class i:

Pi ¼ TTPall
TTPall þ TFPi

ð4:9Þ

Sei ¼ TTPall
TTPall þ TFNi

ð4:10Þ

Spi ¼ TTNall

TTNall þ TFPi
ð4:11Þ

pCCC ¼ TTNallPC
i¼1

PC
j¼1

nij

ð4:12Þ

The term pCCC denotes the proportion of cases correctly classified, which is a
measure of the overall accuracy, and when multiplied by 100, denotes the percentage
of cases correctly classified. Many times, this is the only metric reported for
measuring prediction performance in multi-class problems. However, PCCC alone
is sometimes quite misleading as there may be a model with relatively “high”
accuracy, but it predicts the “unimportant” class labels fairly accurately (e.g.,
“unknown bucket”). However, the model may be making all sorts of mistakes on
the classes that are actually critical to the application. This problem is serious when
in the input data the number of samples of different classes is very unbalanced. For
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example, if there are 990 samples of class 1 and only 10 of class 2, the classifier can
easily have a bias toward class 1. If the classifier classifies all samples as class 1, its
accuracy will be 99%. This does not mean that it is an appropriate classifier, as it had
a 100% error when classifying the samples of class 2. For this reason, reporting this
metric with those reported in Eqs. (4.9–4.11) is recommended in order to have a
better picture of the prediction performance of any statistical machine learning
method (Ratner 2017). Also, it is important to highlight that when the problem
only has two classes, the confusion matrix is reduced to Table 4.4.

From Table 4.4 the PCCC is calculated as tpþtn
n , while the Se ¼ tp

tpþfn, Sp ¼ tn
tnþfp ,

and P ¼ tp
tpþfp . Also, when there are only two classes, González-Camacho et al.

(2018) suggest calculating the Kappa coefficient (κ) or Cohen’s Kappa, which is
defined as

κ ¼ P0 � Pe

1� Pe
,

where P0 is the agreement between observed and predicted values and is computed
by the PCCC described above for two classes; Pe is the probability of agreement
calculated as Pe ¼ tpþfn

n � tpþfp
n þ fpþtn

n � fnþtn
n , where fp is the number of false

positives, and fn is the number of false negatives (Table 4.4). This statistic can
take on values between �1 and 1; a value of 0 means there is no agreement between
the observed and predicted classes, while a value of 1 indicates perfect agreement
between the model prediction and the observed classes. Negative values indicate that
a prediction may be incorrect; however large negative values seldom occur when
working with predictive models. Depending on the context, a Kappa value from 0.30
to 0.50 indicates reasonable agreement (Kuhn and Johnson 2013). The Kappa
coefficient is appropriate when data are unbalanced, because it estimates the pro-
portion of cases that were correctly identified by taking into account coincidences
expected from chance alone (Fielding and Bell 1997). It is important to point out that
this statistic was originally designed to assess the agreement between two raters
(Cohen 1960).

Another popular metric for binary data is the Area Under the receiver operating
characteristic Curve (AUC–ROC) and it ranks the positive predictions higher than
the negative. The ROC curve is defined as a plot of 1 � specificity or false positive
rate (FPR) as the x-axis versus its model sensitivity as the y-axis. For a given set of

Table 4.4 Confusion matrix
with two classes

Predicted values

True False Sum

Observed values True tp fn tp + fn

False fp tn fp + tn

Sum tp + fp fn + tn n

tp denotes true positives, fp denotes false positives, fn denotes
false negatives, tn denotes true negatives, and n denotes total
number of individuals
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thresholds τ, it is an effective method for evaluating the quality or performance of
diagnostic tests, and is widely used in statistical machine learning to evaluate the
prediction performance of learning algorithms. Since the mathematical construction
of this metric is not required in this book, we illustrate its calculation with one simple
example. Assume that the observed (y), predicted probabilities (pi) and predicted
values (ŷ) obtained after implementing a statistical machine learning model are
y ¼ {1, 0, 1, 1, 0, 0, 1, 1, 0, 1}, pi ¼ {0.6, 0.55, 0.8, 0.78, 0.3, 0.42, 0.9, 0.45,
0.3, 0.88}, and by ¼ f1, 1, 1, 1, 0, 0, 1, 0, 0, 1}; then, using the following R code, we
can obtain many metrics for binary data (Fig. 4.10):

########################Libraries required########################
library(caret)
library(pROC)
##Observed (y), predicted probability (pi) and predicted values of

synthetic data##
y=c(1, 0,1, 1, 0, 0, 1, 1, 0, 1)
pi=c(0.6, 0.55, 0.8, 0.78, 0.3, 0.42, 0.9, 0.45, 0.3, 0.88)
yhat=c(1, 1, 1, 1, 0, 0, 1, 0, 0, 1)
xtab <- table(y,yhat)
confusionMatrix(xtab)

plot.roc(y,pi) #####This make the ROC curve plot

Confusion Matrix and Statistics

yhat
y 0 1
0 3 1
1 1 5

Fig. 4.10 ROC curve for
the synthetic data
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Accuracy : 0.8
95% CI : (0.4439, 0.9748)

No Information Rate : 0.6
P-Value [Acc > NIR] : 0.1673

Kappa : 0.5833
Mcnemar's Test P-Value : 1.0000

Sensitivity : 0.7500
Specificity : 0.8333

Pos Pred Value : 0.7500
Neg Pred Value : 0.8333

Prevalence : 0.4000
Detection Rate : 0.3000

Detection Prevalence : 0.4000
Balanced Accuracy : 0.7917

'Positive' Class : 0

It is important to point out that when there are more than two classes, these
metrics (accuracy, sensitivity, specificity, etc.) can be calculated on a “one-versus-
all” basis that consists of using each class versus the pool of the remaining classes, as
was illustrated for the confusion matrix with more than two classes (James et al.
2013).

When the statistical machine learning model discriminates correctly between the
two groups, it produces a curve that coincides with the left and top sides of the plot.
Under this scenario, the perfect model would have 100% sensitivity and specificity,
and the ROC curve would be a single step between (0,0) and (0,1) and would remain
constant from (0,1) to (1,1); this implies that the area under the ROC curve of the
model would be 1. In general, the larger the area under the ROC curve, the better the
model in terms of prediction performance. On the other hand, a completely useless
statistical machine learning algorithm would give a straight line (45� diagonal line)
from the bottom left corner to the top right corner of the plot. Different statistical
machine learning models or the same model with different training sets or
hyperparameters can be compared by superimposing their ROC curves in the same
graph. In practice, most of the time the values in the two groups overlap, so the curve
often lies between these extremes.

From this ROC curve, we can obtain a global assessment of the prediction
performance of the statistical machine learning method by measuring the area
under the receiver operating characteristic curve. This area is equal to the probability
that a random individual (person) of the sample with the presence of the target has a
higher value of the measurement than a random individual without the target.

When a statistical machine learning model is unable to discriminate between the
positive and negative classes, this means that it has low discriminatory power.
Therefore, only in statistical machine learning models that had good discriminatory
power we can be confident of the predictions they provide and furthermore those
models that provide a curve that lies considerably above the curve will be better.
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Matthews correlation coefficient (MCC). Introduced in 1975 by Brian Matthews
(1975) and regarded by many scientists as the most informative score that connects
all four measures in a confusion matrix, the Matthews Correlation Coefficient is
typically used in statistical machine learning to measure the quality of binary
classifications and it is particularly useful when there is a significant imbalance in
class sizes (data). MCC is calculated according to the following expression:

MCC ¼ tp� tn� fp� fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tpþ fpð Þ � tpþ fnð Þ � tnþ fpð Þ � tnþ fnð Þp ð4:13Þ

If any of the denominator terms equals zero in (4.13) it will be set to 1 and MCC
becomes zero, which has been shown to be the correct limiting value. It returns a
value between �1 and 1, where 1 means a perfect prediction, 0 means no better than
random and �1 means a total disagreement between predicted and observed values.

Next, we present the Brier score (Brier 1950) for categorical or binary data that
can be computed as

BS ¼ T�1
XnþT

i¼nþ1

XC
c¼1

bπic � dicð Þ2, ð4:14Þ

where bπi denotes the estimated probabilities (predictive distribution) derived from
the estimated model for observation i and dic takes a value of 1 if the categorical
response observed for individual i falls into category c; otherwise, dic¼ 0. The range
of BS in Eq. (4.14) for categorical data is between 0 and 2. For this reason, we
suggest dividing by 2, that is, BS/2, to obtain the Brier score bound between 0 and 1;
lower scores imply better predictions (Montesinos-López et al. 2015a, b).

Finally, we describe the use of negative log-likelihood (MLL) to evaluate the
prediction performance. This metric has the characteristic that better forecasts have
lower values and for this reason, it is analogous to the MSE. For categorical data,

MLL ¼ � 1
T

XnþT

i¼nþ1

XC
c¼1

1 yi ¼ kf g log bπicð Þ
" #

,

where 1{y(i) ¼ k} is an indicator variable taken the value of 1 when the ith
observation is assigned to category c, for c ¼ 1, 2, . . ., C takes place in the ith
observation. When the data are binary, the MLL is reduced to
MLL ¼ � 1

T

PnþT
i¼nþ1 yi log bπið Þ þ 1� yið Þ log 1� bπið Þ½ �
 �

. Following, we provide
some advantages of using the MML as a measure of prediction performance: (a) it
has a simple definition that, from a purely intuitive point of view, seems to be a
reasonable basis on which to compare forecasts; (b) it is mathematically optimal in
the sense that estimates of parameters of calibration models fitted by maximizing the
likelihood are usually the most accurate possible estimates (see Cassella and Berger
2002); (c) it is a generalization to probabilistic forecasts of the most commonly used
skill score for single forecasts; (d) the properties of the likelihood have been studied
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at great length over the last 90 years, and as such is well understood; (e) it is both a
measure of resolution and reliability; (f) likelihood can be used for both calibration
and assessment: this creates consistency between these two operations; (g) use of the
likelihood also creates consistency with other statistical modeling activities, since
most other statistical modeling uses the likelihood, which is important in cases where
the use of forecasts is simply a small part of a larger statistical modeling effort, as is
the case of our particular business; (h) likelihood can be used for all types of
response variables; and (i) likelihood can be used to compare multiple leads,
multiple variables, and multiple locations at the same time in a sensible way with
a single score even when these leads, variables, and locations are cross-correlated.

4.5.3 Count Measures of Prediction Performance

Spearman’s correlation and the MML are recommended to measure the prediction
performance for count data.

For the application of the Spearman’s correlation, the formula given in Eq. (4.2)
for Pearson’s correlation can be used; however, instead of using the observed and
predicted values directly, these are replaced by their corresponding ranks. For
example, assuming that the observed and predicted values are y ¼ {15, 9, 12,
27, 6, 3, 36, 15, 21, 30} and by ¼ f20, 17, 24, 25, 3, 3, 34, 22, 21, 33}, we can
thus show how to get the rank for the observed values: rangoy ¼
{5, 3, 4, 8, 2, 1, 10, 6, 7, 9}. However, in this vector, observations 1 and 8 are the
same, and as such, their positions are added and divided by two, that is, 5þ6

2 ¼ 5:5.
Therefore, the final rank for the observed values is rangoy ¼
{5.5,3, 4, 8, 2, 1, 10,5.5,7, 9}. Now the range for the predicted values is rangoby ¼
4, 3, 7, 8, 1, 2, 10, 6, 5, 9f g, but again, since values 5 and 6 are the same, we add their

ranges, and as this is repeated twice, it is divided by two and we get 1þ2
2 ¼ 1:5.

Therefore, the final range of the predicted values is rangoby ¼
4, 3, 7, 8, 1:5, 1:5, 10, 6, 5, 9f g . Finally, to obtain the Spearman correlation, we

used the expression given in Eq. (4.2) for Pearson’s correlation, and instead of
using the original observed and predicted values, we used rangoy and rangoby . The
interpretation of this metric is equal to that of the Pearson correlation, that is, when it
is closer to 1, the prediction performance of the implemented statistical learning
method is better. It should be noted that when the number of repeated values in the
observed and predicted values is greater than two, the adjusted range is the sum of
the repeated ranges divided by the number of repeated values; this new range is then
given to the repeated values. In this case, it is also important to regress the observed
versus the predicted values to obtain the intercept and slope using the ranges of the
observed and predicted values.

It is also possible to use the MLL criteria to assess the prediction performance for
count data; however, the new expression is now based on minus the log-likelihood of
a Poisson distribution, which is equal to
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MLL ¼ 1
T

XnþT

i¼nþ1

�bf xið Þ þ yi log bf xið Þ
� ih

Again, when the values of MLL are lower, the observed and predicted values are
closer to one another.
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statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
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