
Chapter 3
Elements for Building Supervised Statistical
Machine Learning Models

3.1 Definition of a Linear Multiple Regression Model

A linear multiple regression model (LMRM) is a useful tool for investigating linear
relationships between two or more explanatory variables (inputs, features in machine
learning literature) (X) and the conditional expected value of a response E(Y/X). Due
to its simplicity, adequate fitting, and easily interpretable results, this has been one of
the most popular techniques for studying the association between variables. Specif-
ically, regarding the latter task, this is a useful approach and an ideal (natural)
starting point for studying more advanced methods (James et al. 2013) of association
and prediction.

In this chapter, we review the main concepts and approaches for fitting a linear
regression model.

3.2 Fitting a Linear Multiple Regression Model via
the Ordinary Least Square (OLS) Method

In a general context, we have a covariate vector X ¼ (X1, . . .,Xp)
T and we want to

use this information to predict or explain how this variable affects a real-value
response Y. The linear multiple regression model assumes a relationship given by

Y ¼ β0 þ
Xp
j¼1

X jβ j þ E, ð3:1Þ

where E is a random error with mean 0, E(E)¼ 0 and is independent of X. This error is
included in the model to capture measurement errors and the effects of other
unregistered explanatory variables that can help to explain the mean response.
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Then, the conditional mean of this model is E Y jXð Þ ¼ β0 þ
Pp

j¼1X jβ j and the
conditional distribution of Y given X is only affected by the information of X.

For estimating the parameters β = (β0, β1, . . ., βp)
T, usually we have a set of data

xTi , yi
� �

, i ¼ 1, . . ., n, often known as training data, where xi ¼ (xi1, . . ., xip)
T is a

vector of features measurement and yi is the response measurement corresponding to
the ith individual drawn. The most common method for estimating β is the least
squares method (OLS) that consists of taking the β value that minimizes the residual
sum of squares defined as

RSS βð Þ ¼
Xn
i¼1

yi � β0 � xTi β0
� �2 ¼ y� Xβð ÞT y� Xβð Þ,

where β0 = ( β1, . . ., βp)
T, y = (y1, . . ., yn)

T is the vector with the response values of
all individuals, and X is an n � ( p + 1) matrix that contains the information of the
measured features of all individuals, including the intercept in the first entry:

X=

1 x11 ⋯ x1p

⋮ ⋮ ⋮ ⋮
1 xn1 ⋯ xnp

264
375:

If the X matrix has full column rank, then by differentiating the residual sum of
squares with respect to the β coefficients, we can find the set of β parameters that
minimize the RSS(β),

RSS βð Þ
∂β

¼ y� Xβð ÞT y� Xβð Þ
∂β

¼ yTy� 2yTXβþ βT XTX
� �

β

∂β
¼ 2 XTX

� �
β� XTY

� �
This derivative is also known as the gradient of the residual sum of squares. Then

by setting the gradient of the residual sum of squares to zero, we obtain the normal
equations

XTX
� �

β=XTY

The solution to the normal equations is unique and gives the OLS estimator of β

bβ= XTX
� ��1

XTy,

where super index �1 indicates the inversion matrix.
From the above assumptions, we can show that this estimator is unbiased

E bβ� � ¼ E XTX
� ��1

XTy
h i

¼ E XTX
� ��1

XT Xβþ Eð Þ
h i

¼ E XTX
� ��1

XTXβ
h i

þ XTX
� ��1

XTE Eð Þ ¼ β:
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and with the additional assumption that the observation responses yi
0s are

uncorrelated and have the same variance, Var(yi) ¼ σ2, we can also show that the
variance–covariance matrix of this is

Var bβ� � ¼ σ2 XTX
� ��1

:

When the input features only contain the information of a variable ( p ¼ 1), the
resulting model is known as simple linear regression and can be easily visualized in
the Cartesian plane. When p ¼ 2, the above multiple linear regression describes a
plane in the three-dimensional space (x1, x2, y). In general, the conditional expected
value of this model defines a hyperplane in the p-dimensional space of the input
variables (Montgomery et al. 2012).

The fitted values corresponding to all the training individuals are

by ¼ Xbβ ¼ X XTX
� ��1

XTy ¼ Hy,

where the matrix H ¼ X(XTX)�1XT is commonly called the hat matrix. This is
because the vector of the observed response values is mapped by this expression to a
vector of fitted values (Montgomery et al. 2012), in this way, puts the hat on y
(Hastie et al. 2009). In a similar way, a predicted value of an arbitrary individual with
feature x can be obtained by

by� ¼ x�Tbβ,
where x� ¼ (1, xT)T.

An unbiased estimator for the common residual variance σ2 is obtained by

bσ2 ¼ 1
n� p� 1

Xn
i¼1

yi � byið Þ2

¼ 1
n� p� 1

Xn
i¼1

e2i

¼ 1
n� p� 1

eTe

¼ 1
n� p� 1

y�byð ÞT y�byð Þ

¼ 1
n� p� 1

yT In �Hð Þy,

where ei ¼ yi � byi is known as the residual of the model corresponding to the
individual i, e= y2by is the vector of all residual values, and In is the identity matrix
of order n � n.

The traditional inferential and prediction analysis for this model assumes that the
random error E is normally distributed with mean zero and variance σ2. With this we
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can show that the OLS of beta coefficients, bβ , is a random vector distributed
according to a multivariate normal distribution with vector mean β and a variance–
covariance matrix, as previously defined (Montgomery et al. 2012; Hastie et al.
2009; Rencher and Schaalje 2008). Another important fact that will be described in
more detail in the next section, is that under the Gaussian assumption over errors, the
OLS of β coincides with the maximum likelihood estimator.

We can also show that n� p� 1ð Þbσ2=σ2 is independent of bβ and distributed
according to a Chi-squared distribution with n� p� 1 degrees of freedom. Based on
this and on the properties of the normal and t-student distributions, we show that for

each j¼ 0, . . ., p, T j ¼ bβ j � β j

� �
=
ffiffiffiffiffiffiffiffiffiffiffi
c j,jbσ2q

, where cjj is the ( j + 1, j + 1) elements of

the matrix (XTX)�1, are random variables with a t-student distribution with n� p� 1
degrees of freedom (tn � p � 1). That is, Tj � tn � p � 1 and � stands for distributed
as. From here, a 100(1� α)% confidence interval for a particular beta coefficient, βj,
is given by

bβ j � t1�α=2, n�p�1

ffiffiffiffiffiffiffiffiffi
cjjbσ2q

,

where tα, n � p � 1 is the α quantile of the t-student distribution with n� p� 1 degrees
of freedom. Similarly, a 100(1 � α)% joint confidence region for all the beta
coefficients, β, is given if these values satisfy

bβ� β
� �T

XTX bβ� β
� �

pþ 1ð Þbσ2 � Fpþ1
1�α, n�p�1,

where Fpþ1
α,n�p�1 denotes the α quantile of the F distribution with p + 1 and n � p � 1

degrees of freedom in the numerator and denominator, respectively (Rencher and
Schaalje 2008).

In a similar way, to test a hypothesis over a specific beta coefficient,H0j¼ βj¼ βj0,

the following rule can be used: reject H0j if T j0 ¼ bβ j � β j0

� �
=
ffiffiffiffiffiffiffiffiffiffiffi
c j,jbσ2q

is “large” in

magnitude, that is, if |Tj0| > t1 � α/2, n � p � 1, where α is the desired level test. More
generally, the test H0 ¼Wβ = w, whereW is a q � ( p + 1) matrix of rank q � p + 1,
can be performed using the following rule:

reject H0 if F ¼ n� p� 1
q

Wβ� wð ÞT W XTX
� ��1

WT
h i�1

Wβ� wð Þbσ2
� Fpþ1

1�α,n�p�1:
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3.3 Fitting the Linear Multiple Regression Model via
the Maximum Likelihood (ML) Method

The maximum likelihood (ML) estimation is a more general and popular method for
estimating the parameters of a model (Casella and Berger 2002). It consists of
finding the parameter value that maximizes the “probability” of observed values in
the sample under the adopted model. Specifically, if xTi , yi

� �
, i ¼ 1, . . ., n, is a set of

observations from a multiple linear regression model (3.1) with homoscedastic and
uncorrelated errors, the MLE of β and σ2, bβ and bσ2, of this model is defined as

bβT,bσ2� �
¼ arg max

β, σ2
L β, σ2; y,X
� �

,

where L(β, σ2; y,X) is the likelihood function of the parameters, which is the
probability of the observed response values but viewed as a function of the
parameters

L β, σ2; y,X
� � ¼ 1ffiffiffiffiffiffiffiffiffiffi

2πσ2
p
	 
n

exp � 1
2σ2

y2Xβð ÞT y2Xβð Þ
h i

:

Then, the log(L(β, σ2; y,X)) is equal to

log L β, σ2; y,X
� �� � ¼ � n

2
log 2πð Þ � n log σð Þ � 1

2σ2
y� Xβð ÞT y� Xβð Þ

To find the maximum of σ2 and β, we get the derivative of log L bβ, σ2; y,X� �� �
with regard to these parameters

log L β, σ2; y,Xð Þð Þ
∂β

¼ XTX
� �

β2XTY
� �

σ2

log L β, σ2; y,Xð Þð Þ
∂σ2

¼ � n
2σ2

þ 1
2σ4

y2Xβð ÞT y2Xβð Þ

Now, by setting these derivatives equal to zero and solving the resulting equa-
tions for β and σ2, we found that the estimates of these parameters are

bβ= XTX
� ��1

XTy

bσ2 ¼ 1
n

y2Xbβ� �T
y2Xbβ� �

:

From this we can see that for each value of σ2, the value of β that maximizes the
likelihood is the same value that maximizes � 1

2σ2 y2Xβð ÞT y2Xβð Þ, which in turn
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minimizes (y� Xβ)T(y� Xβ), which is precisely the OLS of β, bβ. But when equating
the derivative of log L bβ, σ2; y,X� �� �

to zero and solving for σ2, the value of σ2 that

maximizes L bβ, σ2; y,X� �
is bσ2 ¼ 1

n y2Xbβ� �T
y2Xbβ� �

:

Finally,

L β, σ2; y,X
� � � L bβ, σ2; y,X� �

� L bβ,bσ2; y,X� �
and from here, the MLE of β and σ2 are bβ and bσ2, because it can be shown that the
values of parameters that maximize the likelihood are unique when the design matrix
X is of full column rank.

3.4 Fitting the Linear Multiple Regression Model
via the Gradient Descent (GD) Method

The steepest descent method, also known as the gradient descent (GD) method, is a
first-order iterative algorithm for minimizing a function ( f ). It is a central mecha-
nism in statistical learning to training models (to estimate the parameters), for
example, in neuronal networks and penalized regression models (Ridge and
Lasso). It consists of successively updating the argument of the objective function
in the direction of the steepest descent (along the negative of the gradient of the
function), that is, in the direction in which f decreases most rapidly (Haykin 2009;
Nocedal and Wright 2006). Specifically, each step of this algorithm is described by

ηtþ1 ¼ ηt � α∇f ηtð Þ,

where ∇f(ηt) is the gradient vector of f evaluated in the current value ηt and α is a step
size or learning rate parameter, which greatly determines the convergence behavior
toward an optimal solution (Haykin 2009; Beysolow II 2017) and in neural networks
it is popular for setting this at a small, fixed value (Warner and Misra 1996;
Goodfellow et al. 2016). The learning rate parameter can be adaptative as well,
that is, can be allowed to change at each step. For example, in the library Keras (see
Chap. 11) that can be used for implementing and training neuronal networks models,
there are several optimizers based on an adaptive gradient descendent algorithm such
as Adam Adgrad, Adadelta, RMSprop, among others (Allaire and Chollet 2019).
The ideal value of the step size would be the value that gives the larger reduction in
each step, that is, the value of α that minimizes f(ηt � α ∇ f(ηt)), which in general is
difficult and expensive to obtain (Nocedal and Wright 2006).

Although the use of this algorithm could be avoided in an MLR, especially in
small data sets, and also because of its slow convergence in linear systems (Burden
and Faires 2011), here we will describe how this works when finding the optimal

76 3 Elements for Building Supervised Statistical Machine Learning Models

https://doi.org/10.1007/978-3-030-89010-0_11


beta coefficients in this model. First, the gradient of the residual sum of squares is
given by

∇RSS βð Þ ¼ 2 XTXβ2XTy
� �

:

Then, the next update of beta coefficients in the gradient descent algorithm in this
model is given by

βtþ1 ¼ βt � 2α XTXβt � XTy
� �

¼ βt � 2αXT Xβt � yð Þ
¼ βt þ 2αXTet,

where et = y 2 Xβt is the vector of residuals that is obtained in the current iteration.
One way to speed up the convergence of the algorithm is by choosing the ideal
learning rate in each step, which, as was described before, is given by the value of α
that minimizes f(ηt � α ∇ f(ηt)), and in this case for the MLR model is given by
(Nocedal and Wright 2006):

αt ¼ eTt XX
Tet

eTt XXT
� �2

et
:

Example 1 For numerical illustration, we considered a synthetic data set that
consists of 100 observations and two covariates. The scatter plots in Fig. 3.1 show
how the response variable (y) is related to the two covariates (x1, x2). By setting a
value of 10�2 for the learning rate parameter, and as the stopping criterion a
tolerance of 10�8 for the maximum norm of the difference between the current
and next vector value, the beta coefficient obtained with the GD method is bβ ¼
5:0460764, 0:8551383, 2:1903356ð Þ . For these synthetic examples, 12 iterations
were necessary, while by changing the learning rate parameter to 10�3, the number
of iterations increased to 185, but we practically got the same results. Now, by using
the “optimal” learning rate parameter described before for MLR with the same
tolerance error (10�8), the number of required iterations up to convergence is
reduced to only 10 iterations. In general, the performance of the gradient descent
depends greatly on the objective function and can be affected by the characteristics
of the model, the dispersion of the data (explained variance of the predictors), and
the dependence between the predictors, among others.

In the data set used in this example, the covariates are independent and the
proportion of explained variances by the predictor is about 79% of the total variance
of the response. By changing to a pair of moderately correlated covariates with
correlation 0.75, while holding the same beta coefficient values, the variance of the
residual (1.44), and the same sample size, we generate data where a greater propor-
tion of variance is explained by the covariates (85.6%), but when applying the
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gradient descent with the same tolerance error (10�8) as before, and learning rate
values of 10�2 and 10�3, the required number of iterations are about 5.75 times
(69) and 3.5 times (649) the number required for the independent covariates case and
the example described before, respectively.

Continuing with the last case of dependent variables, when using the optimal
learning rate described before for the MLR, the number of iterations is reduced to
60, 9 less than when using the constant learning rate 10�2.

By multiplying the beta coefficients used before by sqrt(0.1), the proportion of
explained variance by the covariates is reduced to 27.30% and 37.2% in the same
independent covariate (E3) and the same correlated covariate (E4) scenarios
described before, respectively. With a tolerance error of 10�8 and with a learning
rate equal to 10�2, the required number of iterations are 183 and 66, for scenarios E3
and E4, respectively, while for a learning rate of 10�3 the required number of
iterations are 617 and 1638. When using the “optimal” learning rate parameter, the
required number of iterations is reduced to 17 and 56 for scenarios E3 and E4,
respectively.

Fig. 3.1 Scatter plot of synthetic data generated from an MLR with two covariates
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The R code used for implementing the GD method is given next.

#################R code for Example 1 ###############################
rm(list=ls())
library(mvtnorm)
set.seed(1)
X = cbind(1,rmvnorm(100,c(0,0),diag(2)))
#Uncomment the next three lines code to simulate dependent covariables
#Sigma_X =0.75+0.25*diag(2)
#L = t(chol(Sigma_X))
#X = X%*%t(L)

betav = c(5,1,2.1)
#Uncomment the next line code to reduce the value of the beta cofficients
and reduce the proportion of variance of the response explained by the
features
betav = sqrt(0.1)*beta
y = X%*%betav + rnorm(100,0,1.2)
dat = data.frame(y=y,x1 = X[,2],x2=X[,3])
plot(dat)

alpha = 1e-2
#alpha = 1e-3
tol = 1e-8
p = 2
betav_0 = c(mean(y),rep(0,p))
tol.e = 1
Iter = 0
tX = t(X)
XtX = X%*%t(X)
while(tol<tol.e)
{
Iter = Iter + 1
e = y-X%*%betav_0
#Uncomment the next line code to use the optimal learning rate
#alpha = (t(e)%*%XtX%*%e/(t(e)%*%(XtX)%*%XtX%*%e))[1,1]
betav_t = betav_0 + alpha*tX%*%e
tol.e = max(abs(betav_t-betav_0))
betav_0 = betav_t

}
betav_t
tol.e
Iter

This code is only for illustrative purposes, that is, to illustrate in a very transparent
way how the GD method can be implemented. Of course the existing statistical
machine learning software programs implement this method and so there is no need
to use this program for real applications, since the existing software programs that
implement this method do a lot of work more efficiently and in a more user-
friendly way.
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3.5 Advantages and Disadvantages of Standard Linear
Regression Models (OLS and MLR)

The MLR is a simple and computationally appealing class of models, but with many
predictors (relative to the sample size) or nearly dependent features, it may result in
large prediction error and/or large predictive intervals (Wakefield 2013). To appre-
ciate the latter case (nearly dependent features), consider the spectral decomposition
XTX = ΓΛΓT, where Λ ¼ Diag(λ0, . . ., λp) is a diagonal matrix with the eigenvalues
of XTX in decreasing order and Γ is an orthogonal matrix with columns
corresponding to eigenvectors of XTX. Then the obtained variance–covariance
matrix of the OLS estimator of bβ can be expressed as

Var bβ� � ¼ σ2 ΓΛΓT
� ��1 ¼ σ2ΓΛ�1ΓT:

When the features are nearly dependent, some λj’s will be “close” to zero and

consequently the variance of some bβj0s will be high; this is even greater when the
linear dependence of the features is strong (Wakefield 2013; Christensen 2011). This
strong dependence between features is a problem of the OLS in MLR that is also
reflected in the quality of the prediction performance, for example, when this is
measured by the conditional expected prediction error (EPE) or mean squared error
prediction that for an individual with feature xo is given by

EPE xoð Þ¼EY,YojX,xo Yo�x�To bβ� �2� �
¼EY,YojX,xo Yo�E Y0jx0ð ÞþE Y0jx0ð Þ�x�To bβ� �h i2 �
¼EY,YojX,xo Yo�E Y0jx�T0

� �� �2h i
þ2EYojxo Yo�E Y0jx�T0

� �� �� �
E Y0jx�T0
� ��EYjX x�To bβ� �h i

þEY,YojX E Y0jx�T0
� ��x�To bβ� �2� �

¼σ2þEY,YojX,xo x�To β�x�To bβ� �2� �
¼σ2þVar x�To bβjxo� �

¼σ2þσ2x�To ΓΛ�1ΓTx�o

¼σ2 1þ
Xp
j¼0

x��oj
� �2
λ j

0B@
1CA,

where x��o ¼ ΓTx�o ¼ x��o0, . . . , x
��
op

� �T
: This means that the average loss incurred

(squared difference between the value to be predicted and the predicted value) by
predicting Y0 with its estimated mean under the MLR, x�To bβ, is composed of intrinsic
or irreducible data noise (first term) and the variance of x�To bβ (second term). The
former cannot be avoided no matter how well the mean value of Y0 j x0, E(Y0| x0), is
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estimated, and the latter increases as the dependence of features is stronger. From
this, it is apparent that the EPE is also affected by the strong dependence between
features, which is a problem of the OLS in an MLR in a prediction context.

3.6 Regularized Linear Multiple Regression Model

3.6.1 Ridge Regression

Ridge regression, originally proposed as a method to combat multicollinearity, is
also a common approach for controlling overfitting in an MLR model (Christensen
2011). It translates the OLS problem into the minimization of the penalized residual
sum of squares defined as

PRSSλ βð Þ=
Xn
i¼1

yi � β0 �
Xp
j¼1

xijβ j

 !2

þ λ
Xp
j¼1

β2j,

where λ � 0 is known as the regularization or tuning parameter, which determines
the level or degree to which the beta coefficients are shrunk toward zero. When
λ ¼ 0, the OLS is the solution to the beta coefficients, but when λ is large, the
PRSSλ(β) is dominated by the penalization term, and the OLS solution has to shrink
toward 0 (Christensen 2011). In general, when the number of parameters to be
estimated is larger than the number of observations, the estimator can be highly
variable. In this situation, the intuition of Ridge regression tries to alleviate this by
constraining the sum of squares for the beta coefficients.

Note that PRSSλ(β) can be expressed as

PRSSλ βð Þ ¼ RSS βð Þ þ λβTDβ,

where D = diag (0, 1, . . ., 1) is an identity matrix of dimension ( p + 1)� ( p + 1) but
with one zero in its first entry. Then, the gradient of RSSλ(β), that is, the first
derivative with regard to β of RSSλ(β), is

∇PRSSλ βð Þ ¼ 2 XTXβ2XTy
� �þ 2λDβ:

Solving ∇PRSSλ(β) ¼ 0, the Ridge solution is given by

bβR λð Þ ¼ argmin
β

PRSSλ βð Þ ¼ XTX þ λD
� ��1

XTy:
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This is a biased estimator of β because the conditional expected value is given by

E bβR λð Þ
h i

¼ XTX þ λD
� ��1

XTXβ

but as will be described later, relative to the OLS estimator, by introducing a “small”
bias, the variance or/and the EPE of this method could potentially be reduced
(Wakefield 2013).

By using the method of Lagrange multipliers, the Ridge regression estimates of
the β coefficients can be reformulated in a similar way to the OLS problem, but
subject to the condition that the magnitude of the β0 = (β1, . . ., βp)

T be less or equal
to t λð Þ12, that is,

bβR λð Þ ¼ argmin
β

RSS βð Þ

subject to
Xp
j¼1

β2j � t λð Þ,

where t(λ) is a one-to-one function that produces an equivalent definition to the
penalized OLS presentation of the Ridge regression described before (Wakefield
2013; Hastie et al. 2009, 2015). This constrained reformulation gives a more
transparent role than the one played by the tuning parameter, and among other
things, suggests a convenient and common way of redefining the Ridge estimator
by standardizing the variables when these are of very different scales.

A graphic representation of this constraint problem for β0 ¼ 0 and p ¼ 2 is given
in Fig. 3.2, where the nested ellipsoids correspond to contour plots of RSS(β) and the
green region is the restriction with t(λ) ¼ 32, which contains the Ridge solution.

The MLR defined in (3.1) but now defined with the standardized variables is
expressed as

y ¼ 1nμþ X1sβ0s þ E

¼ Xsβs þ E,

where 1n is the column vector with 1’s in all its entries, X1s ¼
x11s ⋯ x1ps

⋮ ⋮ ⋮
xn1s ⋯ xnps

264
375,

xijs ¼ xij � x j

� �
=s j , s j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xij � x j

� �2
=n

s
, j ¼ 1, . . ., p; Xs = [1n X1s]; βs ¼

μ, βT0s
� �T

; and β0s = (β1s, . . ., βps)
T.
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Then, the redefined penalized residual sum squared under this model is

PRSSλ βsð Þ ¼
Xn
i¼1

yi � μ�
Xp
j¼1

xijsβjs

 !2

þ λ
Xp
j¼1

β2js

¼ y� XT
s βs

� �T
y� XT

s βs
� �þ λβ0s

TDβ0s:

Fig. 3.2 Graphic representation of the Ridge solution of the OLS with restriction
Pp

j¼1β
2
j < 32.

The green region contains the Ridge solution for t(λ) ¼ 32
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The Ridge solution under this redefinition is like the one given before, but now

bβRs λð Þ ¼ XT
s Xs þ λD

� ��1
XT
s y

¼
1Tn

XT
1s

" #
1n X1s½ 	 þ λD

 !�1
1Tn

XT
1s

" #
y

¼
n 0Tn

0n XT
1sX1s þ λIp

" #�1
1Tn y

XT
1sy

" #

¼
ynbβ0s λð Þ

" #
,

where yn ¼
Pn

i¼1yi=n is the sample mean of the responses and bβ0s λð Þ ¼
XT
1sX1s þ λIp

� ��1
XT
1sy is the Ridge estimator of β0s. The mean value of this Ridge

solution is

E bβRs λð Þ
h i

¼
μ

E bβ0s λð Þ
h i" #

,

where E bβ0s λð Þ
h i

¼ XT
1sX1s þ λIp

� ��1
XT
1sX1sβ0s is the expected value of the Ridge

estimator of β0s. The variance–covariance matrix is

Var bβRs λð Þ
� �

¼ XT
s Xs þ λD

� ��1
XT
sVar yð ÞXs XT

s Xs þ λD
� ��1

¼ σ2
n 0Tn

0n XT
1sX1s þ λIp

" #�1
1Tn

XT
1s

" #
1n X1s½ 	

n 0Tn

0n XT
1sX1s þ λIp

" #�1

¼ σ2
1=n 0Tn

0n Var bβ0s λð Þ
� �24 35,

where Var bβ0s λð Þ
� �

= XT
1sX1s þ λIp

� �2 1
XT
1sX1s XT

1sX1s þ λIp
� �2 1

. So, because in

this standardized way, the Ridge solution of the intercept (μ) is the sample mean of
the observed responses, and the correlation of this with the rest of the estimated
parameters (bβ0s λð Þ) is null, in the literature it is common to handle this parameter
separately from all other coefficients (β0s) (Christensen 2011).

Note that

E bβ0s λð Þ
h i

¼ Γs Λs þ λIp
� ��1Λsβ

�
0s
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and

Var bβ0s λð Þ
� �

¼ Γs Λp þ λIp
� ��1Λs Λp þ λIp

� ��1ΓT
s ,

where XT
1sX1s ¼ ΓsΛsΓT

s is the spectral decomposition of XT
1sX1s and β�0s =ΓT

s β0s .
So the conditional expected prediction error at xo when using the Ridge solution is

EPEλ xoð Þ¼EY,YojX,xo Yo�x�To bβRs λð Þ
� �2� �

¼EY,YojX,xo Yo�E Y0jx0ð ÞþE Y0jx0ð Þ�x�To bβRs λð Þ
� �2� �

¼σ2þEY,YojX,xo x�To βs�x�To bβRs λð Þ
� �2� �

¼σ2þ x�To βs�x�To EYjX bβRs λð Þ
� �� �2� �

þVar x�To bβRs λð Þjxo
� �

¼σ2þ μþxToβ0s�μ�xToΓs ΛsþλIp
� ��1Λsβ

�
0s

� �2� �
þσ2

1
n
þxToΓs ΛpþλIp

� ��1Λs ΛpþλIp
� ��1ΓT

s xo
h i

¼σ2þ x��To β�0s�x��To ΛsþλIp
� ��1Λsβ

�
0s

� �2� �
þσ2

1
n
þx��To ΛpþλIp

� ��1Λs ΛpþλIp
� ��1

x��o
h i

¼σ2þ
Xp
j¼1

1� λ j

λ jþλ

	 

x��oj β

�
js

" #2
þσ2

1
n
þ
Xp
j¼1

λ j

λ jþλ
� �2 x��oj

� �2 !
,

where x��o ¼ ΓT
s x

�
o ¼ x��o0, . . . , x

��
op

� �T
and β�0s =ΓT

s β0s = β�1s, . . . , β
�
ps

� �T
: The sec-

ond and third terms of the last equality correspond to the squared bias and the

variance of x�To bβRs λð Þ as an estimator of x�To βs , respectively. By setting λ ¼ 0, this
EPE corresponds to the EPE of the OLS prediction but with standardized variables,
while by letting λ be very large, the variance will decrease and the squared bias will
increase.

More importantly, because the derivative of EPEλ(xo) with respect to λ,
d
dλ PEλ xoð Þ, is a right continuous function at λ ¼ 0, and for X1s of full column

rank, lim
λ!0þ

d
dλPEλ xoð Þ ¼ �2σ2

Pp
j¼1

x��ojð Þ2
λ2j

¼ c ; then for E ¼ � c
2 > 0 , we have that

λ� > 0 such that d
dλ PEλ xoð Þ � c
�� �� < E for λ < λ�. From this we have that

d
dλ PEλ xoð Þ < � c

2 þ c ¼ c
2 < 0 for all λ < λ�, for some λ� > 0. Then, at least in the

interval [0, λ�], the expected prediction error at xo shows a decreasing behavior,
which indicates that there is a value of λ such that with the Ridge regression
estimation of beta coefficients, we can get a smaller prediction error than with the
OLS prediction. Figure 3.3 shows a graphic representation of this behavior of Ridge
prediction, where the lower EPE is reached at about λ ¼ exp (2.22). Figure 3.3 also
shows the increasing and decreasing behavior of the bias-squared and the variance
involved.

When X1s is not full column rank, the previous argument regarding the behavior
of the EPE of the Ridge solution is already not valid directly, but it could be used for

3.6 Regularized Linear Multiple Regression Model 85



validating part of the more general case. To see this, first note that the spectral
decomposition of XT

1sX1s can be reduced to

XT
1sX1s ¼ Γ1s Γ2s½ 	 Λ1s 0

0T Λ2s

� �
ΓT
1s

ΓT
2s

" #
¼ ΓT

1sΛ1sΓ1s,

where Λ1s =Diag λ1, . . . , λp�
� �

, p� ¼ rank (X1c) is the rank of design matrix and Λ2s

is the null matrix of order ( p � p�) � ( p � p�). Furthermore, because ΓT
s Γs ¼ Ip

implies that ΓT
2sX

T
1sX1sΓ2s ¼ 0, which in turn implies that X1sΓ2s = 0, then the MLR

can be conveniently expressed by

y ¼ 1nμþ X1sβ0s þ E

¼ 1nμþ X1sΓsΓT
s β0s þ E

¼ 1nμþ X1s Γ1s Γ2s½ 	ΓT
s β0s þ E

¼ 1nμþ X1sΓ1s X1sΓ2s½ 	β�0s þ E

¼ 1nμþ X�
1sβ

�
01s þ E,

where β�0s ¼ ΓT
s β0s , X�

1s =X1sΓ1s, and β�0s ¼ ΓT
s β0s ¼ βT0sΓ1s , β

T
0s Γ2s

� �T ¼
β�01s

T β�T02s
� �T

:

Fig. 3.3 Behavior of the expected prediction error at xo of the Ridge solution
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Also, from similar arguments, note that the penalized residual sum of squares of
the Ridge solution can be expressed by

y� 1nμ� X1sβ0sð ÞT y� 1nμ� X1sβ0sð Þ þ λβT0sβ0s

¼ y� 1nμ� X�
1sβ

�
01s

� �T
y� 1nμ� X�

1sβ
�
01s

� �þ λβT0s ΓT
1sΓ1s þ ΓT

2sΓ2s
� �

β0s

¼ y� 1nμ� X�
1sβ

�
01s

� �T
y� 1nμ� X�

1sβ
�
01s

� �þ λβ�T01sβ
�
01s þ λβ�T02sβ

�
02s

This function of β�0s is minimized at eβ�0s λð Þ ¼ eβ�T01s λð Þ, 0Tp�p�

� �T
, whereeβ�T01s λð Þ ¼ Λ1s þ λIp�

� ��1ΓT
1sX

T
1Sy is the Ridge solution of the MLR expressed in

terms of X�
1sβ

�
0s. Furthermore, because β�0s ¼ ΓT

s β0s is a non-singular transformation,
the original Ridge solution of βs can be expressed in terms of eβ�0s λð Þ asbβs λð Þ= yn,bβ�T0s λð Þ

� �T
, where bβ0s λð Þ=Γs

bβ�T0s λð Þ ¼ Γ1s
eβ�01s λð Þ: Then, in a similar

fashion as before, the conditional expected prediction error at xo by using the
Ridge solution in this case can be computed as

EPEλ xoð Þ

¼ σ2þEY,YojX,xo x�To βs�x�To bβRs λð Þ
� �2� �

¼ σ2þ x�To βs�x�To EYjX bβRs λð Þ
� �� �2� �

þVar x�To bβRs λð Þjxo
� �

¼ σ2þ μþxToΓsΓT
s β0s�μ�xToΓ1sEYjX bβ�T0s λð Þ

� �� �2� �
þ σ2

n
þVar xToΓs

bβ�T0s λð Þjxo
� �� �

¼ σ2þ μþxToΓsΓT
s β0s�μ�xToΓ1s Λ1sþλIp�

� ��1ΓT
1sX

T
1cX1cβ0S

� �2� �
þσ2

1
n
þxToΓ1s Λ1sþ λIp�

� ��1Λ1s Λ1sþλIp�
� ��1ΓT

1sxo
h i

¼
σ2þ Pp�

j¼1
1� λ j

λ jþλ

� �
x�ojβ

�
oj

 !2
24 35þσ2

1
n
þ
Xp�
j¼1

λ j

λ jþ λ
� �2 x�oj

� �2" #
if xo ¼Γ1sa1

σ2þ xToβ0s
� �2þσ2

n
if xo ¼Γ2sa2,

8>>>><>>>>:
where x�o =ΓT

s xo = x�o1, . . . , x
�
op

h iT
, β�o =ΓT

s βos = β�o1, . . . , β
�
op

h iT
, and a1 2 ℝp�

and a2 2 ℝp�p�. So, using a similar argument as before, in the first case (xo ¼ Γ1sa1),
the value of λ > 0 is such that the expected prediction error at xo is better than that

obtained with the OLS approach, bβs 0ð Þ= lim
λ!0
bβs λð Þ= yn, Γ1sΛ�1

1s Γ
T
1sX

T
1cy

� �Th iT
. In

the second case, xo ¼ Γ2sa2, the EPE(xo) in both approaches is the same and doesn’t
depend on λ, so in such cases, no improved gain with regard to the Ridge solution is
achieved. A third case was included, that is, when the target feature is of the form
xo ¼ Γ1sa1 + Γ2sa2. In this case, under the described argument, the advantage of
Ridge regression over the OLS approach in a prediction context is not clear.
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However, in practice, we don’t know the true value of the parameters, and we
need to evaluate the test error in all possible values of the training sample, which we
also don’t have. So a common way to choose the λ value is by cross-validation. For
more details about validation strategies, see Chap. 4. For example, with a k-fold CV,
the complete data set is divided into K balanced disjoint subsets, Sk, k ¼ 1, . . ., K.
One subset is used as validation and the rest are used to fit the model in each value of
a chosen grid of values of λ. This procedure is repeated K times, where each time a
subset in the partition is taken as the validation set. A more detailed k-fold CV
procedure is described below:

1. First, choose a grid of values of λ, λ ¼ (λ1, . . ., λL) .
2. Remove the subset Sk and for each value λl in the grid, fit the model with the

remaining K � 1 elements of the partition denoted by bβR�k λlð Þ, the corresponding
Ridge estimation of β, and compute the average prediction error across all
observations in the validation set Sk as

dAPE�k λlð Þ ¼ 1
Skj j
X
yi2Sk

yi � x�Ti bβR�k λlð Þ
� �2

,

where jSkj denotes the total observations in partition k.

3. Choose as the best value of λ in the grid eλ�� �
, the one with the lower average

prediction error across all partitions, that is

eλ� ¼ argmin
λl

dAPE λlð Þ,

where dAPE λlð Þ ¼ 1
K

PK
k¼1

dAPE�k λlð Þ.

4. Once eλ� is chosen, we fit the model with the complete data set and the prediction

of new individuals with feature xo can be made with byi = x�To bβR eλ�� �
, wherebβR eλ�� �

is the Ridge estimation of β at λ ¼ eλ�.
It is important to point out that very often the performance of the model needs

to be evaluated for comparison purposes with other competing models. A common
way to do this is to split the data set several times into two subsets, one for training
the model (Dtr) (to fit the model) and the other for testing (Dtst) it, in which the
predictive ability of a model is tested. In each splitting, only the training data set (Dtr)
is used to train the model (by steps 1–3 before fitting the whole training data set), and
the prediction evaluation of the fitted model is made with the testing data set, as
explained before in point 4. The prediction evaluation of the testing data set is done

by an empirical “estimate” of the EPE, MSE ¼ 1
Dtstj j
P

i2Dtst
yi � x�To bβR eλ�� �

,
� �2

, and
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finally, an average evaluation of the performance of the model is obtained across all
chosen splittings. See Chap. 4 for more explicit details.

The Ridge solution can also be obtained from a Bayesian formulation. To do this,
consider the MLR model described before with standardized features and the vector
of residuals distributed as Nn(0, σ

2In). With this assumption, the vector of responses
y is distributed in a multivariate normal distribution with vector mean 1nμ + X1sβ0s
and variance–covariance matrix σ2In. Then, to complete the Bayesian formulation,

assume βos � Np 0, σ2βIp
� �

as the prior distribution of the beta coefficients in β0s and

a “flat” prior for the intercept μ, where σ2 and σ2β are known. Under this Bayesian
specification, the posterior distribution of βs is

f βsjy,X1sð Þ

/ exp � 1
2σ2

y� Xsβsð ÞT y� Xsβsð Þ
h i

exp � 1
2σ2β

βT0sβ0s

 !
/ exp � 1

2
βTs σ�2

β Dþ σ�2XT
s Xs

� �
βs � 2σ�2yTXsβs

h in o
/ exp � 1

2
βs � eβs� �TeΣ�1

β βs � eβs� � �
,

where eΣβ ¼ σ�2
β Dþ σ�2XT

s Xs

� ��1
¼ σ2 σ2=σ2βDþ XT

s Xs

� ��1
, eβs ¼ σ�2eΣβXT

s y,

and D is the diagonal penalty matrix. That is, the posterior distribution of βs

is a multivariate normal distribution with vector mean eβs ¼ σ�2eΣβXT
s y ¼

σ2=σ2βDþ XT
s Xs

� ��1
XT
s y and variance–covariance matrix eΣβ ¼

σ2 σ2=σ2βDþ XT
s Xs

� ��1
: Then, by taking λ ¼ σ2=σ2β , we have that the mean/mode

of the posterior distribution of βs coincides with the Ridge estimation described

before, eβR λð Þ.
Example 2 We considered a genomic example to illustrate the Ridge regression
approach and the CV process to choose the learning parameter λ (WheatMadaToy,
PH the response). This data set consists of 50 observations corresponding to 50 lines
and a relationship genomic matrix computed from marker information. Table 3.1
shows the prediction behavior of the Ridge and the OLS approaches in terms of the
MSEP, across five different splittings obtained by partitioning the complete data set
into five subsets: the data of a subset are used as a testing set and the rest to train the
model. For training the model, a five-fold cross-validation (5FCV) was used along
the lines following steps 1–3 described before, and the prediction performance was
done following step 4.
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Table 3.1 indicates that in four out of five partitions, the Ridge regression shows
less MSE than the corresponding OLS approach. In all these cases, the MSE of the
OLS was, on average, 31.46% greater than that of the Ridge regression approach,
and in general, on average, by 31.14% (MSE ¼ 421.8834 for Ridge and
MSE ¼ 655.8596 for OLS). From this, we have that the Ridge regression approach
shows a better prediction performance than the OLS. The large variation of the MSE
between folds observed in this example could indicate that for obtaining a more
precise comparison between models, a larger number of partitions need to be used.
Often, the use of more partitions is avoided when larger data sets are used in
applications.

The R code used for obtaining this result is the following:

######################R code for Example 2 ##########################
rm(list=ls())
library(BMTME)
data("WheatMadaToy")
dat_F = phenoMada
dim(dat_F)
dat_F$GID = as.character(dat_F$GID)
G = genoMada
eig_G = eigen(G)
G_0.5 = eig_G$vectors%*%diag(sqrt(eig_G$values))%*%t(eig_G$vectors)
X = G_0.5
y = dat_F$PH
n = length(y)
source('TR_RR.R')
#5FCV
set.seed(3)
K = 5
Tab = data.frame()
Grpv = findInterval(cut(sample(1:n,n),breaks=K),1:n)
for(i in 1:K)
{
Pos_tr = which(Grpv!=i)
y_tr = y[Pos_tr]
X_tr = X[Pos_tr,]
TR_RR = Tr_RR_f(y_tr,X_tr,K=5,KG=100,KR=1)
lambv = TR_RR$lambv

Table 3.1 Prediction behavior of the Ridge and OLS regression models across different partitions
of the complete data set: one subset of the partition (20%) is used for evaluating the performance of
the model and the rest (80%) for training the model. RR denotes Ridge regression method

Partition MSE RR MSE OLS

1 325.40 379.33

2 433.19 454.37

3 803.76 1341.35

4 319.53 312.81

5 403.62 555.10

Average 457.10 608.59
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#Tst
y_tst = y[-Pos_tr]; X_tst = X[-Pos_tr,]
#RR
Pred_RR = Pred_RR_f(y_tst,X_tst,TR_RR)
#OLS
Pred_ols = Pred_ols_f(y_tst,X_tst,y_tr,X_tr)
Tab = rbind(Tab,data.frame(Sim=i,MSEP_RR = Pred_RR$MSEP,

MSEP_ols = Pred_ols$MSEP))
cat('i = ', i,'\n')

}
Tab

Tr_RR_f, Pred_RR_f, and Pred_ols_f are R functions accessed by the command
source(‘TR_RR.R’), where TR_RR.R is the file R script defined in Appendix 1.

From the last code, three things are important to point out:

1. The Grpv contains the information of the K¼5 folds for the outer CV
implemented and each time the model is trained with K � 1 and tested with the
remaining fold.

2. The function that trains the model under Ridge regression is called Tr_RR_f,
while the function that obtains the predictions of the testing set of this trained
model is Pred_RR_f; both functions are fully described in Appendix 1.

3. The predictions under the OLS method are obtained with the function Pred_ols_f,
which is also fully detailed in Appendix 1. It is important to point out that the
function Tr_RR_f internally implements an inner k-fold CV to tune the
hyperparameter λ required in Ridge regression.

Example 3 (Simulation) To get a better idea about the behavior of the Ridge
solution, here we report the results of a small simulation study in a scenario where
the number of observations (n¼100) is less than the number of features ( p ¼ 500)
and these are moderately correlated. Specifically, we generated 100 data sets, each of
size 100, from the following model:

yi ¼ 5þ xTi β0 þ Ei,

where the vector of beta coefficients (β0) was set to the values shown in Fig. 3.4, and
the features of all the individuals in each data set were generated from a multivariate
normal distribution centered on the null vector and variance–covariance matrix
Σ ¼ 0.25Ip + 0.75Jp, where Ip and Jp are the identity matrix and matrix of ones of
dimension p � p. The random errors (Ei) were simulated from a normal distribution
with mean 0 and variance 0.025.

The behavior of the Ridge and OLS solutions across the 100 simulated data sets is
shown in Fig. 3.5. The MSE of Ridge regression is located on the x-axis and the
corresponding MSE of the OLS is located on the y-axis. On average, the OLS
resulted in an MSE equal to 808.81, which is 30.59% larger than the average MSE
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(619.32) of the Ridge approach. In terms of the percentage of simulations in favor of
each method, Ridge regression was better in 78 out of 100 simulations, while the
OLS was better only in 22 out of 100 simulations. In general, from this small
simulation study we obtained more evidence in favor of the Ridge regression
method.

The R code used for obtaining this result is the following:

##########################R code for Example 3######################
rm(list=ls(all=TRUE))
library(mvtnorm)
library(MASS)
source('TR_RR.R')
set.seed(10)
n = 100
p = 500
Var = 0.25*diag(p)+0.75
Tab = data.frame()
betav = rnorm(p,rpois(p,1),2)
plot(betav,xlab=expression(j),ylab=expression(beta[j]))
for(i in 1:100)
{
X = rmvnorm(n,rep(0,p),Var)

Fig. 3.4 Beta coefficients
used in simulation: βj, j ¼ 1,
. . ., p

Fig. 3.5 MSE of Ridge
regression (MSE RR) versus
MSE OLS regression (MSE
OLS)

92 3 Elements for Building Supervised Statistical Machine Learning Models



dim(X)
y = 5+X%*%betav + rnorm(n,0,0.5)
Pos_tr = sample(1:n,n*0.80)
y_tr = y[Pos_tr]; X_tr = X[Pos_tr,]
y_tst = y[-Pos_tr]; X_tst = X[-Pos_tr,]
#Training RR
TR_RR = Tr_RR_f(y_tr,X_tr,K=5,KG=100,KR=1)
TR_RR$lamb_o
lambv = TR_RR$lambv
plot(log(TR_RR$lambv),TR_RR$iPEv_mean)
#Prediction RR in testing data
Pred_RR = Pred_RR_f(y_tst,X_tst,TR_RR)
Pred_RR$MSEP

#OLS
Pred_ols = Pred_ols_f(y_tst,X_tst,y_tr,X_tr)
Pred_ols

Tab = rbind(Tab,data.frame(Sim=i,MSEP_RR = Pred_RR$MSEP,
MSEP_ols = Pred_ols$MSEP))

cat('i = ', i,'\n')}

Mean_v = colMeans(Tab)
(Mean_v[3]-Mean_v[2])/Mean_v[2]*100

mean(Tab$MSEP_RR<Tab$MSEP_ols)
Pos = which(Tab$MSEP_RR<Tab$MSEP_ols)
mean((Tab$MSEP_ols[Pos]-Tab$MSEP_RR[Pos])/Tab$MSEP_RR[Pos])*100
mean((Tab$MSEP_RR[-Pos]-Tab$MSEP_ols[-Pos])/Tab$MSEP_ols[-Pos])
*100

plot(Tab$MSEP_RR, Tab$MSEP_ols,
col=ifelse(Tab$MSEP_RR<Tab$MSEP_ols,3,2),
xlab='MSEP RR', ylab='MSEP OLS')

abline(a=0,b=1)

The TR_RR.R script file is the same as the one defined in Example 2 in
Appendix 1.

3.6.2 Lasso Regression

Like Ridge regression, the Lasso regression solves the OLS problem but penalizes
the residual sum squared in a slightly different way. With the standardized variables,
the Lasso estimator of βs is defined as

eβLs λð Þ ¼ argmin
μ, β0s

PRSSλ βsð Þ,
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where now PRSSλ βsð Þ= Pn
i¼1

yi � μ� Pp
j¼1

xijsβjs

 !2

þ λ
Pp

j¼1 βjs
�� �� is the RSS(β)

but penalized by the sum of the absolute regression coefficients. For λ ¼ 0, the
solution is the OLS, while when λ is large, the OLS solutions are shrunken toward
0 (Tibshirani 1996).

Note that for any given values of β0s, the value of μ that minimizes PRSSλ(βs) is
the sample mean of the responses, eμ ¼ 1

n

Pn
i¼1yi , the same as the Ridge estimator.

However, the rest of the Lasso estimator of βs, β0s, cannot be obtained analytically,
so numerical methods are often used.

Although there are efficient algorithms for computing the entire regularization
path for the Lasso regression coefficients (Efron et al. 2004; Friedman et al. 2008),
here we will describe the coordinate-wise descent given in Friedman et al. (2007).
The idea of this method is to successively optimize the PRSSλ(βs) one parameter at a
time (beta coefficient). Holding βks, j 6¼ k, fixed at their current values eβjs λð Þ, the
value of βk that minimizes PRSSλ(βs) is given by

eβ�ks λð Þ ¼ S
Xn
i¼1

xijs yi � ey kð Þ
i

� �
, λ

 !

¼ S neβks λð Þ þ
Xn
i¼1

xijs yi � eyið Þ, λ
 !

,

where ey kð Þ
i ¼ yþPp

j¼1
j6¼k

xijseβjs λð Þ and S β, λð Þ ¼
β � λ if β > 0 and λ < βj j
β þ λ if β < 0 and λ < βj j
0 if λ � βj j

8><>: . To

obtain the Lasso estimate of β0s, this process is repeated across all the coefficients
until a convergence threshold criterion is reached.

This algorithm can be implemented with the glmnet R package (Friedman et al.
2010) as part of a more general penalty regression (elastic net), which is defined as a
combination of the Ridge and Lasso penalties. Due to the structure of the algorithm,
this can be used on very large data sets and can benefit from sparsity in the
explanatory variables (Friedman et al. 2008).

Equivalently, the Lasso estimator of beta coefficients β0s can be defined as

eβL0s λð Þ ¼ argmin
β0s

Xn
i¼1

yi � y�
Xp
j¼1

xijsβjs

 !2

subject to
Xp
j¼1

βjs
�� �� � t

With this, a graphic representation of the Lasso estimator is like the Ridge (see
Fig. 3.6). The nested ellipsoids correspond to contour plots of RSS(β) and the green
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region is the restriction with t ¼ 32, which contains the Lasso solution. Indeed, the
Lasso solution is the first point of the contours that touches the square, and this will
sometimes be in a corner that makes some coefficients zero. Because there are no
corners in Ridge regression, this will rarely happen (Tibshirani 1996).

Fig. 3.6 Graphic representation of the Lasso solution of the OLS with restriction
Pp

j¼1 β j

�� �� < 32.
The green region contains the Lasso solution
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The Lasso estimator can also be derived from a Bayesian perspective. Supposing
that the vector of residuals is distributed as Nn(0, σ

2In), like in the Ridge regression
case, and assuming that the priors of β0s are independent and identically distributed
according to Laplace distribution with mean 0 and variance σ2β, and adopting a “flat”
prior for μ, with known σ2 and σ2β, the posterior distribution of β is

f βsjy,X1sð Þ

/ exp � 1
2σ2

y� Xsβsð ÞT y� Xsβsð Þ
h iYn

i¼1

exp �
ffiffiffi
2

p
σ2β

βjs
�� �� !

/ exp � 1
2σ2

Xn
i¼1

yi � μ�
Xp
j¼1

xijsβjs

 !
þ λ

Xp
j¼1

βjs
�� ��" #( )

,

where λ ¼ ffiffiffi
8

p
σ2=σ2β. Then, the model of the posterior distribution of βs corresponds

to the Lasso estimator described before, eβL λð Þ.
The performance of Lasso regression in terms of prediction error is sometimes

comparable to Ridge regression (Hastie et al. 2009). However, as we pointed out
before, and based on the nature of the restriction term, for any given value of t, only a
subset of the coefficients βjs is nonzero, so this gives a sparse solution (Efron et al.
2004).

Example 4 To illustrate Lasso regression, here we considered the data used in
Example 2, but instead of using a five-fold cross-validation (5FCV) to explore the
behavior of this, we built 100 random splittings of the complete data set: 80% for
training and 20% for testing. Figure 3.7 presents a representation of the MSE of the
Lasso regression (y-axis) and the MSE corresponding to Ridge regression (x-axis). In
81 out of 100 random splittings, the Ridge regression approach gives a better
performance, and in this case, on average, the Lasso regression shows an MSE
that is 92.13% greater than the Ridge solution. In the other cases, the Ridge was
worse, on average, by 30.91%.

Fig. 3.7 MSE of Ridge
regression versus MSE of
Lasso regression in
100 random splittings of
data: 20% for testing and
80% for training
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On average across all the splittings, the performance of the Ridge regression
(average¼ 118.9726 and standard deviation¼ 50.7193 of MSE) was superior to the
Lasso (200.6021 and standard deviation ¼ 222.5494 of MSE) by 68.61%, but this
was better than the OLS solution (average ¼ 1609.4635 and standard devia-
tion ¼ 1105.4434 of MSE) by 802.32%, while the Ridge was 1352.80% better
than the OLS estimate.

########################R code for Example 4########################
rm(list=ls())
library(BMTME)
data("WheatMadaToy")
dat_F = phenoMada
dim(dat_F)
dat_F$GID = as.character(dat_F$GID)
G = genoMada
eig_G = eigen(G)
G_0.5 = eig_G$vectors%*%diag(sqrt(eig_G$values))%*%t(eig_G$vectors)
X = G_0.5
y = dat_F$PH
n = length(y)
library(glmnet)
#5FCV
set.seed(3)
K = 5
Tab = data.frame()
set.seed(1)
for(k in 1:100)
{
Pos_tr = sample(1:n,n*0.8)
y_tr = y[Pos_tr]; X_tr = X[Pos_tr,]; n_tr = dim(X_tr)[1]
y_tst = y[-Pos_tr]; X_tst = X[-Pos_tr,]
#Partition for internal training the model
Grpv_k = findInterval(cut(sample(1:n_tr,n_tr),breaks=5),1:n_tr)
#RR
A_RR = cv.glmnet(X_tr,y_tr,alpha=0,foldid=Grpv_k,type.

measure='mse')
yp_RR = predict(A_RR,newx=X_tst,s='lambda.min')
#LR
A_LR = cv.glmnet(X_tr,y_tr,alpha=1,foldid=Grpv_k,type.

measure='mse')
yp_LR = predict(A_LR,newx=X_tst,s='lambda.min')
#OLS
A_OLS = glmnet(X_tr,y_tr,alpha=1,lambda=0)
yp_OLS = predict(A_OLS,newx=X_tst)

Tab = rbind(Tab,data.frame(PT=k,MSEP_RR = mean((y_tst-yp_RR)^2),
MSEP_LR = mean((y_tst-yp_LR)^2),
MSEP_OLS = mean((y_tst-yp_OLS)^2)))

cat('k = ', k,'\n')
}
Tab

3.6 Regularized Linear Multiple Regression Model 97



Now the key components of the just given R code are

1. Hundred random partitions were implemented where each partition is obtained
with Pos_tr ¼ sample(1:n,n*0.8), which means that 80% of the data is used for
training and 20% for testing, and for each training set, an inner K¼5 fold CV is
performed to tune the λ hyperparameter.

2. The Grpv_k contains the information of the K¼5 fold inner CV implemented to
tune the hyperparameter λ.

3. Now we use the cv.glmnet function that is useful for implementing supervised
learning methods with cross-validation. This function belongs to the R package
glmnet and the input we give to this function is the training set (X_tr, y_tr),
alpha¼0, that tells glmnet to implement a Ridge regression method, while
alpha¼1 orders glmnet to implement a Lasso regression. In foldid¼Grpv_k we
are given training and testing sets to tune the hyperparameter λ, and in type.
measure¼‘mse’, we are specifying the metric with which we will evaluate the
prediction performance of the inner testing sets to be able to choose the best
hyperparameter.

4. The function glmnet with lambda¼0 implements the OLS estimator.

It is important to point out that Lasso regression performs particularly well when
there is a subset of true coefficients that are small or even zero. It doesn’t do as well
when all of the true coefficients are moderately large; however, in this case, it can
still outperform linear regression over a pretty narrow range of (small) λ values.

3.7 Logistic Regression

The logistic regression is a useful and traditional tool used to explain or predict a
binary response based on information of explanatory variables. It models the con-
ditional distribution of the response variable as a Bernoulli distribution with the
probability of success given by

P Yi ¼ 1jxið Þ ¼ p xi; βð Þ ¼ exp β0 þ xTi β0
� �

1þ exp β0 þ xTi β0ð Þ :

To estimate parameters under logistic regression, suppose that we have a set of
data xTi , yi

� �
, i ¼ 1, . . ., n (training data), where xi ¼ (xi1, . . ., xip)

T is a vector of
features measurement and yi is the response measurement corresponding to the ith
drawn individual. To obtain the MLE of β, first we need to build the likelihood
function of the parameters of β. This is given by

L β; yð Þ ¼
Yn
i

p xi; βð Þyi 1� p xi; βð Þ½ 	1�yi ¼
Yn
i

p xi; βð Þ
1� p xi; βð Þ
	 
yi

1� p xi; βð Þ½ 	1

¼ exp
Xn
i¼1

yi β0 þ xTi β0
� � !Yn

i¼1

1
1þ exp β0 þ xTi β0ð Þ :

and from here the log-likelihood is
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ℓ β; yð Þ ¼ log L β; yð Þ½ 	 ¼
Xn
i¼1

yi β0 þ xTi β0
� ��Xn

i¼1

log 1þ exp β0 þ xTi β0
� �� �

:

Then, because the gradient of the likelihood is given by

∂ℓ β; yð Þ
∂β

¼

Pn
i¼1

yi

Pn
i¼1

yixi1

⋮Pn
i¼1

yixip

266666666664

377777777775
�

Pn
i¼1

exp β0 þ xTi β0
� �

1þ exp β0 þ xTi β0ð ÞPn
i¼1

exp β0 þ xTi β0
� �

1þ exp β0 þ xTi β0ð Þ xi1

⋮Pn
i¼1

exp β0 þ xTi β0
� �

1þ exp β0 þ xTi β0ð Þ xip

26666666666664

37777777777775
¼ XTy� XTp X; βð Þ
¼ XT y� p X; βð Þ½ 	,

where p(X; β) ¼ [p(x1; β), . . ., p(xn; β)]
T, the MLE of β, bβ, can be iteratively approx-

imated by using the gradient descent method:

βtþ1 = βt þ αXT y� p X; βtð Þ½ 	:

For inferential purposes, we have that the asymptotic distribution of bβ is a
multivariate normal distribution with vector mean β and variance–covariance matrix,
the inverse of the negative of the expected value of the Hessian of the log-likelihood,

E � ∂ℓ β; yð Þ
∂β∂βT

h i�1
 �

¼ XTWX
� ��1

(McCullagh and Nelder 1989). This is because

∂2ℓ β; yð Þ
∂β j∂βk

¼ ∂ℓ β; yð Þ
∂β j

¼ �
Xn
i¼1

exp β0 þ xTi β0
� �

1þ exp β0 þ xTi β0ð Þ½ 	2
xijxik

¼ �
Xn
i¼1

p xi; βð Þ 1� p xi; βð Þ½ 	xijxik

The Hessian of the log-likelihood is given by

∂ℓ β; yð Þ
∂β∂βT

¼ H ¼ �XTWX,

where W = Diag{p(x1; β)[1 � p(x1; β)], . . ., p(xn; β)[1 � p(xn; β)]}.
Once the parameters have been estimated, the prediction response is obtained

from the estimated probabilities: byo ¼ 1 if p xo;bβ� �
> 0:5 and byo ¼ 0 if
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p xo;bβ� �
� 0:5. Of course, a different threshold to 0.5 can be used and this could be

considered as a hyperparameter that needs to be tuned in a similar fashion as the
penalty parameter in the Ridge procedure.

It is important to point out that the minimization process of the log-likelihood can
be performed using a more efficient iterative technique called the Newton–Raphson
technique, which is an iterative optimization technique that uses a local quadratic
approximation to the log-likelihood function. The following is the Newton–Raphson
iterative equation used to search for the beta coefficients:

βtþ1 ¼ βt þH�1XT y� p X; βtð Þ½ 	,

where H = � XTWX is the Hessian matrix whose elements comprise the second
derivative of the log-likelihood with regard to the beta coefficients. Therefore, the
inverse of the Hessian is H21 = (XTWX)21. So, the previous equation can be
expressed as

βtþ1 ¼ βt þ XTWX
� ��1

XT y� p X; βtð Þ½ 	:

It is important to recall that the Hessian is no longer constant since it depends on β
through the weighting matrixW. Also, it is clear that the logistic regression does not
have a closed solution due to the nonlinearity of the logistic sigmoid function. It is
important to point out that if instead of maximizing the likelihood we minimize the
negative of the log-likelihood, the Newton–Raphson equation for updating the beta
coefficients is equal to

βtþ1 ¼ βt � XTWX
� ��1

XT y� p X; βtð Þ½ 	:

This Newton–Raphson algorithm for logistic regression is known as the iterative
reweighted least squares since the diagonal weighting matrix W is interpreted as
variances. Another alternative method for estimating the beta coefficients in logistic
regression is the Fisher scoring method that is very similar to the Newton–Raphson
method just described, but with the difference that instead of using the Hessian (H),
it uses the expected value of the Hessian matrix, E(H).

3.7.1 Logistic Ridge Regression

Like the MLR, when there is strong collinearity, the variance of the MLE is severely
affected and the true effects of the explanatory variables could be falsely identified
(Lee and Silvapulle 1988). In a similar fashion as for the MLR, this could be judged
directly from the asymptotic covariance matrix of bβ . Moreover, in a common
prediction context, when the number of features is larger than the number of
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observations ( p 
 n), the matrix design is not of full column rank and can cause
overfitting, affecting the expected classification error (generalization error) when
using the “MLE.” One way to avoid overfitting is by replacing the MLE with a
regularized MLE as the Ridge MLE estimator of MLR. This is defined as

eβRs λð Þ ¼ argmax
βs

ℓ βs; yð Þ � λ
Xp
j¼1

β2js

" #
,

where λ is a hyperparameter that has a similar interpretation as in the MLR.
In the literature, there are some algorithms that approximate the Ridge estimation.

For example, Genkin et al. (2007) used a cyclic coordinate descent optimization
algorithm to approximate this. The one-dimensional optimization problem involved
is solved by a modified Newton–Raphson method. Another method was proposed by
Friedman et al. (2008) in a more general context. Given the current values of eβs λð Þ,
the next update of coordinate βk is given by

βks ¼
Pn

i¼1wiy�ijxijPn
i¼1wix2ij þ λ

with y�ij ¼ y�i � eμ λð Þ �Pp

j6¼k
j¼1xijseβjs λð Þ for k ¼ 1, . . ., p, and of μ is given by

μ ¼
Pn

i¼1wie�iPn
i¼1wi

with e�i ¼ y�i �
Pp

j¼1xijseβjs λð Þ, where y�i ¼ eβ0 λð Þ þ xTi eβ0s λð Þ þ yi�p xi;eβs λð Þ
� �
wi

and

wi = p xi;eβs λð Þ
� �

1� p xi;eβs λð Þ
� �h i

, i¼ 1, . . ., n, are pseudo responses and weights

that change across the updates. This can be obtained by maximizing, with respect to
βks, the next quadratic approximation of the penalized likelihood at the current
values of βs (eβs λð Þ)

ℓ βs; yð Þ � λ
Xp
j¼1

βjs
�� �� � ℓ� βs; yð Þ � λ

2

Xp
j¼1

β2js þ c,

where ℓ� βs; yð Þ ¼ � 1
2

Pn
i¼1wi y�i � μ�Pp

j¼1xijsβjs
� �2

is the quadratic approxima-

tion of ℓ(βs; y) at current values of βs, eβs λð Þ, and c is a constant that does not depend
on βs. More details of this implementation (glmnet R package) can be found in
Friedman et al. (2008). Note that under this approximation, the beta coefficients can
be updated by
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bβRs λð Þ ¼ XT
sWXs þ λD

� ��1
XT
sWy,

where W = Diag(w1, . . .,wn) and D is the diagonal matrix as defined before.

3.7.2 Lasso Logistic Regression

The Lasso penalization can be applied to other models (Tibshirani 1996). In partic-
ular, for logistic regression, the Lasso estimator of βs is defined as

eβLs λð Þ= argmax
βs

ℓL βs; yð Þ,

where ℓL βs; yð Þ ¼ ℓ βs; yð Þ � λ
Pp

j¼1 βjs
�� �� and is often known as the regularized Lasso

likelihood. Numerical methods are also required to obtain this Lasso estimate. There
are several possibilities (Genkin et al. 2007), such as non-quadratic programming
and iteratively reweighted least squares (Tibshirani 1996), but here we will briefly
describe the one proposed by Friedman et al. (2008) and implemented in the glmnent
R package. This method consists of applying the coordinate descent procedure to a
penalized reweighted least square, which is formed by making a Taylor approxima-
tion to the likelihood around the current values of the coefficients. That is, this
procedure consists of successively updating the parameters by

eβs ¼ argmin
βs

�ℓ� βs; yð Þ þ λ
2

Xp
j¼1

βjs
�� �� !

,

where ℓ� βs; yð Þ ¼ � 1
2

Pn
i¼1wi y�i � μ�Pp

j¼1xijsβjs
� �2

þ c, y�i ¼ eβ0 λð Þþ

xTi eβ0s λð Þ þ yi�p xi;eβs λð Þ
� �
wi

, and wi = p xi;eβs λð Þ
� �

1� p xi;eβs λð Þ
� �h i

, i ¼ 1, . . ., n, as

defined in the Ridge regression case. More details of this implementation can be
consulted in Friedman et al. (2008).

Example 5 In this example, we used data corresponding to 40 lines planted with
four repetitions. For illustrative purposes, we will use as response a binary variable
based on Plant Height. The matrix of features used here was obtained from the
genomic relationship (G), X = ZLG

1/2, where G1/2 is the square root matrix of G.

The performance of logistic regression, logistic Ridge regression, and Lasso
logistic regression for this data set was evaluated across 100 random splittings of
the complete data set: 20% for testing (evaluation performance) and 80% for
training. The performance was measured by the proportion of cases correctly
classified (PCCC) in the testing data. These results are summarized in Table 3.2,
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where for each method the mean (PCCC) and standard deviation (SD) of the PCCC
across the 100 splittings are reported. The table indicates that, on average, the
standard logistic (SLR) approach shows slightly better performance than the other
two approaches, even better than the Lasso solution. Out of the 100 random parti-
tions, 72, 24, and 4, the SLR, the logistic Ridge regression (LRR), and the logistic
lasso regression (LLR) resulted in the higher PCCC value, respectively. However,
the difference in the performance of the three methods is not significant because of
the large deviation obtained across the different partitions.

The computations were done with the help of the glmnet R package using the
following R code:

#########################R code for Example 5#######################
load(file ='dat-E3.5.RData')
dat_F = dat$dat_F
dat_F = dat_F[order(dat_F$Rep,dat_F$GID),]
head(dat_F)
G = dat$G
dat_F$y = dat_F$Height
ZL = model.matrix(~0+GID,data=dat_F)
colnames(ZL)
Pos = match(colnames(ZL),paste('GID',colnames(G),sep=''))
max(abs(diff(Pos)))
y = dat_F$y
ei = eigen(G)
X = ZL%*%ei$vectors%*%diag(sqrt(ei$values))%*%t(ei$vectors)
n = length(y)
library(glmnet)
#5FCV
set.seed(1)
Tab = data.frame()
set.seed(1)
for(k in 1:100)
{
Pos_tr = sample(1:n,n*0.8)
y_tr = y[Pos_tr] ; X_tr = X[Pos_tr,]; n_tr = dim(X_tr)[1]
y_tst = y[-Pos_tr]; X_tst = X[-Pos_tr,]
#Partition for internal training the model
Grpv_k = findInterval(cut(sample(1:n_tr,n_tr),breaks=5),1:n_tr)
#RR
A_RR = cv.glmnet(X_tr,y_tr,family='binomial',

alpha=0,foldid=Grpv_k,type.measure='class')
yp_RR = as.numeric(predict(A_RR,newx=X_tst,s='lambda.min',

type='class'))

Table 3.2 Performance of
the standard, Ridge, and Lasso
logistic regression models

Method PCCC SD

SLR 0.7284 0.0765

Ridge 0.7240 0.0763

Lasso 0.7206 0.0705

PCCC denotes the proportion of cases correctly classified
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#LR
A_LR = cv.glmnet(X_tr,y_tr,family='binomial',

alpha=1,foldid=Grpv_k,type.measure='class')
yp_LR = as.numeric(predict(A_LR,newx=X_tst,s='lambda.min',

type='class'))
#SLR
A_SLR = glmnet(X_tr,y_tr,family='binomial',alpha=0,lambda=0)
yp_SLR = as.numeric(predict(A_SLR,newx=X_tst,type='class'))

Tab = rbind(Tab,data.frame(PT=k,PCCC_RR = 1-mean(y_tst!=yp_RR),
PCCC_LR = 1-mean(y_tst!=yp_LR),
PCCC_SLR = 1-mean(y_tst!=yp_SLR)))

cat('k = ', k,'\n')
}
Tab

Also, in this R code there are four relevant points:

1. Hundred random partitions were implemented, Pos_tr ¼ sample(1:n,n*0.8), with
80% for training and 20% for testing, and for each training set, an inner K¼5 fold
CV is performed to tune the λ hyperparameter.

2. Also, here Grpv_k contains the information of the K¼5 inner folds to tune the
hyperparameter λ.

3. The cv.glmnet function with the following input is used: (a) training set (X_tr,
y_tr); (b) with alpha¼0 to implement a Ridge regression and alpha¼1 to imple-
ment a Lasso regression; (c) with foldid¼Grpv_k containing training and testing
sets to tune the hyperparameter λ; (d) with family¼‘binomial’ to implement a
logistic regression; and (e) with type.measure¼‘class’ as a metric for categorical
data to measure the prediction performance of the inner testing set to choose the
best value of the hyperparameter λ.

4. The function glmnet with family¼‘binomial’ and lambda¼0 implements the
logistic regression but without penalization.

Appendix 1: R Code for Ridge Regression Used in Example 2

The TR_RR.R script file must contain the following:

library(epiR)
source("RR.R")
Tr_RR_f<-function(y_tr,X_tr,K=5,KG=100,KR=1)
{
n_tr = dim(X_tr)[1]
X_tr_s = scale2_f(X_tr)
mu = mean(y_tr)
y_tr = y_tr-mu
#Inner CV
lambv = lamb_f(X_tr,K=KG,li=1e-7,ls=1-1e-7)
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iPEv_mean = 0
for(ir in 1:KR)
{
iPE_mat = matrix(0,nr=length(lambv),nc=K)
MSEP_mat=iPE_mat
Grpv = findInterval(cut(sample(1:n_tr,n_tr),breaks=K),1:n_tr)
for(i in 1:K)
{
Pos_itr = which(Grpv!=i)
X_itr = X_tr_s[Pos_itr,]
y_itr = y_tr[Pos_itr];
y_itst = y_tr[-Pos_itr];
dat_itr = data.frame(y=y_itr,X=X_itr)
n_itr = dim(X_itr)[1]
betav_itr = A_RR_f_a_V(y_itr,X_itr,lambv)
yp_mat = 0 + (X_tr_s[-Pos_itr,])%*%betav_itr
iPEv = colMeans((matrix(y_itst,nr=length(y_itst),

nc=length(lambv))-yp_mat)**2)
iPE_mat[,i] =iPEv

}
iPEv_mean = (ir-1)/ir*iPEv_mean + rowMeans(iPE_mat)/ir

}

#
plot(log(lambv),iPEv_mean)
Pos_o = which.min(iPEv_mean)
lamb_o = lambv[Pos_o]
A_RR = RR_f(y=y_tr+mu,X=X_tr,lamb=lamb_o,Intercept = TRUE,Std=TRUE)
betav_s = A_RR$betav_s
betav_o = A_RR$betav_o
list(lamb_o = lamb_o, betav_s = betav_s,

betav_o = betav_o,
lambv=lambv,iPEv_mean=iPEv_mean,X_tr=X_tr,y_tr =y_tr,Grpv=Grpv)

}

Pred_RR_f<-function(y_tst,X_tst,TR_RR)
{
#betava_RR = TR_RR$betava_RR
y_tr = TR_RR$y_tr; X_tr = TR_RR$X_tr
X = rbind(X_tr,X_tst)
betav_s = TR_RR$betav_s
betav_o = TR_RR$betav_o
yp_tst = c(cbind(1,X_tst)%*%betav_o)
plot(y_tst,yp_tst); abline(a=0,b=1)
MSEP_RR = mean((y_tst-yp_tst)**2)
list(MSEP=MSEP_RR, betav_s = betav_s,betav_o = betav_o)

}
Pred_ols_f<-function(y_tst,X_tst,y_tr,X_tr)
{
#OLS
p = dim(X_tr)[2]
A = lm_f(y_tr,X_tr)
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sdv = apply(X_tr,2,sd2_f)
A_inv = diag(c(1,1/sdv))
A_inv[1,1] = 1
A_inv[1,2:(p+1)] = -apply(X_tr,2,mean)/sdv
betav_s = A$betav_s
betav_o = A_inv%*%betav_s
yp_tst_ols = c(cbind(1,X_tst)%*%betav_o)
MSEP_ols = mean((y_tst-yp_tst_ols)**2)
list(MSEP=MSEP_ols,betav_s = betav_s)

}

The script file accessed by source("RR.R") must contain the following R code:

sd2_f<-function(x)
{
(mean((x-mean(x))**2))^0.5

}
scale2_f<-function(X)
{
scale(X,center=TRUE,scale = apply(X,2,sd2_f))

}

#RR internal standarized: zij = (xij-\bar{x}_j)/ss_j
#ss_j = mean (xij-\bar{x}_j)^2
RR_f<-function(y,X,lamb = 0, Intercept=TRUE,Std=TRUE)
{
p = dim(X)[2]; n = dim(X)[1]
if(Std == TRUE)
{
sdv = apply(X,2,sd2_f)
A_inv = diag(c(1,1/sdv))
A_inv[1,1] = 1
A_inv[1,2:(p+1)] = -apply(X,2,mean)/sdv
mu = mean(y)
X_s = scale2_f(X)
Xa = X_s
svd_X = svd(Xa); d1 = svd_X$d
Gama1 = svd_X$v
U = svd_X$u
pa = dim(Gama1)[2]
betav_s = c(mu,Gama1%*%(((d1/(d1^2+lamb)))*(t(U)%*%(y-mu))))
betav_o = A_inv%*%betav_s# betav in orginal scale
list(betav_s = betav_s,betav_o=betav_o)

}
else
{
Xa = X
sdv = apply(X,2,sd2_f)
p = dim(X)[2]
svd_X = svd(Xa)
d1 = svd_X$d
Gama1 = svd_X$v; U = svd_X$u
betav = Gama1%*%((d1/(d1^2+lamb))*(t(U)%*%(y)))#-mean(y)
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betav
#tX = t(X)
#betav = ginv(tX%*%X+lamb*diag(p))%*%tX%*%y
#betav

}
}

RR_f_V = Vectorize(RR_f,'lamb')

A_RR_f_a <-function(y_itr,X_itr,lamb)
{
A = RR_f(y=y_itr,X=X_itr,lamb=lamb,Std=FALSE,Intercept = FALSE)
A

}
A_RR_f_a_V<-Vectorize(A_RR_f_a,'lamb')

lamb_f<-function(X,K=100,li=0.001,ls=0.999)
{
Xac = scale2_f(X)
n = dim(Xac)[1]
R2v = seq(li,ls,length=K)
lambv = (1-R2v)/R2v*sum(diag(Xac%*%t(Xac)))/n
lambv = exp(seq(min(log(lambv)),max(log(lambv)),length=K))
sort(lambv,decreasing = TRUE)

}

library(MASS)
lm_f<-function(y,X)
{
p = dim(X)[2]
sdv = apply(X,2,sd2_f)
A_inv = diag(c(1,1/sdv))
A_inv[1,1] = 1
A_inv[1,2:(p+1)] = -apply(X,2,mean)/sdv
X = scale2_f(X); mu = mean(y);
svd_X = svd(X); d = svd_X$d
d1 = svd_X$d; Gama1 = svd_X$v; U = svd_X$u
betav_s = c(mu,Gama1%*%((1/d1)*(t(U)%*%(y-mu))))
betav_o = A_inv%*%betav_s# betav in orginal scale
list(betav_s = betav_s,betav_o=betav_o)

}
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

108 3 Elements for Building Supervised Statistical Machine Learning Models

https://doi.org/10.1080/03610918808812723
http://creativecommons.org/licenses/by/4.0/

	Chapter 3: Elements for Building Supervised Statistical Machine Learning Models
	3.1 Definition of a Linear Multiple Regression Model
	3.2 Fitting a Linear Multiple Regression Model via the Ordinary Least Square (OLS) Method
	3.3 Fitting the Linear Multiple Regression Model via the Maximum Likelihood (ML) Method
	3.4 Fitting the Linear Multiple Regression Model via the Gradient Descent (GD) Method
	3.5 Advantages and Disadvantages of Standard Linear Regression Models (OLS and MLR)
	3.6 Regularized Linear Multiple Regression Model
	3.6.1 Ridge Regression
	3.6.2 Lasso Regression

	3.7 Logistic Regression
	3.7.1 Logistic Ridge Regression
	3.7.2 Lasso Logistic Regression

	Appendix 1: R Code for Ridge Regression Used in Example 2
	References


